Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil

Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the pre...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 256; p. 113347
Main Authors Ren, Xinwei, Tang, Jingchun, Liu, Xiaomei, Liu, Qinglong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text
ISSN0269-7491
1873-6424
1873-6424
DOI10.1016/j.envpol.2019.113347

Cover

Loading…
Abstract Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3− reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles. [Display omitted] •Smaller particle size microplastics could accelerate the aromatic matters’ formation.•Microplastics in fertilized soil could reduce N2O emission.•Actinobacteria replaced Proteobacteria as the Dominant phylum in microplastics soil.•Microplastic size effect was shown on alpha diversity.•Microplastics influenced the co-occurrence network among different microorganisms. Main findings: Microplastics decreased the global warming potential of soil. Particle size affected alpha diversity, and Actinobacteria replaced Proteobacteria as the dominant phylum in soil with microplastics.
AbstractList Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3- reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles.Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3- reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles.
Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3− reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles.
Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N O emissions during the first three days. A potential mechanism for this reduction in N O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N O emissions was observed on day 30, mainly due to the acceleration of the NO reduction and a decrease in the abundance of Gemmatimonadacea. The CH uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles.
Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been conducted on investigating the effects of MPs on the soil microbial community, which plays a vital role in biogeochemical cycling. In the present study, we investigate the influence of two particle sizes of MPs on dissolved organic carbon (DOC) and its relative functional groups, fluxes of greenhouse gases (GHGs), and the bacterial and fungal communities in fertilized soil. The results showed that a 5% concentration of MPs had no significant effect on soil DOC, whereas the formation of aromatic functional groups was accelerated. In fertilized soil, the existence of MPs decreased the global warming potential (GWP) as a result of a reduction in N2O emissions during the first three days. A potential mechanism for this reduction in N2O emissions might be that MPs inhibited the phylum Chloroflexi, Rhodoplanes genera, and increased the abundance of Thermoleophilia on day 3. An increase in N2O emissions was observed on day 30, mainly due to the acceleration of the NO3− reduction and a decrease in the abundance of Gemmatimonadacea. The CH4 uptake was significantly correlated with Hyphomicrobiaceae on day 3 and Rhodomicrobium on day 30. In soil with MPs, Actinobacteria replaced Proteobacteria as the dominant phylum. Larger MPs increased the richness (Chao1) and abundance-based coverage estimators (ACE) and diversity (Shannon) of the bacterial community on day 3, whereas these decreased on day 30. The richness and diversity of the fungal community were also reduced on days 3 and 30. Smaller MPs increased the community richness and diversity of both bacterial and fungal communities in fertilized soil. Our findings suggest that MPs have selective effects on microbes and can potentially have a serious impact on terrestrial biogeochemical cycles. [Display omitted] •Smaller particle size microplastics could accelerate the aromatic matters’ formation.•Microplastics in fertilized soil could reduce N2O emission.•Actinobacteria replaced Proteobacteria as the Dominant phylum in microplastics soil.•Microplastic size effect was shown on alpha diversity.•Microplastics influenced the co-occurrence network among different microorganisms. Main findings: Microplastics decreased the global warming potential of soil. Particle size affected alpha diversity, and Actinobacteria replaced Proteobacteria as the dominant phylum in soil with microplastics.
ArticleNumber 113347
Author Tang, Jingchun
Liu, Xiaomei
Ren, Xinwei
Liu, Qinglong
Author_xml – sequence: 1
  givenname: Xinwei
  surname: Ren
  fullname: Ren, Xinwei
– sequence: 2
  givenname: Jingchun
  surname: Tang
  fullname: Tang, Jingchun
  email: tangjch@nankai.edu.cn
– sequence: 3
  givenname: Xiaomei
  surname: Liu
  fullname: Liu, Xiaomei
– sequence: 4
  givenname: Qinglong
  surname: Liu
  fullname: Liu, Qinglong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31672352$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrFTEUhYNU7Gv1H4hk6WaeSW4m88aFIKXaQsGNrkMmuWnzmEmeSV6h_npTpt24sKtww3cO955zRk5iikjIe862nHH1ab_FeH9I81YwPm45B5DDK7LhuwE6JYU8IRsm1NgNcuSn5KyUPWNMAsAbcgpcDQJ6sSH20nu0tdDk6RJsTofZlBps-4j0NiPGu3QsSG9NobiEUkKKhZroaL3DVTEFM1ObluUYQ32gIVKPuYY5_EFHSwrzW_Lam7ngu6f3nPz6dvnz4qq7-fH9-uLrTWel4rWbsAfrYGAjm5wcJDDLvVHQgwA_SuUaNanRWc-MY0L2AGIHso0IknkJ5-Tj6nvI6fcRS9VtYYvzbCK2I7SQwHcwsrF_GQXOFQxcsoZ-eEKP04JOH3JYTH7Qzxk24PMKtCxKyei1DdXUFlTNJsyaM_1YmN7rtTD9WJheC2ti-Y_42f8F2ZdVhi3P-4BZFxswWnQhtzq1S-H_Bn8BgaixYQ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_173864
crossref_primary_10_1016_j_jenvman_2023_118246
crossref_primary_10_1021_acsnano_3c05809
crossref_primary_10_1016_j_envres_2023_116976
crossref_primary_10_1016_j_eti_2023_103335
crossref_primary_10_3390_agronomy13010075
crossref_primary_10_1016_j_rhisph_2022_100542
crossref_primary_10_1016_j_jhazmat_2024_136167
crossref_primary_10_1016_j_chemosphere_2023_138928
crossref_primary_10_1016_j_scitotenv_2020_140016
crossref_primary_10_1007_s11270_024_07731_z
crossref_primary_10_1016_j_jhazmat_2022_129509
crossref_primary_10_1016_j_apsoil_2022_104716
crossref_primary_10_1016_j_scitotenv_2022_159440
crossref_primary_10_1111_gcb_17470
crossref_primary_10_1016_j_chemosphere_2022_135941
crossref_primary_10_1016_j_jhazmat_2024_135879
crossref_primary_10_1016_j_ibiod_2022_105461
crossref_primary_10_1016_j_jhazmat_2022_128891
crossref_primary_10_1002_ldr_5231
crossref_primary_10_3389_fenvs_2022_855292
crossref_primary_10_1016_j_jhazmat_2021_126865
crossref_primary_10_1111_gcb_15724
crossref_primary_10_1016_j_jhazmat_2022_129879
crossref_primary_10_1016_j_ecoenv_2024_117332
crossref_primary_10_1016_j_jhazmat_2021_128126
crossref_primary_10_1016_j_enmm_2021_100530
crossref_primary_10_1016_j_ecoenv_2024_117219
crossref_primary_10_1016_j_watres_2020_116331
crossref_primary_10_1016_j_scitotenv_2024_174160
crossref_primary_10_1016_j_envpol_2025_126026
crossref_primary_10_1016_j_jece_2023_110447
crossref_primary_10_1016_j_scitotenv_2024_174161
crossref_primary_10_1007_s00343_021_1300_x
crossref_primary_10_1016_j_emcon_2024_100368
crossref_primary_10_1007_s44169_023_00047_9
crossref_primary_10_1016_j_jhazmat_2023_131445
crossref_primary_10_3390_horticulturae11030305
crossref_primary_10_1016_j_scitotenv_2022_156068
crossref_primary_10_1038_s41598_023_42285_w
crossref_primary_10_1007_s42773_024_00413_3
crossref_primary_10_1093_ismejo_wrad017
crossref_primary_10_1007_s10333_022_00915_5
crossref_primary_10_1016_j_hazadv_2024_100445
crossref_primary_10_1016_j_scitotenv_2023_167691
crossref_primary_10_1017_plc_2024_5
crossref_primary_10_1016_j_apsoil_2024_105343
crossref_primary_10_2139_ssrn_4075806
crossref_primary_10_1007_s10653_024_02325_4
crossref_primary_10_1016_j_envres_2022_114133
crossref_primary_10_1016_j_scitotenv_2024_174811
crossref_primary_10_3389_fmars_2025_1518631
crossref_primary_10_3389_fmicb_2021_647766
crossref_primary_10_1007_s11270_024_07500_y
crossref_primary_10_3390_agriculture14081365
crossref_primary_10_1016_j_jenvman_2022_115473
crossref_primary_10_1016_j_envres_2022_113728
crossref_primary_10_1016_j_jhazmat_2023_133278
crossref_primary_10_1016_j_envpol_2022_120788
crossref_primary_10_1038_s41579_023_00967_2
crossref_primary_10_1007_s42729_024_01752_7
crossref_primary_10_1021_acs_est_3c10017
crossref_primary_10_1016_j_chemosphere_2022_135007
crossref_primary_10_1016_j_envpol_2021_118516
crossref_primary_10_1360_SST_2024_0050
crossref_primary_10_1007_s00374_023_01781_x
crossref_primary_10_1111_1462_2920_15955
crossref_primary_10_3390_plants13243483
crossref_primary_10_33409_tbbbd_997807
crossref_primary_10_1016_j_soilbio_2024_109480
crossref_primary_10_1016_j_bej_2024_109230
crossref_primary_10_1016_j_jenvman_2023_118013
crossref_primary_10_1016_j_scitotenv_2024_171435
crossref_primary_10_1016_j_jhazmat_2021_126288
crossref_primary_10_1016_j_cej_2021_130478
crossref_primary_10_1016_j_jclepro_2024_142834
crossref_primary_10_1016_j_scitotenv_2021_151100
crossref_primary_10_1016_j_scitotenv_2021_146433
crossref_primary_10_2139_ssrn_4107533
crossref_primary_10_4236_gep_2023_111016
crossref_primary_10_1016_j_apsoil_2022_104623
crossref_primary_10_1016_j_wsee_2022_11_010
crossref_primary_10_1021_acs_est_3c10247
crossref_primary_10_1080_02757540_2024_2432910
crossref_primary_10_1016_j_envpol_2022_120433
crossref_primary_10_1016_j_scitotenv_2020_141368
crossref_primary_10_3390_microplastics3040048
crossref_primary_10_1016_j_envpol_2024_124719
crossref_primary_10_1016_j_jhazmat_2024_135763
crossref_primary_10_1016_j_jclepro_2022_135558
crossref_primary_10_1016_j_scitotenv_2023_164049
crossref_primary_10_1007_s11368_022_03254_4
crossref_primary_10_1016_j_jwpe_2021_101966
crossref_primary_10_1016_j_jhazmat_2023_132636
crossref_primary_10_1016_j_watres_2022_118733
crossref_primary_10_1016_j_scitotenv_2024_170216
crossref_primary_10_1016_j_jhazmat_2022_129176
crossref_primary_10_1360_SSC_2024_0064
crossref_primary_10_1016_j_scitotenv_2023_169293
crossref_primary_10_1016_j_jhazmat_2021_126035
crossref_primary_10_1111_aab_12736
crossref_primary_10_1016_j_jece_2025_115761
crossref_primary_10_1016_j_jece_2023_111287
crossref_primary_10_1016_j_scitotenv_2021_147133
crossref_primary_10_1038_s41598_024_80124_8
crossref_primary_10_1016_j_scitotenv_2021_147016
crossref_primary_10_1016_j_scitotenv_2021_147815
crossref_primary_10_1016_j_ecoenv_2022_113958
crossref_primary_10_1016_j_soilbio_2024_109425
crossref_primary_10_1016_j_scitotenv_2023_167029
crossref_primary_10_1016_j_envres_2021_112179
crossref_primary_10_1016_j_jhazmat_2024_136248
crossref_primary_10_1007_s41742_023_00558_2
crossref_primary_10_1016_j_jhazmat_2021_127364
crossref_primary_10_1016_j_scitotenv_2023_164670
crossref_primary_10_1088_2515_7620_acf02c
crossref_primary_10_1016_j_envres_2024_118945
crossref_primary_10_1016_j_apsoil_2022_104486
crossref_primary_10_1016_j_scitotenv_2021_145640
crossref_primary_10_1016_j_jhazmat_2025_137621
crossref_primary_10_1016_j_ecoenv_2024_117419
crossref_primary_10_1016_j_scitotenv_2024_169977
crossref_primary_10_3390_su15097122
crossref_primary_10_1016_j_scitotenv_2023_166959
crossref_primary_10_1016_j_scitotenv_2024_170160
crossref_primary_10_1016_j_jhazmat_2022_129030
crossref_primary_10_3390_plants13162285
crossref_primary_10_1016_j_jhazmat_2024_134735
crossref_primary_10_1111_sum_12971
crossref_primary_10_1016_j_pedsph_2023_06_010
crossref_primary_10_1016_j_chemosphere_2021_132984
crossref_primary_10_1016_j_scitotenv_2023_166165
crossref_primary_10_1016_j_envpol_2022_118860
crossref_primary_10_4236_ojss_2024_141004
crossref_primary_10_1016_j_chemosphere_2024_141880
crossref_primary_10_1016_j_marpolbul_2022_114118
crossref_primary_10_3390_atmos13111796
crossref_primary_10_1016_j_jenvman_2022_116124
crossref_primary_10_3390_chemengineering8050086
crossref_primary_10_1007_s10924_023_03028_0
crossref_primary_10_1016_j_scitotenv_2024_176236
crossref_primary_10_1016_j_chemosphere_2022_135836
crossref_primary_10_1016_j_scitotenv_2021_149338
crossref_primary_10_1002_jeq2_20450
crossref_primary_10_1016_j_scitotenv_2020_143987
crossref_primary_10_1016_j_scitotenv_2024_174294
crossref_primary_10_1016_j_envpol_2024_124630
crossref_primary_10_1016_j_envpol_2024_124751
crossref_primary_10_1016_j_scitotenv_2020_143633
crossref_primary_10_1016_j_jhazmat_2023_132024
crossref_primary_10_1016_j_jhazmat_2023_132142
crossref_primary_10_1016_j_jhazmat_2023_132269
crossref_primary_10_1016_j_jhazmat_2024_133432
crossref_primary_10_1016_j_jhazmat_2022_129247
crossref_primary_10_1021_acs_est_2c06258
crossref_primary_10_1016_j_jhazmat_2023_132942
crossref_primary_10_1016_j_scitotenv_2021_151523
crossref_primary_10_1016_j_jenvman_2023_117529
crossref_primary_10_1016_j_jhazmat_2023_131857
crossref_primary_10_1021_acsestengg_3c00401
crossref_primary_10_1007_s11783_023_1753_6
crossref_primary_10_1016_j_chemosphere_2024_141771
crossref_primary_10_1051_e3sconf_202452002007
crossref_primary_10_1016_j_envint_2022_107172
crossref_primary_10_1016_j_jece_2025_115551
crossref_primary_10_1016_j_jhazmat_2022_128721
crossref_primary_10_1016_j_scitotenv_2024_173891
crossref_primary_10_1016_j_jhazmat_2025_137761
crossref_primary_10_1016_j_chemosphere_2020_126791
crossref_primary_10_1016_j_ecoenv_2022_114009
crossref_primary_10_1016_j_jhazmat_2025_137889
crossref_primary_10_1016_j_envpol_2023_122833
crossref_primary_10_1016_j_envpol_2023_123008
crossref_primary_10_1111_sum_12991
crossref_primary_10_1016_j_envpol_2022_119374
crossref_primary_10_1021_acs_estlett_0c00740
crossref_primary_10_1016_j_jhazmat_2023_131989
crossref_primary_10_1016_j_chemosphere_2024_142079
crossref_primary_10_1016_j_envpol_2024_123682
crossref_primary_10_1126_science_abb5979
crossref_primary_10_1016_j_scitotenv_2024_175403
crossref_primary_10_1016_j_apsoil_2023_105246
crossref_primary_10_1016_j_scitotenv_2023_168035
crossref_primary_10_1016_j_scitotenv_2024_175643
crossref_primary_10_1016_j_scitotenv_2024_172133
crossref_primary_10_3390_plants14020256
crossref_primary_10_1016_j_trac_2023_117092
crossref_primary_10_1007_s11368_023_03637_1
crossref_primary_10_1016_j_agee_2022_108023
crossref_primary_10_1016_j_scitotenv_2023_162967
crossref_primary_10_1186_s43591_021_00004_0
crossref_primary_10_1016_j_scitotenv_2023_167869
crossref_primary_10_1016_j_algal_2024_103623
crossref_primary_10_1016_j_jhazmat_2023_131152
crossref_primary_10_1016_j_soilbio_2021_108496
crossref_primary_10_1016_j_scitotenv_2023_165688
crossref_primary_10_1016_j_scitotenv_2023_164112
crossref_primary_10_1093_etojnl_vgaf021
crossref_primary_10_1016_j_envpol_2024_124649
crossref_primary_10_1007_s11368_024_03731_y
crossref_primary_10_1016_j_scitotenv_2025_178647
crossref_primary_10_1016_j_jhazmat_2023_131711
crossref_primary_10_1016_j_jclepro_2022_134950
crossref_primary_10_1016_j_jhazmat_2024_133857
crossref_primary_10_1111_gcbb_13083
crossref_primary_10_1016_j_chemosphere_2023_139860
crossref_primary_10_1111_sum_12808
crossref_primary_10_1016_j_apsoil_2022_104680
crossref_primary_10_1016_j_chemosphere_2024_142641
crossref_primary_10_1016_j_plaphy_2025_109792
crossref_primary_10_1016_j_scitotenv_2024_174322
crossref_primary_10_1016_j_scitotenv_2024_175533
crossref_primary_10_1016_j_jclepro_2024_140835
crossref_primary_10_1016_j_envpol_2023_121092
crossref_primary_10_3390_agriengineering5030096
crossref_primary_10_1016_j_cej_2024_153681
crossref_primary_10_1016_j_ecoenv_2023_115807
crossref_primary_10_1016_j_scitotenv_2023_164589
crossref_primary_10_1016_j_scitotenv_2023_167734
crossref_primary_10_1007_s42832_022_0138_2
crossref_primary_10_1016_j_eti_2023_103174
crossref_primary_10_1016_j_seh_2024_100101
crossref_primary_10_1016_j_jhazmat_2022_130455
crossref_primary_10_1016_j_scitotenv_2020_143482
crossref_primary_10_1016_j_chemosphere_2020_127578
crossref_primary_10_1021_acs_jafc_1c07849
crossref_primary_10_1016_j_apsoil_2022_104694
crossref_primary_10_1016_j_chemosphere_2023_139082
crossref_primary_10_1016_j_apsoil_2022_104696
crossref_primary_10_1111_gcb_17415
crossref_primary_10_1016_j_scitotenv_2023_169469
crossref_primary_10_3389_fpls_2023_1283852
crossref_primary_10_1016_j_envpol_2024_124315
crossref_primary_10_1007_s44246_023_00097_7
crossref_primary_10_1016_j_jhazmat_2024_136461
crossref_primary_10_1016_j_scitotenv_2024_177360
crossref_primary_10_1016_j_scitotenv_2022_156471
crossref_primary_10_1080_08927014_2024_2406340
crossref_primary_10_1016_j_chemosphere_2023_138678
crossref_primary_10_1016_j_scitotenv_2023_163366
crossref_primary_10_1016_j_scitotenv_2021_150516
crossref_primary_10_1016_j_jhazmat_2022_128353
crossref_primary_10_1016_j_psep_2022_11_084
crossref_primary_10_3390_toxics8020036
crossref_primary_10_3390_en16207212
crossref_primary_10_1016_j_jhazmat_2021_128196
crossref_primary_10_1016_j_hazadv_2022_100146
crossref_primary_10_1007_s44246_024_00124_1
crossref_primary_10_1016_j_heliyon_2023_e13296
crossref_primary_10_1016_j_jhazmat_2021_127531
crossref_primary_10_1186_s40068_024_00367_2
crossref_primary_10_1016_j_csbj_2022_03_041
crossref_primary_10_1016_j_envint_2024_108781
crossref_primary_10_1016_j_marpolbul_2021_112467
crossref_primary_10_1016_j_jenvman_2023_118654
crossref_primary_10_1186_s44280_024_00049_9
crossref_primary_10_1007_s00128_020_02900_2
crossref_primary_10_1016_j_jhazmat_2024_134152
crossref_primary_10_1016_j_trac_2022_116869
crossref_primary_10_1021_acs_jafc_3c06972
crossref_primary_10_1007_s11356_022_22305_4
crossref_primary_10_1016_j_scitotenv_2024_178100
crossref_primary_10_1007_s11270_022_05837_w
crossref_primary_10_1016_j_jenvman_2024_121429
crossref_primary_10_1080_20964129_2022_2133638
crossref_primary_10_1021_acs_est_0c04849
crossref_primary_10_3390_pr10102128
crossref_primary_10_3390_su141811126
crossref_primary_10_1016_j_jenvman_2023_119616
crossref_primary_10_1016_j_scitotenv_2024_173209
crossref_primary_10_3389_fsufs_2024_1423136
crossref_primary_10_1007_s11104_025_07212_0
crossref_primary_10_1016_j_jhazmat_2021_127405
crossref_primary_10_1016_j_scitotenv_2024_176658
crossref_primary_10_1016_j_ecoenv_2024_117248
crossref_primary_10_1016_j_jhazmat_2024_134581
crossref_primary_10_1016_j_scitotenv_2023_168513
crossref_primary_10_1016_j_envint_2021_106398
crossref_primary_10_1016_j_jclepro_2020_125240
crossref_primary_10_1007_s11356_023_30550_4
crossref_primary_10_1016_j_scitotenv_2023_162413
crossref_primary_10_1016_j_soilbio_2021_108179
crossref_primary_10_1098_rspb_2020_1268
crossref_primary_10_1080_07388551_2024_2344572
crossref_primary_10_3390_microorganisms12091790
crossref_primary_10_1016_j_ecoenv_2021_113045
crossref_primary_10_1016_j_envpol_2020_115468
crossref_primary_10_1016_j_jhazmat_2021_126671
crossref_primary_10_1016_j_jhazmat_2023_132326
crossref_primary_10_1016_j_jhazmat_2023_130825
crossref_primary_10_1016_j_trac_2022_116882
crossref_primary_10_1007_s11104_021_04869_1
crossref_primary_10_1016_j_apsoil_2024_105331
crossref_primary_10_1016_j_jclepro_2021_127816
crossref_primary_10_1016_j_scitotenv_2020_144091
crossref_primary_10_1016_j_scitotenv_2021_151487
crossref_primary_10_1371_journal_pone_0291760
crossref_primary_10_2139_ssrn_4154943
crossref_primary_10_1016_j_agee_2023_108356
crossref_primary_10_1016_j_scitotenv_2022_154975
crossref_primary_10_1016_j_jenvman_2023_118437
crossref_primary_10_1016_j_scitotenv_2024_177875
crossref_primary_10_1016_j_ecoenv_2024_116726
crossref_primary_10_1039_D4EM00688G
crossref_primary_10_1016_j_jhazmat_2024_136993
crossref_primary_10_1039_D2EA00041E
crossref_primary_10_1016_j_apsoil_2022_104649
crossref_primary_10_1016_j_chemosphere_2021_132460
crossref_primary_10_1016_j_envpol_2022_120656
crossref_primary_10_3389_fpls_2024_1427166
crossref_primary_10_1007_s11368_023_03479_x
crossref_primary_10_3390_atmos15111380
crossref_primary_10_1007_s11356_023_26159_2
crossref_primary_10_1016_j_jhazmat_2022_129555
crossref_primary_10_1111_1365_2435_14662
crossref_primary_10_1016_j_ese_2025_100541
crossref_primary_10_1016_j_scitotenv_2023_163293
crossref_primary_10_3390_nano11112935
crossref_primary_10_1016_j_ecoenv_2021_113150
crossref_primary_10_1016_j_scitotenv_2024_170653
crossref_primary_10_1016_j_cej_2024_151328
crossref_primary_10_1016_j_resenv_2022_100102
crossref_primary_10_3389_fpls_2021_626709
crossref_primary_10_1016_j_agee_2021_107354
crossref_primary_10_1016_j_ecolind_2024_112270
crossref_primary_10_1016_j_envres_2024_119663
crossref_primary_10_1016_j_rser_2022_112963
crossref_primary_10_1080_27685241_2024_2420801
crossref_primary_10_1016_j_scitotenv_2020_138682
crossref_primary_10_1007_s44169_022_00012_y
crossref_primary_10_1016_j_jhazmat_2025_137913
crossref_primary_10_1016_j_scitotenv_2022_160499
crossref_primary_10_1016_j_spc_2024_12_018
crossref_primary_10_1016_j_jhazmat_2024_134246
crossref_primary_10_1016_j_scitotenv_2022_157884
crossref_primary_10_1016_j_scitotenv_2021_150714
crossref_primary_10_1016_j_scitotenv_2022_157886
crossref_primary_10_1016_j_scitotenv_2022_156678
crossref_primary_10_1016_j_watres_2025_123493
crossref_primary_10_1021_acsagscitech_2c00333
crossref_primary_10_1080_03067319_2022_2148528
crossref_primary_10_1016_j_envpol_2024_124363
crossref_primary_10_1016_j_scitotenv_2024_170541
crossref_primary_10_48130_CAS_2021_0008
crossref_primary_10_1016_j_envpol_2022_119094
crossref_primary_10_1016_j_scitotenv_2021_147444
crossref_primary_10_1007_s10653_025_02358_3
crossref_primary_10_1002_fes3_404
crossref_primary_10_3390_toxics11030242
crossref_primary_10_1016_j_envpol_2021_118386
crossref_primary_10_1016_j_envpol_2023_121106
crossref_primary_10_1016_j_jclepro_2022_130504
crossref_primary_10_1007_s13762_024_05656_y
crossref_primary_10_1016_j_envpol_2021_117733
crossref_primary_10_1016_j_plaphy_2023_108201
crossref_primary_10_4236_as_2024_1510059
crossref_primary_10_1016_j_chemosphere_2022_135573
crossref_primary_10_1016_j_ese_2021_100121
crossref_primary_10_1016_j_jhazmat_2022_129771
crossref_primary_10_1007_s41207_025_00766_6
Cites_doi 10.1016/j.soilbio.2016.12.017
10.1021/acs.est.8b02338
10.1002/ep.12467
10.1016/j.soilbio.2019.107547
10.1007/s11356-016-8189-5
10.1038/163688a0
10.1088/1755-1315/61/1/012148
10.1038/ngeo1486
10.1016/j.geoderma.2018.04.022
10.1016/j.scitotenv.2017.01.190
10.1007/s13593-011-0068-3
10.1016/j.scitotenv.2016.01.153
10.1016/j.atmosenv.2017.11.054
10.1016/S2095-3119(15)61240-0
10.1016/j.agrformet.2015.06.004
10.1021/es104042f
10.1002/j.1538-7305.1948.tb00917.x
10.1016/j.envint.2017.01.018
10.1016/j.scitotenv.2019.06.108
10.1098/rstb.2008.0205
10.1016/j.apsoil.2019.01.010
10.1021/acs.est.5b05478
10.1038/ismej.2011.119
10.1016/j.scitotenv.2018.01.341
10.1021/es302011r
10.1016/j.envpol.2017.11.070
10.1038/ismej.2009.152
10.3389/fpls.2017.01805
10.1016/j.envpol.2017.03.009
10.2136/sssaj2006.0202
10.5846/stxb201109141347
10.1016/j.envpol.2005.04.013
10.1371/journal.pone.0198446
10.1016/j.geoderma.2017.11.009
10.1021/es201811s
10.1111/gcb.12306
10.1016/j.scitotenv.2017.12.105
10.1016/j.envint.2018.12.040
10.1016/j.envpol.2019.112983
10.1016/j.envpol.2016.09.096
10.1038/s41598-017-01594-7
10.1128/AEM.01996-06
10.1016/j.jclepro.2017.09.173
10.1016/j.apsoil.2018.12.019
10.1016/j.marpolbul.2011.09.025
10.1021/acs.est.8b02212
10.1021/es401288x
10.1021/acs.est.6b04140
10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
10.1016/j.scitotenv.2017.08.017
10.1016/j.soilbio.2019.107567
10.1016/j.marpolbul.2016.01.006
10.1126/science.1254065
10.1038/s41396-018-0065-5
10.1186/s12866-014-0232-4
10.1093/biomet/80.1.193
10.1016/j.chemosphere.2017.07.064
10.1021/acs.est.5b00492
10.1016/j.chemer.2016.04.002
10.1016/j.pedobi.2011.07.005
10.1016/j.tim.2016.06.011
10.1016/j.watres.2015.12.020
10.1111/1755-0998.12729
10.1021/acs.est.8b04673
10.1016/j.funbio.2016.07.012
10.1016/j.scitotenv.2018.04.199
10.1016/j.soilbio.2016.01.002
10.1186/s40643-014-0034-4
10.1016/j.scitotenv.2018.06.110
10.1021/es503610r
10.1016/j.scitotenv.2018.09.378
10.1016/j.cjche.2018.01.028
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2019.113347
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 31672352
10_1016_j_envpol_2019_113347
S0269749119336152
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c461t-be53cd37090bd47430c1fa635323f946d461b69dcf0ad0245332834cf0e340f43
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Tue Aug 05 11:04:17 EDT 2025
Fri Jul 11 01:47:06 EDT 2025
Wed Feb 19 02:31:30 EST 2025
Tue Jul 01 03:14:49 EDT 2025
Thu Apr 24 22:53:27 EDT 2025
Fri Feb 23 02:49:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fungal community
Greenhouse gases (GHGs)
Terrestrial ecosystem
Microplastics
Bacterial community
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-be53cd37090bd47430c1fa635323f946d461b69dcf0ad0245332834cf0e340f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31672352
PQID 2311637140
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431839095
proquest_miscellaneous_2311637140
pubmed_primary_31672352
crossref_citationtrail_10_1016_j_envpol_2019_113347
crossref_primary_10_1016_j_envpol_2019_113347
elsevier_sciencedirect_doi_10_1016_j_envpol_2019_113347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bastian, Heymann, Jacomy (bib7) 2009
Horton, Walton, Spurgeon, Lahive, Svendsen (bib25) 2017; 586
Chen, Yu, Shi (bib13) 2016; 120
Redding, Shorten, Lewis, Pratt, Paungfoo-Lonhienne, Hill (bib54) 2016; 95
Roy, Hakkarainen, Varma, Albertsson (bib59) 2011; 45
Liu, Yang, Liu, Liang, Xue, Chen, Ritsema, Geissen (bib39) 2017; 185
Ng, Huerta Lwanga, Eldridge, Johnston, Hu, Geissen, Chen (bib49) 2018; 627
Ziajahromi, Kumar, Neale, Leusch (bib80) 2017
Rillig, Ziersch, Hempel (bib58) 2017; 7
Simpson (bib62) 1949; 163
Maestre, Escolar, de Guevara, Quero, Lázaro, Delgado-Baquerizo, Ochoa, Berdugo, Gozalo, Gallardo (bib43) 2013; 19
Anderson, Condron, Clough, Fiers, Stewart, Hill, Sherlock (bib2) 2011; 54
Oertel, Matschullat, Zurba, Zimmermann, Erasmi (bib51) 2016; 76
(bib60) 2018
Zhang, Li, Guo, Liu, Luan, Liu, Guan (bib75) 2019; 124
Lozupone, Hamady, Kelley, Knight (bib41) 2007; 73
Eckert, Di Cesare, Kettner, Arias-Andres, Fontaneto, Grossart, Corno (bib18) 2018; 234
Shannon (bib61) 1948; 27
Ghoul, Mitri (bib21) 2016; 24
McCormick, Hoellein, Mason, Schluep, Kelly (bib45) 2014; 48
Song, Tian, Zhang, Jin (bib66) 2017; 609
Huang, Wang, Liu, Li, Xu, Luo, Xu, Ci, Gao (bib26) 2019; 137
Law, Thompson (bib35) 2014; 345
Zhang, Liu, Hu, Qin, Ma, Yan, Wang (bib74) 2016; 15
Wang, Ma, Jiang, Guan, Wei, Zhao, Chen, Cao, Li, Yang, Li (bib71) 2019; 136
McArdle, Anderson (bib44) 2001; 82
Hawthorne, Johnson, Jassal, Black, Grant, Smukler (bib24) 2017; 192
Nizzetto, Futter, Langaas (bib50) 2016; 50
Zhang, Zhao, Qin, Jia, Chai, Huang, Huang (bib76) 2019; 688
Huerta Lwanga, Gertsen, Gooren, Peters, Salánki, van der Ploeg, Besseling, Koelmans, Geissen (bib29) 2016; 50
Lenka, Lenka, Singh, Singh, Raghuwanshi (bib36) 2017; 24
Maaß, Daphi, Lehmann, Rillig (bib42) 2017; 225
Browne, Crump, Niven, Teuten, Tonkin, Galloway, Thompson (bib9) 2011; 45
Arias-Andres, Rojas-Jimenez, Grossart (bib4) 2018
(bib52) 2019
Zhao, Wang, Zhou, Yuan, Zhu (bib77) 2018; 642
Zubris, Richards (bib81) 2005; 138
Leslie, Brandsma, van Velzen, Vethaak (bib37) 2017; 101
Huerta Lwanga, Gertsen, Gooren, Peters, Salánki, van der Ploeg, Besseling, Koelmans, Geissen (bib28) 2017; 220
Fiore-Donno, Rixen, Rippin, Glaser, Samolov, Karsten, Becker, Bonkowski (bib20) 2018; 18
Muhonja, Makonde, Magoma, Imbuga (bib48) 2018; 13
(bib65) 2007
Barberán, Bates, Casamayor, Fierer (bib5) 2012; 6
Barnes, Galgani, Thompson, Barlaz (bib6) 2009; 364
Zettler, Mincer, Amaral-Zettler (bib73) 2013; 47
Brassard, Godbout, Palacios, Jeanne, Hogue, Dubé, Limousy, Raghavan (bib8) 2018; 327
Elbert, Weber, Burrows, Steinkamp, Büdel, Andreae, Pöschl (bib19) 2012; 5
Graf, Saghaï, Zhao, Carlsson, Jones, Hallin (bib22) 2019; 137
Klein, Worch, Knepper (bib34) 2015; 49
Zhu, Wang, Yuan, Tan, Sun, Wang, Wu, Lee (bib79) 2016; 90
de Souza Machado, Lau, Till, Kloas, Lehmann, Becker, Rillig (bib16) 2018; 52
Rillig (bib56) 2012; 46
Dris, Gasperi, Saad, Mirande, Tassin (bib17) 2016; 104
Rillig, Ingraffia, de Souza Machado (bib57) 2017; 8
Jones, Hallin (bib32) 2010; 4
Singh, Sedhuraman (bib63) 2015; 2
Zhen, Song, Liu, Chandankere, Tang (bib78) 2018; 26
Steinmetz, Wollmann, Schaefer, Buchmann, David, Tröger, Muñoz, Frör, Schaumann (bib67) 2016; 550
Jiang, Zhao, Zhu, Li (bib31) 2018; 624
Kasirajan, Ngouajio (bib33) 2012; 32
Abraham, Ghosh, Mukherjee, Gajendiran (bib1) 2017; 36
Cole, Lindeque, Halsband, Galloway (bib15) 2011; 62
Tu, He, Wu, Xue, Xie, Chain, Reich, Hobbie, Zhou (bib69) 2017; 106
Harrison, Schratzberger, Sapp, Osborn (bib23) 2014; 14
Rabot, Wiesmeier, Schlüter, Vogel (bib53) 2018; 314
Li, Chen, He, Shi, Chen, Reid, Zhu, Sun (bib38) 2019; 53
Merloti, Mendes, Pedrinho, de Souza, Ferrari, Tsai (bib46) 2019; 137
Chao (bib11) 1984; 11
Su, Wang, Qiu, Wang, An, Zheng, Zu (bib68) 2012; 32
Singleton, McCalley, Woodcroft, Boyd, Evans, Hodgkins, Chanton, Frolking, Crill, Saleska, Rich, Tyson (bib64) 2018; 12
Wang, Yu, Zhao, Chang, Shi, Ma, Li (bib70) 2018; 174
Long, Huang, Chi, Li, Ahmad, Yao (bib40) 2018; 170
Xie (bib72) 2018; 9
Chao, Yang (bib12) 1993; 80
Christiansen, Outhwaite, Smukler (bib14) 2015; 211
Jaffrain, Gérard, Meyer, Ranger (bib30) 2007; 71
Miao, Wang, Hou, Yao, Liu, Liu, Li (bib47) 2019; 650
Cao, Wang, Luo, Liu, Zheng (bib10) 2017; 61
Rillig (bib55) 2018; 52
Arias-Andres, Kettner, Miki, Grossart (bib3) 2018; 635
Huang, Zhao, Wang, Zhang, Jia, Qin (bib27) 2019; 254
Abraham (10.1016/j.envpol.2019.113347_bib1) 2017; 36
Rillig (10.1016/j.envpol.2019.113347_bib56) 2012; 46
Huerta Lwanga (10.1016/j.envpol.2019.113347_bib28) 2017; 220
Oertel (10.1016/j.envpol.2019.113347_bib51) 2016; 76
Kasirajan (10.1016/j.envpol.2019.113347_bib33) 2012; 32
Rillig (10.1016/j.envpol.2019.113347_bib58) 2017; 7
Chao (10.1016/j.envpol.2019.113347_bib12) 1993; 80
Elbert (10.1016/j.envpol.2019.113347_bib19) 2012; 5
Miao (10.1016/j.envpol.2019.113347_bib47) 2019; 650
Rabot (10.1016/j.envpol.2019.113347_bib53) 2018; 314
Bastian (10.1016/j.envpol.2019.113347_bib7) 2009
Merloti (10.1016/j.envpol.2019.113347_bib46) 2019; 137
Steinmetz (10.1016/j.envpol.2019.113347_bib67) 2016; 550
Xie (10.1016/j.envpol.2019.113347_bib72) 2018; 9
Ghoul (10.1016/j.envpol.2019.113347_bib21) 2016; 24
Chen (10.1016/j.envpol.2019.113347_bib13) 2016; 120
Hawthorne (10.1016/j.envpol.2019.113347_bib24) 2017; 192
Redding (10.1016/j.envpol.2019.113347_bib54) 2016; 95
Maestre (10.1016/j.envpol.2019.113347_bib43) 2013; 19
Zhen (10.1016/j.envpol.2019.113347_bib78) 2018; 26
Cao (10.1016/j.envpol.2019.113347_bib10) 2017; 61
Dris (10.1016/j.envpol.2019.113347_bib17) 2016; 104
Muhonja (10.1016/j.envpol.2019.113347_bib48) 2018; 13
Zhang (10.1016/j.envpol.2019.113347_bib75) 2019; 124
Zubris (10.1016/j.envpol.2019.113347_bib81) 2005; 138
Arias-Andres (10.1016/j.envpol.2019.113347_bib4) 2018
Anderson (10.1016/j.envpol.2019.113347_bib2) 2011; 54
McCormick (10.1016/j.envpol.2019.113347_bib45) 2014; 48
de Souza Machado (10.1016/j.envpol.2019.113347_bib16) 2018; 52
Zhu (10.1016/j.envpol.2019.113347_bib79) 2016; 90
Lozupone (10.1016/j.envpol.2019.113347_bib41) 2007; 73
Song (10.1016/j.envpol.2019.113347_bib66) 2017; 609
Leslie (10.1016/j.envpol.2019.113347_bib37) 2017; 101
Shannon (10.1016/j.envpol.2019.113347_bib61) 1948; 27
Tu (10.1016/j.envpol.2019.113347_bib69) 2017; 106
Barnes (10.1016/j.envpol.2019.113347_bib6) 2009; 364
Huang (10.1016/j.envpol.2019.113347_bib27) 2019; 254
Ziajahromi (10.1016/j.envpol.2019.113347_bib80) 2017
Huang (10.1016/j.envpol.2019.113347_bib26) 2019; 137
Zhang (10.1016/j.envpol.2019.113347_bib76) 2019; 688
Browne (10.1016/j.envpol.2019.113347_bib9) 2011; 45
Simpson (10.1016/j.envpol.2019.113347_bib62) 1949; 163
Singleton (10.1016/j.envpol.2019.113347_bib64) 2018; 12
Fiore-Donno (10.1016/j.envpol.2019.113347_bib20) 2018; 18
Wang (10.1016/j.envpol.2019.113347_bib71) 2019; 136
Long (10.1016/j.envpol.2019.113347_bib40) 2018; 170
Graf (10.1016/j.envpol.2019.113347_bib22) 2019; 137
Eckert (10.1016/j.envpol.2019.113347_bib18) 2018; 234
Rillig (10.1016/j.envpol.2019.113347_bib57) 2017; 8
Jaffrain (10.1016/j.envpol.2019.113347_bib30) 2007; 71
Lenka (10.1016/j.envpol.2019.113347_bib36) 2017; 24
Liu (10.1016/j.envpol.2019.113347_bib39) 2017; 185
Horton (10.1016/j.envpol.2019.113347_bib25) 2017; 586
Zhang (10.1016/j.envpol.2019.113347_bib74) 2016; 15
Christiansen (10.1016/j.envpol.2019.113347_bib14) 2015; 211
Roy (10.1016/j.envpol.2019.113347_bib59) 2011; 45
Nizzetto (10.1016/j.envpol.2019.113347_bib50) 2016; 50
Brassard (10.1016/j.envpol.2019.113347_bib8) 2018; 327
Law (10.1016/j.envpol.2019.113347_bib35) 2014; 345
Su (10.1016/j.envpol.2019.113347_bib68) 2012; 32
Arias-Andres (10.1016/j.envpol.2019.113347_bib3) 2018; 635
(10.1016/j.envpol.2019.113347_bib65) 2007
Huerta Lwanga (10.1016/j.envpol.2019.113347_bib29) 2016; 50
Zettler (10.1016/j.envpol.2019.113347_bib73) 2013; 47
Chao (10.1016/j.envpol.2019.113347_bib11) 1984; 11
Wang (10.1016/j.envpol.2019.113347_bib70) 2018; 174
Maaß (10.1016/j.envpol.2019.113347_bib42) 2017; 225
Jiang (10.1016/j.envpol.2019.113347_bib31) 2018; 624
Cole (10.1016/j.envpol.2019.113347_bib15) 2011; 62
Li (10.1016/j.envpol.2019.113347_bib38) 2019; 53
Barberán (10.1016/j.envpol.2019.113347_bib5) 2012; 6
McArdle (10.1016/j.envpol.2019.113347_bib44) 2001; 82
Rillig (10.1016/j.envpol.2019.113347_bib55) 2018; 52
(10.1016/j.envpol.2019.113347_bib60) 2018
(10.1016/j.envpol.2019.113347_bib52) 2019
Klein (10.1016/j.envpol.2019.113347_bib34) 2015; 49
Singh (10.1016/j.envpol.2019.113347_bib63) 2015; 2
Jones (10.1016/j.envpol.2019.113347_bib32) 2010; 4
Harrison (10.1016/j.envpol.2019.113347_bib23) 2014; 14
Ng (10.1016/j.envpol.2019.113347_bib49) 2018; 627
Zhao (10.1016/j.envpol.2019.113347_bib77) 2018; 642
References_xml – volume: 47
  start-page: 7137
  year: 2013
  end-page: 7146
  ident: bib73
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
– year: 2019
  ident: bib52
  article-title: R: A Language and Environment for Statistical Computing
– volume: 76
  start-page: 327
  year: 2016
  end-page: 352
  ident: bib51
  article-title: Greenhouse gas emissions from soils—a review
  publication-title: Chemie der Erde - Geochem.
– volume: 49
  start-page: 6070
  year: 2015
  end-page: 6076
  ident: bib34
  article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany
  publication-title: Environ. Sci. Technol.
– volume: 137
  start-page: 107567
  year: 2019
  ident: bib46
  article-title: Forest-to-agriculture conversion in Amazon drives soil microbial communities and N-cycle
  publication-title: Soil Biol. Biochem.
– year: 2007
  ident: bib65
  article-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 7
  year: 2017
  ident: bib58
  article-title: Microplastic transport in soil by earthworms
  publication-title: Sci. Rep.
– volume: 90
  start-page: 203
  year: 2016
  end-page: 215
  ident: bib79
  article-title: Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review
  publication-title: Water Res.
– year: 2018
  ident: bib4
  article-title: Collateral effects of microplastic pollution on aquatic microorganisms: an ecological perspective
  publication-title: Trac. Trends Anal. Chem.
– volume: 73
  start-page: 1576
  year: 2007
  end-page: 1585
  ident: bib41
  article-title: Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities
  publication-title: Appl. Environ. Microbiol.
– volume: 45
  start-page: 9175
  year: 2011
  end-page: 9179
  ident: bib9
  article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks
  publication-title: Environ. Sci. Technol.
– volume: 13
  year: 2018
  ident: bib48
  article-title: Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya
  publication-title: PLoS One
– volume: 314
  start-page: 122
  year: 2018
  end-page: 137
  ident: bib53
  article-title: Soil structure as an indicator of soil functions: a review
  publication-title: Geoderma
– volume: 106
  start-page: 99
  year: 2017
  end-page: 108
  ident: bib69
  article-title: Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem
  publication-title: Soil Biol. Biochem.
– volume: 62
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: bib15
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
– volume: 12
  start-page: 2544
  year: 2018
  end-page: 2558
  ident: bib64
  article-title: Methanotrophy across a natural permafrost thaw environment
  publication-title: ISME J.
– volume: 4
  start-page: 633
  year: 2010
  end-page: 641
  ident: bib32
  article-title: Ecological and evolutionary factors underlying global and local assembly of denitrifier communities
  publication-title: ISME J.
– volume: 24
  start-page: 4603
  year: 2017
  end-page: 4612
  ident: bib36
  article-title: Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean–wheat system of central India
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 163
  year: 1949
  ident: bib62
  article-title: Measurement of diversity
  publication-title: Nature
– volume: 19
  start-page: 3835
  year: 2013
  end-page: 3847
  ident: bib43
  article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands
  publication-title: Glob. Chang. Biol.
– volume: 52
  start-page: 6079
  year: 2018
  end-page: 6080
  ident: bib55
  article-title: Microplastic disguising as soil carbon storage
  publication-title: Environ. Sci. Technol.
– volume: 80
  start-page: 193
  year: 1993
  end-page: 201
  ident: bib12
  article-title: Stopping rules and estimation for recapture debugging with unequal failure rates
  publication-title: Biometrika
– year: 2018
  ident: bib60
  article-title: RStudio
– volume: 137
  start-page: 107547
  year: 2019
  ident: bib22
  article-title: Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis glomerata) roots and promotes N2O production in intercropping in a greenhouse experiment
  publication-title: Soil Biol. Biochem.
– volume: 225
  start-page: 456
  year: 2017
  end-page: 459
  ident: bib42
  article-title: Transport of microplastics by two collembolan species
  publication-title: Environ. Pollut.
– volume: 11
  start-page: 265
  year: 1984
  end-page: 270
  ident: bib11
  article-title: Nonparametric estimation of the number of classes in a population
  publication-title: Scand. J. Stat.
– volume: 136
  start-page: 148
  year: 2019
  end-page: 157
  ident: bib71
  article-title: Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China
  publication-title: Appl. Soil Ecol.
– volume: 220
  start-page: 523
  year: 2017
  end-page: 531
  ident: bib28
  article-title: Incorporation of microplastics from litter into burrows of Lumbricus terrestris
  publication-title: Environ. Pollut.
– volume: 327
  start-page: 73
  year: 2018
  end-page: 84
  ident: bib8
  article-title: Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study
  publication-title: Geoderma
– volume: 82
  start-page: 290
  year: 2001
  end-page: 297
  ident: bib44
  article-title: Fitting multivariate models to community data: a comment ON distance-based redundancy analysis
  publication-title: Ecology
– volume: 650
  start-page: 2395
  year: 2019
  end-page: 2402
  ident: bib47
  article-title: Distinct community structure and microbial functions of biofilms colonizing microplastics
  publication-title: Sci. Total Environ.
– volume: 124
  start-page: 25
  year: 2019
  end-page: 37
  ident: bib75
  article-title: Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems
  publication-title: Environ. Int.
– volume: 174
  start-page: 171
  year: 2018
  end-page: 179
  ident: bib70
  article-title: Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: changes in microbial community compositions
  publication-title: Atmos. Environ.
– volume: 550
  start-page: 690
  year: 2016
  end-page: 705
  ident: bib67
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
  publication-title: Sci. Total Environ.
– volume: 32
  start-page: 6705
  year: 2012
  end-page: 6714
  ident: bib68
  article-title: Temporal and spatial variations of DOC, DON and their function group characteristics in larch plantations and possible relations with other physical-chemical properties
  publication-title: Acta Ecol. Sin.
– volume: 50
  start-page: 2685
  year: 2016
  end-page: 2691
  ident: bib29
  article-title: Microplastics in the terrestrial ecosystem: implications for
  publication-title: Environ. Sci. Technol.
– volume: 234
  start-page: 495
  year: 2018
  end-page: 502
  ident: bib18
  article-title: Microplastics increase impact of treated wastewater on freshwater microbial community
  publication-title: Environ. Pollut.
– volume: 50
  start-page: 10777
  year: 2016
  end-page: 10779
  ident: bib50
  article-title: Are agricultural soils dumps for microplastics of urban origin?
  publication-title: Environ. Sci. Technol.
– volume: 192
  start-page: 203
  year: 2017
  end-page: 214
  ident: bib24
  article-title: Application of biochar and nitrogen influences fluxes of CO 2 , CH 4 and N 2 O in a forest soil
  publication-title: J. Environ. Manag.
– volume: 211
  start-page: 48
  year: 2015
  end-page: 57
  ident: bib14
  article-title: Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography
  publication-title: Agric. For. Meteorol.
– volume: 642
  start-page: 1090
  year: 2018
  end-page: 1099
  ident: bib77
  article-title: Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone
  publication-title: Sci. Total Environ.
– volume: 61
  year: 2017
  ident: bib10
  article-title: Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 9
  year: 2018
  ident: bib72
  article-title: Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor Performance and microbial community structure
  publication-title: J. Hazard Mater.
– volume: 6
  start-page: 343
  year: 2012
  end-page: 351
  ident: bib5
  article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities
  publication-title: ISME J.
– volume: 53
  start-page: 50
  year: 2019
  end-page: 59
  ident: bib38
  article-title: Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities
  publication-title: Environ. Sci. Technol.
– volume: 635
  start-page: 1152
  year: 2018
  end-page: 1159
  ident: bib3
  article-title: Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems
  publication-title: Sci. Total Environ.
– volume: 586
  start-page: 127
  year: 2017
  end-page: 141
  ident: bib25
  article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
– volume: 101
  start-page: 133
  year: 2017
  end-page: 142
  ident: bib37
  article-title: Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota
  publication-title: Environ. Int.
– year: 2017
  ident: bib80
  article-title: Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia Dubia) Survival, Growth and Reproduction: Implications of Single and Mixture Exposures
– volume: 48
  start-page: 11863
  year: 2014
  end-page: 11871
  ident: bib45
  article-title: Microplastic is an abundant and distinct microbial habitat in an urban river
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 9656
  year: 2018
  end-page: 9665
  ident: bib16
  article-title: Impacts of microplastics on the soil biophysical environment
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 4217
  year: 2011
  end-page: 4227
  ident: bib59
  article-title: Degradable polyethylene: fantasy or reality
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 2592
  year: 2018
  end-page: 2600
  ident: bib78
  article-title: Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils
  publication-title: Chin. J. Chem. Eng.
– volume: 185
  start-page: 907
  year: 2017
  end-page: 917
  ident: bib39
  article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil
  publication-title: Chemosphere
– volume: 14
  year: 2014
  ident: bib23
  article-title: Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms
  publication-title: BMC Microbiol.
– volume: 8
  year: 2017
  ident: bib57
  article-title: Microplastic incorporation into soil in agroecosystems
  publication-title: Front. Plant Sci.
– volume: 104
  start-page: 290
  year: 2016
  end-page: 293
  ident: bib17
  article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment?
  publication-title: Mar. Pollut. Bull.
– volume: 170
  start-page: 288
  year: 2018
  end-page: 297
  ident: bib40
  article-title: Nitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, China
  publication-title: J. Clean. Prod.
– volume: 5
  start-page: 459
  year: 2012
  end-page: 462
  ident: bib19
  article-title: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen
  publication-title: Nat. Geosci.
– volume: 95
  start-page: 288
  year: 2016
  end-page: 298
  ident: bib54
  article-title: Soil N availability, rather than N deposition, controls indirect N 2 O emissions
  publication-title: Soil Biol. Biochem.
– volume: 15
  start-page: 2639
  year: 2016
  end-page: 2646
  ident: bib74
  article-title: The status and distribution characteristics of residual mulching film in Xinjiang, China
  publication-title: J. Integr. Agric.
– volume: 138
  start-page: 201
  year: 2005
  end-page: 211
  ident: bib81
  article-title: Synthetic fibers as an indicator of land application of sludge
  publication-title: Environ. Pollut.
– volume: 364
  start-page: 1985
  year: 2009
  end-page: 1998
  ident: bib6
  article-title: Accumulation and fragmentation of plastic debris in global environments
  publication-title: Philos. Trans. R. Soc. Biol. Sci.
– volume: 137
  start-page: 57
  year: 2019
  end-page: 68
  ident: bib26
  article-title: Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils
  publication-title: Appl. Soil Ecol.
– volume: 624
  start-page: 48
  year: 2018
  end-page: 54
  ident: bib31
  article-title: Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary
  publication-title: Sci. Total Environ.
– volume: 32
  start-page: 501
  year: 2012
  end-page: 529
  ident: bib33
  article-title: Polyethylene and biodegradable mulches for agricultural applications: a review
  publication-title: Agron. Sustain. Dev.
– volume: 18
  start-page: 229
  year: 2018
  end-page: 239
  ident: bib20
  article-title: New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts
  publication-title: Mol. Ecol. Resour.
– year: 2009
  ident: bib7
  article-title: Gephi: an Open Source Software for Exploring and Manipulating Networks
– volume: 254
  start-page: 112983
  year: 2019
  ident: bib27
  article-title: LDPE microplastic films alter microbial community composition and enzymatic activities in soil
  publication-title: Environ. Pollut.
– volume: 36
  start-page: 147
  year: 2017
  end-page: 154
  ident: bib1
  article-title: Microbial degradation of low density polyethylene
  publication-title: Environ. Prog. Sustain. Energy
– volume: 71
  start-page: 1851
  year: 2007
  ident: bib30
  article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 609
  start-page: 1303
  year: 2017
  end-page: 1311
  ident: bib66
  article-title: Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China
  publication-title: Sci. Total Environ.
– volume: 120
  start-page: 1479
  year: 2016
  end-page: 1492
  ident: bib13
  article-title: Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers
  publication-title: Fungal Biol.
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  ident: bib61
  article-title: A mathematical theory of Communication.pdf
  publication-title: Bell Sys. Tech. J.
– volume: 345
  start-page: 144
  year: 2014
  end-page: 145
  ident: bib35
  article-title: Microplastics in the seas
  publication-title: Science
– volume: 627
  start-page: 1377
  year: 2018
  end-page: 1388
  ident: bib49
  article-title: An overview of microplastic and nanoplastic pollution in agroecosystems
  publication-title: Sci. Total Environ.
– volume: 688
  start-page: 470
  year: 2019
  end-page: 478
  ident: bib76
  article-title: Microplastics from mulching film is a distinct habitat for bacteria in farmland soil
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 833
  year: 2016
  end-page: 845
  ident: bib21
  article-title: The ecology and Evolution of microbial competition
  publication-title: Trends Microbiol.
– volume: 2
  start-page: 2
  year: 2015
  ident: bib63
  article-title: Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosasinensis leaves
  publication-title: Bioresour. Bioprocess.
– volume: 54
  start-page: 309
  year: 2011
  end-page: 320
  ident: bib2
  article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus
  publication-title: Pedobiologia
– volume: 46
  start-page: 6453
  year: 2012
  end-page: 6454
  ident: bib56
  article-title: Microplastic in terrestrial ecosystems and the soil?
  publication-title: Environ. Sci. Technol.
– volume: 106
  start-page: 99
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib69
  article-title: Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.017
– volume: 52
  start-page: 6079
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib55
  article-title: Microplastic disguising as soil carbon storage
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02338
– volume: 36
  start-page: 147
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib1
  article-title: Microbial degradation of low density polyethylene
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.12467
– volume: 9
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib72
  article-title: Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor Performance and microbial community structure
  publication-title: J. Hazard Mater.
– volume: 137
  start-page: 107547
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib22
  article-title: Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis glomerata) roots and promotes N2O production in intercropping in a greenhouse experiment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107547
– volume: 24
  start-page: 4603
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib36
  article-title: Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean–wheat system of central India
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-016-8189-5
– volume: 163
  year: 1949
  ident: 10.1016/j.envpol.2019.113347_bib62
  article-title: Measurement of diversity
  publication-title: Nature
  doi: 10.1038/163688a0
– volume: 61
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib10
  article-title: Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/61/1/012148
– year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib52
– volume: 5
  start-page: 459
  year: 2012
  ident: 10.1016/j.envpol.2019.113347_bib19
  article-title: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1486
– volume: 327
  start-page: 73
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib8
  article-title: Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.022
– volume: 586
  start-page: 127
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib25
  article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.190
– volume: 32
  start-page: 501
  year: 2012
  ident: 10.1016/j.envpol.2019.113347_bib33
  article-title: Polyethylene and biodegradable mulches for agricultural applications: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-011-0068-3
– year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib80
– year: 2009
  ident: 10.1016/j.envpol.2019.113347_bib7
– volume: 550
  start-page: 690
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib67
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.153
– volume: 174
  start-page: 171
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib70
  article-title: Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: changes in microbial community compositions
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.11.054
– volume: 15
  start-page: 2639
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib74
  article-title: The status and distribution characteristics of residual mulching film in Xinjiang, China
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(15)61240-0
– year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib4
  article-title: Collateral effects of microplastic pollution on aquatic microorganisms: an ecological perspective
  publication-title: Trac. Trends Anal. Chem.
– volume: 211
  start-page: 48
  issue: 212
  year: 2015
  ident: 10.1016/j.envpol.2019.113347_bib14
  article-title: Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.06.004
– volume: 45
  start-page: 4217
  year: 2011
  ident: 10.1016/j.envpol.2019.113347_bib59
  article-title: Degradable polyethylene: fantasy or reality
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104042f
– volume: 27
  start-page: 623
  issue: 379–423
  year: 1948
  ident: 10.1016/j.envpol.2019.113347_bib61
  article-title: A mathematical theory of Communication.pdf
  publication-title: Bell Sys. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– volume: 101
  start-page: 133
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib37
  article-title: Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.01.018
– volume: 688
  start-page: 470
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib76
  article-title: Microplastics from mulching film is a distinct habitat for bacteria in farmland soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.108
– volume: 364
  start-page: 1985
  year: 2009
  ident: 10.1016/j.envpol.2019.113347_bib6
  article-title: Accumulation and fragmentation of plastic debris in global environments
  publication-title: Philos. Trans. R. Soc. Biol. Sci.
  doi: 10.1098/rstb.2008.0205
– volume: 137
  start-page: 57
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib26
  article-title: Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.01.010
– volume: 50
  start-page: 2685
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib29
  article-title: Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05478
– volume: 6
  start-page: 343
  year: 2012
  ident: 10.1016/j.envpol.2019.113347_bib5
  article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.119
– volume: 627
  start-page: 1377
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib49
  article-title: An overview of microplastic and nanoplastic pollution in agroecosystems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.341
– volume: 46
  start-page: 6453
  year: 2012
  ident: 10.1016/j.envpol.2019.113347_bib56
  article-title: Microplastic in terrestrial ecosystems and the soil?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302011r
– volume: 234
  start-page: 495
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib18
  article-title: Microplastics increase impact of treated wastewater on freshwater microbial community
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.070
– volume: 4
  start-page: 633
  year: 2010
  ident: 10.1016/j.envpol.2019.113347_bib32
  article-title: Ecological and evolutionary factors underlying global and local assembly of denitrifier communities
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.152
– volume: 8
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib57
  article-title: Microplastic incorporation into soil in agroecosystems
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01805
– volume: 225
  start-page: 456
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib42
  article-title: Transport of microplastics by two collembolan species
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.03.009
– volume: 71
  start-page: 1851
  year: 2007
  ident: 10.1016/j.envpol.2019.113347_bib30
  article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0202
– year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib60
– volume: 32
  start-page: 6705
  year: 2012
  ident: 10.1016/j.envpol.2019.113347_bib68
  article-title: Temporal and spatial variations of DOC, DON and their function group characteristics in larch plantations and possible relations with other physical-chemical properties
  publication-title: Acta Ecol. Sin.
  doi: 10.5846/stxb201109141347
– volume: 138
  start-page: 201
  year: 2005
  ident: 10.1016/j.envpol.2019.113347_bib81
  article-title: Synthetic fibers as an indicator of land application of sludge
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2005.04.013
– volume: 13
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib48
  article-title: Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198446
– volume: 314
  start-page: 122
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib53
  article-title: Soil structure as an indicator of soil functions: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.009
– volume: 45
  start-page: 9175
  year: 2011
  ident: 10.1016/j.envpol.2019.113347_bib9
  article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201811s
– year: 2007
  ident: 10.1016/j.envpol.2019.113347_bib65
  article-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 19
  start-page: 3835
  year: 2013
  ident: 10.1016/j.envpol.2019.113347_bib43
  article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12306
– volume: 624
  start-page: 48
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib31
  article-title: Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.105
– volume: 124
  start-page: 25
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib75
  article-title: Taxonomic relatedness and environmental pressure synergistically drive the primary succession of biofilm microbial communities in reclaimed wastewater distribution systems
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.12.040
– volume: 254
  start-page: 112983
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib27
  article-title: LDPE microplastic films alter microbial community composition and enzymatic activities in soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.112983
– volume: 220
  start-page: 523
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib28
  article-title: Incorporation of microplastics from litter into burrows of Lumbricus terrestris
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.09.096
– volume: 7
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib58
  article-title: Microplastic transport in soil by earthworms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01594-7
– volume: 73
  start-page: 1576
  year: 2007
  ident: 10.1016/j.envpol.2019.113347_bib41
  article-title: Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01996-06
– volume: 170
  start-page: 288
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib40
  article-title: Nitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.173
– volume: 136
  start-page: 148
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib71
  article-title: Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2018.12.019
– volume: 62
  start-page: 2588
  year: 2011
  ident: 10.1016/j.envpol.2019.113347_bib15
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.09.025
– volume: 52
  start-page: 9656
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib16
  article-title: Impacts of microplastics on the soil biophysical environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02212
– volume: 47
  start-page: 7137
  year: 2013
  ident: 10.1016/j.envpol.2019.113347_bib73
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401288x
– volume: 192
  start-page: 203
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib24
  article-title: Application of biochar and nitrogen influences fluxes of CO 2 , CH 4 and N 2 O in a forest soil
  publication-title: J. Environ. Manag.
– volume: 50
  start-page: 10777
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib50
  article-title: Are agricultural soils dumps for microplastics of urban origin?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04140
– volume: 82
  start-page: 290
  year: 2001
  ident: 10.1016/j.envpol.2019.113347_bib44
  article-title: Fitting multivariate models to community data: a comment ON distance-based redundancy analysis
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
– volume: 609
  start-page: 1303
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib66
  article-title: Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.017
– volume: 137
  start-page: 107567
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib46
  article-title: Forest-to-agriculture conversion in Amazon drives soil microbial communities and N-cycle
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107567
– volume: 104
  start-page: 290
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib17
  article-title: Synthetic fibers in atmospheric fallout: a source of microplastics in the environment?
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.01.006
– volume: 345
  start-page: 144
  year: 2014
  ident: 10.1016/j.envpol.2019.113347_bib35
  article-title: Microplastics in the seas
  publication-title: Science
  doi: 10.1126/science.1254065
– volume: 12
  start-page: 2544
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib64
  article-title: Methanotrophy across a natural permafrost thaw environment
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0065-5
– volume: 14
  year: 2014
  ident: 10.1016/j.envpol.2019.113347_bib23
  article-title: Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-014-0232-4
– volume: 80
  start-page: 193
  year: 1993
  ident: 10.1016/j.envpol.2019.113347_bib12
  article-title: Stopping rules and estimation for recapture debugging with unequal failure rates
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.193
– volume: 185
  start-page: 907
  year: 2017
  ident: 10.1016/j.envpol.2019.113347_bib39
  article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.064
– volume: 49
  start-page: 6070
  year: 2015
  ident: 10.1016/j.envpol.2019.113347_bib34
  article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00492
– volume: 76
  start-page: 327
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib51
  article-title: Greenhouse gas emissions from soils—a review
  publication-title: Chemie der Erde - Geochem.
  doi: 10.1016/j.chemer.2016.04.002
– volume: 54
  start-page: 309
  year: 2011
  ident: 10.1016/j.envpol.2019.113347_bib2
  article-title: Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2011.07.005
– volume: 24
  start-page: 833
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib21
  article-title: The ecology and Evolution of microbial competition
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.06.011
– volume: 11
  start-page: 265
  year: 1984
  ident: 10.1016/j.envpol.2019.113347_bib11
  article-title: Nonparametric estimation of the number of classes in a population
  publication-title: Scand. J. Stat.
– volume: 90
  start-page: 203
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib79
  article-title: Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.12.020
– volume: 18
  start-page: 229
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib20
  article-title: New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts
  publication-title: Mol. Ecol. Resour.
  doi: 10.1111/1755-0998.12729
– volume: 53
  start-page: 50
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib38
  article-title: Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04673
– volume: 120
  start-page: 1479
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib13
  article-title: Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers
  publication-title: Fungal Biol.
  doi: 10.1016/j.funbio.2016.07.012
– volume: 635
  start-page: 1152
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib3
  article-title: Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.199
– volume: 95
  start-page: 288
  year: 2016
  ident: 10.1016/j.envpol.2019.113347_bib54
  article-title: Soil N availability, rather than N deposition, controls indirect N 2 O emissions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.01.002
– volume: 2
  start-page: 2
  year: 2015
  ident: 10.1016/j.envpol.2019.113347_bib63
  article-title: Biosurfactant, polythene, plastic, and diesel biodegradation activity of endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosasinensis leaves
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-014-0034-4
– volume: 642
  start-page: 1090
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib77
  article-title: Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.110
– volume: 48
  start-page: 11863
  year: 2014
  ident: 10.1016/j.envpol.2019.113347_bib45
  article-title: Microplastic is an abundant and distinct microbial habitat in an urban river
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503610r
– volume: 650
  start-page: 2395
  year: 2019
  ident: 10.1016/j.envpol.2019.113347_bib47
  article-title: Distinct community structure and microbial functions of biofilms colonizing microplastics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.378
– volume: 26
  start-page: 2592
  year: 2018
  ident: 10.1016/j.envpol.2019.113347_bib78
  article-title: Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2018.01.028
SSID ssj0004333
Score 2.686576
Snippet Microplastics (MPs) are characterized by small particle sizes (<5 mm) and are widely distributed in the soil environment. To date, little research has been...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113347
SubjectTerms Actinobacteria
bacterial communities
Bacterial community
biogeochemical cycles
Carbon Dioxide - analysis
Chloroflexi
dissolved organic carbon
edaphic factors
Fertilizers - analysis
fungal communities
Fungal community
Global Warming
global warming potential
greenhouse gas emissions
greenhouse gases
Greenhouse gases (GHGs)
Greenhouse Gases - analysis
methane
Methane - analysis
Microbiota - drug effects
Microplastics
Microplastics - analysis
Microplastics - toxicity
nitrates
nitrous oxide
Nitrous Oxide - analysis
particle size
Rhodomicrobium
Rhodoplanes
soil
Soil - chemistry
Soil Microbiology
soil microorganisms
Soil Pollutants - analysis
Soil Pollutants - toxicity
Terrestrial ecosystem
Title Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil
URI https://dx.doi.org/10.1016/j.envpol.2019.113347
https://www.ncbi.nlm.nih.gov/pubmed/31672352
https://www.proquest.com/docview/2311637140
https://www.proquest.com/docview/2431839095
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N44U9TKxjW8eojIR4C01qJ2keq2lTAdEXqLQ3y_HHCOqcaumQxgN_O3dx0oEETOKx1Tmy7uy7353vA-B1XmS5yqyNTGEcOihORSXa7ShWvMyLNFU6p0Lhj4tsvhTvr9KrHTjva2EorbLT_UGnt9q6-2fccXO8rqrxJ_QeEAzjZUWfHO0y6WHqXodn-u2PhzQPwcM4eSSOiLovn2tzvKz_tq7pASIpaLgJpyErfzZPf4OfrRm6fAb7HX5ks7DFA9ixfgCHM4--8809e8PajM42VD6AvV-aDQ7g6OKhpg2_0F3q5hB06GDcsNqxG8rPWyOipu7NrPbsmvJyvtR3jWXXqmE0HY7iaw1T3jAEj2EFlZ0wHWpNNves8sxRvvaq-m4Na-pq9RyWlxefz-dRN3sh0iJLNlFpU64Nz-MiLo1AmBHrxClEJ3zCXSEyg1RlVhjtYmXo-ZZzBCoCf1qOEhf8CHZ97e0JsDIphdBZNrFTI5w2U9IT2qHEhJ4mKh0C71kuddeYnOZjrGSfgfZVBkFJEpQMghpCtF21Do05HqHPe2nK3w6YRNvxyMpXvfAlMpkeVJS3yHiJ2BjhLLU8_AeNIK1ZIJIdwnE4Odv9UheCCSLg0__e2wt4OqEAQBsTOoPdze2dfYkoaVOO2mswgiezdx_mi59MtxJw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ-Q40F9IHqIHqKuifGtufZ2214fLwRyCNyLkPC22e4H1hzbCz1I8K93ptsCJiqJj21mms1Md-Y3u_MB8Dkvslxl1kamMA4DFKeiEv12FCte5kWaKp1TofDpIpufi68X6cUG7Pe1MJRW2dn-YNNba929GXfSHK-qavwNowcEw7hZMSZHv4x2eJO6U4kBbM6OjueLh_JIHibKI31EDH0FXZvmZf3tqqY7iKSg-Sac5qz82UP9DYG2nujwJWx1EJLNwipfwYb1Q9ieeQyfr-7YF9Ymdban5UN48ajf4BB2Dh7K2vAL3b5utkGHJsYNqx27ohS9FYJqauDMas8uKTXne33TWHapGkYD4uiIrWHKG4b4MXBQ5QnTodxkfccqzxylbC-rn9awpq6Wr-H88OBsfx514xciLbJkHZU25drwPC7i0qBceawTpxCg8Al3hcgMUpVZYbSLlaEbXM4Rqwh8tByVLvgODHzt7VtgZVIKobNsYqdGOG2mZCq0Q6UJPU1UOgLei1zqrjc5jchYyj4J7YcMipKkKBkUNYLonmsVenM8QZ_32pS__WMS3ccTnJ965UsUMt2pKG9R8BLhMSJa6nr4DxpBhrNAMDuCN-HPuV8vNSKYIAje_e-1fYRn87PTE3lytDh-B88ndB7QHhHtwWB9fWPfI2halx-6TfELpb0VIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+microplastics+on+greenhouse+gas+emissions+and+the+microbial+community+in+fertilized+soil&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Ren%2C+Xinwei&rft.au=Tang%2C+Jingchun&rft.au=Liu%2C+Xiaomei&rft.au=Liu%2C+Qinglong&rft.date=2020-01-01&rft.issn=0269-7491&rft.volume=256+p.113347-&rft_id=info:doi/10.1016%2Fj.envpol.2019.113347&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon