Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil
Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the pre...
Saved in:
Published in | Environmental pollution (1987) Vol. 256; p. 113347 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0269-7491 1873-6424 1873-6424 |
DOI | 10.1016/j.envpol.2019.113347 |
Cover
Loading…
Abstract | Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3− reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles.
[Display omitted]
•Smaller particle size microplastics could accelerate the aromatic matters’ formation.•Microplastics in fertilized soil could reduce N2O emission.•Actinobacteria replaced Proteobacteria as the Dominant phylum in microplastics soil.•Microplastic size effect was shown on alpha diversity.•Microplastics influenced the co-occurrence network among different microorganisms.
Main findings: Microplastics decreased the global warming potential of soil. Particle size affected alpha diversity, and Actinobacteria replaced Proteobacteria as the dominant phylum in soil with microplastics. |
---|---|
AbstractList | Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3- reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles.Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3- reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles. Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3− reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles. Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N O emissions during the first three days. A potential mechanism for this reduction in N O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N O emissions was observed on day 30, mainly due to the acceleration of the NO reduction and a decrease in the abundance of Gemmatimonadacea. The CH uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles. Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3− reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles. [Display omitted] •Smaller particle size microplastics could accelerate the aromatic matters’ formation.•Microplastics in fertilized soil could reduce N2O emission.•Actinobacteria replaced Proteobacteria as the Dominant phylum in microplastics soil.•Microplastic size effect was shown on alpha diversity.•Microplastics influenced the co-occurrence network among different microorganisms. Main findings: Microplastics decreased the global warming potential of soil. Particle size affected alpha diversity, and Actinobacteria replaced Proteobacteria as the dominant phylum in soil with microplastics. |
ArticleNumber | 113347 |
Author | Tang, Jingchun Liu, Xiaomei Ren, Xinwei Liu, Qinglong |
Author_xml | – sequence: 1 givenname: Xinwei surname: Ren fullname: Ren, Xinwei – sequence: 2 givenname: Jingchun surname: Tang fullname: Tang, Jingchun email: tangjch@nankai.edu.cn – sequence: 3 givenname: Xiaomei surname: Liu fullname: Liu, Xiaomei – sequence: 4 givenname: Qinglong surname: Liu fullname: Liu, Qinglong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31672352$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFrFTEUhYNU7Gv1H4hk6WaeSW4m88aFIKXaQsGNrkMmuWnzmEmeSV6h_npTpt24sKtww3cO955zRk5iikjIe862nHH1ab_FeH9I81YwPm45B5DDK7LhuwE6JYU8IRsm1NgNcuSn5KyUPWNMAsAbcgpcDQJ6sSH20nu0tdDk6RJsTofZlBps-4j0NiPGu3QsSG9NobiEUkKKhZroaL3DVTEFM1ObluUYQ32gIVKPuYY5_EFHSwrzW_Lam7ngu6f3nPz6dvnz4qq7-fH9-uLrTWel4rWbsAfrYGAjm5wcJDDLvVHQgwA_SuUaNanRWc-MY0L2AGIHso0IknkJ5-Tj6nvI6fcRS9VtYYvzbCK2I7SQwHcwsrF_GQXOFQxcsoZ-eEKP04JOH3JYTH7Qzxk24PMKtCxKyei1DdXUFlTNJsyaM_1YmN7rtTD9WJheC2ti-Y_42f8F2ZdVhi3P-4BZFxswWnQhtzq1S-H_Bn8BgaixYQ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_173864 crossref_primary_10_1016_j_jenvman_2023_118246 crossref_primary_10_1021_acsnano_3c05809 crossref_primary_10_1016_j_envres_2023_116976 crossref_primary_10_1016_j_eti_2023_103335 crossref_primary_10_3390_agronomy13010075 crossref_primary_10_1016_j_rhisph_2022_100542 crossref_primary_10_1016_j_jhazmat_2024_136167 crossref_primary_10_1016_j_chemosphere_2023_138928 crossref_primary_10_1016_j_scitotenv_2020_140016 crossref_primary_10_1007_s11270_024_07731_z crossref_primary_10_1016_j_jhazmat_2022_129509 crossref_primary_10_1016_j_apsoil_2022_104716 crossref_primary_10_1016_j_scitotenv_2022_159440 crossref_primary_10_1111_gcb_17470 crossref_primary_10_1016_j_chemosphere_2022_135941 crossref_primary_10_1016_j_jhazmat_2024_135879 crossref_primary_10_1016_j_ibiod_2022_105461 crossref_primary_10_1016_j_jhazmat_2022_128891 crossref_primary_10_1002_ldr_5231 crossref_primary_10_3389_fenvs_2022_855292 crossref_primary_10_1016_j_jhazmat_2021_126865 crossref_primary_10_1111_gcb_15724 crossref_primary_10_1016_j_jhazmat_2022_129879 crossref_primary_10_1016_j_ecoenv_2024_117332 crossref_primary_10_1016_j_jhazmat_2021_128126 crossref_primary_10_1016_j_enmm_2021_100530 crossref_primary_10_1016_j_ecoenv_2024_117219 crossref_primary_10_1016_j_watres_2020_116331 crossref_primary_10_1016_j_scitotenv_2024_174160 crossref_primary_10_1016_j_envpol_2025_126026 crossref_primary_10_1016_j_jece_2023_110447 crossref_primary_10_1016_j_scitotenv_2024_174161 crossref_primary_10_1007_s00343_021_1300_x crossref_primary_10_1016_j_emcon_2024_100368 crossref_primary_10_1007_s44169_023_00047_9 crossref_primary_10_1016_j_jhazmat_2023_131445 crossref_primary_10_3390_horticulturae11030305 crossref_primary_10_1016_j_scitotenv_2022_156068 crossref_primary_10_1038_s41598_023_42285_w crossref_primary_10_1007_s42773_024_00413_3 crossref_primary_10_1093_ismejo_wrad017 crossref_primary_10_1007_s10333_022_00915_5 crossref_primary_10_1016_j_hazadv_2024_100445 crossref_primary_10_1016_j_scitotenv_2023_167691 crossref_primary_10_1017_plc_2024_5 crossref_primary_10_1016_j_apsoil_2024_105343 crossref_primary_10_2139_ssrn_4075806 crossref_primary_10_1007_s10653_024_02325_4 crossref_primary_10_1016_j_envres_2022_114133 crossref_primary_10_1016_j_scitotenv_2024_174811 crossref_primary_10_3389_fmars_2025_1518631 crossref_primary_10_3389_fmicb_2021_647766 crossref_primary_10_1007_s11270_024_07500_y crossref_primary_10_3390_agriculture14081365 crossref_primary_10_1016_j_jenvman_2022_115473 crossref_primary_10_1016_j_envres_2022_113728 crossref_primary_10_1016_j_jhazmat_2023_133278 crossref_primary_10_1016_j_envpol_2022_120788 crossref_primary_10_1038_s41579_023_00967_2 crossref_primary_10_1007_s42729_024_01752_7 crossref_primary_10_1021_acs_est_3c10017 crossref_primary_10_1016_j_chemosphere_2022_135007 crossref_primary_10_1016_j_envpol_2021_118516 crossref_primary_10_1360_SST_2024_0050 crossref_primary_10_1007_s00374_023_01781_x crossref_primary_10_1111_1462_2920_15955 crossref_primary_10_3390_plants13243483 crossref_primary_10_33409_tbbbd_997807 crossref_primary_10_1016_j_soilbio_2024_109480 crossref_primary_10_1016_j_bej_2024_109230 crossref_primary_10_1016_j_jenvman_2023_118013 crossref_primary_10_1016_j_scitotenv_2024_171435 crossref_primary_10_1016_j_jhazmat_2021_126288 crossref_primary_10_1016_j_cej_2021_130478 crossref_primary_10_1016_j_jclepro_2024_142834 crossref_primary_10_1016_j_scitotenv_2021_151100 crossref_primary_10_1016_j_scitotenv_2021_146433 crossref_primary_10_2139_ssrn_4107533 crossref_primary_10_4236_gep_2023_111016 crossref_primary_10_1016_j_apsoil_2022_104623 crossref_primary_10_1016_j_wsee_2022_11_010 crossref_primary_10_1021_acs_est_3c10247 crossref_primary_10_1080_02757540_2024_2432910 crossref_primary_10_1016_j_envpol_2022_120433 crossref_primary_10_1016_j_scitotenv_2020_141368 crossref_primary_10_3390_microplastics3040048 crossref_primary_10_1016_j_envpol_2024_124719 crossref_primary_10_1016_j_jhazmat_2024_135763 crossref_primary_10_1016_j_jclepro_2022_135558 crossref_primary_10_1016_j_scitotenv_2023_164049 crossref_primary_10_1007_s11368_022_03254_4 crossref_primary_10_1016_j_jwpe_2021_101966 crossref_primary_10_1016_j_jhazmat_2023_132636 crossref_primary_10_1016_j_watres_2022_118733 crossref_primary_10_1016_j_scitotenv_2024_170216 crossref_primary_10_1016_j_jhazmat_2022_129176 crossref_primary_10_1360_SSC_2024_0064 crossref_primary_10_1016_j_scitotenv_2023_169293 crossref_primary_10_1016_j_jhazmat_2021_126035 crossref_primary_10_1111_aab_12736 crossref_primary_10_1016_j_jece_2025_115761 crossref_primary_10_1016_j_jece_2023_111287 crossref_primary_10_1016_j_scitotenv_2021_147133 crossref_primary_10_1038_s41598_024_80124_8 crossref_primary_10_1016_j_scitotenv_2021_147016 crossref_primary_10_1016_j_scitotenv_2021_147815 crossref_primary_10_1016_j_ecoenv_2022_113958 crossref_primary_10_1016_j_soilbio_2024_109425 crossref_primary_10_1016_j_scitotenv_2023_167029 crossref_primary_10_1016_j_envres_2021_112179 crossref_primary_10_1016_j_jhazmat_2024_136248 crossref_primary_10_1007_s41742_023_00558_2 crossref_primary_10_1016_j_jhazmat_2021_127364 crossref_primary_10_1016_j_scitotenv_2023_164670 crossref_primary_10_1088_2515_7620_acf02c crossref_primary_10_1016_j_envres_2024_118945 crossref_primary_10_1016_j_apsoil_2022_104486 crossref_primary_10_1016_j_scitotenv_2021_145640 crossref_primary_10_1016_j_jhazmat_2025_137621 crossref_primary_10_1016_j_ecoenv_2024_117419 crossref_primary_10_1016_j_scitotenv_2024_169977 crossref_primary_10_3390_su15097122 crossref_primary_10_1016_j_scitotenv_2023_166959 crossref_primary_10_1016_j_scitotenv_2024_170160 crossref_primary_10_1016_j_jhazmat_2022_129030 crossref_primary_10_3390_plants13162285 crossref_primary_10_1016_j_jhazmat_2024_134735 crossref_primary_10_1111_sum_12971 crossref_primary_10_1016_j_pedsph_2023_06_010 crossref_primary_10_1016_j_chemosphere_2021_132984 crossref_primary_10_1016_j_scitotenv_2023_166165 crossref_primary_10_1016_j_envpol_2022_118860 crossref_primary_10_4236_ojss_2024_141004 crossref_primary_10_1016_j_chemosphere_2024_141880 crossref_primary_10_1016_j_marpolbul_2022_114118 crossref_primary_10_3390_atmos13111796 crossref_primary_10_1016_j_jenvman_2022_116124 crossref_primary_10_3390_chemengineering8050086 crossref_primary_10_1007_s10924_023_03028_0 crossref_primary_10_1016_j_scitotenv_2024_176236 crossref_primary_10_1016_j_chemosphere_2022_135836 crossref_primary_10_1016_j_scitotenv_2021_149338 crossref_primary_10_1002_jeq2_20450 crossref_primary_10_1016_j_scitotenv_2020_143987 crossref_primary_10_1016_j_scitotenv_2024_174294 crossref_primary_10_1016_j_envpol_2024_124630 crossref_primary_10_1016_j_envpol_2024_124751 crossref_primary_10_1016_j_scitotenv_2020_143633 crossref_primary_10_1016_j_jhazmat_2023_132024 crossref_primary_10_1016_j_jhazmat_2023_132142 crossref_primary_10_1016_j_jhazmat_2023_132269 crossref_primary_10_1016_j_jhazmat_2024_133432 crossref_primary_10_1016_j_jhazmat_2022_129247 crossref_primary_10_1021_acs_est_2c06258 crossref_primary_10_1016_j_jhazmat_2023_132942 crossref_primary_10_1016_j_scitotenv_2021_151523 crossref_primary_10_1016_j_jenvman_2023_117529 crossref_primary_10_1016_j_jhazmat_2023_131857 crossref_primary_10_1021_acsestengg_3c00401 crossref_primary_10_1007_s11783_023_1753_6 crossref_primary_10_1016_j_chemosphere_2024_141771 crossref_primary_10_1051_e3sconf_202452002007 crossref_primary_10_1016_j_envint_2022_107172 crossref_primary_10_1016_j_jece_2025_115551 crossref_primary_10_1016_j_jhazmat_2022_128721 crossref_primary_10_1016_j_scitotenv_2024_173891 crossref_primary_10_1016_j_jhazmat_2025_137761 crossref_primary_10_1016_j_chemosphere_2020_126791 crossref_primary_10_1016_j_ecoenv_2022_114009 crossref_primary_10_1016_j_jhazmat_2025_137889 crossref_primary_10_1016_j_envpol_2023_122833 crossref_primary_10_1016_j_envpol_2023_123008 crossref_primary_10_1111_sum_12991 crossref_primary_10_1016_j_envpol_2022_119374 crossref_primary_10_1021_acs_estlett_0c00740 crossref_primary_10_1016_j_jhazmat_2023_131989 crossref_primary_10_1016_j_chemosphere_2024_142079 crossref_primary_10_1016_j_envpol_2024_123682 crossref_primary_10_1126_science_abb5979 crossref_primary_10_1016_j_scitotenv_2024_175403 crossref_primary_10_1016_j_apsoil_2023_105246 crossref_primary_10_1016_j_scitotenv_2023_168035 crossref_primary_10_1016_j_scitotenv_2024_175643 crossref_primary_10_1016_j_scitotenv_2024_172133 crossref_primary_10_3390_plants14020256 crossref_primary_10_1016_j_trac_2023_117092 crossref_primary_10_1007_s11368_023_03637_1 crossref_primary_10_1016_j_agee_2022_108023 crossref_primary_10_1016_j_scitotenv_2023_162967 crossref_primary_10_1186_s43591_021_00004_0 crossref_primary_10_1016_j_scitotenv_2023_167869 crossref_primary_10_1016_j_algal_2024_103623 crossref_primary_10_1016_j_jhazmat_2023_131152 crossref_primary_10_1016_j_soilbio_2021_108496 crossref_primary_10_1016_j_scitotenv_2023_165688 crossref_primary_10_1016_j_scitotenv_2023_164112 crossref_primary_10_1093_etojnl_vgaf021 crossref_primary_10_1016_j_envpol_2024_124649 crossref_primary_10_1007_s11368_024_03731_y crossref_primary_10_1016_j_scitotenv_2025_178647 crossref_primary_10_1016_j_jhazmat_2023_131711 crossref_primary_10_1016_j_jclepro_2022_134950 crossref_primary_10_1016_j_jhazmat_2024_133857 crossref_primary_10_1111_gcbb_13083 crossref_primary_10_1016_j_chemosphere_2023_139860 crossref_primary_10_1111_sum_12808 crossref_primary_10_1016_j_apsoil_2022_104680 crossref_primary_10_1016_j_chemosphere_2024_142641 crossref_primary_10_1016_j_plaphy_2025_109792 crossref_primary_10_1016_j_scitotenv_2024_174322 crossref_primary_10_1016_j_scitotenv_2024_175533 crossref_primary_10_1016_j_jclepro_2024_140835 crossref_primary_10_1016_j_envpol_2023_121092 crossref_primary_10_3390_agriengineering5030096 crossref_primary_10_1016_j_cej_2024_153681 crossref_primary_10_1016_j_ecoenv_2023_115807 crossref_primary_10_1016_j_scitotenv_2023_164589 crossref_primary_10_1016_j_scitotenv_2023_167734 crossref_primary_10_1007_s42832_022_0138_2 crossref_primary_10_1016_j_eti_2023_103174 crossref_primary_10_1016_j_seh_2024_100101 crossref_primary_10_1016_j_jhazmat_2022_130455 crossref_primary_10_1016_j_scitotenv_2020_143482 crossref_primary_10_1016_j_chemosphere_2020_127578 crossref_primary_10_1021_acs_jafc_1c07849 crossref_primary_10_1016_j_apsoil_2022_104694 crossref_primary_10_1016_j_chemosphere_2023_139082 crossref_primary_10_1016_j_apsoil_2022_104696 crossref_primary_10_1111_gcb_17415 crossref_primary_10_1016_j_scitotenv_2023_169469 crossref_primary_10_3389_fpls_2023_1283852 crossref_primary_10_1016_j_envpol_2024_124315 crossref_primary_10_1007_s44246_023_00097_7 crossref_primary_10_1016_j_jhazmat_2024_136461 crossref_primary_10_1016_j_scitotenv_2024_177360 crossref_primary_10_1016_j_scitotenv_2022_156471 crossref_primary_10_1080_08927014_2024_2406340 crossref_primary_10_1016_j_chemosphere_2023_138678 crossref_primary_10_1016_j_scitotenv_2023_163366 crossref_primary_10_1016_j_scitotenv_2021_150516 crossref_primary_10_1016_j_jhazmat_2022_128353 crossref_primary_10_1016_j_psep_2022_11_084 crossref_primary_10_3390_toxics8020036 crossref_primary_10_3390_en16207212 crossref_primary_10_1016_j_jhazmat_2021_128196 crossref_primary_10_1016_j_hazadv_2022_100146 crossref_primary_10_1007_s44246_024_00124_1 crossref_primary_10_1016_j_heliyon_2023_e13296 crossref_primary_10_1016_j_jhazmat_2021_127531 crossref_primary_10_1186_s40068_024_00367_2 crossref_primary_10_1016_j_csbj_2022_03_041 crossref_primary_10_1016_j_envint_2024_108781 crossref_primary_10_1016_j_marpolbul_2021_112467 crossref_primary_10_1016_j_jenvman_2023_118654 crossref_primary_10_1186_s44280_024_00049_9 crossref_primary_10_1007_s00128_020_02900_2 crossref_primary_10_1016_j_jhazmat_2024_134152 crossref_primary_10_1016_j_trac_2022_116869 crossref_primary_10_1021_acs_jafc_3c06972 crossref_primary_10_1007_s11356_022_22305_4 crossref_primary_10_1016_j_scitotenv_2024_178100 crossref_primary_10_1007_s11270_022_05837_w crossref_primary_10_1016_j_jenvman_2024_121429 crossref_primary_10_1080_20964129_2022_2133638 crossref_primary_10_1021_acs_est_0c04849 crossref_primary_10_3390_pr10102128 crossref_primary_10_3390_su141811126 crossref_primary_10_1016_j_jenvman_2023_119616 crossref_primary_10_1016_j_scitotenv_2024_173209 crossref_primary_10_3389_fsufs_2024_1423136 crossref_primary_10_1007_s11104_025_07212_0 crossref_primary_10_1016_j_jhazmat_2021_127405 crossref_primary_10_1016_j_scitotenv_2024_176658 crossref_primary_10_1016_j_ecoenv_2024_117248 crossref_primary_10_1016_j_jhazmat_2024_134581 crossref_primary_10_1016_j_scitotenv_2023_168513 crossref_primary_10_1016_j_envint_2021_106398 crossref_primary_10_1016_j_jclepro_2020_125240 crossref_primary_10_1007_s11356_023_30550_4 crossref_primary_10_1016_j_scitotenv_2023_162413 crossref_primary_10_1016_j_soilbio_2021_108179 crossref_primary_10_1098_rspb_2020_1268 crossref_primary_10_1080_07388551_2024_2344572 crossref_primary_10_3390_microorganisms12091790 crossref_primary_10_1016_j_ecoenv_2021_113045 crossref_primary_10_1016_j_envpol_2020_115468 crossref_primary_10_1016_j_jhazmat_2021_126671 crossref_primary_10_1016_j_jhazmat_2023_132326 crossref_primary_10_1016_j_jhazmat_2023_130825 crossref_primary_10_1016_j_trac_2022_116882 crossref_primary_10_1007_s11104_021_04869_1 crossref_primary_10_1016_j_apsoil_2024_105331 crossref_primary_10_1016_j_jclepro_2021_127816 crossref_primary_10_1016_j_scitotenv_2020_144091 crossref_primary_10_1016_j_scitotenv_2021_151487 crossref_primary_10_1371_journal_pone_0291760 crossref_primary_10_2139_ssrn_4154943 crossref_primary_10_1016_j_agee_2023_108356 crossref_primary_10_1016_j_scitotenv_2022_154975 crossref_primary_10_1016_j_jenvman_2023_118437 crossref_primary_10_1016_j_scitotenv_2024_177875 crossref_primary_10_1016_j_ecoenv_2024_116726 crossref_primary_10_1039_D4EM00688G crossref_primary_10_1016_j_jhazmat_2024_136993 crossref_primary_10_1039_D2EA00041E crossref_primary_10_1016_j_apsoil_2022_104649 crossref_primary_10_1016_j_chemosphere_2021_132460 crossref_primary_10_1016_j_envpol_2022_120656 crossref_primary_10_3389_fpls_2024_1427166 crossref_primary_10_1007_s11368_023_03479_x crossref_primary_10_3390_atmos15111380 crossref_primary_10_1007_s11356_023_26159_2 crossref_primary_10_1016_j_jhazmat_2022_129555 crossref_primary_10_1111_1365_2435_14662 crossref_primary_10_1016_j_ese_2025_100541 crossref_primary_10_1016_j_scitotenv_2023_163293 crossref_primary_10_3390_nano11112935 crossref_primary_10_1016_j_ecoenv_2021_113150 crossref_primary_10_1016_j_scitotenv_2024_170653 crossref_primary_10_1016_j_cej_2024_151328 crossref_primary_10_1016_j_resenv_2022_100102 crossref_primary_10_3389_fpls_2021_626709 crossref_primary_10_1016_j_agee_2021_107354 crossref_primary_10_1016_j_ecolind_2024_112270 crossref_primary_10_1016_j_envres_2024_119663 crossref_primary_10_1016_j_rser_2022_112963 crossref_primary_10_1080_27685241_2024_2420801 crossref_primary_10_1016_j_scitotenv_2020_138682 crossref_primary_10_1007_s44169_022_00012_y crossref_primary_10_1016_j_jhazmat_2025_137913 crossref_primary_10_1016_j_scitotenv_2022_160499 crossref_primary_10_1016_j_spc_2024_12_018 crossref_primary_10_1016_j_jhazmat_2024_134246 crossref_primary_10_1016_j_scitotenv_2022_157884 crossref_primary_10_1016_j_scitotenv_2021_150714 crossref_primary_10_1016_j_scitotenv_2022_157886 crossref_primary_10_1016_j_scitotenv_2022_156678 crossref_primary_10_1016_j_watres_2025_123493 crossref_primary_10_1021_acsagscitech_2c00333 crossref_primary_10_1080_03067319_2022_2148528 crossref_primary_10_1016_j_envpol_2024_124363 crossref_primary_10_1016_j_scitotenv_2024_170541 crossref_primary_10_48130_CAS_2021_0008 crossref_primary_10_1016_j_envpol_2022_119094 crossref_primary_10_1016_j_scitotenv_2021_147444 crossref_primary_10_1007_s10653_025_02358_3 crossref_primary_10_1002_fes3_404 crossref_primary_10_3390_toxics11030242 crossref_primary_10_1016_j_envpol_2021_118386 crossref_primary_10_1016_j_envpol_2023_121106 crossref_primary_10_1016_j_jclepro_2022_130504 crossref_primary_10_1007_s13762_024_05656_y crossref_primary_10_1016_j_envpol_2021_117733 crossref_primary_10_1016_j_plaphy_2023_108201 crossref_primary_10_4236_as_2024_1510059 crossref_primary_10_1016_j_chemosphere_2022_135573 crossref_primary_10_1016_j_ese_2021_100121 crossref_primary_10_1016_j_jhazmat_2022_129771 crossref_primary_10_1007_s41207_025_00766_6 |
Cites_doi | 10.1016/j.soilbio.2016.12.017 10.1021/acs.est.8b02338 10.1002/ep.12467 10.1016/j.soilbio.2019.107547 10.1007/s11356-016-8189-5 10.1038/163688a0 10.1088/1755-1315/61/1/012148 10.1038/ngeo1486 10.1016/j.geoderma.2018.04.022 10.1016/j.scitotenv.2017.01.190 10.1007/s13593-011-0068-3 10.1016/j.scitotenv.2016.01.153 10.1016/j.atmosenv.2017.11.054 10.1016/S2095-3119(15)61240-0 10.1016/j.agrformet.2015.06.004 10.1021/es104042f 10.1002/j.1538-7305.1948.tb00917.x 10.1016/j.envint.2017.01.018 10.1016/j.scitotenv.2019.06.108 10.1098/rstb.2008.0205 10.1016/j.apsoil.2019.01.010 10.1021/acs.est.5b05478 10.1038/ismej.2011.119 10.1016/j.scitotenv.2018.01.341 10.1021/es302011r 10.1016/j.envpol.2017.11.070 10.1038/ismej.2009.152 10.3389/fpls.2017.01805 10.1016/j.envpol.2017.03.009 10.2136/sssaj2006.0202 10.5846/stxb201109141347 10.1016/j.envpol.2005.04.013 10.1371/journal.pone.0198446 10.1016/j.geoderma.2017.11.009 10.1021/es201811s 10.1111/gcb.12306 10.1016/j.scitotenv.2017.12.105 10.1016/j.envint.2018.12.040 10.1016/j.envpol.2019.112983 10.1016/j.envpol.2016.09.096 10.1038/s41598-017-01594-7 10.1128/AEM.01996-06 10.1016/j.jclepro.2017.09.173 10.1016/j.apsoil.2018.12.019 10.1016/j.marpolbul.2011.09.025 10.1021/acs.est.8b02212 10.1021/es401288x 10.1021/acs.est.6b04140 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 10.1016/j.scitotenv.2017.08.017 10.1016/j.soilbio.2019.107567 10.1016/j.marpolbul.2016.01.006 10.1126/science.1254065 10.1038/s41396-018-0065-5 10.1186/s12866-014-0232-4 10.1093/biomet/80.1.193 10.1016/j.chemosphere.2017.07.064 10.1021/acs.est.5b00492 10.1016/j.chemer.2016.04.002 10.1016/j.pedobi.2011.07.005 10.1016/j.tim.2016.06.011 10.1016/j.watres.2015.12.020 10.1111/1755-0998.12729 10.1021/acs.est.8b04673 10.1016/j.funbio.2016.07.012 10.1016/j.scitotenv.2018.04.199 10.1016/j.soilbio.2016.01.002 10.1186/s40643-014-0034-4 10.1016/j.scitotenv.2018.06.110 10.1021/es503610r 10.1016/j.scitotenv.2018.09.378 10.1016/j.cjche.2018.01.028 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2019.113347 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 31672352 10_1016_j_envpol_2019_113347 S0269749119336152 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c461t-be53cd37090bd47430c1fa635323f946d461b69dcf0ad0245332834cf0e340f43 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Tue Aug 05 11:04:17 EDT 2025 Fri Jul 11 01:47:06 EDT 2025 Wed Feb 19 02:31:30 EST 2025 Tue Jul 01 03:14:49 EDT 2025 Thu Apr 24 22:53:27 EDT 2025 Fri Feb 23 02:49:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fungal community Greenhouse gases (GHGs) Terrestrial ecosystem Microplastics Bacterial community |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-be53cd37090bd47430c1fa635323f946d461b69dcf0ad0245332834cf0e340f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31672352 |
PQID | 2311637140 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2431839095 proquest_miscellaneous_2311637140 pubmed_primary_31672352 crossref_citationtrail_10_1016_j_envpol_2019_113347 crossref_primary_10_1016_j_envpol_2019_113347 elsevier_sciencedirect_doi_10_1016_j_envpol_2019_113347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 2020-Jan 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bastian, Heymann, Jacomy (bib7) 2009 Horton, Walton, Spurgeon, Lahive, Svendsen (bib25) 2017; 586 Chen, Yu, Shi (bib13) 2016; 120 Redding, Shorten, Lewis, Pratt, Paungfoo-Lonhienne, Hill (bib54) 2016; 95 Roy, Hakkarainen, Varma, Albertsson (bib59) 2011; 45 Liu, Yang, Liu, Liang, Xue, Chen, Ritsema, Geissen (bib39) 2017; 185 Ng, Huerta Lwanga, Eldridge, Johnston, Hu, Geissen, Chen (bib49) 2018; 627 Ziajahromi, Kumar, Neale, Leusch (bib80) 2017 Rillig, Ziersch, Hempel (bib58) 2017; 7 Simpson (bib62) 1949; 163 Maestre, Escolar, de Guevara, Quero, Lázaro, Delgado-Baquerizo, Ochoa, Berdugo, Gozalo, Gallardo (bib43) 2013; 19 Anderson, Condron, Clough, Fiers, Stewart, Hill, Sherlock (bib2) 2011; 54 Oertel, Matschullat, Zurba, Zimmermann, Erasmi (bib51) 2016; 76 (bib60) 2018 Zhang, Li, Guo, Liu, Luan, Liu, Guan (bib75) 2019; 124 Lozupone, Hamady, Kelley, Knight (bib41) 2007; 73 Eckert, Di Cesare, Kettner, Arias-Andres, Fontaneto, Grossart, Corno (bib18) 2018; 234 Shannon (bib61) 1948; 27 Ghoul, Mitri (bib21) 2016; 24 McCormick, Hoellein, Mason, Schluep, Kelly (bib45) 2014; 48 Song, Tian, Zhang, Jin (bib66) 2017; 609 Huang, Wang, Liu, Li, Xu, Luo, Xu, Ci, Gao (bib26) 2019; 137 Law, Thompson (bib35) 2014; 345 Zhang, Liu, Hu, Qin, Ma, Yan, Wang (bib74) 2016; 15 Wang, Ma, Jiang, Guan, Wei, Zhao, Chen, Cao, Li, Yang, Li (bib71) 2019; 136 McArdle, Anderson (bib44) 2001; 82 Hawthorne, Johnson, Jassal, Black, Grant, Smukler (bib24) 2017; 192 Nizzetto, Futter, Langaas (bib50) 2016; 50 Zhang, Zhao, Qin, Jia, Chai, Huang, Huang (bib76) 2019; 688 Huerta Lwanga, Gertsen, Gooren, Peters, Salánki, van der Ploeg, Besseling, Koelmans, Geissen (bib29) 2016; 50 Lenka, Lenka, Singh, Singh, Raghuwanshi (bib36) 2017; 24 Maaß, Daphi, Lehmann, Rillig (bib42) 2017; 225 Browne, Crump, Niven, Teuten, Tonkin, Galloway, Thompson (bib9) 2011; 45 Arias-Andres, Rojas-Jimenez, Grossart (bib4) 2018 (bib52) 2019 Zhao, Wang, Zhou, Yuan, Zhu (bib77) 2018; 642 Zubris, Richards (bib81) 2005; 138 Leslie, Brandsma, van Velzen, Vethaak (bib37) 2017; 101 Huerta Lwanga, Gertsen, Gooren, Peters, Salánki, van der Ploeg, Besseling, Koelmans, Geissen (bib28) 2017; 220 Fiore-Donno, Rixen, Rippin, Glaser, Samolov, Karsten, Becker, Bonkowski (bib20) 2018; 18 Muhonja, Makonde, Magoma, Imbuga (bib48) 2018; 13 (bib65) 2007 Barberán, Bates, Casamayor, Fierer (bib5) 2012; 6 Barnes, Galgani, Thompson, Barlaz (bib6) 2009; 364 Zettler, Mincer, Amaral-Zettler (bib73) 2013; 47 Brassard, Godbout, Palacios, Jeanne, Hogue, Dubé, Limousy, Raghavan (bib8) 2018; 327 Elbert, Weber, Burrows, Steinkamp, Büdel, Andreae, Pöschl (bib19) 2012; 5 Graf, Saghaï, Zhao, Carlsson, Jones, Hallin (bib22) 2019; 137 Klein, Worch, Knepper (bib34) 2015; 49 Zhu, Wang, Yuan, Tan, Sun, Wang, Wu, Lee (bib79) 2016; 90 de Souza Machado, Lau, Till, Kloas, Lehmann, Becker, Rillig (bib16) 2018; 52 Rillig (bib56) 2012; 46 Dris, Gasperi, Saad, Mirande, Tassin (bib17) 2016; 104 Rillig, Ingraffia, de Souza Machado (bib57) 2017; 8 Jones, Hallin (bib32) 2010; 4 Singh, Sedhuraman (bib63) 2015; 2 Zhen, Song, Liu, Chandankere, Tang (bib78) 2018; 26 Steinmetz, Wollmann, Schaefer, Buchmann, David, Tröger, Muñoz, Frör, Schaumann (bib67) 2016; 550 Jiang, Zhao, Zhu, Li (bib31) 2018; 624 Kasirajan, Ngouajio (bib33) 2012; 32 Abraham, Ghosh, Mukherjee, Gajendiran (bib1) 2017; 36 Cole, Lindeque, Halsband, Galloway (bib15) 2011; 62 Tu, He, Wu, Xue, Xie, Chain, Reich, Hobbie, Zhou (bib69) 2017; 106 Harrison, Schratzberger, Sapp, Osborn (bib23) 2014; 14 Rabot, Wiesmeier, Schlüter, Vogel (bib53) 2018; 314 Li, Chen, He, Shi, Chen, Reid, Zhu, Sun (bib38) 2019; 53 Merloti, Mendes, Pedrinho, de Souza, Ferrari, Tsai (bib46) 2019; 137 Chao (bib11) 1984; 11 Su, Wang, Qiu, Wang, An, Zheng, Zu (bib68) 2012; 32 Singleton, McCalley, Woodcroft, Boyd, Evans, Hodgkins, Chanton, Frolking, Crill, Saleska, Rich, Tyson (bib64) 2018; 12 Wang, Yu, Zhao, Chang, Shi, Ma, Li (bib70) 2018; 174 Long, Huang, Chi, Li, Ahmad, Yao (bib40) 2018; 170 Xie (bib72) 2018; 9 Chao, Yang (bib12) 1993; 80 Christiansen, Outhwaite, Smukler (bib14) 2015; 211 Jaffrain, Gérard, Meyer, Ranger (bib30) 2007; 71 Miao, Wang, Hou, Yao, Liu, Liu, Li (bib47) 2019; 650 Cao, Wang, Luo, Liu, Zheng (bib10) 2017; 61 Rillig (bib55) 2018; 52 Arias-Andres, Kettner, Miki, Grossart (bib3) 2018; 635 Huang, Zhao, Wang, Zhang, Jia, Qin (bib27) 2019; 254 Abraham (10.1016/j.envpol.2019.113347_bib1) 2017; 36 Rillig (10.1016/j.envpol.2019.113347_bib56) 2012; 46 Huerta Lwanga (10.1016/j.envpol.2019.113347_bib28) 2017; 220 Oertel (10.1016/j.envpol.2019.113347_bib51) 2016; 76 Kasirajan (10.1016/j.envpol.2019.113347_bib33) 2012; 32 Rillig (10.1016/j.envpol.2019.113347_bib58) 2017; 7 Chao (10.1016/j.envpol.2019.113347_bib12) 1993; 80 Elbert (10.1016/j.envpol.2019.113347_bib19) 2012; 5 Miao (10.1016/j.envpol.2019.113347_bib47) 2019; 650 Rabot (10.1016/j.envpol.2019.113347_bib53) 2018; 314 Bastian (10.1016/j.envpol.2019.113347_bib7) 2009 Merloti (10.1016/j.envpol.2019.113347_bib46) 2019; 137 Steinmetz (10.1016/j.envpol.2019.113347_bib67) 2016; 550 Xie (10.1016/j.envpol.2019.113347_bib72) 2018; 9 Ghoul (10.1016/j.envpol.2019.113347_bib21) 2016; 24 Chen (10.1016/j.envpol.2019.113347_bib13) 2016; 120 Hawthorne (10.1016/j.envpol.2019.113347_bib24) 2017; 192 Redding (10.1016/j.envpol.2019.113347_bib54) 2016; 95 Maestre (10.1016/j.envpol.2019.113347_bib43) 2013; 19 Zhen (10.1016/j.envpol.2019.113347_bib78) 2018; 26 Cao (10.1016/j.envpol.2019.113347_bib10) 2017; 61 Dris (10.1016/j.envpol.2019.113347_bib17) 2016; 104 Muhonja (10.1016/j.envpol.2019.113347_bib48) 2018; 13 Zhang (10.1016/j.envpol.2019.113347_bib75) 2019; 124 Zubris (10.1016/j.envpol.2019.113347_bib81) 2005; 138 Arias-Andres (10.1016/j.envpol.2019.113347_bib4) 2018 Anderson (10.1016/j.envpol.2019.113347_bib2) 2011; 54 McCormick (10.1016/j.envpol.2019.113347_bib45) 2014; 48 de Souza Machado (10.1016/j.envpol.2019.113347_bib16) 2018; 52 Zhu (10.1016/j.envpol.2019.113347_bib79) 2016; 90 Lozupone (10.1016/j.envpol.2019.113347_bib41) 2007; 73 Song (10.1016/j.envpol.2019.113347_bib66) 2017; 609 Leslie (10.1016/j.envpol.2019.113347_bib37) 2017; 101 Shannon (10.1016/j.envpol.2019.113347_bib61) 1948; 27 Tu (10.1016/j.envpol.2019.113347_bib69) 2017; 106 Barnes (10.1016/j.envpol.2019.113347_bib6) 2009; 364 Huang (10.1016/j.envpol.2019.113347_bib27) 2019; 254 Ziajahromi (10.1016/j.envpol.2019.113347_bib80) 2017 Huang (10.1016/j.envpol.2019.113347_bib26) 2019; 137 Zhang (10.1016/j.envpol.2019.113347_bib76) 2019; 688 Browne (10.1016/j.envpol.2019.113347_bib9) 2011; 45 Simpson (10.1016/j.envpol.2019.113347_bib62) 1949; 163 Singleton (10.1016/j.envpol.2019.113347_bib64) 2018; 12 Fiore-Donno (10.1016/j.envpol.2019.113347_bib20) 2018; 18 Wang (10.1016/j.envpol.2019.113347_bib71) 2019; 136 Long (10.1016/j.envpol.2019.113347_bib40) 2018; 170 Graf (10.1016/j.envpol.2019.113347_bib22) 2019; 137 Eckert (10.1016/j.envpol.2019.113347_bib18) 2018; 234 Rillig (10.1016/j.envpol.2019.113347_bib57) 2017; 8 Jaffrain (10.1016/j.envpol.2019.113347_bib30) 2007; 71 Lenka (10.1016/j.envpol.2019.113347_bib36) 2017; 24 Liu (10.1016/j.envpol.2019.113347_bib39) 2017; 185 Horton (10.1016/j.envpol.2019.113347_bib25) 2017; 586 Zhang (10.1016/j.envpol.2019.113347_bib74) 2016; 15 Christiansen (10.1016/j.envpol.2019.113347_bib14) 2015; 211 Roy (10.1016/j.envpol.2019.113347_bib59) 2011; 45 Nizzetto (10.1016/j.envpol.2019.113347_bib50) 2016; 50 Brassard (10.1016/j.envpol.2019.113347_bib8) 2018; 327 Law (10.1016/j.envpol.2019.113347_bib35) 2014; 345 Su (10.1016/j.envpol.2019.113347_bib68) 2012; 32 Arias-Andres (10.1016/j.envpol.2019.113347_bib3) 2018; 635 (10.1016/j.envpol.2019.113347_bib65) 2007 Huerta Lwanga (10.1016/j.envpol.2019.113347_bib29) 2016; 50 Zettler (10.1016/j.envpol.2019.113347_bib73) 2013; 47 Chao (10.1016/j.envpol.2019.113347_bib11) 1984; 11 Wang (10.1016/j.envpol.2019.113347_bib70) 2018; 174 Maaß (10.1016/j.envpol.2019.113347_bib42) 2017; 225 Jiang (10.1016/j.envpol.2019.113347_bib31) 2018; 624 Cole (10.1016/j.envpol.2019.113347_bib15) 2011; 62 Li (10.1016/j.envpol.2019.113347_bib38) 2019; 53 Barberán (10.1016/j.envpol.2019.113347_bib5) 2012; 6 McArdle (10.1016/j.envpol.2019.113347_bib44) 2001; 82 Rillig (10.1016/j.envpol.2019.113347_bib55) 2018; 52 (10.1016/j.envpol.2019.113347_bib60) 2018 (10.1016/j.envpol.2019.113347_bib52) 2019 Klein (10.1016/j.envpol.2019.113347_bib34) 2015; 49 Singh (10.1016/j.envpol.2019.113347_bib63) 2015; 2 Jones (10.1016/j.envpol.2019.113347_bib32) 2010; 4 Harrison (10.1016/j.envpol.2019.113347_bib23) 2014; 14 Ng (10.1016/j.envpol.2019.113347_bib49) 2018; 627 Zhao (10.1016/j.envpol.2019.113347_bib77) 2018; 642 |
References_xml | – volume: 47 start-page: 7137 year: 2013 end-page: 7146 ident: bib73 article-title: Life in the “plastisphere”: microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. – year: 2019 ident: bib52 article-title: R: A Language and Environment for Statistical Computing – volume: 76 start-page: 327 year: 2016 end-page: 352 ident: bib51 article-title: Greenhouse gas emissions from soils—a review publication-title: Chemie der Erde - Geochem. – volume: 49 start-page: 6070 year: 2015 end-page: 6076 ident: bib34 article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany publication-title: Environ. Sci. Technol. – volume: 137 start-page: 107567 year: 2019 ident: bib46 article-title: Forest-to-agriculture conversion in Amazon drives soil microbial communities and N-cycle publication-title: Soil Biol. Biochem. – year: 2007 ident: bib65 article-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 7 year: 2017 ident: bib58 article-title: Microplastic transport in soil by earthworms publication-title: Sci. Rep. – volume: 90 start-page: 203 year: 2016 end-page: 215 ident: bib79 article-title: Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review publication-title: Water Res. – year: 2018 ident: bib4 article-title: Collateral effects of microplastic pollution on aquatic microorganisms: an ecological perspective publication-title: Trac. Trends Anal. Chem. – volume: 73 start-page: 1576 year: 2007 end-page: 1585 ident: bib41 article-title: Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities publication-title: Appl. Environ. Microbiol. – volume: 45 start-page: 9175 year: 2011 end-page: 9179 ident: bib9 article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks publication-title: Environ. Sci. Technol. – volume: 13 year: 2018 ident: bib48 article-title: Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya publication-title: PLoS One – volume: 314 start-page: 122 year: 2018 end-page: 137 ident: bib53 article-title: Soil structure as an indicator of soil functions: a review publication-title: Geoderma – volume: 106 start-page: 99 year: 2017 end-page: 108 ident: bib69 article-title: Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem publication-title: Soil Biol. Biochem. – volume: 62 start-page: 2588 year: 2011 end-page: 2597 ident: bib15 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. – volume: 12 start-page: 2544 year: 2018 end-page: 2558 ident: bib64 article-title: Methanotrophy across a natural permafrost thaw environment publication-title: ISME J. – volume: 4 start-page: 633 year: 2010 end-page: 641 ident: bib32 article-title: Ecological and evolutionary factors underlying global and local assembly of denitrifier communities publication-title: ISME J. – volume: 24 start-page: 4603 year: 2017 end-page: 4612 ident: bib36 article-title: Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean–wheat system of central India publication-title: Environ. Sci. Pollut. Control Ser. – volume: 163 year: 1949 ident: bib62 article-title: Measurement of diversity publication-title: Nature – volume: 19 start-page: 3835 year: 2013 end-page: 3847 ident: bib43 article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands publication-title: Glob. Chang. Biol. – volume: 52 start-page: 6079 year: 2018 end-page: 6080 ident: bib55 article-title: Microplastic disguising as soil carbon storage publication-title: Environ. Sci. Technol. – volume: 80 start-page: 193 year: 1993 end-page: 201 ident: bib12 article-title: Stopping rules and estimation for recapture debugging with unequal failure rates publication-title: Biometrika – year: 2018 ident: bib60 article-title: RStudio – volume: 137 start-page: 107547 year: 2019 ident: bib22 article-title: Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis glomerata) roots and promotes N2O production in intercropping in a greenhouse experiment publication-title: Soil Biol. Biochem. – volume: 225 start-page: 456 year: 2017 end-page: 459 ident: bib42 article-title: Transport of microplastics by two collembolan species publication-title: Environ. Pollut. – volume: 11 start-page: 265 year: 1984 end-page: 270 ident: bib11 article-title: Nonparametric estimation of the number of classes in a population publication-title: Scand. J. Stat. – volume: 136 start-page: 148 year: 2019 end-page: 157 ident: bib71 article-title: Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China publication-title: Appl. Soil Ecol. – volume: 220 start-page: 523 year: 2017 end-page: 531 ident: bib28 article-title: Incorporation of microplastics from litter into burrows of Lumbricus terrestris publication-title: Environ. Pollut. – volume: 327 start-page: 73 year: 2018 end-page: 84 ident: bib8 article-title: Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study publication-title: Geoderma – volume: 82 start-page: 290 year: 2001 end-page: 297 ident: bib44 article-title: Fitting multivariate models to community data: a comment ON distance-based redundancy analysis publication-title: Ecology – volume: 650 start-page: 2395 year: 2019 end-page: 2402 ident: bib47 article-title: Distinct community structure and microbial functions of biofilms colonizing microplastics publication-title: Sci. Total Environ. – volume: 124 start-page: 25 year: 2019 end-page: 37 ident: bib75 article-title: Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems publication-title: Environ. Int. – volume: 174 start-page: 171 year: 2018 end-page: 179 ident: bib70 article-title: Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: changes in microbial community compositions publication-title: Atmos. Environ. – volume: 550 start-page: 690 year: 2016 end-page: 705 ident: bib67 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. – volume: 32 start-page: 6705 year: 2012 end-page: 6714 ident: bib68 article-title: Temporal and spatial variations of DOC, DON and their function group characteristics in larch plantations and possible relations with other physical-chemical properties publication-title: Acta Ecol. Sin. – volume: 50 start-page: 2685 year: 2016 end-page: 2691 ident: bib29 article-title: Microplastics in the terrestrial ecosystem: implications for publication-title: Environ. Sci. Technol. – volume: 234 start-page: 495 year: 2018 end-page: 502 ident: bib18 article-title: Microplastics increase impact of treated wastewater on freshwater microbial community publication-title: Environ. Pollut. – volume: 50 start-page: 10777 year: 2016 end-page: 10779 ident: bib50 article-title: Are agricultural soils dumps for microplastics of urban origin? publication-title: Environ. Sci. Technol. – volume: 192 start-page: 203 year: 2017 end-page: 214 ident: bib24 article-title: Application of biochar and nitrogen influences fluxes of CO 2 , CH 4 and N 2 O in a forest soil publication-title: J. Environ. Manag. – volume: 211 start-page: 48 year: 2015 end-page: 57 ident: bib14 article-title: Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography publication-title: Agric. For. Meteorol. – volume: 642 start-page: 1090 year: 2018 end-page: 1099 ident: bib77 article-title: Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone publication-title: Sci. Total Environ. – volume: 61 year: 2017 ident: bib10 article-title: Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil publication-title: IOP Conf. Ser. Earth Environ. Sci. – volume: 9 year: 2018 ident: bib72 article-title: Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor Performance and microbial community structure publication-title: J. Hazard Mater. – volume: 6 start-page: 343 year: 2012 end-page: 351 ident: bib5 article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities publication-title: ISME J. – volume: 53 start-page: 50 year: 2019 end-page: 59 ident: bib38 article-title: Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities publication-title: Environ. Sci. Technol. – volume: 635 start-page: 1152 year: 2018 end-page: 1159 ident: bib3 article-title: Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems publication-title: Sci. Total Environ. – volume: 586 start-page: 127 year: 2017 end-page: 141 ident: bib25 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. – volume: 101 start-page: 133 year: 2017 end-page: 142 ident: bib37 article-title: Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota publication-title: Environ. Int. – year: 2017 ident: bib80 article-title: Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia Dubia) Survival, Growth and Reproduction: Implications of Single and Mixture Exposures – volume: 48 start-page: 11863 year: 2014 end-page: 11871 ident: bib45 article-title: Microplastic is an abundant and distinct microbial habitat in an urban river publication-title: Environ. Sci. Technol. – volume: 52 start-page: 9656 year: 2018 end-page: 9665 ident: bib16 article-title: Impacts of microplastics on the soil biophysical environment publication-title: Environ. Sci. Technol. – volume: 45 start-page: 4217 year: 2011 end-page: 4227 ident: bib59 article-title: Degradable polyethylene: fantasy or reality publication-title: Environ. Sci. Technol. – volume: 26 start-page: 2592 year: 2018 end-page: 2600 ident: bib78 article-title: Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils publication-title: Chin. J. Chem. Eng. – volume: 185 start-page: 907 year: 2017 end-page: 917 ident: bib39 article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil publication-title: Chemosphere – volume: 14 year: 2014 ident: bib23 article-title: Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms publication-title: BMC Microbiol. – volume: 8 year: 2017 ident: bib57 article-title: Microplastic incorporation into soil in agroecosystems publication-title: Front. Plant Sci. – volume: 104 start-page: 290 year: 2016 end-page: 293 ident: bib17 article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? publication-title: Mar. Pollut. Bull. – volume: 170 start-page: 288 year: 2018 end-page: 297 ident: bib40 article-title: Nitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, China publication-title: J. Clean. Prod. – volume: 5 start-page: 459 year: 2012 end-page: 462 ident: bib19 article-title: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen publication-title: Nat. Geosci. – volume: 95 start-page: 288 year: 2016 end-page: 298 ident: bib54 article-title: Soil N availability, rather than N deposition, controls indirect N 2 O emissions publication-title: Soil Biol. Biochem. – volume: 15 start-page: 2639 year: 2016 end-page: 2646 ident: bib74 article-title: The status and distribution characteristics of residual mulching film in Xinjiang, China publication-title: J. Integr. Agric. – volume: 138 start-page: 201 year: 2005 end-page: 211 ident: bib81 article-title: Synthetic fibers as an indicator of land application of sludge publication-title: Environ. Pollut. – volume: 364 start-page: 1985 year: 2009 end-page: 1998 ident: bib6 article-title: Accumulation and fragmentation of plastic debris in global environments publication-title: Philos. Trans. R. Soc. Biol. Sci. – volume: 137 start-page: 57 year: 2019 end-page: 68 ident: bib26 article-title: Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils publication-title: Appl. Soil Ecol. – volume: 624 start-page: 48 year: 2018 end-page: 54 ident: bib31 article-title: Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary publication-title: Sci. Total Environ. – volume: 32 start-page: 501 year: 2012 end-page: 529 ident: bib33 article-title: Polyethylene and biodegradable mulches for agricultural applications: a review publication-title: Agron. Sustain. Dev. – volume: 18 start-page: 229 year: 2018 end-page: 239 ident: bib20 article-title: New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts publication-title: Mol. Ecol. Resour. – year: 2009 ident: bib7 article-title: Gephi: an Open Source Software for Exploring and Manipulating Networks – volume: 254 start-page: 112983 year: 2019 ident: bib27 article-title: LDPE microplastic films alter microbial community composition and enzymatic activities in soil publication-title: Environ. Pollut. – volume: 36 start-page: 147 year: 2017 end-page: 154 ident: bib1 article-title: Microbial degradation of low density polyethylene publication-title: Environ. Prog. Sustain. Energy – volume: 71 start-page: 1851 year: 2007 ident: bib30 article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry publication-title: Soil Sci. Soc. Am. J. – volume: 609 start-page: 1303 year: 2017 end-page: 1311 ident: bib66 article-title: Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China publication-title: Sci. Total Environ. – volume: 120 start-page: 1479 year: 2016 end-page: 1492 ident: bib13 article-title: Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers publication-title: Fungal Biol. – volume: 27 start-page: 623 year: 1948 end-page: 656 ident: bib61 article-title: A mathematical theory of Communication.pdf publication-title: Bell Sys. Tech. J. – volume: 345 start-page: 144 year: 2014 end-page: 145 ident: bib35 article-title: Microplastics in the seas publication-title: Science – volume: 627 start-page: 1377 year: 2018 end-page: 1388 ident: bib49 article-title: An overview of microplastic and nanoplastic pollution in agroecosystems publication-title: Sci. Total Environ. – volume: 688 start-page: 470 year: 2019 end-page: 478 ident: bib76 article-title: Microplastics from mulching film is a distinct habitat for bacteria in farmland soil publication-title: Sci. Total Environ. – volume: 24 start-page: 833 year: 2016 end-page: 845 ident: bib21 article-title: The ecology and Evolution of microbial competition publication-title: Trends Microbiol. – volume: 2 start-page: 2 year: 2015 ident: bib63 article-title: Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosasinensis leaves publication-title: Bioresour. Bioprocess. – volume: 54 start-page: 309 year: 2011 end-page: 320 ident: bib2 article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia – volume: 46 start-page: 6453 year: 2012 end-page: 6454 ident: bib56 article-title: Microplastic in terrestrial ecosystems and the soil? publication-title: Environ. Sci. Technol. – volume: 106 start-page: 99 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib69 article-title: Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.017 – volume: 52 start-page: 6079 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib55 article-title: Microplastic disguising as soil carbon storage publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02338 – volume: 36 start-page: 147 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib1 article-title: Microbial degradation of low density polyethylene publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.12467 – volume: 9 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib72 article-title: Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor Performance and microbial community structure publication-title: J. Hazard Mater. – volume: 137 start-page: 107547 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib22 article-title: Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis glomerata) roots and promotes N2O production in intercropping in a greenhouse experiment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107547 – volume: 24 start-page: 4603 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib36 article-title: Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean–wheat system of central India publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-016-8189-5 – volume: 163 year: 1949 ident: 10.1016/j.envpol.2019.113347_bib62 article-title: Measurement of diversity publication-title: Nature doi: 10.1038/163688a0 – volume: 61 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib10 article-title: Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/61/1/012148 – year: 2019 ident: 10.1016/j.envpol.2019.113347_bib52 – volume: 5 start-page: 459 year: 2012 ident: 10.1016/j.envpol.2019.113347_bib19 article-title: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen publication-title: Nat. Geosci. doi: 10.1038/ngeo1486 – volume: 327 start-page: 73 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib8 article-title: Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study publication-title: Geoderma doi: 10.1016/j.geoderma.2018.04.022 – volume: 586 start-page: 127 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib25 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.190 – volume: 32 start-page: 501 year: 2012 ident: 10.1016/j.envpol.2019.113347_bib33 article-title: Polyethylene and biodegradable mulches for agricultural applications: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-011-0068-3 – year: 2017 ident: 10.1016/j.envpol.2019.113347_bib80 – year: 2009 ident: 10.1016/j.envpol.2019.113347_bib7 – volume: 550 start-page: 690 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib67 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.153 – volume: 174 start-page: 171 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib70 article-title: Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: changes in microbial community compositions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.11.054 – volume: 15 start-page: 2639 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib74 article-title: The status and distribution characteristics of residual mulching film in Xinjiang, China publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(15)61240-0 – year: 2018 ident: 10.1016/j.envpol.2019.113347_bib4 article-title: Collateral effects of microplastic pollution on aquatic microorganisms: an ecological perspective publication-title: Trac. Trends Anal. Chem. – volume: 211 start-page: 48 issue: 212 year: 2015 ident: 10.1016/j.envpol.2019.113347_bib14 article-title: Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.06.004 – volume: 45 start-page: 4217 year: 2011 ident: 10.1016/j.envpol.2019.113347_bib59 article-title: Degradable polyethylene: fantasy or reality publication-title: Environ. Sci. Technol. doi: 10.1021/es104042f – volume: 27 start-page: 623 issue: 379–423 year: 1948 ident: 10.1016/j.envpol.2019.113347_bib61 article-title: A mathematical theory of Communication.pdf publication-title: Bell Sys. Tech. J. doi: 10.1002/j.1538-7305.1948.tb00917.x – volume: 101 start-page: 133 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib37 article-title: Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota publication-title: Environ. Int. doi: 10.1016/j.envint.2017.01.018 – volume: 688 start-page: 470 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib76 article-title: Microplastics from mulching film is a distinct habitat for bacteria in farmland soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.108 – volume: 364 start-page: 1985 year: 2009 ident: 10.1016/j.envpol.2019.113347_bib6 article-title: Accumulation and fragmentation of plastic debris in global environments publication-title: Philos. Trans. R. Soc. Biol. Sci. doi: 10.1098/rstb.2008.0205 – volume: 137 start-page: 57 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib26 article-title: Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.01.010 – volume: 50 start-page: 2685 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib29 article-title: Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05478 – volume: 6 start-page: 343 year: 2012 ident: 10.1016/j.envpol.2019.113347_bib5 article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities publication-title: ISME J. doi: 10.1038/ismej.2011.119 – volume: 627 start-page: 1377 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib49 article-title: An overview of microplastic and nanoplastic pollution in agroecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.341 – volume: 46 start-page: 6453 year: 2012 ident: 10.1016/j.envpol.2019.113347_bib56 article-title: Microplastic in terrestrial ecosystems and the soil? publication-title: Environ. Sci. Technol. doi: 10.1021/es302011r – volume: 234 start-page: 495 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib18 article-title: Microplastics increase impact of treated wastewater on freshwater microbial community publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.070 – volume: 4 start-page: 633 year: 2010 ident: 10.1016/j.envpol.2019.113347_bib32 article-title: Ecological and evolutionary factors underlying global and local assembly of denitrifier communities publication-title: ISME J. doi: 10.1038/ismej.2009.152 – volume: 8 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib57 article-title: Microplastic incorporation into soil in agroecosystems publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01805 – volume: 225 start-page: 456 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib42 article-title: Transport of microplastics by two collembolan species publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.03.009 – volume: 71 start-page: 1851 year: 2007 ident: 10.1016/j.envpol.2019.113347_bib30 article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0202 – year: 2018 ident: 10.1016/j.envpol.2019.113347_bib60 – volume: 32 start-page: 6705 year: 2012 ident: 10.1016/j.envpol.2019.113347_bib68 article-title: Temporal and spatial variations of DOC, DON and their function group characteristics in larch plantations and possible relations with other physical-chemical properties publication-title: Acta Ecol. Sin. doi: 10.5846/stxb201109141347 – volume: 138 start-page: 201 year: 2005 ident: 10.1016/j.envpol.2019.113347_bib81 article-title: Synthetic fibers as an indicator of land application of sludge publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.04.013 – volume: 13 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib48 article-title: Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya publication-title: PLoS One doi: 10.1371/journal.pone.0198446 – volume: 314 start-page: 122 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib53 article-title: Soil structure as an indicator of soil functions: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.009 – volume: 45 start-page: 9175 year: 2011 ident: 10.1016/j.envpol.2019.113347_bib9 article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks publication-title: Environ. Sci. Technol. doi: 10.1021/es201811s – year: 2007 ident: 10.1016/j.envpol.2019.113347_bib65 article-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 19 start-page: 3835 year: 2013 ident: 10.1016/j.envpol.2019.113347_bib43 article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12306 – volume: 624 start-page: 48 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib31 article-title: Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.105 – volume: 124 start-page: 25 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib75 article-title: Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems publication-title: Environ. Int. doi: 10.1016/j.envint.2018.12.040 – volume: 254 start-page: 112983 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib27 article-title: LDPE microplastic films alter microbial community composition and enzymatic activities in soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.112983 – volume: 220 start-page: 523 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib28 article-title: Incorporation of microplastics from litter into burrows of Lumbricus terrestris publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.09.096 – volume: 7 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib58 article-title: Microplastic transport in soil by earthworms publication-title: Sci. Rep. doi: 10.1038/s41598-017-01594-7 – volume: 73 start-page: 1576 year: 2007 ident: 10.1016/j.envpol.2019.113347_bib41 article-title: Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01996-06 – volume: 170 start-page: 288 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib40 article-title: Nitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.173 – volume: 136 start-page: 148 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib71 article-title: Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2018.12.019 – volume: 62 start-page: 2588 year: 2011 ident: 10.1016/j.envpol.2019.113347_bib15 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.025 – volume: 52 start-page: 9656 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib16 article-title: Impacts of microplastics on the soil biophysical environment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02212 – volume: 47 start-page: 7137 year: 2013 ident: 10.1016/j.envpol.2019.113347_bib73 article-title: Life in the “plastisphere”: microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. doi: 10.1021/es401288x – volume: 192 start-page: 203 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib24 article-title: Application of biochar and nitrogen influences fluxes of CO 2 , CH 4 and N 2 O in a forest soil publication-title: J. Environ. Manag. – volume: 50 start-page: 10777 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib50 article-title: Are agricultural soils dumps for microplastics of urban origin? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04140 – volume: 82 start-page: 290 year: 2001 ident: 10.1016/j.envpol.2019.113347_bib44 article-title: Fitting multivariate models to community data: a comment ON distance-based redundancy analysis publication-title: Ecology doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 – volume: 609 start-page: 1303 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib66 article-title: Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.017 – volume: 137 start-page: 107567 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib46 article-title: Forest-to-agriculture conversion in Amazon drives soil microbial communities and N-cycle publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107567 – volume: 104 start-page: 290 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib17 article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.01.006 – volume: 345 start-page: 144 year: 2014 ident: 10.1016/j.envpol.2019.113347_bib35 article-title: Microplastics in the seas publication-title: Science doi: 10.1126/science.1254065 – volume: 12 start-page: 2544 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib64 article-title: Methanotrophy across a natural permafrost thaw environment publication-title: ISME J. doi: 10.1038/s41396-018-0065-5 – volume: 14 year: 2014 ident: 10.1016/j.envpol.2019.113347_bib23 article-title: Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms publication-title: BMC Microbiol. doi: 10.1186/s12866-014-0232-4 – volume: 80 start-page: 193 year: 1993 ident: 10.1016/j.envpol.2019.113347_bib12 article-title: Stopping rules and estimation for recapture debugging with unequal failure rates publication-title: Biometrika doi: 10.1093/biomet/80.1.193 – volume: 185 start-page: 907 year: 2017 ident: 10.1016/j.envpol.2019.113347_bib39 article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.064 – volume: 49 start-page: 6070 year: 2015 ident: 10.1016/j.envpol.2019.113347_bib34 article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00492 – volume: 76 start-page: 327 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib51 article-title: Greenhouse gas emissions from soils—a review publication-title: Chemie der Erde - Geochem. doi: 10.1016/j.chemer.2016.04.002 – volume: 54 start-page: 309 year: 2011 ident: 10.1016/j.envpol.2019.113347_bib2 article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus publication-title: Pedobiologia doi: 10.1016/j.pedobi.2011.07.005 – volume: 24 start-page: 833 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib21 article-title: The ecology and Evolution of microbial competition publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.06.011 – volume: 11 start-page: 265 year: 1984 ident: 10.1016/j.envpol.2019.113347_bib11 article-title: Nonparametric estimation of the number of classes in a population publication-title: Scand. J. Stat. – volume: 90 start-page: 203 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib79 article-title: Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review publication-title: Water Res. doi: 10.1016/j.watres.2015.12.020 – volume: 18 start-page: 229 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib20 article-title: New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts publication-title: Mol. Ecol. Resour. doi: 10.1111/1755-0998.12729 – volume: 53 start-page: 50 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib38 article-title: Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04673 – volume: 120 start-page: 1479 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib13 article-title: Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers publication-title: Fungal Biol. doi: 10.1016/j.funbio.2016.07.012 – volume: 635 start-page: 1152 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib3 article-title: Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.199 – volume: 95 start-page: 288 year: 2016 ident: 10.1016/j.envpol.2019.113347_bib54 article-title: Soil N availability, rather than N deposition, controls indirect N 2 O emissions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.01.002 – volume: 2 start-page: 2 year: 2015 ident: 10.1016/j.envpol.2019.113347_bib63 article-title: Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosasinensis leaves publication-title: Bioresour. Bioprocess. doi: 10.1186/s40643-014-0034-4 – volume: 642 start-page: 1090 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib77 article-title: Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.110 – volume: 48 start-page: 11863 year: 2014 ident: 10.1016/j.envpol.2019.113347_bib45 article-title: Microplastic is an abundant and distinct microbial habitat in an urban river publication-title: Environ. Sci. Technol. doi: 10.1021/es503610r – volume: 650 start-page: 2395 year: 2019 ident: 10.1016/j.envpol.2019.113347_bib47 article-title: Distinct community structure and microbial functions of biofilms colonizing microplastics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.378 – volume: 26 start-page: 2592 year: 2018 ident: 10.1016/j.envpol.2019.113347_bib78 article-title: Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2018.01.028 |
SSID | ssj0004333 |
Score | 2.686576 |
Snippet | Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113347 |
SubjectTerms | Actinobacteria bacterial communities Bacterial community biogeochemical cycles Carbon Dioxide - analysis Chloroflexi dissolved organic carbon edaphic factors Fertilizers - analysis fungal communities Fungal community Global Warming global warming potential greenhouse gas emissions greenhouse gases Greenhouse gases (GHGs) Greenhouse Gases - analysis methane Methane - analysis Microbiota - drug effects Microplastics Microplastics - analysis Microplastics - toxicity nitrates nitrous oxide Nitrous Oxide - analysis particle size Rhodomicrobium Rhodoplanes soil Soil - chemistry Soil Microbiology soil microorganisms Soil Pollutants - analysis Soil Pollutants - toxicity Terrestrial ecosystem |
Title | Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil |
URI | https://dx.doi.org/10.1016/j.envpol.2019.113347 https://www.ncbi.nlm.nih.gov/pubmed/31672352 https://www.proquest.com/docview/2311637140 https://www.proquest.com/docview/2431839095 |
Volume | 256 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N44U9TKxjW8eojIR4C01qJ2keq2lTAdEXqLQ3y_HHCOqcaumQxgN_O3dx0oEETOKx1Tmy7uy7353vA-B1XmS5yqyNTGEcOihORSXa7ShWvMyLNFU6p0Lhj4tsvhTvr9KrHTjva2EorbLT_UGnt9q6-2fccXO8rqrxJ_QeEAzjZUWfHO0y6WHqXodn-u2PhzQPwcM4eSSOiLovn2tzvKz_tq7pASIpaLgJpyErfzZPf4OfrRm6fAb7HX5ks7DFA9ixfgCHM4--8809e8PajM42VD6AvV-aDQ7g6OKhpg2_0F3q5hB06GDcsNqxG8rPWyOipu7NrPbsmvJyvtR3jWXXqmE0HY7iaw1T3jAEj2EFlZ0wHWpNNves8sxRvvaq-m4Na-pq9RyWlxefz-dRN3sh0iJLNlFpU64Nz-MiLo1AmBHrxClEJ3zCXSEyg1RlVhjtYmXo-ZZzBCoCf1qOEhf8CHZ97e0JsDIphdBZNrFTI5w2U9IT2qHEhJ4mKh0C71kuddeYnOZjrGSfgfZVBkFJEpQMghpCtF21Do05HqHPe2nK3w6YRNvxyMpXvfAlMpkeVJS3yHiJ2BjhLLU8_AeNIK1ZIJIdwnE4Odv9UheCCSLg0__e2wt4OqEAQBsTOoPdze2dfYkoaVOO2mswgiezdx_mi59MtxJw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ-Q40F9IHqIHqKuifGtufZ2214fLwRyCNyLkPC22e4H1hzbCz1I8K93ptsCJiqJj21mms1Md-Y3u_MB8Dkvslxl1kamMA4DFKeiEv12FCte5kWaKp1TofDpIpufi68X6cUG7Pe1MJRW2dn-YNNba929GXfSHK-qavwNowcEw7hZMSZHv4x2eJO6U4kBbM6OjueLh_JIHibKI31EDH0FXZvmZf3tqqY7iKSg-Sac5qz82UP9DYG2nujwJWx1EJLNwipfwYb1Q9ieeQyfr-7YF9Ymdban5UN48ajf4BB2Dh7K2vAL3b5utkGHJsYNqx27ohS9FYJqauDMas8uKTXne33TWHapGkYD4uiIrWHKG4b4MXBQ5QnTodxkfccqzxylbC-rn9awpq6Wr-H88OBsfx514xciLbJkHZU25drwPC7i0qBceawTpxCg8Al3hcgMUpVZYbSLlaEbXM4Rqwh8tByVLvgODHzt7VtgZVIKobNsYqdGOG2mZCq0Q6UJPU1UOgLei1zqrjc5jchYyj4J7YcMipKkKBkUNYLonmsVenM8QZ_32pS__WMS3ccTnJ965UsUMt2pKG9R8BLhMSJa6nr4DxpBhrNAMDuCN-HPuV8vNSKYIAje_e-1fYRn87PTE3lytDh-B88ndB7QHhHtwWB9fWPfI2halx-6TfELpb0VIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+microplastics+on+greenhouse+gas+emissions+and+the+microbial+community+in+fertilized+soil&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Ren%2C+Xinwei&rft.au=Tang%2C+Jingchun&rft.au=Liu%2C+Xiaomei&rft.au=Liu%2C+Qinglong&rft.date=2020-01-01&rft.issn=0269-7491&rft.volume=256+p.113347-&rft_id=info:doi/10.1016%2Fj.envpol.2019.113347&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |