Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells
Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatment...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1861; no. 6; pp. 1597 - 1605 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 |
DOI | 10.1016/j.bbagen.2017.01.035 |
Cover
Loading…
Abstract | Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
[Display omitted]
•Multifunctional magnetic nanoparticles including therapeutic antibodies and drugs•Controlled drug release system for selective treatment of pancreatic cancer cells•Targeting CD47, a pancreatic cancer stem cell biomarker•Effective targeting of functionalized MNPs to CD47-positive pancreatic cancer cells•Efficient induction of apoptosis by the CD47 antibody and the cytotoxicity of the drug |
---|---|
AbstractList | Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. [Display omitted] •Multifunctional magnetic nanoparticles including therapeutic antibodies and drugs•Controlled drug release system for selective treatment of pancreatic cancer cells•Targeting CD47, a pancreatic cancer stem cell biomarker•Effective targeting of functionalized MNPs to CD47-positive pancreatic cancer cells•Efficient induction of apoptosis by the CD47 antibody and the cytotoxicity of the drug |
Author | Aires, Antonio Heeschen, Christopher Trabulo, Sara Aicher, Alexandra Cortajarena, Aitziber L. |
Author_xml | – sequence: 1 givenname: Sara surname: Trabulo fullname: Trabulo, Sara organization: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain – sequence: 2 givenname: Antonio surname: Aires fullname: Aires, Antonio organization: CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, Donostia-San Sebastián 20009, Spain – sequence: 3 givenname: Alexandra surname: Aicher fullname: Aicher, Alexandra organization: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain – sequence: 4 givenname: Christopher surname: Heeschen fullname: Heeschen, Christopher email: c.heeschen@qmul.ac.uk organization: Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain – sequence: 5 givenname: Aitziber L. surname: Cortajarena fullname: Cortajarena, Aitziber L. email: alcortajarena@cicbiomagune.es organization: CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, Donostia-San Sebastián 20009, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28161480$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi3Uim4L_wAhH7kkeOzYiTkgoap8SK24wNlynMnKq6y92E4F_Pp6tYUDB-qL5_C8o5l5LslZiAEJeQWsBQbq7a4dR7vF0HIGfcugZUI-IxsYet4MjKkzsmGCdU0HSl6Qy5x3rD6p5XNywQdQ0A1sQ8zduhQ_r8EVH4Nd_G-cqE8x0PjTT0iDDfFgU_FuwUznmGjGBSt8j7TYtMXiw5bGmR5scAltBamrJSbqcFnyC3I-2yXjy8f_inz_ePPt-nNz-_XTl-sPt43rFJTGMWG7qVccbe-4GCWfUYOV2o6zrlUdF0XP-WCl0jhOqmICsHOW91rBLK7Im1PfQ4o_VszF7H0-TmADxjUbXnfnPdMCnkRhUFKCFkJX9PUjuo57nMwh-b1Nv8yf-1WgOwEuxZwTzn8RYOaoyezMSZM5ajIMTNVUY-_-iTlf7NFASdYvT4Xfn8JY73nvMZnsPNaTTz5VM2aK_v8NHgCHGbC7 |
CitedBy_id | crossref_primary_10_1016_j_matlet_2019_04_073 crossref_primary_10_3390_cancers14122879 crossref_primary_10_3390_pharmaceutics15102421 crossref_primary_10_1111_ijac_12897 crossref_primary_10_2174_1389450121666200703195229 crossref_primary_10_1155_2021_6050795 crossref_primary_10_3390_ma16072906 crossref_primary_10_3390_molecules25225319 crossref_primary_10_3390_molecules28072882 crossref_primary_10_37349_etat_2024_00220 crossref_primary_10_1080_08820139_2024_2415409 crossref_primary_10_1016_j_jddst_2020_102018 crossref_primary_10_3390_molecules24193547 crossref_primary_10_1016_j_critrevonc_2023_103939 crossref_primary_10_2174_0113892010284407240212110745 crossref_primary_10_1021_acsomega_8b02760 crossref_primary_10_1002_adtp_202200079 crossref_primary_10_2217_nnm_2019_0323 crossref_primary_10_3389_fimmu_2021_701485 crossref_primary_10_1016_j_jconrel_2018_11_013 crossref_primary_10_1039_D1RA05988B crossref_primary_10_1021_acsami_1c14592 crossref_primary_10_1080_17425247_2019_1554647 crossref_primary_10_3390_pharmaceutics9040039 crossref_primary_10_1159_000506908 crossref_primary_10_2174_0929867325666180723121804 crossref_primary_10_3390_ijms242316759 crossref_primary_10_3389_fimmu_2024_1348852 crossref_primary_10_1186_s13287_022_03180_9 crossref_primary_10_1021_acsabm_0c00312 crossref_primary_10_1016_j_bbcan_2020_188461 crossref_primary_10_1016_j_jconrel_2017_10_036 crossref_primary_10_1080_14737140_2019_1689820 crossref_primary_10_1021_acs_molpharmaceut_2c00073 crossref_primary_10_3390_pharmaceutics15082103 crossref_primary_10_1002_wer_11102 crossref_primary_10_3390_ijms22158060 crossref_primary_10_1002_pssa_201800544 crossref_primary_10_4155_tde_2017_0062 crossref_primary_10_1016_j_nano_2018_01_016 crossref_primary_10_1080_1061186X_2024_2405711 crossref_primary_10_2174_1389201024666230821090222 crossref_primary_10_1016_j_colsurfb_2021_112093 crossref_primary_10_3390_molecules25143159 crossref_primary_10_3389_fbioe_2023_1191327 crossref_primary_10_1007_s13204_023_02853_y crossref_primary_10_3390_pharmaceutics12100980 crossref_primary_10_3389_fimmu_2020_00018 crossref_primary_10_1016_j_canlet_2024_216979 crossref_primary_10_1016_j_ejpb_2021_11_006 crossref_primary_10_1002_adma_202109210 crossref_primary_10_1039_C7TB02985C crossref_primary_10_1016_j_jpha_2024_101099 crossref_primary_10_1080_07391102_2021_1879270 crossref_primary_10_1016_j_jddst_2020_102207 crossref_primary_10_1002_adtp_201900076 crossref_primary_10_15212_bioi_2020_0047 crossref_primary_10_1021_acs_biomac_0c01546 |
Cites_doi | 10.1016/j.addr.2008.08.005 10.7150/thno.4051 10.1038/sj.gt.3302720 10.1016/j.jpba.2014.04.017 10.1016/j.watres.2013.02.039 10.1016/j.biomaterials.2013.01.087 10.1021/acs.nanolett.6b00867 10.1016/j.addr.2006.09.009 10.3390/biomedicines4030020 10.1200/JCO.1997.15.6.2403 10.1038/nm1631 10.1158/1078-0432.CCR-04-2291 10.2174/1385272819666150810221009 10.1002/jmri.20235 10.1158/1078-0432.CCR-14-1399 10.1088/0957-4484/27/6/065103 10.1056/NEJMoa1011923 10.1126/science.1070200 10.1016/0003-2697(76)90527-3 10.1042/BSR20150089 10.1155/2012/614094 10.1263/jbb.100.1 10.1038/nnano.2007.99 10.1016/j.addr.2009.11.002 10.1038/nmeth.3112 10.1097/CAD.0b013e32830f9046 10.1016/j.jmmm.2006.10.1151 10.1039/C4GC00418C 10.1080/02656730802104757 10.1016/j.addr.2010.05.006 10.1517/17425247.5.1.69 10.1002/adma.200600674 10.1016/j.stem.2007.06.002 10.1007/s11095-014-1417-0 10.1021/acsnano.5b03300 10.1593/tlo.09109 10.1021/cn300059r 10.1146/annurev-anchem-061010-114041 10.1039/c0nj00986e 10.1016/j.ejmech.2014.05.078 10.1053/j.gastro.2009.05.053 10.1016/j.cis.2011.04.003 10.1039/C5TB00833F 10.1056/NEJMoa1304369 10.1016/j.biotechadv.2013.05.009 10.1021/ja036409g 10.1186/1756-8722-5-70 10.1016/j.mseb.2013.03.011 10.1088/0022-3727/43/47/474012 10.1158/0008-5472.CAN-06-2030 10.1016/j.jconrel.2015.05.003 10.1158/1078-0432.CCR-07-4592 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2017.01.035 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1605 |
ExternalDocumentID | 28161480 10_1016_j_bbagen_2017_01_035 S0304416517300430 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-c03a4d762ea7c23b52fe91a59abf9e91161e37228a569ebd6a7c31e4ca27961f3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 |
IngestDate | Thu Jul 10 21:54:30 EDT 2025 Fri Jul 11 06:29:55 EDT 2025 Mon Jul 21 05:42:28 EDT 2025 Tue Jul 01 00:22:08 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Fri Feb 23 02:32:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Controlled drug release Gemcitabine Pancreatic cancer Magnetic nanoparticles Active targeting Multifunctionalization CD47 Nanocarriers Nanomedicine |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-c03a4d762ea7c23b52fe91a59abf9e91161e37228a569ebd6a7c31e4ca27961f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28161480 |
PQID | 1865519339 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000270931 proquest_miscellaneous_1865519339 pubmed_primary_28161480 crossref_primary_10_1016_j_bbagen_2017_01_035 crossref_citationtrail_10_1016_j_bbagen_2017_01_035 elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_01_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 2017-06-00 2017-Jun 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | You, Miranda, Gider, Ghosh, Kim, Erdogan, Krovi, Bunz, Rotello (bb0060) 2007; 2 Cioffi, Trabulo, Hidalgo, Costello, Greenhalf, Erkan, Kleeff, Sainz, Heeschen (bb0215) 2015; 21 Beveridge, Stephens, Williams (bb0095) 2011; 4 Ahmed, Ali, El-Dek, Galal (bb0100) 2013; 178 Veiseh, Gunn, Zhang (bb0125) 2010; 62 Firer, Gellerman (bb0150) 2012; 5 Gardner, Dahut, Scripture, Jones, Aragon-Ching, Desai, Hawkins, Sparreboom, Figg (bb0190) 2008; 14 Hsieh, Jasanoff (bb0065) 2012; 3 Boyd (bb0115) 2008; 5 Thiesen, Jordan (bb0080) 2008; 24 Hermann, Huber, Herrler, Aicher, Ellwart, Guba, Bruns, Heeschen (bb0200) 2007; 1 Desai, Trieu, Hwang, Wu, Soon-Shiong, Gradishar (bb0195) 2008; 19 Puertas, Moros, Fernández-Pacheco, Ibarra, Grazú, de la Fuente (bb0240) 2010; 43 Hudson, Feng, Varma, Moores (bb0040) 2014; 16 Torchilin (bb0120) 2006; 58 Byrne, Betancourt, Brannon-Peppas (bb0130) 2008; 60 Xie, Jon (bb0025) 2012; 2 Li, Tutton, Vu, Pierchala, Li, Lewis, Prasad, Edelman (bb0050) 2005; 21 He, Huang, Wang, Zhang, Li (bb0110) 2014; 101 Au, Emeto, Power, Vangaveti, Lai (bb0220) 2016; 4 Fernandes, Ferreira, Andreia, Luis, Barroso, Sarmento, Santos (bb0225) 2015; 209 Tang, Lo (bb0035) 2013; 47 Peters, Brown (bb0160) 2015; 35 Burris, Moore, Andersen, Green, Rothenberg, Modiano, Cripps, Portenoy, Storniolo, Tarassoff, Nelson, Dorr, Stephens, Von Hoff (bb0165) 1997; 15 Cheng, Xu, Gu (bb0010) 2011; 35 Conroy, Desseigne, Ychou, Bouche, Guimbaud, Becouarn, Adenis, Raoul, Gourgou-Bourgade, de la Fouchardiere, Bennouna, Bachet, Khemissa-Akouz, Pere-Verge, Delbaldo, Assenat, Chauffert, Michel, Montoto-Grillot, Ducreux, U. Groupe Tumeurs Digestives of, P. Intergroup (bb0170) 2011; 364 Von Hoff, Ervin, Arena, Chiorean, Infante, Moore, Seay, Tjulandin, Ma, Saleh, Harris, Reni, Dowden, Laheru, Bahary, Ramanathan, Tabernero, Hidalgo, Goldstein, Van Cutsem, Wei, Iglesias, Renschler (bb0175) 2013; 369 Jeong, Teng, Wang, Yang, Xia (bb0005) 2007; 19 Ito, Shinkai, Honda, Kobayashi (bb0020) 2005; 100 Markides, Rotherham, El Haj (bb0260) 2012; 2012 Latorre, Couleaud, Aires, Cortajarena, Somoza (bb0140) 2014; 82 Mueller, Hermann, Witthauer, Rubio-Viqueira, Leicht, Huber, Ellwart, Mustafa, Bartenstein, D'Haese, Schoenberg, Berger, Jauch, Hidalgo, Heeschen (bb0250) 2009; 137 Aires, Ocampo, Simões, Rodríguez, Cadenas, Couleaud, Spence, Latorre, Miranda, Somoza, Clarke, Carrascosa, Cortajarena (bb0145) 2016; 27 Bradford (bb0245) 1976; 72 Sun, Yu, Sun (bb0155) 2009; 44 Talelli, Aires, Marciello (bb0135) 2016; 20 Grüttner, Müller, Teller, Westphal, Foreman, Ivkov (bb0255) 2007; 311 Mahmoudi, Sant, Wang, Laurent, Sen (bb0015) 2011; 63 Perez, Simeone, Saeki, Josephson, Weissleder (bb0045) 2003; 125 Gandhi, Arami, Krishnan (bb0070) 2016; 16 Desai, Trieu, Damascelli, Soon-Shiong (bb0180) 2009; 2 Li, Heidt, Dalerba, Burant, Zhang, Adsay, Wicha, Clarke, Simeone (bb0210) 2007; 67 Dobson (bb0075) 2006; 13 Laurent, Dutz, Hafeli, Mahmoudi (bb0090) 2011; 166 McAteer, Sibson, von Zur Muhlen, Schneider, Lowe, Warrick, Channon, Anthony, Choudhury (bb0055) 2007; 13 Sparreboom, Scripture, Trieu, Williams, De, Yang, Beals, Figg, Hawkins, Desai (bb0185) 2005; 11 Miranda-Lorenzo, Dorado, Lonardo, Alcala, Serrano, Clausell-Tormos, Cioffi, Megias, Zagorac, Balic, Hidalgo, Erkan, Kleeff, Scarpa, Sainz, Heeschen (bb0205) 2014; 11 Khandhar, Ferguson, Arami, Krishnan (bb0030) 2013; 34 C.T.E (bb0235) 1989 Kossatz, Ludwig, Dähring, Ettelt, Rimkus, Marciello, Salas, Patel, Teran, Hilger (bb0230) 2014; 31 Hadjidemetriou, Al-Ahmady, Mazza, Collins, Dawson, Kostarelos (bb0265) 2015; 9 Borlido, Azevedo, Roque, Aires-Barros (bb0105) 2013; 31 Aires, Ocampo, Cabrera, de la Cueva, Salas, Teran, Cortajarena (bb0270) 2015; 3 Hood, Bednarski, Frausto, Guccione, Reisfeld, Xiang, Cheresh (bb0085) 2002; 296 Laurent (10.1016/j.bbagen.2017.01.035_bb0090) 2011; 166 Desai (10.1016/j.bbagen.2017.01.035_bb0180) 2009; 2 Sun (10.1016/j.bbagen.2017.01.035_bb0155) 2009; 44 Jeong (10.1016/j.bbagen.2017.01.035_bb0005) 2007; 19 You (10.1016/j.bbagen.2017.01.035_bb0060) 2007; 2 Hadjidemetriou (10.1016/j.bbagen.2017.01.035_bb0265) 2015; 9 Boyd (10.1016/j.bbagen.2017.01.035_bb0115) 2008; 5 Peters (10.1016/j.bbagen.2017.01.035_bb0160) 2015; 35 Miranda-Lorenzo (10.1016/j.bbagen.2017.01.035_bb0205) 2014; 11 Hudson (10.1016/j.bbagen.2017.01.035_bb0040) 2014; 16 Byrne (10.1016/j.bbagen.2017.01.035_bb0130) 2008; 60 Aires (10.1016/j.bbagen.2017.01.035_bb0145) 2016; 27 Firer (10.1016/j.bbagen.2017.01.035_bb0150) 2012; 5 Markides (10.1016/j.bbagen.2017.01.035_bb0260) 2012; 2012 Hood (10.1016/j.bbagen.2017.01.035_bb0085) 2002; 296 Fernandes (10.1016/j.bbagen.2017.01.035_bb0225) 2015; 209 Li (10.1016/j.bbagen.2017.01.035_bb0050) 2005; 21 Thiesen (10.1016/j.bbagen.2017.01.035_bb0080) 2008; 24 Beveridge (10.1016/j.bbagen.2017.01.035_bb0095) 2011; 4 Ito (10.1016/j.bbagen.2017.01.035_bb0020) 2005; 100 Puertas (10.1016/j.bbagen.2017.01.035_bb0240) 2010; 43 Conroy (10.1016/j.bbagen.2017.01.035_bb0170) 2011; 364 Xie (10.1016/j.bbagen.2017.01.035_bb0025) 2012; 2 Torchilin (10.1016/j.bbagen.2017.01.035_bb0120) 2006; 58 Perez (10.1016/j.bbagen.2017.01.035_bb0045) 2003; 125 Mueller (10.1016/j.bbagen.2017.01.035_bb0250) 2009; 137 Von Hoff (10.1016/j.bbagen.2017.01.035_bb0175) 2013; 369 Hermann (10.1016/j.bbagen.2017.01.035_bb0200) 2007; 1 Latorre (10.1016/j.bbagen.2017.01.035_bb0140) 2014; 82 Li (10.1016/j.bbagen.2017.01.035_bb0210) 2007; 67 Mahmoudi (10.1016/j.bbagen.2017.01.035_bb0015) 2011; 63 Bradford (10.1016/j.bbagen.2017.01.035_bb0245) 1976; 72 Tang (10.1016/j.bbagen.2017.01.035_bb0035) 2013; 47 Cheng (10.1016/j.bbagen.2017.01.035_bb0010) 2011; 35 McAteer (10.1016/j.bbagen.2017.01.035_bb0055) 2007; 13 Hsieh (10.1016/j.bbagen.2017.01.035_bb0065) 2012; 3 Ahmed (10.1016/j.bbagen.2017.01.035_bb0100) 2013; 178 Cioffi (10.1016/j.bbagen.2017.01.035_bb0215) 2015; 21 Au (10.1016/j.bbagen.2017.01.035_bb0220) 2016; 4 Dobson (10.1016/j.bbagen.2017.01.035_bb0075) 2006; 13 Kossatz (10.1016/j.bbagen.2017.01.035_bb0230) 2014; 31 Sparreboom (10.1016/j.bbagen.2017.01.035_bb0185) 2005; 11 Grüttner (10.1016/j.bbagen.2017.01.035_bb0255) 2007; 311 Talelli (10.1016/j.bbagen.2017.01.035_bb0135) 2016; 20 Desai (10.1016/j.bbagen.2017.01.035_bb0195) 2008; 19 Gardner (10.1016/j.bbagen.2017.01.035_bb0190) 2008; 14 C.T.E (10.1016/j.bbagen.2017.01.035_bb0235) 1989 Gandhi (10.1016/j.bbagen.2017.01.035_bb0070) 2016; 16 Burris (10.1016/j.bbagen.2017.01.035_bb0165) 1997; 15 Borlido (10.1016/j.bbagen.2017.01.035_bb0105) 2013; 31 Veiseh (10.1016/j.bbagen.2017.01.035_bb0125) 2010; 62 Khandhar (10.1016/j.bbagen.2017.01.035_bb0030) 2013; 34 Aires (10.1016/j.bbagen.2017.01.035_bb0270) 2015; 3 He (10.1016/j.bbagen.2017.01.035_bb0110) 2014; 101 |
References_xml | – volume: 14 start-page: 4200 year: 2008 end-page: 4205 ident: bb0190 article-title: Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel publication-title: Clin. Cancer Res. – volume: 62 start-page: 284 year: 2010 end-page: 304 ident: bb0125 article-title: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging publication-title: Adv. Drug Deliv. Rev. – volume: 11 start-page: 1161 year: 2014 end-page: 1169 ident: bb0205 article-title: Intracellular autofluorescence: a biomarker for epithelial cancer stem cells publication-title: Nat. Methods – volume: 21 start-page: 2325 year: 2015 end-page: 2337 ident: bb0215 article-title: Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms publication-title: Clin. Cancer Res. – volume: 21 start-page: 46 year: 2005 end-page: 52 ident: bb0050 article-title: First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent publication-title: J. Magn. Reson. Imaging – volume: 16 start-page: 4493 year: 2014 end-page: 4505 ident: bb0040 article-title: Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations publication-title: Green Chem. – volume: 3 start-page: 6239 year: 2015 end-page: 6247 ident: bb0270 article-title: BSA-coated magnetic nanoparticles for improved therapeutic properties publication-title: J. Mater. Chem. B – volume: 101 start-page: 84 year: 2014 end-page: 101 ident: bb0110 article-title: Magnetic separation techniques in sample preparation for biological analysis: a review publication-title: J. Pharm. Biomed. Anal. – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: bb0245 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. – volume: 13 start-page: 1253 year: 2007 end-page: 1258 ident: bb0055 article-title: In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide publication-title: Nat. Med. – volume: 311 start-page: 181 year: 2007 end-page: 186 ident: bb0255 article-title: Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy publication-title: J. Magn. Magn. Mater. – volume: 27 start-page: 065103 year: 2016 ident: bb0145 article-title: Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells publication-title: Nanotechnology – volume: 31 start-page: 1374 year: 2013 end-page: 1385 ident: bb0105 article-title: Magnetic separations in biotechnology publication-title: Biotechnol. Adv. – volume: 5 start-page: 69 year: 2008 end-page: 85 ident: bb0115 article-title: Past and future evolution in colloidal drug delivery systems publication-title: Expert Opin. Drug Deliv. – volume: 47 start-page: 2613 year: 2013 end-page: 2632 ident: bb0035 article-title: Magnetic nanoparticles: essential factors for sustainable environmental applications publication-title: Water Res. – volume: 34 start-page: 3837 year: 2013 end-page: 3845 ident: bb0030 article-title: Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging publication-title: Biomaterials – volume: 35 year: 2015 ident: bb0160 article-title: Antibody-drug conjugates as novel anti-cancer chemotherapeutics publication-title: Biosci. Rep. – volume: 364 start-page: 1817 year: 2011 end-page: 1825 ident: bb0170 article-title: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer publication-title: N. Engl. J. Med. – volume: 20 start-page: 1252 year: 2016 end-page: 1261 ident: bb0135 article-title: Protein-modified magnetic nanoparticles for biomedical applications publication-title: Curr. Org. Chem. – start-page: 155 year: 1989 end-page: 167 ident: bb0235 publication-title: Disulfide Bonds Between Cysteine Residues Protein Structure: A Practical Approach – volume: 209 start-page: 288 year: 2015 end-page: 307 ident: bb0225 article-title: New trends in guided nanotherapies for digestive cancers: a systematic review publication-title: J. Control. Release – volume: 296 start-page: 2404 year: 2002 end-page: 2407 ident: bb0085 article-title: Tumor regression by targeted gene delivery to the neovasculature publication-title: Science – volume: 16 start-page: 3668 year: 2016 end-page: 3674 ident: bb0070 article-title: Detection of cancer-specific proteases using magnetic relaxation of peptide-conjugated nanoparticles in biological environment publication-title: Nano Lett. – volume: 369 start-page: 1691 year: 2013 end-page: 1703 ident: bb0175 article-title: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine publication-title: N. Engl. J. Med. – volume: 125 start-page: 10192 year: 2003 end-page: 10193 ident: bb0045 article-title: Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 355 year: 2014 end-page: 362 ident: bb0140 article-title: Multifunctionalization of magnetic nanoparticles for controlled drug release: a general approach publication-title: Eur. J. Med. Chem. – volume: 19 start-page: 899 year: 2008 end-page: 909 ident: bb0195 article-title: Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status publication-title: Anti-Cancer Drugs – volume: 2 start-page: 122 year: 2012 end-page: 124 ident: bb0025 article-title: Magnetic nanoparticle-based theranostics publication-title: Theranostics – volume: 4 start-page: 20 year: 2016 ident: bb0220 article-title: Emerging therapeutic potential of nanoparticles in pancreatic cancer: a systematic review of clinical trials publication-title: Biomedicine – volume: 1 start-page: 313 year: 2007 end-page: 323 ident: bb0200 article-title: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer publication-title: Cell Stem Cell – volume: 35 start-page: 1072 year: 2011 end-page: 1079 ident: bb0010 article-title: Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes publication-title: New J. Chem. – volume: 44 start-page: 943 year: 2009 end-page: 952 ident: bb0155 article-title: Antibody-drug conjugates as targeted cancer therapeutics publication-title: Yao Xue Xue Bao – volume: 2 start-page: 59 year: 2009 end-page: 64 ident: bb0180 article-title: SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients publication-title: Transl. Oncol. – volume: 2 start-page: 318 year: 2007 end-page: 323 ident: bb0060 article-title: Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors publication-title: Nat. Nanotechnol. – volume: 19 start-page: 33 year: 2007 end-page: 60 ident: bb0005 article-title: Superparamagnetic colloids: controlled synthesis and niche applications publication-title: Adv. Mater. – volume: 67 start-page: 1030 year: 2007 end-page: 1037 ident: bb0210 article-title: Identification of pancreatic cancer stem cells publication-title: Cancer Res. – volume: 5 start-page: 70 year: 2012 ident: bb0150 article-title: Targeted drug delivery for cancer therapy: the other side of antibodies publication-title: J. Hematol. Oncol. – volume: 137 start-page: 1102 year: 2009 end-page: 1113 ident: bb0250 article-title: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer publication-title: Gastroenterology – volume: 15 start-page: 2403 year: 1997 end-page: 2413 ident: bb0165 article-title: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial publication-title: J. Clin. Oncol. – volume: 100 start-page: 1 year: 2005 end-page: 11 ident: bb0020 article-title: Medical application of functionalized magnetic nanoparticles publication-title: J. Biosci. Bioeng. – volume: 63 start-page: 24 year: 2011 end-page: 46 ident: bb0015 article-title: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy publication-title: Adv. Drug Deliv. Rev. – volume: 166 start-page: 8 year: 2011 end-page: 23 ident: bb0090 article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles publication-title: Adv. Colloid Interf. Sci. – volume: 11 start-page: 4136 year: 2005 end-page: 4143 ident: bb0185 article-title: Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol) publication-title: Clin. Cancer Res. – volume: 31 start-page: 3274 year: 2014 end-page: 3288 ident: bb0230 article-title: High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature increases in the tumor area publication-title: Pharm. Res. – volume: 43 start-page: 474012 year: 2010 end-page: 474019 ident: bb0240 article-title: Designing novel nano-immunoassays: antibody orientation versus sensitivity publication-title: J. Phys. D. Appl. Phys. – volume: 58 start-page: 1532 year: 2006 end-page: 1555 ident: bb0120 article-title: Multifunctional nanocarriers publication-title: Adv. Drug Deliv. Rev. – volume: 2012 start-page: 1 year: 2012 end-page: 11 ident: bb0260 article-title: Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine publication-title: J. Nanomater. – volume: 13 start-page: 283 year: 2006 end-page: 287 ident: bb0075 article-title: Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery publication-title: Gene Ther. – volume: 4 start-page: 251 year: 2011 end-page: 273 ident: bb0095 article-title: The use of magnetic nanoparticles in analytical chemistry publication-title: Annu Rev Anal Chem (Palo Alto, Calif) – volume: 24 start-page: 467 year: 2008 end-page: 474 ident: bb0080 article-title: Clinical applications of magnetic nanoparticles for hyperthermia publication-title: Int. J. Hyperth. – volume: 60 start-page: 1615 year: 2008 end-page: 1626 ident: bb0130 article-title: Active targeting schemes for nanoparticle systems in cancer therapeutics publication-title: Adv. Drug Deliv. Rev. – volume: 9 start-page: 8142 year: 2015 end-page: 8156 ident: bb0265 article-title: In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles publication-title: ACS Nano – volume: 178 start-page: 744 year: 2013 end-page: 751 ident: bb0100 article-title: Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water publication-title: Mater. Sci. Eng. B – volume: 3 start-page: 593 year: 2012 end-page: 602 ident: bb0065 article-title: Bioengineered probes for molecular magnetic resonance imaging in the nervous system publication-title: ACS Chem. Neurosci. – volume: 60 start-page: 1615 year: 2008 ident: 10.1016/j.bbagen.2017.01.035_bb0130 article-title: Active targeting schemes for nanoparticle systems in cancer therapeutics publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.08.005 – volume: 2 start-page: 122 year: 2012 ident: 10.1016/j.bbagen.2017.01.035_bb0025 article-title: Magnetic nanoparticle-based theranostics publication-title: Theranostics doi: 10.7150/thno.4051 – volume: 13 start-page: 283 year: 2006 ident: 10.1016/j.bbagen.2017.01.035_bb0075 article-title: Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery publication-title: Gene Ther. doi: 10.1038/sj.gt.3302720 – volume: 101 start-page: 84 year: 2014 ident: 10.1016/j.bbagen.2017.01.035_bb0110 article-title: Magnetic separation techniques in sample preparation for biological analysis: a review publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2014.04.017 – volume: 47 start-page: 2613 year: 2013 ident: 10.1016/j.bbagen.2017.01.035_bb0035 article-title: Magnetic nanoparticles: essential factors for sustainable environmental applications publication-title: Water Res. doi: 10.1016/j.watres.2013.02.039 – volume: 34 start-page: 3837 year: 2013 ident: 10.1016/j.bbagen.2017.01.035_bb0030 article-title: Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.087 – volume: 16 start-page: 3668 year: 2016 ident: 10.1016/j.bbagen.2017.01.035_bb0070 article-title: Detection of cancer-specific proteases using magnetic relaxation of peptide-conjugated nanoparticles in biological environment publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00867 – volume: 58 start-page: 1532 year: 2006 ident: 10.1016/j.bbagen.2017.01.035_bb0120 article-title: Multifunctional nanocarriers publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2006.09.009 – volume: 4 start-page: 20 year: 2016 ident: 10.1016/j.bbagen.2017.01.035_bb0220 article-title: Emerging therapeutic potential of nanoparticles in pancreatic cancer: a systematic review of clinical trials publication-title: Biomedicine doi: 10.3390/biomedicines4030020 – volume: 15 start-page: 2403 year: 1997 ident: 10.1016/j.bbagen.2017.01.035_bb0165 article-title: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial publication-title: J. Clin. Oncol. doi: 10.1200/JCO.1997.15.6.2403 – volume: 13 start-page: 1253 year: 2007 ident: 10.1016/j.bbagen.2017.01.035_bb0055 article-title: In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide publication-title: Nat. Med. doi: 10.1038/nm1631 – volume: 11 start-page: 4136 year: 2005 ident: 10.1016/j.bbagen.2017.01.035_bb0185 article-title: Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol) publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-04-2291 – volume: 20 start-page: 1252 year: 2016 ident: 10.1016/j.bbagen.2017.01.035_bb0135 article-title: Protein-modified magnetic nanoparticles for biomedical applications publication-title: Curr. Org. Chem. doi: 10.2174/1385272819666150810221009 – volume: 21 start-page: 46 year: 2005 ident: 10.1016/j.bbagen.2017.01.035_bb0050 article-title: First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20235 – volume: 21 start-page: 2325 year: 2015 ident: 10.1016/j.bbagen.2017.01.035_bb0215 article-title: Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1399 – volume: 27 start-page: 065103 year: 2016 ident: 10.1016/j.bbagen.2017.01.035_bb0145 article-title: Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells publication-title: Nanotechnology doi: 10.1088/0957-4484/27/6/065103 – volume: 364 start-page: 1817 year: 2011 ident: 10.1016/j.bbagen.2017.01.035_bb0170 article-title: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1011923 – volume: 296 start-page: 2404 year: 2002 ident: 10.1016/j.bbagen.2017.01.035_bb0085 article-title: Tumor regression by targeted gene delivery to the neovasculature publication-title: Science doi: 10.1126/science.1070200 – volume: 72 start-page: 248 year: 1976 ident: 10.1016/j.bbagen.2017.01.035_bb0245 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 35 year: 2015 ident: 10.1016/j.bbagen.2017.01.035_bb0160 article-title: Antibody-drug conjugates as novel anti-cancer chemotherapeutics publication-title: Biosci. Rep. doi: 10.1042/BSR20150089 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.bbagen.2017.01.035_bb0260 article-title: Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine publication-title: J. Nanomater. doi: 10.1155/2012/614094 – volume: 100 start-page: 1 year: 2005 ident: 10.1016/j.bbagen.2017.01.035_bb0020 article-title: Medical application of functionalized magnetic nanoparticles publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.100.1 – volume: 2 start-page: 318 year: 2007 ident: 10.1016/j.bbagen.2017.01.035_bb0060 article-title: Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.99 – volume: 62 start-page: 284 year: 2010 ident: 10.1016/j.bbagen.2017.01.035_bb0125 article-title: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.11.002 – volume: 11 start-page: 1161 year: 2014 ident: 10.1016/j.bbagen.2017.01.035_bb0205 article-title: Intracellular autofluorescence: a biomarker for epithelial cancer stem cells publication-title: Nat. Methods doi: 10.1038/nmeth.3112 – volume: 19 start-page: 899 year: 2008 ident: 10.1016/j.bbagen.2017.01.035_bb0195 article-title: Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status publication-title: Anti-Cancer Drugs doi: 10.1097/CAD.0b013e32830f9046 – volume: 311 start-page: 181 year: 2007 ident: 10.1016/j.bbagen.2017.01.035_bb0255 article-title: Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.10.1151 – volume: 16 start-page: 4493 year: 2014 ident: 10.1016/j.bbagen.2017.01.035_bb0040 article-title: Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations publication-title: Green Chem. doi: 10.1039/C4GC00418C – volume: 24 start-page: 467 year: 2008 ident: 10.1016/j.bbagen.2017.01.035_bb0080 article-title: Clinical applications of magnetic nanoparticles for hyperthermia publication-title: Int. J. Hyperth. doi: 10.1080/02656730802104757 – volume: 63 start-page: 24 year: 2011 ident: 10.1016/j.bbagen.2017.01.035_bb0015 article-title: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.05.006 – volume: 5 start-page: 69 year: 2008 ident: 10.1016/j.bbagen.2017.01.035_bb0115 article-title: Past and future evolution in colloidal drug delivery systems publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.5.1.69 – volume: 19 start-page: 33 year: 2007 ident: 10.1016/j.bbagen.2017.01.035_bb0005 article-title: Superparamagnetic colloids: controlled synthesis and niche applications publication-title: Adv. Mater. doi: 10.1002/adma.200600674 – volume: 1 start-page: 313 year: 2007 ident: 10.1016/j.bbagen.2017.01.035_bb0200 article-title: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.06.002 – volume: 31 start-page: 3274 issue: 12 year: 2014 ident: 10.1016/j.bbagen.2017.01.035_bb0230 article-title: High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature increases in the tumor area publication-title: Pharm. Res. doi: 10.1007/s11095-014-1417-0 – volume: 9 start-page: 8142 year: 2015 ident: 10.1016/j.bbagen.2017.01.035_bb0265 article-title: In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles publication-title: ACS Nano doi: 10.1021/acsnano.5b03300 – volume: 2 start-page: 59 year: 2009 ident: 10.1016/j.bbagen.2017.01.035_bb0180 article-title: SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients publication-title: Transl. Oncol. doi: 10.1593/tlo.09109 – volume: 3 start-page: 593 year: 2012 ident: 10.1016/j.bbagen.2017.01.035_bb0065 article-title: Bioengineered probes for molecular magnetic resonance imaging in the nervous system publication-title: ACS Chem. Neurosci. doi: 10.1021/cn300059r – volume: 4 start-page: 251 year: 2011 ident: 10.1016/j.bbagen.2017.01.035_bb0095 article-title: The use of magnetic nanoparticles in analytical chemistry publication-title: Annu Rev Anal Chem (Palo Alto, Calif) doi: 10.1146/annurev-anchem-061010-114041 – volume: 35 start-page: 1072 year: 2011 ident: 10.1016/j.bbagen.2017.01.035_bb0010 article-title: Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes publication-title: New J. Chem. doi: 10.1039/c0nj00986e – volume: 82 start-page: 355 year: 2014 ident: 10.1016/j.bbagen.2017.01.035_bb0140 article-title: Multifunctionalization of magnetic nanoparticles for controlled drug release: a general approach publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2014.05.078 – volume: 137 start-page: 1102 year: 2009 ident: 10.1016/j.bbagen.2017.01.035_bb0250 article-title: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.05.053 – volume: 166 start-page: 8 year: 2011 ident: 10.1016/j.bbagen.2017.01.035_bb0090 article-title: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2011.04.003 – volume: 3 start-page: 6239 year: 2015 ident: 10.1016/j.bbagen.2017.01.035_bb0270 article-title: BSA-coated magnetic nanoparticles for improved therapeutic properties publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00833F – volume: 369 start-page: 1691 year: 2013 ident: 10.1016/j.bbagen.2017.01.035_bb0175 article-title: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1304369 – volume: 31 start-page: 1374 year: 2013 ident: 10.1016/j.bbagen.2017.01.035_bb0105 article-title: Magnetic separations in biotechnology publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.05.009 – volume: 44 start-page: 943 year: 2009 ident: 10.1016/j.bbagen.2017.01.035_bb0155 article-title: Antibody-drug conjugates as targeted cancer therapeutics publication-title: Yao Xue Xue Bao – volume: 125 start-page: 10192 year: 2003 ident: 10.1016/j.bbagen.2017.01.035_bb0045 article-title: Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036409g – volume: 5 start-page: 70 year: 2012 ident: 10.1016/j.bbagen.2017.01.035_bb0150 article-title: Targeted drug delivery for cancer therapy: the other side of antibodies publication-title: J. Hematol. Oncol. doi: 10.1186/1756-8722-5-70 – volume: 178 start-page: 744 year: 2013 ident: 10.1016/j.bbagen.2017.01.035_bb0100 article-title: Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2013.03.011 – volume: 43 start-page: 474012 year: 2010 ident: 10.1016/j.bbagen.2017.01.035_bb0240 article-title: Designing novel nano-immunoassays: antibody orientation versus sensitivity publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/43/47/474012 – volume: 67 start-page: 1030 year: 2007 ident: 10.1016/j.bbagen.2017.01.035_bb0210 article-title: Identification of pancreatic cancer stem cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2030 – volume: 209 start-page: 288 year: 2015 ident: 10.1016/j.bbagen.2017.01.035_bb0225 article-title: New trends in guided nanotherapies for digestive cancers: a systematic review publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.05.003 – start-page: 155 year: 1989 ident: 10.1016/j.bbagen.2017.01.035_bb0235 – volume: 14 start-page: 4200 year: 2008 ident: 10.1016/j.bbagen.2017.01.035_bb0190 article-title: Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-4592 |
SSID | ssj0000595 |
Score | 2.4913106 |
Snippet | Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1597 |
SubjectTerms | Active targeting adenocarcinoma adverse effects Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - metabolism Antibodies, Monoclonal - pharmacology Antineoplastic Agents - chemistry Antineoplastic Agents - metabolism Antineoplastic Agents - pharmacology Apoptosis - drug effects Carcinoma, Pancreatic Ductal - drug therapy Carcinoma, Pancreatic Ductal - metabolism Carcinoma, Pancreatic Ductal - pathology CD47 CD47 Antigen - immunology CD47 Antigen - metabolism Cell Survival - drug effects Controlled drug release Deoxycytidine - analogs & derivatives Deoxycytidine - chemistry Deoxycytidine - metabolism Deoxycytidine - pharmacology Drug Carriers Drug Compounding drug therapy drugs Gemcitabine Humans iron oxides Magnetic nanoparticles Magnetics - methods Magnetite Nanoparticles - chemistry metastasis monoclonal antibodies Multifunctionalization Nanocarriers Nanomedicine Nanomedicine - methods nanoparticles neoplasm cells Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology pancreas Pancreatic cancer pancreatic neoplasms Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology solubility stem cells Surface Properties Tumor Cells, Cultured |
Title | Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells |
URI | https://dx.doi.org/10.1016/j.bbagen.2017.01.035 https://www.ncbi.nlm.nih.gov/pubmed/28161480 https://www.proquest.com/docview/1865519339 https://www.proquest.com/docview/2000270931 |
Volume | 1861 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9Ekfal-NHW84sU-rq9y8duLo9yKKeiL1bwLSTZLFwpe-KdoH3o396ZZNciKIIvy2aZQJjMzvwmmQ-A7ypKQ25F4bhXhXL4MKGSha7q4LXR3qR2PheX1fRand2UNysw6XNhKKyy0_1Zpydt3X0Zdtwc3s5mwyu61EM4UXIqua4k-e1KaZLyH3__h3kgfCjzTQIuBan79LkU4-U9_rRUBZXrVLwzNX170Ty9Bj-TGTrZgE8dfmRHeYmbsBLbLVjPHSUft-DDpG_gtg02JdeS4crnfbM_sWaU1cbmD7M6sta16DF3gXEMwStbpKY4qP9YDhBHs8bmDUOFkbFlYIGE5I7Rcf_iM1yfHP-cTIuun0IRVMWXRRhJp2rUftHpIKQvRRMNd6VxvjH4huAvSi3E2JWVib6ukEzyqIIT2lS8kV9gtZ23cQeYClT4zkUZRVCh9DgQrinFeNyg_1PFAciejTZ0xcap58Vv20eV_bKZ-ZaYb0fcIvMHUDzNus3FNt6g1_0O2WdCY9EevDHzW7-hFneFuObaOL9fWE6ZuohqpXmdRqQL25GRfABfszQ8rVeMOdVWHe2-e2178JFGOR5tH1aXd_fxAJHP0h8m0T6EtaPT8-nlP20NApQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_kpNgXaa3Ws18p9HW5y9fu5VGOyln1XlTwLSTZLFwpe-KdYPvXO5PsKgVF8GXZjwmEyezMb5L5APihojTkVhSOe1UohxcTSllUZR18ZSpvUjufs3k5u1S_rvTVBkz7XBgKq-x0f9bpSVt3b0YdN0fXi8XonA71EE5oTiXXlUS_fZOqU-kBbB4en8zmjwpZp-YrRF_QgD6DLoV5eY__LRVC5VWq35n6vj1poZ5DoMkSHb2D7Q5CssM8y_ewEdsdeJObSv7dga1p38PtA9iUX0u2K2_5Lf7FmlFiG1veLerIWtei09zFxjHEr2yV-uKgCmQ5RhwtG1s2DHVGhpeBBZKTG0Y7_qtduDz6eTGdFV1LhSKokq-LMJZO1agAo6uCkF6LJhrutHG-MXiH-C_KSoiJ06WJvi6RTPKoghOVKXkj92DQLtu4D0wFqn3noowiqKA9PgjXaDGZNOgClXEIsmejDV29cWp78cf2gWW_bWa-JebbMbfI_CEUD6Ouc72NF-irfoXsf3Jj0SS8MPJ7v6AWV4W45tq4vF1ZTsm6CGyleZ5GpDPbsZF8CB-zNDzMV0w4lVcdH7x6bt9ga3ZxdmpPj-cnn-AtfcnhaZ9hsL65jV8QCK39107Q7wFB5AVF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctionalized+iron+oxide+nanoparticles+for+selective+targeting+of+pancreatic+cancer+cells&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Trabulo%2C+Sara&rft.au=Aires%2C+Antonio&rft.au=Aicher%2C+Alexandra&rft.au=Heeschen%2C+Christopher&rft.date=2017-06-01&rft.issn=0304-4165&rft.volume=1861&rft.issue=6+p.1597-1605&rft.spage=1597&rft.epage=1605&rft_id=info:doi/10.1016%2Fj.bbagen.2017.01.035&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |