Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms
With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature...
Saved in:
Published in | Environmental pollution (1987) Vol. 233; pp. 54 - 63 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230–650 compared to 26–110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications.
[Display omitted]
•BM-biochars were synthesized combining the advantages of ball-milling and biochar technologies.•Ball milling dramatically increased the external and internal surface area of biochars.•Ball milling increased the amount of acidic surface functional groups.•Ball milling increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity.
Ball milling increased the external and internal surface area of biochars, and thus increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity. |
---|---|
AbstractList | With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230–650 compared to 26–110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. [Display omitted] •BM-biochars were synthesized combining the advantages of ball-milling and biochar technologies.•Ball milling dramatically increased the external and internal surface area of biochars.•Ball milling increased the amount of acidic surface functional groups.•Ball milling increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity. Ball milling increased the external and internal surface area of biochars, and thus increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity. With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications.With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230–650 compared to 26–110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. |
Author | Zimmerman, Andrew R. Lyu, Honghong Tang, Jingchun He, Feng Ding, Cheng Gao, Bin Huang, Hua |
Author_xml | – sequence: 1 givenname: Honghong surname: Lyu fullname: Lyu, Honghong organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China – sequence: 2 givenname: Bin orcidid: 0000-0003-3769-0191 surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States – sequence: 3 givenname: Feng surname: He fullname: He, Feng organization: College of Environment, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 4 givenname: Andrew R. orcidid: 0000-0001-5137-4916 surname: Zimmerman fullname: Zimmerman, Andrew R. organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, United States – sequence: 5 givenname: Cheng surname: Ding fullname: Ding, Cheng organization: School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China – sequence: 6 givenname: Hua surname: Huang fullname: Huang, Hua organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China – sequence: 7 givenname: Jingchun surname: Tang fullname: Tang, Jingchun email: tangjch@nankai.edu.cn organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29053998$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFN0AoSzaZ-i9O3AUSqgaoVIkNrC3Huel45NjB9kT0AXhvPE27YUFXlo6_c-17zgU688EDQu8J3hJMxNVhC36Zg9tSTNoibTFrX6EN6VpWC075GdpgKmTdcknO0UVKB4wxZ4y9QedU4oZJ2W3Qn904gsmpCmPVa-eqyTpn_X0VfJX3UM37h2RNMHuYrNGu0n6oUohztku5jGGGmC2sdlswHa-r3e-i2gl8LobQJ4iLzjb49Oi-DwtEf3pigsJ7m6b0Fr0etUvw7um8RD-_7H7cfKvvvn-9vfl8VxsuSK57g8cGBoZl38OopZBsaAZhOLARd1A2pYVru7bhQDGVnRYaOOO4LxH1I2aX6OM6t_z81xFSVpNNBpzTHsIxKVoiakQnqHgRJbLhuO0aTAr64Qk99hMMai7L6_ignlMuwPUKmBhSijAqY_NjJDlq6xTB6lSpOqi1UnWq9KSWSouZ_2N-nv-C7dNqg5LnYiGqZCx4A4ONpXA1BPv_AX8BETC_aQ |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_126755 crossref_primary_10_1016_j_scitotenv_2024_177668 crossref_primary_10_1016_j_scitotenv_2021_145676 crossref_primary_10_1016_j_jwpe_2020_101561 crossref_primary_10_1016_j_envpol_2022_120696 crossref_primary_10_1080_15226514_2024_2412820 crossref_primary_10_1016_j_dibe_2024_100469 crossref_primary_10_1007_s12088_024_01387_3 crossref_primary_10_1016_j_mtcomm_2021_102912 crossref_primary_10_1002_ps_6609 crossref_primary_10_1016_j_envpol_2022_119107 crossref_primary_10_1016_j_seppur_2024_128022 crossref_primary_10_1016_j_jece_2023_111638 crossref_primary_10_1007_s10854_019_02456_w crossref_primary_10_1007_s10854_022_08244_3 crossref_primary_10_1016_j_seppur_2024_129352 crossref_primary_10_3390_su13052641 crossref_primary_10_1021_acssuschemeng_1c01814 crossref_primary_10_1016_j_chemosphere_2020_126539 crossref_primary_10_1016_j_chemosphere_2018_11_040 crossref_primary_10_1016_j_jiec_2017_12_013 crossref_primary_10_1007_s42773_023_00252_8 crossref_primary_10_1016_j_hybadv_2024_100292 crossref_primary_10_1016_j_jhazmat_2021_125415 crossref_primary_10_1016_j_watres_2024_121486 crossref_primary_10_1007_s42773_024_00341_2 crossref_primary_10_1016_j_chemosphere_2022_136914 crossref_primary_10_1016_j_jece_2024_113418 crossref_primary_10_1016_j_chemosphere_2020_128031 crossref_primary_10_1016_j_scitotenv_2023_168548 crossref_primary_10_1016_j_coldregions_2023_104007 crossref_primary_10_1016_j_scitotenv_2019_01_005 crossref_primary_10_1016_j_seppur_2021_118518 crossref_primary_10_1016_j_jclepro_2020_122462 crossref_primary_10_1039_D0EN00486C crossref_primary_10_1016_j_jece_2023_111406 crossref_primary_10_1016_j_seppur_2024_128494 crossref_primary_10_1007_s42773_022_00152_3 crossref_primary_10_1016_j_chemosphere_2020_126529 crossref_primary_10_1016_j_chemosphere_2023_138127 crossref_primary_10_1016_j_scitotenv_2024_174956 crossref_primary_10_1016_j_scitotenv_2021_152648 crossref_primary_10_1016_j_jhazmat_2021_126611 crossref_primary_10_1039_D4DT01671H crossref_primary_10_1016_j_jhazmat_2020_123540 crossref_primary_10_1039_D3RA01123B crossref_primary_10_1080_10739149_2019_1708751 crossref_primary_10_1016_j_envpol_2019_113482 crossref_primary_10_1016_j_envres_2024_119983 crossref_primary_10_1016_j_still_2022_105495 crossref_primary_10_2320_matertrans_MT_M2019221 crossref_primary_10_1016_j_chemosphere_2020_127057 crossref_primary_10_1007_s10311_020_01167_7 crossref_primary_10_12677_AEP_2021_111004 crossref_primary_10_1016_j_envpol_2024_123860 crossref_primary_10_1016_j_seppur_2023_125051 crossref_primary_10_1016_j_cej_2021_133187 crossref_primary_10_3390_w16121639 crossref_primary_10_1016_j_biortech_2022_127407 crossref_primary_10_1016_j_scitotenv_2023_163643 crossref_primary_10_1016_j_jscs_2023_101749 crossref_primary_10_17221_522_2021_PSE crossref_primary_10_1016_j_renene_2020_12_077 crossref_primary_10_3390_w16141966 crossref_primary_10_1016_j_jece_2021_106870 crossref_primary_10_1016_j_scitotenv_2022_158810 crossref_primary_10_1134_S0965544121050182 crossref_primary_10_1016_j_psep_2023_06_063 crossref_primary_10_1016_j_polymdegradstab_2024_111002 crossref_primary_10_1016_j_jclepro_2023_137762 crossref_primary_10_1007_s40242_021_0341_1 crossref_primary_10_1007_s44246_024_00145_w crossref_primary_10_1016_j_fuproc_2021_106795 crossref_primary_10_1016_j_molliq_2022_120875 crossref_primary_10_1016_j_scitotenv_2024_174385 crossref_primary_10_1007_s41742_024_00671_w crossref_primary_10_1016_j_scitotenv_2019_01_269 crossref_primary_10_1021_acsomega_9b03787 crossref_primary_10_1007_s11356_019_04899_4 crossref_primary_10_1016_j_molliq_2024_124357 crossref_primary_10_1088_1755_1315_692_4_042098 crossref_primary_10_1016_j_chemosphere_2022_134047 crossref_primary_10_1016_j_fuel_2022_126801 crossref_primary_10_1016_j_envpol_2021_116448 crossref_primary_10_2166_wst_2022_302 crossref_primary_10_1016_j_cej_2019_123842 crossref_primary_10_1039_D0EW00619J crossref_primary_10_1016_j_apcatb_2023_123223 crossref_primary_10_1016_j_chemosphere_2021_131539 crossref_primary_10_1142_S1793292024500310 crossref_primary_10_1371_journal_pone_0218114 crossref_primary_10_1016_j_scitotenv_2022_153256 crossref_primary_10_1021_acsomega_2c02372 crossref_primary_10_1016_j_jclepro_2021_128759 crossref_primary_10_3390_foods12193646 crossref_primary_10_1002_jctb_7140 crossref_primary_10_1080_26395940_2024_2311675 crossref_primary_10_1016_j_jece_2020_104196 crossref_primary_10_1016_j_seh_2024_100095 crossref_primary_10_3390_su13073785 crossref_primary_10_1016_j_heliyon_2020_e05076 crossref_primary_10_1007_s11270_023_06339_z crossref_primary_10_1007_s42768_022_00118_y crossref_primary_10_1016_j_scitotenv_2020_137972 crossref_primary_10_1016_j_jwpe_2022_102844 crossref_primary_10_1007_s42773_021_00101_6 crossref_primary_10_1016_j_chemosphere_2021_131663 crossref_primary_10_1016_j_cej_2023_142072 crossref_primary_10_3390_w12102847 crossref_primary_10_3390_su13179932 crossref_primary_10_1016_j_arabjc_2022_103817 crossref_primary_10_1016_j_cej_2020_127468 crossref_primary_10_1016_j_jafr_2021_100191 crossref_primary_10_1016_j_apcatb_2022_121639 crossref_primary_10_1016_j_jece_2024_114264 crossref_primary_10_3390_app13137781 crossref_primary_10_3390_agronomy11040615 crossref_primary_10_1016_j_envpol_2019_113809 crossref_primary_10_1016_j_jcomc_2021_100221 crossref_primary_10_3390_catal12080817 crossref_primary_10_1007_s13762_023_04968_9 crossref_primary_10_1016_j_envres_2022_112965 crossref_primary_10_1016_j_jenvman_2017_12_041 crossref_primary_10_1016_j_cej_2022_138027 crossref_primary_10_1016_j_bej_2022_108332 crossref_primary_10_3390_su14159349 crossref_primary_10_3390_su151411474 crossref_primary_10_1016_j_scitotenv_2023_167012 crossref_primary_10_1016_j_jcis_2024_07_140 crossref_primary_10_3390_agronomy13051282 crossref_primary_10_1016_j_chemosphere_2018_11_175 crossref_primary_10_1016_j_jhazmat_2020_124676 crossref_primary_10_1016_j_jhazmat_2021_125725 crossref_primary_10_1016_j_chemosphere_2019_124842 crossref_primary_10_1016_j_molstruc_2023_136718 crossref_primary_10_1016_j_jes_2021_05_023 crossref_primary_10_1007_s11356_022_18637_w crossref_primary_10_1016_j_ecoenv_2020_111169 crossref_primary_10_1016_j_indcrop_2021_113473 crossref_primary_10_1080_26395940_2022_2115402 crossref_primary_10_1016_j_envpol_2022_118831 crossref_primary_10_1002_jemt_24616 crossref_primary_10_1016_j_cej_2024_154686 crossref_primary_10_1016_j_seppur_2024_128687 crossref_primary_10_1016_j_jclepro_2022_130575 crossref_primary_10_1007_s10311_022_01519_5 crossref_primary_10_2139_ssrn_4118103 crossref_primary_10_1016_j_scitotenv_2023_163681 crossref_primary_10_1021_acsomega_3c07804 crossref_primary_10_1016_j_indcrop_2024_118569 crossref_primary_10_1016_j_jhazmat_2021_126010 crossref_primary_10_1016_j_cej_2024_151738 crossref_primary_10_1016_j_idairyj_2021_105248 crossref_primary_10_1002_jssc_70074 crossref_primary_10_1016_j_cej_2023_147615 crossref_primary_10_1007_s11270_023_06633_w crossref_primary_10_1016_j_jece_2022_107393 crossref_primary_10_1016_j_envres_2024_119136 crossref_primary_10_12677_WPT_2019_73018 crossref_primary_10_1016_j_ecoenv_2025_117979 crossref_primary_10_1016_j_scitotenv_2021_146517 crossref_primary_10_1016_j_jhazmat_2019_121095 crossref_primary_10_1002_cjce_23728 crossref_primary_10_1016_j_jiec_2025_01_054 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1007_s11270_023_06742_6 crossref_primary_10_1016_j_scitotenv_2022_155080 crossref_primary_10_1016_j_cej_2019_02_119 crossref_primary_10_1007_s11270_025_07773_x crossref_primary_10_1016_j_jwpe_2021_102219 crossref_primary_10_1111_sum_12992 crossref_primary_10_1016_j_eti_2020_100816 crossref_primary_10_1016_j_psep_2023_11_071 crossref_primary_10_1016_j_cej_2020_124095 crossref_primary_10_1016_j_cej_2022_140120 crossref_primary_10_2166_wpt_2023_011 crossref_primary_10_3389_fsufs_2022_821397 crossref_primary_10_1007_s11356_018_3883_0 crossref_primary_10_3390_en17184674 crossref_primary_10_3390_nano13060966 crossref_primary_10_1016_j_jwpe_2024_106858 crossref_primary_10_1016_j_biortech_2018_10_065 crossref_primary_10_1021_acsestengg_1c00510 crossref_primary_10_1016_j_scitotenv_2024_177384 crossref_primary_10_1016_j_jhazmat_2023_131390 crossref_primary_10_1016_j_jwpe_2023_104397 crossref_primary_10_1016_j_scitotenv_2021_149759 crossref_primary_10_1021_acs_energyfuels_0c02786 crossref_primary_10_1039_D3RA06244A crossref_primary_10_1016_j_jclepro_2022_135803 crossref_primary_10_1021_acs_energyfuels_1c02508 crossref_primary_10_1016_j_cej_2021_132234 crossref_primary_10_1016_j_jwpe_2022_102801 crossref_primary_10_1039_D4GC04616A crossref_primary_10_1007_s13399_024_05989_1 crossref_primary_10_1080_10643389_2020_1724748 crossref_primary_10_1007_s10311_022_01424_x crossref_primary_10_3390_catal12070798 crossref_primary_10_1016_j_jece_2024_113377 crossref_primary_10_1016_j_jclepro_2024_142456 crossref_primary_10_1016_j_chemosphere_2019_125609 crossref_primary_10_3390_ma16237342 crossref_primary_10_1016_j_jenvman_2022_117049 crossref_primary_10_1016_j_jhazmat_2021_125930 crossref_primary_10_1089_ees_2020_0472 crossref_primary_10_3390_pr12040672 crossref_primary_10_1016_j_biortech_2022_127468 crossref_primary_10_1080_01932691_2024_2369881 crossref_primary_10_1016_j_envpol_2022_120184 crossref_primary_10_1016_j_jenvman_2022_115661 crossref_primary_10_1016_j_matpr_2022_05_367 crossref_primary_10_1088_2053_1591_ad3523 crossref_primary_10_1016_j_biteb_2021_100704 crossref_primary_10_1016_j_jece_2024_111876 crossref_primary_10_1016_j_scitotenv_2022_161252 crossref_primary_10_1016_j_apsusc_2021_149513 crossref_primary_10_1016_j_chemosphere_2019_125044 crossref_primary_10_1134_S1064229321020125 crossref_primary_10_3390_pr12061115 crossref_primary_10_3389_fmicb_2023_1214870 crossref_primary_10_1007_s13369_018_3265_4 crossref_primary_10_1016_j_scitotenv_2020_142150 crossref_primary_10_1016_j_aac_2024_01_002 crossref_primary_10_1016_j_jhazmat_2022_130336 crossref_primary_10_1016_j_scitotenv_2023_166881 crossref_primary_10_1016_j_jhazmat_2021_125252 crossref_primary_10_5004_dwt_2022_28766 crossref_primary_10_3390_nano12060988 crossref_primary_10_1007_s11356_019_07116_4 crossref_primary_10_1007_s11356_018_1497_1 crossref_primary_10_1016_j_indcrop_2019_111791 crossref_primary_10_1016_j_jhazmat_2021_125921 crossref_primary_10_1016_j_chemosphere_2024_141566 crossref_primary_10_1016_j_jiec_2025_03_019 crossref_primary_10_1080_03650340_2022_2047945 crossref_primary_10_1088_1757_899X_935_1_012043 crossref_primary_10_5004_dwt_2022_28294 crossref_primary_10_1016_j_jece_2023_110136 crossref_primary_10_1016_j_biortech_2021_125432 crossref_primary_10_1007_s42114_024_01181_1 crossref_primary_10_1016_j_jhazmat_2023_131491 crossref_primary_10_1016_j_chemosphere_2021_129594 crossref_primary_10_1021_acs_est_0c08531 crossref_primary_10_1016_j_envpol_2021_118596 crossref_primary_10_1016_j_cherd_2022_11_051 crossref_primary_10_1016_j_rser_2020_109944 crossref_primary_10_1016_j_cej_2019_123311 crossref_primary_10_1016_j_jhazmat_2019_121980 crossref_primary_10_1016_j_cej_2021_133904 crossref_primary_10_1016_j_biombioe_2024_107296 crossref_primary_10_1016_j_envpol_2024_123591 crossref_primary_10_3390_agronomy13061616 crossref_primary_10_1016_j_chemosphere_2020_127566 crossref_primary_10_1007_s42452_024_06354_7 crossref_primary_10_1016_j_cej_2023_146604 crossref_primary_10_1016_j_cej_2020_126997 crossref_primary_10_1016_j_rser_2021_112057 crossref_primary_10_1021_acssuschemeng_1c07661 crossref_primary_10_1016_j_cej_2019_02_165 crossref_primary_10_1016_j_asej_2021_06_002 crossref_primary_10_1016_j_scitotenv_2023_162812 crossref_primary_10_1016_j_envpol_2024_124445 crossref_primary_10_1016_j_jece_2024_114007 crossref_primary_10_1038_s44296_024_00022_y crossref_primary_10_1007_s40726_024_00336_4 crossref_primary_10_1016_j_apt_2022_103826 crossref_primary_10_1016_j_scitotenv_2019_135725 crossref_primary_10_1080_10643389_2019_1699381 crossref_primary_10_1016_j_jhazmat_2021_125908 crossref_primary_10_1016_j_indcrop_2022_115229 crossref_primary_10_1007_s42773_019_00030_5 crossref_primary_10_1016_j_seppur_2023_125584 crossref_primary_10_1007_s44246_023_00063_3 crossref_primary_10_1016_j_jenvman_2019_05_034 crossref_primary_10_1007_s11356_022_22828_w crossref_primary_10_1007_s11783_023_1664_6 crossref_primary_10_1016_j_jhazmat_2023_130817 crossref_primary_10_1007_s11356_022_21143_8 crossref_primary_10_1016_j_scitotenv_2024_172294 crossref_primary_10_1016_j_bcab_2024_103077 crossref_primary_10_1021_acsomega_3c09016 crossref_primary_10_3390_lubricants13030102 crossref_primary_10_1016_j_electacta_2022_140971 crossref_primary_10_1007_s10098_024_02863_6 crossref_primary_10_3389_fsoil_2024_1376159 crossref_primary_10_1002_ldr_4620 crossref_primary_10_1021_acs_iecr_9b06670 crossref_primary_10_1007_s10311_023_01631_0 crossref_primary_10_1016_j_ijbiomac_2025_141276 crossref_primary_10_1002_star_202400168 crossref_primary_10_1016_j_jhazmat_2021_126547 crossref_primary_10_1016_j_molliq_2022_119564 crossref_primary_10_1016_j_jhazmat_2021_127993 crossref_primary_10_1016_j_jhazmat_2021_126421 crossref_primary_10_1016_j_scitotenv_2022_155148 crossref_primary_10_3390_agronomy14112540 crossref_primary_10_1038_s41598_021_82277_2 crossref_primary_10_1016_j_fuel_2021_121443 crossref_primary_10_3390_environments12030084 crossref_primary_10_1007_s10853_022_07078_y crossref_primary_10_1016_j_jhazmat_2023_132690 crossref_primary_10_3390_ma15082824 crossref_primary_10_1016_j_biortech_2020_123613 crossref_primary_10_1016_j_jwpe_2021_101993 crossref_primary_10_22144_ctujos_2024_310 crossref_primary_10_1016_j_scitotenv_2019_03_438 crossref_primary_10_1016_j_chemosphere_2021_132581 crossref_primary_10_1016_j_jhazmat_2024_133489 crossref_primary_10_1016_j_envpol_2021_117992 crossref_primary_10_1016_j_eti_2024_103671 crossref_primary_10_1016_j_jece_2021_107115 crossref_primary_10_1007_s10653_019_00474_5 crossref_primary_10_1021_acsomega_0c04020 crossref_primary_10_3390_toxics12100717 crossref_primary_10_1007_s41918_024_00223_y crossref_primary_10_1016_j_jclepro_2022_134769 crossref_primary_10_1016_j_jhazmat_2019_121357 crossref_primary_10_1016_j_watres_2023_121064 crossref_primary_10_1007_s13762_023_05161_8 crossref_primary_10_1515_ipp_2020_4102 crossref_primary_10_1007_s40726_022_00238_3 crossref_primary_10_1016_j_envpol_2024_124594 crossref_primary_10_1016_j_jclepro_2023_137694 crossref_primary_10_1002_ejoc_202400425 crossref_primary_10_1038_s41598_024_70515_2 crossref_primary_10_1016_j_hazadv_2022_100171 crossref_primary_10_1016_j_chemosphere_2021_132691 crossref_primary_10_1016_j_watres_2018_09_038 crossref_primary_10_1016_j_cej_2024_152783 crossref_primary_10_1016_j_stress_2024_100615 crossref_primary_10_1016_j_chemosphere_2022_133820 crossref_primary_10_1007_s42773_022_00147_0 crossref_primary_10_1016_j_jiec_2023_10_048 crossref_primary_10_1080_14686996_2024_2393568 crossref_primary_10_1016_j_biortech_2018_09_078 crossref_primary_10_1016_j_susmat_2024_e00831 crossref_primary_10_1080_02757540_2023_2300780 crossref_primary_10_3390_environments9050060 crossref_primary_10_1016_j_seppur_2022_122703 crossref_primary_10_1007_s13399_021_02108_2 crossref_primary_10_1016_j_cej_2024_150925 crossref_primary_10_1007_s44246_024_00146_9 crossref_primary_10_1016_j_scitotenv_2024_173372 crossref_primary_10_1080_10643389_2018_1547621 crossref_primary_10_1016_j_scitotenv_2024_176883 crossref_primary_10_1016_j_scitotenv_2021_149623 crossref_primary_10_1007_s00128_020_02948_0 crossref_primary_10_1039_D3RA00988B crossref_primary_10_1016_j_envres_2021_111151 crossref_primary_10_1016_j_chemosphere_2019_125664 crossref_primary_10_1016_j_chemosphere_2019_125542 crossref_primary_10_1016_j_scitotenv_2020_137582 crossref_primary_10_1016_j_kjs_2023_05_006 crossref_primary_10_1021_acs_energyfuels_9b00680 crossref_primary_10_1039_D3EW00479A crossref_primary_10_1016_j_biortech_2022_126901 crossref_primary_10_1007_s11783_021_1418_2 crossref_primary_10_1186_s13065_023_01071_5 crossref_primary_10_1016_j_envpol_2019_113674 crossref_primary_10_1007_s42773_022_00201_x crossref_primary_10_3390_toxics10060316 crossref_primary_10_1016_j_cej_2023_146364 crossref_primary_10_1016_j_seppur_2022_121964 crossref_primary_10_1111_1541_4337_12580 |
Cites_doi | 10.1016/j.cej.2013.04.077 10.1016/0008-6223(94)90031-0 10.1016/j.jhazmat.2012.01.046 10.1016/j.cej.2013.09.074 10.1016/j.biortech.2015.08.132 10.1016/j.scitotenv.2005.10.001 10.1016/j.chemosphere.2016.09.093 10.1016/j.apsusc.2007.04.025 10.1016/S0304-3894(02)00237-6 10.1016/j.molliq.2015.04.033 10.1016/j.cej.2013.12.062 10.1016/j.cej.2014.03.105 10.1021/acsami.5b03131 10.1016/j.jhazmat.2004.01.002 10.1021/es803092k 10.1016/j.cej.2013.10.081 10.1016/j.coche.2016.01.003 10.1016/j.jbiosc.2013.05.035 10.1039/C6RA01644H 10.1039/C5RA02388B 10.1080/1023666X.2016.1168602 10.1016/j.biombioe.2014.03.059 10.1016/j.jhazmat.2015.07.038 10.1021/acssuschemeng.7b02170 10.1039/C6RA01895E 10.1016/j.geoderma.2011.04.021 10.1021/es405647e 10.1016/j.watres.2014.10.009 10.1016/j.chemosphere.2009.06.053 10.1016/j.biortech.2014.06.043 10.1021/ie201801d 10.1016/j.jhazmat.2010.04.027 10.1007/s11356-015-4849-0 10.1007/s00374-011-0624-7 10.1016/j.powtec.2012.09.045 10.1016/j.msec.2006.06.007 10.1016/j.chemosphere.2012.06.002 10.1080/10643389.2015.1096880 10.1016/j.jiec.2015.10.007 10.1016/j.jhazmat.2015.11.047 10.1016/j.jhazmat.2005.03.024 10.2174/15734137113096660114 10.1016/j.chemosphere.2016.01.043 10.1016/S0021-9614(03)00153-8 10.1016/j.watres.2006.02.036 10.1016/j.cej.2012.06.116 10.1016/j.jhazmat.2009.09.115 10.1021/acs.est.6b02247 10.1016/j.cej.2013.07.036 10.1016/j.biortech.2015.07.047 10.2166/wst.2017.067 10.1016/j.biortech.2014.04.048 10.1016/j.carbon.2015.04.050 10.1016/j.jhazmat.2016.01.052 10.1039/C5RA12137J 10.1016/j.powtec.2012.05.005 10.1016/S0960-8524(01)00093-1 10.1016/j.chemosphere.2013.10.071 10.1016/j.cej.2017.04.058 10.1007/s10967-015-4598-z |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2017.10.037 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
EndPage | 63 |
ExternalDocumentID | 29053998 10_1016_j_envpol_2017_10_037 S0269749117332517 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c461t-bc0f5ed309bbefa9693d5d6c4e3f08e749246178754e20298a6ae4340b017bf03 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Aug 07 14:42:29 EDT 2025 Fri Jul 11 10:36:46 EDT 2025 Wed Feb 19 02:43:19 EST 2025 Thu Apr 24 22:54:13 EDT 2025 Tue Jul 01 00:54:30 EDT 2025 Fri Feb 23 02:49:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sorption Ni(II) Engineered biochar Ball mill Carbonaceous sorbents |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-bc0f5ed309bbefa9693d5d6c4e3f08e749246178754e20298a6ae4340b017bf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5137-4916 0000-0003-3769-0191 |
PMID | 29053998 |
PQID | 1954078501 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000568626 proquest_miscellaneous_1954078501 pubmed_primary_29053998 crossref_citationtrail_10_1016_j_envpol_2017_10_037 crossref_primary_10_1016_j_envpol_2017_10_037 elsevier_sciencedirect_doi_10_1016_j_envpol_2017_10_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 2018-Feb 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ding, Hu, Zimmerman, Gao (bib9) 2014; 167 Cao, Ma, Gao, Harris (bib6) 2009; 43 Meena, Mishra, Rai, Rajagopal, Nagar (bib30) 2005; 122 Wang, Gao, Li, Creamer, He (bib53) 2017; 322 Kurniawan, Chan, Lo, Babel (bib21) 2006; 366 Lee, Lee, Park, Park, Lee, Kim, An, Yun, Lee, Choi (bib22) 2017; 166 Yao, Gao, Zhang, Inyang, Zimmerman (bib60) 2012; 89 Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bib19) 2016; 46 Sun, Tang, Gong, Zhang (bib46) 2015; 22 Tahir, Rauf (bib48) 2003; 35 Sato, Yoshihara, Moriyama, Machida, Tatsumoto (bib41) 2007; 253 Zhou, Gao, Zimmerman, Fang, Sun, Cao (bib64) 2013; 231 Cao, Yan, Xue, Wang, Wang, Huang, Zhang, Lyu (bib5) 2016 Luo, Zhang, Luo, Luo, Crittenden (bib25) 2016; 50 Ma, Li, Ren, Wang (bib29) 2014; 33 Ullah, Ali, Abd Hamid (bib51) 2014; 10 Inyang, Gao, Zimmerman, Zhang, Chen (bib18) 2014; 236 Ijagbemi, Baek, Kim (bib17) 2010; 174 Lyu, Tang, Huang, Gai, Zeng, Liber, Gong (bib28) 2017; 322 Ngomsik, Bee, Siaugue, Cabuil, Cote (bib35) 2006; 40 Akhtar, Iqbal, Iqbal (bib2) 2004; 108 Smith (bib43) 1999; 6 Zhang, Liu, Li, Xu, Zheng, Tan, Wang, Guo, Guo, Wang (bib61) 2015; 5 Fang, Gao, Zimmerman, Ro, Chen (bib12) 2016; 6 Shan, Deng, Zhao, Wang, Wang, Huang, Yu, Winglee, Wiesner (bib42) 2016; 305 Soares, Rocha, Goncalves, Figueiredo, Orfao, Pereira (bib44) 2015; 91 Chen, Zhang, Wang, Lu, Zhou, Zhang, Ren (bib7) 2014; 164 Lyu, Gao, He, Ding, Tang, Crittenden (bib26) 2017 Yao, Gao, Wu, Zhang, Yang (bib59) 2015; 7 Gao, Wang, Rondinone, He, Liang (bib13) 2015; 300 Sun, Gao, Yao, Fang, Zhang, Zhou, Chen, Yang (bib47) 2014; 240 Tang, Zhu, Kookana, Katayama (bib50) 2013; 116 Ramanujan, Purushotham, Chia (bib39) 2007; 27 Yao, Gao, Fang, Zhang, Chen, Zhou, Creamer, Sun, Yang (bib58) 2014; 242 Mockovčiaková, Orolínová, Škvarla (bib31) 2010; 180 Munkhbayar, Nine, Jeoun, Bat-Erdene, Chung, Jeong (bib33) 2013; 234 Rajkovich, Enders, Hanley, Hyland, Zimmerman, Lehmann (bib38) 2011; 48 Zhang, Gao (bib62) 2013; 226 Yao, Gao, Chen, Jiang, Inyang, Zimmerman, Cao, Yang, Xue, Li (bib57) 2012; 209 Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib1) 2014; 99 Lyu, Gong, Tang, Huang, Wang (bib27) 2016 Creamer, Gao, Zhang (bib8) 2014; 249 Hasar (bib15) 2003; 97 Peterson, Jackson, Kim, Palmquist (bib36) 2012; 228 Fan, Chang, Chen, Baek, Dai (bib11) 2016; 11 Ding, Hu, Wan, Wang, Gao (bib10) 2016; 33 Liu, Gao, Fang, Wang, Cao (bib24) 2016; 6 Najafi, Moradi, Rajabi, Asif, Tyagi, Agarwal, Gupta (bib34) 2015; 208 Wang, Wang, Liao, Yang, Liu, Tang (bib55) 2016; 308 Zhang, Hao, Wang, Chen (bib63) 2017; 75 Richard, Rajadurai, Manikandan (bib40) 2016; 21 Wang, Gao, Li, Wan, Creamer (bib54) 2015; 5 Mukherjee, Zimmerman, Harris (bib32) 2011; 163 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib37) 2016; 148 Liang, Zhao, Qian, Freeland, Feng (bib23) 2012; 51 Kadirvelu, Senthilkumar, Thamaraiselvi, Subburam (bib20) 2002; 81 Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (bib56) 2012; 200 Guo, Chen (bib14) 2014; 48 Tang, Lv, Gong, Huang (bib49) 2015; 196 Brewer, Chuang, Masiello, Gonnermann, Gao, Dugan, Driver, Panzacchi, Zygourakis, Davies (bib4) 2014; 66 Wang, Gao, Wang, Fang, Xue, Yang (bib52) 2015; 197 Boehm (bib3) 1994; 32 Spokas, Koskinen, Baker, Reicosky (bib45) 2009; 77 Hu, Ding, Zimmerman, Wang, Gao (bib16) 2015; 68 Spokas (10.1016/j.envpol.2017.10.037_bib45) 2009; 77 Peterson (10.1016/j.envpol.2017.10.037_bib36) 2012; 228 Wang (10.1016/j.envpol.2017.10.037_bib54) 2015; 5 Smith (10.1016/j.envpol.2017.10.037_bib43) 1999; 6 Cao (10.1016/j.envpol.2017.10.037_bib5) 2016 Boehm (10.1016/j.envpol.2017.10.037_bib3) 1994; 32 Zhang (10.1016/j.envpol.2017.10.037_bib61) 2015; 5 Wang (10.1016/j.envpol.2017.10.037_bib52) 2015; 197 Mockovčiaková (10.1016/j.envpol.2017.10.037_bib31) 2010; 180 Yao (10.1016/j.envpol.2017.10.037_bib60) 2012; 89 Inyang (10.1016/j.envpol.2017.10.037_bib19) 2016; 46 Liang (10.1016/j.envpol.2017.10.037_bib23) 2012; 51 Luo (10.1016/j.envpol.2017.10.037_bib25) 2016; 50 Tahir (10.1016/j.envpol.2017.10.037_bib48) 2003; 35 Lee (10.1016/j.envpol.2017.10.037_bib22) 2017; 166 Brewer (10.1016/j.envpol.2017.10.037_bib4) 2014; 66 Gao (10.1016/j.envpol.2017.10.037_bib13) 2015; 300 Ding (10.1016/j.envpol.2017.10.037_bib9) 2014; 167 Meena (10.1016/j.envpol.2017.10.037_bib30) 2005; 122 Rajkovich (10.1016/j.envpol.2017.10.037_bib38) 2011; 48 Ramanujan (10.1016/j.envpol.2017.10.037_bib39) 2007; 27 Yao (10.1016/j.envpol.2017.10.037_bib58) 2014; 242 Zhang (10.1016/j.envpol.2017.10.037_bib62) 2013; 226 Wang (10.1016/j.envpol.2017.10.037_bib53) 2017; 322 Hu (10.1016/j.envpol.2017.10.037_bib16) 2015; 68 Rajapaksha (10.1016/j.envpol.2017.10.037_bib37) 2016; 148 Tang (10.1016/j.envpol.2017.10.037_bib50) 2013; 116 Ijagbemi (10.1016/j.envpol.2017.10.037_bib17) 2010; 174 Fan (10.1016/j.envpol.2017.10.037_bib11) 2016; 11 Ma (10.1016/j.envpol.2017.10.037_bib29) 2014; 33 Najafi (10.1016/j.envpol.2017.10.037_bib34) 2015; 208 Creamer (10.1016/j.envpol.2017.10.037_bib8) 2014; 249 Zhang (10.1016/j.envpol.2017.10.037_bib63) 2017; 75 Kadirvelu (10.1016/j.envpol.2017.10.037_bib20) 2002; 81 Cao (10.1016/j.envpol.2017.10.037_bib6) 2009; 43 Munkhbayar (10.1016/j.envpol.2017.10.037_bib33) 2013; 234 Fang (10.1016/j.envpol.2017.10.037_bib12) 2016; 6 Wang (10.1016/j.envpol.2017.10.037_bib55) 2016; 308 Liu (10.1016/j.envpol.2017.10.037_bib24) 2016; 6 Lyu (10.1016/j.envpol.2017.10.037_bib27) 2016 Ahmad (10.1016/j.envpol.2017.10.037_bib1) 2014; 99 Ding (10.1016/j.envpol.2017.10.037_bib10) 2016; 33 Xue (10.1016/j.envpol.2017.10.037_bib56) 2012; 200 Mukherjee (10.1016/j.envpol.2017.10.037_bib32) 2011; 163 Richard (10.1016/j.envpol.2017.10.037_bib40) 2016; 21 Sun (10.1016/j.envpol.2017.10.037_bib47) 2014; 240 Zhou (10.1016/j.envpol.2017.10.037_bib64) 2013; 231 Shan (10.1016/j.envpol.2017.10.037_bib42) 2016; 305 Inyang (10.1016/j.envpol.2017.10.037_bib18) 2014; 236 Yao (10.1016/j.envpol.2017.10.037_bib57) 2012; 209 Sato (10.1016/j.envpol.2017.10.037_bib41) 2007; 253 Sun (10.1016/j.envpol.2017.10.037_bib46) 2015; 22 Kurniawan (10.1016/j.envpol.2017.10.037_bib21) 2006; 366 Akhtar (10.1016/j.envpol.2017.10.037_bib2) 2004; 108 Chen (10.1016/j.envpol.2017.10.037_bib7) 2014; 164 Hasar (10.1016/j.envpol.2017.10.037_bib15) 2003; 97 Soares (10.1016/j.envpol.2017.10.037_bib44) 2015; 91 Ullah (10.1016/j.envpol.2017.10.037_bib51) 2014; 10 Tang (10.1016/j.envpol.2017.10.037_bib49) 2015; 196 Lyu (10.1016/j.envpol.2017.10.037_bib28) 2017; 322 Ngomsik (10.1016/j.envpol.2017.10.037_bib35) 2006; 40 Yao (10.1016/j.envpol.2017.10.037_bib59) 2015; 7 Lyu (10.1016/j.envpol.2017.10.037_bib26) 2017 Guo (10.1016/j.envpol.2017.10.037_bib14) 2014; 48 |
References_xml | – volume: 305 start-page: 156 year: 2016 end-page: 163 ident: bib42 article-title: Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling publication-title: J. Hazard. Mater. – volume: 236 start-page: 39 year: 2014 end-page: 46 ident: bib18 article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites publication-title: Chem. Eng. J. – volume: 116 start-page: 653 year: 2013 end-page: 659 ident: bib50 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. – volume: 35 start-page: 2003 year: 2003 end-page: 2009 ident: bib48 article-title: Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution publication-title: J. Chem. Thermodyn. – volume: 231 start-page: 512 year: 2013 end-page: 518 ident: bib64 article-title: Sorption of heavy metals on chitosan-modified biochars and its biological effects publication-title: Chem. Eng. J. – volume: 7 start-page: 10634 year: 2015 end-page: 10640 ident: bib59 article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 406 year: 2016 end-page: 433 ident: bib19 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 200 start-page: 673 year: 2012 end-page: 680 ident: bib56 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chem. Eng. J. – volume: 75 start-page: 1849 year: 2017 end-page: 1861 ident: bib63 article-title: Adsorption of iron(III), cobalt(II), and nickel(II) on activated carbon derived from xanthoceras sorbifolia bunge hull: mechanisms, kinetics and influencing parameters publication-title: Water Sci. Technol. – volume: 366 start-page: 409 year: 2006 end-page: 426 ident: bib21 article-title: Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals publication-title: Sci. Total Environ. – volume: 208 start-page: 106 year: 2015 end-page: 113 ident: bib34 article-title: Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide publication-title: J. Mol. Liq. – volume: 108 start-page: 85 year: 2004 end-page: 94 ident: bib2 article-title: Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of chlorella sorokiniana: characterization studies publication-title: J. Hazard. Mater. – volume: 50 start-page: 13002 year: 2016 end-page: 13012 ident: bib25 article-title: Capturing lithium from wastewater using a fixed bed packed with 3-D MnO2 Ion cages publication-title: Environ. Sci. Technol. – year: 2017 ident: bib26 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: ACS Sustain. Chem. Eng. – start-page: 1 year: 2016 end-page: 17 ident: bib27 article-title: Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide publication-title: Environ. Sci. Pollut. Res. Int. – volume: 97 start-page: 49 year: 2003 end-page: 57 ident: bib15 article-title: Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk publication-title: J. Hazard. Mater. – volume: 6 start-page: 24314 year: 2016 end-page: 24319 ident: bib24 article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal publication-title: RSC Adv. – volume: 91 start-page: 114 year: 2015 end-page: 121 ident: bib44 article-title: Easy method to prepare N-doped carbon nanotubes by ball milling publication-title: Carbon – volume: 81 start-page: 87 year: 2002 end-page: 90 ident: bib20 article-title: Activated carbon prepared from biomass as adsorbent: elimination of Ni (II) from aqueous solution publication-title: Bioresour. Technol. – volume: 166 start-page: 203 year: 2017 end-page: 211 ident: bib22 article-title: Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam publication-title: Chemosphere – volume: 68 start-page: 206 year: 2015 end-page: 226 ident: bib16 article-title: Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis publication-title: Water Res. – volume: 77 start-page: 574 year: 2009 end-page: 581 ident: bib45 article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil publication-title: Chemosphere – volume: 48 start-page: 9103 year: 2014 end-page: 9112 ident: bib14 article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components publication-title: Environ. Sci. Technol. – volume: 300 start-page: 443 year: 2015 end-page: 450 ident: bib13 article-title: Degradation of trichloroethene with a novel ball milled Fe-C nanocomposite publication-title: J. Hazard. Mater. – volume: 6 start-page: 161 year: 1999 end-page: 182 ident: bib43 article-title: Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits publication-title: Environ. Geochem. Min. Deposits., Part B – volume: 164 start-page: 47 year: 2014 end-page: 54 ident: bib7 article-title: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge publication-title: Bioresour. Technol. – volume: 89 start-page: 1467 year: 2012 end-page: 1471 ident: bib60 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere – volume: 163 start-page: 247 year: 2011 end-page: 255 ident: bib32 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma – volume: 249 start-page: 174 year: 2014 end-page: 179 ident: bib8 article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood publication-title: Chem. Eng. J. – volume: 40 start-page: 1848 year: 2006 end-page: 1856 ident: bib35 article-title: Nickel adsorption by magnetic alginate microcapsules containing an extractant publication-title: Water Res. – volume: 122 start-page: 161 year: 2005 end-page: 170 ident: bib30 article-title: Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent publication-title: J. Hazard. Mater. – volume: 21 start-page: 462 year: 2016 end-page: 477 ident: bib40 article-title: Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites publication-title: Int. J. Polym. Anal. Charact. – volume: 308 start-page: 1095 year: 2016 end-page: 1102 ident: bib55 article-title: Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling publication-title: J. Radioanalytical Nucl. Chem. – volume: 322 start-page: 172 year: 2017 end-page: 181 ident: bib53 article-title: Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent Iron nanocomposite: batch and continuous flow tests publication-title: J. Hazard. Mater. – volume: 33 start-page: 1395 year: 2014 end-page: 1403 ident: bib29 article-title: Effects of biochar application on soil properties and greenhouse gas emission publication-title: J. Ecol. – volume: 51 start-page: 2407 year: 2012 end-page: 2418 ident: bib23 article-title: Effects of stabilizers and water chemistry on arsenate sorption by polysaccharide-stabilized magnetite nanoparticles publication-title: Ind. Eng. Chem. Res. – volume: 27 start-page: 659 year: 2007 end-page: 664 ident: bib39 article-title: Processing and characterization of activated carbon coated magnetic particles for biomedical applications publication-title: Mater. Sci. Eng. C-biomimetic Supramol. Syst. – volume: 10 start-page: 344 year: 2014 end-page: 354 ident: bib51 article-title: Structure-controlled nanomaterial synthesis using surfactant-assisted ball milling- a review publication-title: Curr. Nanosci. – volume: 197 start-page: 356 year: 2015 end-page: 362 ident: bib52 article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO publication-title: Bioresour. Technol. – volume: 228 start-page: 115 year: 2012 end-page: 120 ident: bib36 article-title: Increasing biochar surface area: optimization of ball milling parameters publication-title: Powder Technol. – volume: 240 start-page: 574 year: 2014 end-page: 578 ident: bib47 article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties publication-title: Chem. Eng. J. – volume: 32 start-page: 759 year: 1994 end-page: 769 ident: bib3 article-title: Some aspects of the surface chemistry of carbon blacks and other carbons publication-title: Carbon – volume: 5 start-page: 67971 year: 2015 end-page: 67978 ident: bib54 article-title: Sorption of arsenate onto magnetic iron-manganese (Fe-Mn) biochar composites publication-title: RSC Adv. – volume: 242 start-page: 136 year: 2014 end-page: 143 ident: bib58 article-title: Characterization and environmental applications of clay-biochar composites publication-title: Chem. Eng. J. – volume: 167 start-page: 569 year: 2014 end-page: 573 ident: bib9 article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass publication-title: Bioresour. Technol. – volume: 234 start-page: 132 year: 2013 end-page: 140 ident: bib33 article-title: Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant publication-title: Powder Technol. – volume: 22 start-page: 16640 year: 2015 end-page: 16651 ident: bib46 article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water publication-title: Environ. Sci. Pollut. Res. Int. – volume: 209 start-page: 408 year: 2012 end-page: 413 ident: bib57 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: J. Hazard. Mater. – volume: 6 start-page: 24906 year: 2016 end-page: 24911 ident: bib12 article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium publication-title: RSC Adv. – volume: 196 start-page: 355 year: 2015 end-page: 363 ident: bib49 article-title: Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal publication-title: Bioresour. Technol. – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: bib6 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 5 start-page: 46955 year: 2015 end-page: 46964 ident: bib61 article-title: Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(vi) from aqueous solution publication-title: RSC Adv. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: bib1 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 66 start-page: 176 year: 2014 end-page: 185 ident: bib4 article-title: New approaches to measuring biochar density and porosity publication-title: Biomass Bioenergy – volume: 322 start-page: 516 year: 2017 end-page: 524 ident: bib28 article-title: Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite publication-title: Chem. Eng. J. – year: 2016 ident: bib5 article-title: Effects of Solution Chemistry Conditions and Adsorbent Surface Properties on Adsorption of Ni (II) on Laiyang Bentonite – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: bib37 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 226 start-page: 286 year: 2013 end-page: 292 ident: bib62 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. – volume: 253 start-page: 8554 year: 2007 end-page: 8559 ident: bib41 article-title: Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution publication-title: Appl. Surf. Sci. – volume: 174 start-page: 746 year: 2010 end-page: 755 ident: bib17 article-title: Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni 2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies publication-title: J. Hazard. Mater. – volume: 11 start-page: 52 year: 2016 end-page: 58 ident: bib11 article-title: Functionalized graphene nanoplatelets from ball milling for energy applications publication-title: Curr. Opin. Chem. Eng. – volume: 180 start-page: 274 year: 2010 end-page: 281 ident: bib31 article-title: Enhancement of the bentonite sorption properties publication-title: J. Hazard. Mater. – volume: 48 start-page: 271 year: 2011 end-page: 284 ident: bib38 article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil publication-title: Biol. Fertil. Soils – volume: 33 start-page: 239 year: 2016 end-page: 245 ident: bib10 article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests publication-title: J. Ind. Eng. Chem. – volume: 226 start-page: 286 year: 2013 ident: 10.1016/j.envpol.2017.10.037_bib62 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.077 – volume: 32 start-page: 759 year: 1994 ident: 10.1016/j.envpol.2017.10.037_bib3 article-title: Some aspects of the surface chemistry of carbon blacks and other carbons publication-title: Carbon doi: 10.1016/0008-6223(94)90031-0 – volume: 209 start-page: 408 year: 2012 ident: 10.1016/j.envpol.2017.10.037_bib57 article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.01.046 – volume: 236 start-page: 39 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib18 article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.074 – volume: 197 start-page: 356 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib52 article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.132 – volume: 366 start-page: 409 year: 2006 ident: 10.1016/j.envpol.2017.10.037_bib21 article-title: Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.10.001 – volume: 166 start-page: 203 year: 2017 ident: 10.1016/j.envpol.2017.10.037_bib22 article-title: Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.093 – volume: 253 start-page: 8554 year: 2007 ident: 10.1016/j.envpol.2017.10.037_bib41 article-title: Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.04.025 – volume: 97 start-page: 49 year: 2003 ident: 10.1016/j.envpol.2017.10.037_bib15 article-title: Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(02)00237-6 – volume: 208 start-page: 106 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib34 article-title: Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2015.04.033 – volume: 242 start-page: 136 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib58 article-title: Characterization and environmental applications of clay-biochar composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.062 – volume: 249 start-page: 174 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib8 article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.105 – volume: 7 start-page: 10634 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib59 article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03131 – volume: 33 start-page: 1395 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib29 article-title: Effects of biochar application on soil properties and greenhouse gas emission publication-title: J. Ecol. – volume: 108 start-page: 85 year: 2004 ident: 10.1016/j.envpol.2017.10.037_bib2 article-title: Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of chlorella sorokiniana: characterization studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.01.002 – volume: 43 start-page: 3285 year: 2009 ident: 10.1016/j.envpol.2017.10.037_bib6 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 240 start-page: 574 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib47 article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.081 – volume: 11 start-page: 52 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib11 article-title: Functionalized graphene nanoplatelets from ball milling for energy applications publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2016.01.003 – volume: 6 start-page: 161 year: 1999 ident: 10.1016/j.envpol.2017.10.037_bib43 article-title: Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits publication-title: Environ. Geochem. Min. Deposits., Part B – volume: 116 start-page: 653 year: 2013 ident: 10.1016/j.envpol.2017.10.037_bib50 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2013.05.035 – volume: 6 start-page: 24906 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib12 article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium publication-title: RSC Adv. doi: 10.1039/C6RA01644H – volume: 5 start-page: 46955 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib61 article-title: Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(vi) from aqueous solution publication-title: RSC Adv. doi: 10.1039/C5RA02388B – volume: 21 start-page: 462 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib40 article-title: Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites publication-title: Int. J. Polym. Anal. Charact. doi: 10.1080/1023666X.2016.1168602 – volume: 66 start-page: 176 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib4 article-title: New approaches to measuring biochar density and porosity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.03.059 – volume: 300 start-page: 443 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib13 article-title: Degradation of trichloroethene with a novel ball milled Fe-C nanocomposite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.07.038 – year: 2017 ident: 10.1016/j.envpol.2017.10.037_bib26 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02170 – volume: 6 start-page: 24314 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib24 article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal publication-title: RSC Adv. doi: 10.1039/C6RA01895E – volume: 163 start-page: 247 year: 2011 ident: 10.1016/j.envpol.2017.10.037_bib32 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.021 – volume: 48 start-page: 9103 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib14 article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components publication-title: Environ. Sci. Technol. doi: 10.1021/es405647e – volume: 68 start-page: 206 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib16 article-title: Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis publication-title: Water Res. doi: 10.1016/j.watres.2014.10.009 – volume: 77 start-page: 574 year: 2009 ident: 10.1016/j.envpol.2017.10.037_bib45 article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.06.053 – volume: 167 start-page: 569 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib9 article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.043 – volume: 51 start-page: 2407 year: 2012 ident: 10.1016/j.envpol.2017.10.037_bib23 article-title: Effects of stabilizers and water chemistry on arsenate sorption by polysaccharide-stabilized magnetite nanoparticles publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201801d – volume: 180 start-page: 274 year: 2010 ident: 10.1016/j.envpol.2017.10.037_bib31 article-title: Enhancement of the bentonite sorption properties publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.04.027 – volume: 22 start-page: 16640 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib46 article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-015-4849-0 – volume: 48 start-page: 271 year: 2011 ident: 10.1016/j.envpol.2017.10.037_bib38 article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-011-0624-7 – volume: 234 start-page: 132 year: 2013 ident: 10.1016/j.envpol.2017.10.037_bib33 article-title: Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.09.045 – volume: 27 start-page: 659 year: 2007 ident: 10.1016/j.envpol.2017.10.037_bib39 article-title: Processing and characterization of activated carbon coated magnetic particles for biomedical applications publication-title: Mater. Sci. Eng. C-biomimetic Supramol. Syst. doi: 10.1016/j.msec.2006.06.007 – volume: 89 start-page: 1467 year: 2012 ident: 10.1016/j.envpol.2017.10.037_bib60 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.06.002 – volume: 46 start-page: 406 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib19 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2015.1096880 – volume: 33 start-page: 239 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib10 article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.10.007 – volume: 305 start-page: 156 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib42 article-title: Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.11.047 – volume: 122 start-page: 161 year: 2005 ident: 10.1016/j.envpol.2017.10.037_bib30 article-title: Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.03.024 – volume: 10 start-page: 344 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib51 article-title: Structure-controlled nanomaterial synthesis using surfactant-assisted ball milling- a review publication-title: Curr. Nanosci. doi: 10.2174/15734137113096660114 – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib37 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – volume: 35 start-page: 2003 year: 2003 ident: 10.1016/j.envpol.2017.10.037_bib48 article-title: Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution publication-title: J. Chem. Thermodyn. doi: 10.1016/S0021-9614(03)00153-8 – volume: 40 start-page: 1848 year: 2006 ident: 10.1016/j.envpol.2017.10.037_bib35 article-title: Nickel adsorption by magnetic alginate microcapsules containing an extractant publication-title: Water Res. doi: 10.1016/j.watres.2006.02.036 – volume: 200 start-page: 673 year: 2012 ident: 10.1016/j.envpol.2017.10.037_bib56 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.116 – volume: 174 start-page: 746 year: 2010 ident: 10.1016/j.envpol.2017.10.037_bib17 article-title: Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni 2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.09.115 – volume: 50 start-page: 13002 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib25 article-title: Capturing lithium from wastewater using a fixed bed packed with 3-D MnO2 Ion cages publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02247 – volume: 231 start-page: 512 year: 2013 ident: 10.1016/j.envpol.2017.10.037_bib64 article-title: Sorption of heavy metals on chitosan-modified biochars and its biological effects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.036 – volume: 196 start-page: 355 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib49 article-title: Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.07.047 – volume: 75 start-page: 1849 year: 2017 ident: 10.1016/j.envpol.2017.10.037_bib63 article-title: Adsorption of iron(III), cobalt(II), and nickel(II) on activated carbon derived from xanthoceras sorbifolia bunge hull: mechanisms, kinetics and influencing parameters publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.067 – volume: 164 start-page: 47 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib7 article-title: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.04.048 – start-page: 1 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib27 article-title: Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide publication-title: Environ. Sci. Pollut. Res. Int. – volume: 91 start-page: 114 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib44 article-title: Easy method to prepare N-doped carbon nanotubes by ball milling publication-title: Carbon doi: 10.1016/j.carbon.2015.04.050 – volume: 322 start-page: 172 year: 2017 ident: 10.1016/j.envpol.2017.10.037_bib53 article-title: Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent Iron nanocomposite: batch and continuous flow tests publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.01.052 – volume: 5 start-page: 67971 year: 2015 ident: 10.1016/j.envpol.2017.10.037_bib54 article-title: Sorption of arsenate onto magnetic iron-manganese (Fe-Mn) biochar composites publication-title: RSC Adv. doi: 10.1039/C5RA12137J – year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib5 – volume: 228 start-page: 115 year: 2012 ident: 10.1016/j.envpol.2017.10.037_bib36 article-title: Increasing biochar surface area: optimization of ball milling parameters publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.05.005 – volume: 81 start-page: 87 year: 2002 ident: 10.1016/j.envpol.2017.10.037_bib20 article-title: Activated carbon prepared from biomass as adsorbent: elimination of Ni (II) from aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00093-1 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.envpol.2017.10.037_bib1 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 322 start-page: 516 year: 2017 ident: 10.1016/j.envpol.2017.10.037_bib28 article-title: Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.058 – volume: 308 start-page: 1095 year: 2016 ident: 10.1016/j.envpol.2017.10.037_bib55 article-title: Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling publication-title: J. Radioanalytical Nucl. Chem. doi: 10.1007/s10967-015-4598-z |
SSID | ssj0004333 |
Score | 2.6600595 |
Snippet | With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 54 |
SubjectTerms | adsorption aqueous solutions bagasse Ball mill biochar Carbonaceous sorbents electrostatic interactions Engineered biochar milling moieties Ni(II) nickel Sorption surface area temperature titration zeta potential |
Title | Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms |
URI | https://dx.doi.org/10.1016/j.envpol.2017.10.037 https://www.ncbi.nlm.nih.gov/pubmed/29053998 https://www.proquest.com/docview/1954078501 https://www.proquest.com/docview/2000568626 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N4wUeEHQMythkJMSb16T-SMJbNXUqIO0FJu0tihMbFbVJ1HRIvPDG_707O-k2iWkSj7F8juXznc_nu98BfHACpVlry4WLNZfKVTyTTnBnU5WWhaqmxkf5XujFpfxypa724GzIhaGwyl73B53utXXfMulXc9Iul5NveHtAYxiFNRGCgLcog10mtMtP_9yGeUgRysljZ069h_Q5H-Nl619tQw8QcXJKMV5UDf3fx9ND5qc_hs5fwPPefmSzMMWXsGfrERzMarw7r3-zj8xHdHpX-Qie3QEbHMHh_DanDUfohbo7gL8BwbhjjWOmWK0YVSJCEtbUDM1DFpwfVFnLQwuwoq5Y12xaUpSsJWf-hlBZPfmyoTSuT2x-p3AAa8zO9dt56h--wC_9Ym0p83jZrbtXcHk-_3624H11Bl5KHW-5KSOnbCWizBjrikxnolKVLqUVLkotrjVB1aE-UNJOCei90IWVQpLnNTEuEoewXze1fQOs0LFVaWXI1pQmdmkpRCzVtExwVGwdgxiYkpc9dDlV0FjlQ4zazzywMidWUiuycgx8R9UG6I5H-icDv_N7WzDH0-URyvfD9shROunJpahtc93lhKeHRpiK4of7ULKUokQdPYbXYW_t5jvNIoIOTt_-99yO4Cl-pSHQ_B3sbzfX9hjtqK058YJyAk9mn78uLm4AKVogOw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEGwpbHkZCbilm8SPJEgcKthqS0svtFJvIU5stGg3iTZbUC_c-EX8QWacZFskqkpIvToex_LY47H9zTcAryzH1ayU8bgNlCekLbxEWO5ZE8s4z2QRaofyPVKTE_HxVJ6uwe8-FoZglZ3tb226s9ZdyagbzVE9nY4-4-kBnWFcrBHnRLzVISsPzPkPPLc17_Y_oJJfh-He-Pj9xOtSC3i5UMHS07lvpSm4n2htbJaohBeyULkw3PqxwWaJZw0nsxQmJJbyTGVGcEHXhpG2Psd2b8FtgeaC0ibs_LzAlQje5q_H3nnUvT5ez4HKTPm9rujFI4h2CFRG6df_vR9e5e-6fW_vPtzrHFa2247JA1gz5QA2d0s8rM_P2RvmIKTubn4AG5fYDQewNb4IosMWOivSbMKvljK5YZVlOpvNGKU-QhFWlQz9UdbetlAqL8dlwLKyYE21qMkys5peDxZEA-vEpxXFjb1l40uZClilV3fNjZP-6jIK0y_mhkKdp828eQgnN6KzLVgvq9I8BpapwMi40OTcCh3YOOc8EDLMI2wVS4fAe6WkeceVTik7ZmkPivuWtqpMSZVUiqocgreSqluukGvqR72-07_mfIrb2TWSL_vpkaI5oDeerDTVWZMSgR96fdIPrq5D0VmSIoPUEB61c2vV3zDxias43v7vvr2AO5PjT4fp4f7RwRO4i1_iFuX-FNaXizPzDJ24pX7uFg2DLze9Sv8ARM9bRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ball+milling+on+the+physicochemical+and+sorptive+properties+of+biochar%3A+Experimental+observations+and+governing+mechanisms&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Lyu%2C+Honghong&rft.au=Gao%2C+Bin&rft.au=He%2C+Feng&rft.au=Zimmerman%2C+Andrew+R.&rft.date=2018-02-01&rft.issn=0269-7491&rft.volume=233+p.54-63&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.envpol.2017.10.037&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |