Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms

With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 233; pp. 54 - 63
Main Authors Lyu, Honghong, Gao, Bin, He, Feng, Zimmerman, Andrew R., Ding, Cheng, Huang, Hua, Tang, Jingchun
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230–650 compared to 26–110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. [Display omitted] •BM-biochars were synthesized combining the advantages of ball-milling and biochar technologies.•Ball milling dramatically increased the external and internal surface area of biochars.•Ball milling increased the amount of acidic surface functional groups.•Ball milling increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity. Ball milling increased the external and internal surface area of biochars, and thus increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity.
AbstractList With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications.
With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230–650 compared to 26–110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. [Display omitted] •BM-biochars were synthesized combining the advantages of ball-milling and biochar technologies.•Ball milling dramatically increased the external and internal surface area of biochars.•Ball milling increased the amount of acidic surface functional groups.•Ball milling increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity. Ball milling increased the external and internal surface area of biochars, and thus increased sorption ability of biochars to Ni(II) with fast kinetics and large capacity.
With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications.With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications.
With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230–650 compared to 26–110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications.
Author Zimmerman, Andrew R.
Lyu, Honghong
Tang, Jingchun
He, Feng
Ding, Cheng
Gao, Bin
Huang, Hua
Author_xml – sequence: 1
  givenname: Honghong
  surname: Lyu
  fullname: Lyu, Honghong
  organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0003-3769-0191
  surname: Gao
  fullname: Gao, Bin
  email: bg55@ufl.edu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
– sequence: 3
  givenname: Feng
  surname: He
  fullname: He, Feng
  organization: College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 4
  givenname: Andrew R.
  orcidid: 0000-0001-5137-4916
  surname: Zimmerman
  fullname: Zimmerman, Andrew R.
  organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, United States
– sequence: 5
  givenname: Cheng
  surname: Ding
  fullname: Ding, Cheng
  organization: School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
– sequence: 6
  givenname: Hua
  surname: Huang
  fullname: Huang, Hua
  organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
– sequence: 7
  givenname: Jingchun
  surname: Tang
  fullname: Tang, Jingchun
  email: tangjch@nankai.edu.cn
  organization: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29053998$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0AoSzaZ-i9O3AUSqgaoVIkNrC3Huel45NjB9kT0AXhvPE27YUFXlo6_c-17zgU688EDQu8J3hJMxNVhC36Zg9tSTNoibTFrX6EN6VpWC075GdpgKmTdcknO0UVKB4wxZ4y9QedU4oZJ2W3Qn904gsmpCmPVa-eqyTpn_X0VfJX3UM37h2RNMHuYrNGu0n6oUohztku5jGGGmC2sdlswHa-r3e-i2gl8LobQJ4iLzjb49Oi-DwtEf3pigsJ7m6b0Fr0etUvw7um8RD-_7H7cfKvvvn-9vfl8VxsuSK57g8cGBoZl38OopZBsaAZhOLARd1A2pYVru7bhQDGVnRYaOOO4LxH1I2aX6OM6t_z81xFSVpNNBpzTHsIxKVoiakQnqHgRJbLhuO0aTAr64Qk99hMMai7L6_ignlMuwPUKmBhSijAqY_NjJDlq6xTB6lSpOqi1UnWq9KSWSouZ_2N-nv-C7dNqg5LnYiGqZCx4A4ONpXA1BPv_AX8BETC_aQ
CitedBy_id crossref_primary_10_1016_j_jhazmat_2021_126755
crossref_primary_10_1016_j_scitotenv_2024_177668
crossref_primary_10_1016_j_scitotenv_2021_145676
crossref_primary_10_1016_j_jwpe_2020_101561
crossref_primary_10_1016_j_envpol_2022_120696
crossref_primary_10_1080_15226514_2024_2412820
crossref_primary_10_1016_j_dibe_2024_100469
crossref_primary_10_1007_s12088_024_01387_3
crossref_primary_10_1016_j_mtcomm_2021_102912
crossref_primary_10_1002_ps_6609
crossref_primary_10_1016_j_envpol_2022_119107
crossref_primary_10_1016_j_seppur_2024_128022
crossref_primary_10_1016_j_jece_2023_111638
crossref_primary_10_1007_s10854_019_02456_w
crossref_primary_10_1007_s10854_022_08244_3
crossref_primary_10_1016_j_seppur_2024_129352
crossref_primary_10_3390_su13052641
crossref_primary_10_1021_acssuschemeng_1c01814
crossref_primary_10_1016_j_chemosphere_2020_126539
crossref_primary_10_1016_j_chemosphere_2018_11_040
crossref_primary_10_1016_j_jiec_2017_12_013
crossref_primary_10_1007_s42773_023_00252_8
crossref_primary_10_1016_j_hybadv_2024_100292
crossref_primary_10_1016_j_jhazmat_2021_125415
crossref_primary_10_1016_j_watres_2024_121486
crossref_primary_10_1007_s42773_024_00341_2
crossref_primary_10_1016_j_chemosphere_2022_136914
crossref_primary_10_1016_j_jece_2024_113418
crossref_primary_10_1016_j_chemosphere_2020_128031
crossref_primary_10_1016_j_scitotenv_2023_168548
crossref_primary_10_1016_j_coldregions_2023_104007
crossref_primary_10_1016_j_scitotenv_2019_01_005
crossref_primary_10_1016_j_seppur_2021_118518
crossref_primary_10_1016_j_jclepro_2020_122462
crossref_primary_10_1039_D0EN00486C
crossref_primary_10_1016_j_jece_2023_111406
crossref_primary_10_1016_j_seppur_2024_128494
crossref_primary_10_1007_s42773_022_00152_3
crossref_primary_10_1016_j_chemosphere_2020_126529
crossref_primary_10_1016_j_chemosphere_2023_138127
crossref_primary_10_1016_j_scitotenv_2024_174956
crossref_primary_10_1016_j_scitotenv_2021_152648
crossref_primary_10_1016_j_jhazmat_2021_126611
crossref_primary_10_1039_D4DT01671H
crossref_primary_10_1016_j_jhazmat_2020_123540
crossref_primary_10_1039_D3RA01123B
crossref_primary_10_1080_10739149_2019_1708751
crossref_primary_10_1016_j_envpol_2019_113482
crossref_primary_10_1016_j_envres_2024_119983
crossref_primary_10_1016_j_still_2022_105495
crossref_primary_10_2320_matertrans_MT_M2019221
crossref_primary_10_1016_j_chemosphere_2020_127057
crossref_primary_10_1007_s10311_020_01167_7
crossref_primary_10_12677_AEP_2021_111004
crossref_primary_10_1016_j_envpol_2024_123860
crossref_primary_10_1016_j_seppur_2023_125051
crossref_primary_10_1016_j_cej_2021_133187
crossref_primary_10_3390_w16121639
crossref_primary_10_1016_j_biortech_2022_127407
crossref_primary_10_1016_j_scitotenv_2023_163643
crossref_primary_10_1016_j_jscs_2023_101749
crossref_primary_10_17221_522_2021_PSE
crossref_primary_10_1016_j_renene_2020_12_077
crossref_primary_10_3390_w16141966
crossref_primary_10_1016_j_jece_2021_106870
crossref_primary_10_1016_j_scitotenv_2022_158810
crossref_primary_10_1134_S0965544121050182
crossref_primary_10_1016_j_psep_2023_06_063
crossref_primary_10_1016_j_polymdegradstab_2024_111002
crossref_primary_10_1016_j_jclepro_2023_137762
crossref_primary_10_1007_s40242_021_0341_1
crossref_primary_10_1007_s44246_024_00145_w
crossref_primary_10_1016_j_fuproc_2021_106795
crossref_primary_10_1016_j_molliq_2022_120875
crossref_primary_10_1016_j_scitotenv_2024_174385
crossref_primary_10_1007_s41742_024_00671_w
crossref_primary_10_1016_j_scitotenv_2019_01_269
crossref_primary_10_1021_acsomega_9b03787
crossref_primary_10_1007_s11356_019_04899_4
crossref_primary_10_1016_j_molliq_2024_124357
crossref_primary_10_1088_1755_1315_692_4_042098
crossref_primary_10_1016_j_chemosphere_2022_134047
crossref_primary_10_1016_j_fuel_2022_126801
crossref_primary_10_1016_j_envpol_2021_116448
crossref_primary_10_2166_wst_2022_302
crossref_primary_10_1016_j_cej_2019_123842
crossref_primary_10_1039_D0EW00619J
crossref_primary_10_1016_j_apcatb_2023_123223
crossref_primary_10_1016_j_chemosphere_2021_131539
crossref_primary_10_1142_S1793292024500310
crossref_primary_10_1371_journal_pone_0218114
crossref_primary_10_1016_j_scitotenv_2022_153256
crossref_primary_10_1021_acsomega_2c02372
crossref_primary_10_1016_j_jclepro_2021_128759
crossref_primary_10_3390_foods12193646
crossref_primary_10_1002_jctb_7140
crossref_primary_10_1080_26395940_2024_2311675
crossref_primary_10_1016_j_jece_2020_104196
crossref_primary_10_1016_j_seh_2024_100095
crossref_primary_10_3390_su13073785
crossref_primary_10_1016_j_heliyon_2020_e05076
crossref_primary_10_1007_s11270_023_06339_z
crossref_primary_10_1007_s42768_022_00118_y
crossref_primary_10_1016_j_scitotenv_2020_137972
crossref_primary_10_1016_j_jwpe_2022_102844
crossref_primary_10_1007_s42773_021_00101_6
crossref_primary_10_1016_j_chemosphere_2021_131663
crossref_primary_10_1016_j_cej_2023_142072
crossref_primary_10_3390_w12102847
crossref_primary_10_3390_su13179932
crossref_primary_10_1016_j_arabjc_2022_103817
crossref_primary_10_1016_j_cej_2020_127468
crossref_primary_10_1016_j_jafr_2021_100191
crossref_primary_10_1016_j_apcatb_2022_121639
crossref_primary_10_1016_j_jece_2024_114264
crossref_primary_10_3390_app13137781
crossref_primary_10_3390_agronomy11040615
crossref_primary_10_1016_j_envpol_2019_113809
crossref_primary_10_1016_j_jcomc_2021_100221
crossref_primary_10_3390_catal12080817
crossref_primary_10_1007_s13762_023_04968_9
crossref_primary_10_1016_j_envres_2022_112965
crossref_primary_10_1016_j_jenvman_2017_12_041
crossref_primary_10_1016_j_cej_2022_138027
crossref_primary_10_1016_j_bej_2022_108332
crossref_primary_10_3390_su14159349
crossref_primary_10_3390_su151411474
crossref_primary_10_1016_j_scitotenv_2023_167012
crossref_primary_10_1016_j_jcis_2024_07_140
crossref_primary_10_3390_agronomy13051282
crossref_primary_10_1016_j_chemosphere_2018_11_175
crossref_primary_10_1016_j_jhazmat_2020_124676
crossref_primary_10_1016_j_jhazmat_2021_125725
crossref_primary_10_1016_j_chemosphere_2019_124842
crossref_primary_10_1016_j_molstruc_2023_136718
crossref_primary_10_1016_j_jes_2021_05_023
crossref_primary_10_1007_s11356_022_18637_w
crossref_primary_10_1016_j_ecoenv_2020_111169
crossref_primary_10_1016_j_indcrop_2021_113473
crossref_primary_10_1080_26395940_2022_2115402
crossref_primary_10_1016_j_envpol_2022_118831
crossref_primary_10_1002_jemt_24616
crossref_primary_10_1016_j_cej_2024_154686
crossref_primary_10_1016_j_seppur_2024_128687
crossref_primary_10_1016_j_jclepro_2022_130575
crossref_primary_10_1007_s10311_022_01519_5
crossref_primary_10_2139_ssrn_4118103
crossref_primary_10_1016_j_scitotenv_2023_163681
crossref_primary_10_1021_acsomega_3c07804
crossref_primary_10_1016_j_indcrop_2024_118569
crossref_primary_10_1016_j_jhazmat_2021_126010
crossref_primary_10_1016_j_cej_2024_151738
crossref_primary_10_1016_j_idairyj_2021_105248
crossref_primary_10_1002_jssc_70074
crossref_primary_10_1016_j_cej_2023_147615
crossref_primary_10_1007_s11270_023_06633_w
crossref_primary_10_1016_j_jece_2022_107393
crossref_primary_10_1016_j_envres_2024_119136
crossref_primary_10_12677_WPT_2019_73018
crossref_primary_10_1016_j_ecoenv_2025_117979
crossref_primary_10_1016_j_scitotenv_2021_146517
crossref_primary_10_1016_j_jhazmat_2019_121095
crossref_primary_10_1002_cjce_23728
crossref_primary_10_1016_j_jiec_2025_01_054
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1007_s11270_023_06742_6
crossref_primary_10_1016_j_scitotenv_2022_155080
crossref_primary_10_1016_j_cej_2019_02_119
crossref_primary_10_1007_s11270_025_07773_x
crossref_primary_10_1016_j_jwpe_2021_102219
crossref_primary_10_1111_sum_12992
crossref_primary_10_1016_j_eti_2020_100816
crossref_primary_10_1016_j_psep_2023_11_071
crossref_primary_10_1016_j_cej_2020_124095
crossref_primary_10_1016_j_cej_2022_140120
crossref_primary_10_2166_wpt_2023_011
crossref_primary_10_3389_fsufs_2022_821397
crossref_primary_10_1007_s11356_018_3883_0
crossref_primary_10_3390_en17184674
crossref_primary_10_3390_nano13060966
crossref_primary_10_1016_j_jwpe_2024_106858
crossref_primary_10_1016_j_biortech_2018_10_065
crossref_primary_10_1021_acsestengg_1c00510
crossref_primary_10_1016_j_scitotenv_2024_177384
crossref_primary_10_1016_j_jhazmat_2023_131390
crossref_primary_10_1016_j_jwpe_2023_104397
crossref_primary_10_1016_j_scitotenv_2021_149759
crossref_primary_10_1021_acs_energyfuels_0c02786
crossref_primary_10_1039_D3RA06244A
crossref_primary_10_1016_j_jclepro_2022_135803
crossref_primary_10_1021_acs_energyfuels_1c02508
crossref_primary_10_1016_j_cej_2021_132234
crossref_primary_10_1016_j_jwpe_2022_102801
crossref_primary_10_1039_D4GC04616A
crossref_primary_10_1007_s13399_024_05989_1
crossref_primary_10_1080_10643389_2020_1724748
crossref_primary_10_1007_s10311_022_01424_x
crossref_primary_10_3390_catal12070798
crossref_primary_10_1016_j_jece_2024_113377
crossref_primary_10_1016_j_jclepro_2024_142456
crossref_primary_10_1016_j_chemosphere_2019_125609
crossref_primary_10_3390_ma16237342
crossref_primary_10_1016_j_jenvman_2022_117049
crossref_primary_10_1016_j_jhazmat_2021_125930
crossref_primary_10_1089_ees_2020_0472
crossref_primary_10_3390_pr12040672
crossref_primary_10_1016_j_biortech_2022_127468
crossref_primary_10_1080_01932691_2024_2369881
crossref_primary_10_1016_j_envpol_2022_120184
crossref_primary_10_1016_j_jenvman_2022_115661
crossref_primary_10_1016_j_matpr_2022_05_367
crossref_primary_10_1088_2053_1591_ad3523
crossref_primary_10_1016_j_biteb_2021_100704
crossref_primary_10_1016_j_jece_2024_111876
crossref_primary_10_1016_j_scitotenv_2022_161252
crossref_primary_10_1016_j_apsusc_2021_149513
crossref_primary_10_1016_j_chemosphere_2019_125044
crossref_primary_10_1134_S1064229321020125
crossref_primary_10_3390_pr12061115
crossref_primary_10_3389_fmicb_2023_1214870
crossref_primary_10_1007_s13369_018_3265_4
crossref_primary_10_1016_j_scitotenv_2020_142150
crossref_primary_10_1016_j_aac_2024_01_002
crossref_primary_10_1016_j_jhazmat_2022_130336
crossref_primary_10_1016_j_scitotenv_2023_166881
crossref_primary_10_1016_j_jhazmat_2021_125252
crossref_primary_10_5004_dwt_2022_28766
crossref_primary_10_3390_nano12060988
crossref_primary_10_1007_s11356_019_07116_4
crossref_primary_10_1007_s11356_018_1497_1
crossref_primary_10_1016_j_indcrop_2019_111791
crossref_primary_10_1016_j_jhazmat_2021_125921
crossref_primary_10_1016_j_chemosphere_2024_141566
crossref_primary_10_1016_j_jiec_2025_03_019
crossref_primary_10_1080_03650340_2022_2047945
crossref_primary_10_1088_1757_899X_935_1_012043
crossref_primary_10_5004_dwt_2022_28294
crossref_primary_10_1016_j_jece_2023_110136
crossref_primary_10_1016_j_biortech_2021_125432
crossref_primary_10_1007_s42114_024_01181_1
crossref_primary_10_1016_j_jhazmat_2023_131491
crossref_primary_10_1016_j_chemosphere_2021_129594
crossref_primary_10_1021_acs_est_0c08531
crossref_primary_10_1016_j_envpol_2021_118596
crossref_primary_10_1016_j_cherd_2022_11_051
crossref_primary_10_1016_j_rser_2020_109944
crossref_primary_10_1016_j_cej_2019_123311
crossref_primary_10_1016_j_jhazmat_2019_121980
crossref_primary_10_1016_j_cej_2021_133904
crossref_primary_10_1016_j_biombioe_2024_107296
crossref_primary_10_1016_j_envpol_2024_123591
crossref_primary_10_3390_agronomy13061616
crossref_primary_10_1016_j_chemosphere_2020_127566
crossref_primary_10_1007_s42452_024_06354_7
crossref_primary_10_1016_j_cej_2023_146604
crossref_primary_10_1016_j_cej_2020_126997
crossref_primary_10_1016_j_rser_2021_112057
crossref_primary_10_1021_acssuschemeng_1c07661
crossref_primary_10_1016_j_cej_2019_02_165
crossref_primary_10_1016_j_asej_2021_06_002
crossref_primary_10_1016_j_scitotenv_2023_162812
crossref_primary_10_1016_j_envpol_2024_124445
crossref_primary_10_1016_j_jece_2024_114007
crossref_primary_10_1038_s44296_024_00022_y
crossref_primary_10_1007_s40726_024_00336_4
crossref_primary_10_1016_j_apt_2022_103826
crossref_primary_10_1016_j_scitotenv_2019_135725
crossref_primary_10_1080_10643389_2019_1699381
crossref_primary_10_1016_j_jhazmat_2021_125908
crossref_primary_10_1016_j_indcrop_2022_115229
crossref_primary_10_1007_s42773_019_00030_5
crossref_primary_10_1016_j_seppur_2023_125584
crossref_primary_10_1007_s44246_023_00063_3
crossref_primary_10_1016_j_jenvman_2019_05_034
crossref_primary_10_1007_s11356_022_22828_w
crossref_primary_10_1007_s11783_023_1664_6
crossref_primary_10_1016_j_jhazmat_2023_130817
crossref_primary_10_1007_s11356_022_21143_8
crossref_primary_10_1016_j_scitotenv_2024_172294
crossref_primary_10_1016_j_bcab_2024_103077
crossref_primary_10_1021_acsomega_3c09016
crossref_primary_10_3390_lubricants13030102
crossref_primary_10_1016_j_electacta_2022_140971
crossref_primary_10_1007_s10098_024_02863_6
crossref_primary_10_3389_fsoil_2024_1376159
crossref_primary_10_1002_ldr_4620
crossref_primary_10_1021_acs_iecr_9b06670
crossref_primary_10_1007_s10311_023_01631_0
crossref_primary_10_1016_j_ijbiomac_2025_141276
crossref_primary_10_1002_star_202400168
crossref_primary_10_1016_j_jhazmat_2021_126547
crossref_primary_10_1016_j_molliq_2022_119564
crossref_primary_10_1016_j_jhazmat_2021_127993
crossref_primary_10_1016_j_jhazmat_2021_126421
crossref_primary_10_1016_j_scitotenv_2022_155148
crossref_primary_10_3390_agronomy14112540
crossref_primary_10_1038_s41598_021_82277_2
crossref_primary_10_1016_j_fuel_2021_121443
crossref_primary_10_3390_environments12030084
crossref_primary_10_1007_s10853_022_07078_y
crossref_primary_10_1016_j_jhazmat_2023_132690
crossref_primary_10_3390_ma15082824
crossref_primary_10_1016_j_biortech_2020_123613
crossref_primary_10_1016_j_jwpe_2021_101993
crossref_primary_10_22144_ctujos_2024_310
crossref_primary_10_1016_j_scitotenv_2019_03_438
crossref_primary_10_1016_j_chemosphere_2021_132581
crossref_primary_10_1016_j_jhazmat_2024_133489
crossref_primary_10_1016_j_envpol_2021_117992
crossref_primary_10_1016_j_eti_2024_103671
crossref_primary_10_1016_j_jece_2021_107115
crossref_primary_10_1007_s10653_019_00474_5
crossref_primary_10_1021_acsomega_0c04020
crossref_primary_10_3390_toxics12100717
crossref_primary_10_1007_s41918_024_00223_y
crossref_primary_10_1016_j_jclepro_2022_134769
crossref_primary_10_1016_j_jhazmat_2019_121357
crossref_primary_10_1016_j_watres_2023_121064
crossref_primary_10_1007_s13762_023_05161_8
crossref_primary_10_1515_ipp_2020_4102
crossref_primary_10_1007_s40726_022_00238_3
crossref_primary_10_1016_j_envpol_2024_124594
crossref_primary_10_1016_j_jclepro_2023_137694
crossref_primary_10_1002_ejoc_202400425
crossref_primary_10_1038_s41598_024_70515_2
crossref_primary_10_1016_j_hazadv_2022_100171
crossref_primary_10_1016_j_chemosphere_2021_132691
crossref_primary_10_1016_j_watres_2018_09_038
crossref_primary_10_1016_j_cej_2024_152783
crossref_primary_10_1016_j_stress_2024_100615
crossref_primary_10_1016_j_chemosphere_2022_133820
crossref_primary_10_1007_s42773_022_00147_0
crossref_primary_10_1016_j_jiec_2023_10_048
crossref_primary_10_1080_14686996_2024_2393568
crossref_primary_10_1016_j_biortech_2018_09_078
crossref_primary_10_1016_j_susmat_2024_e00831
crossref_primary_10_1080_02757540_2023_2300780
crossref_primary_10_3390_environments9050060
crossref_primary_10_1016_j_seppur_2022_122703
crossref_primary_10_1007_s13399_021_02108_2
crossref_primary_10_1016_j_cej_2024_150925
crossref_primary_10_1007_s44246_024_00146_9
crossref_primary_10_1016_j_scitotenv_2024_173372
crossref_primary_10_1080_10643389_2018_1547621
crossref_primary_10_1016_j_scitotenv_2024_176883
crossref_primary_10_1016_j_scitotenv_2021_149623
crossref_primary_10_1007_s00128_020_02948_0
crossref_primary_10_1039_D3RA00988B
crossref_primary_10_1016_j_envres_2021_111151
crossref_primary_10_1016_j_chemosphere_2019_125664
crossref_primary_10_1016_j_chemosphere_2019_125542
crossref_primary_10_1016_j_scitotenv_2020_137582
crossref_primary_10_1016_j_kjs_2023_05_006
crossref_primary_10_1021_acs_energyfuels_9b00680
crossref_primary_10_1039_D3EW00479A
crossref_primary_10_1016_j_biortech_2022_126901
crossref_primary_10_1007_s11783_021_1418_2
crossref_primary_10_1186_s13065_023_01071_5
crossref_primary_10_1016_j_envpol_2019_113674
crossref_primary_10_1007_s42773_022_00201_x
crossref_primary_10_3390_toxics10060316
crossref_primary_10_1016_j_cej_2023_146364
crossref_primary_10_1016_j_seppur_2022_121964
crossref_primary_10_1111_1541_4337_12580
Cites_doi 10.1016/j.cej.2013.04.077
10.1016/0008-6223(94)90031-0
10.1016/j.jhazmat.2012.01.046
10.1016/j.cej.2013.09.074
10.1016/j.biortech.2015.08.132
10.1016/j.scitotenv.2005.10.001
10.1016/j.chemosphere.2016.09.093
10.1016/j.apsusc.2007.04.025
10.1016/S0304-3894(02)00237-6
10.1016/j.molliq.2015.04.033
10.1016/j.cej.2013.12.062
10.1016/j.cej.2014.03.105
10.1021/acsami.5b03131
10.1016/j.jhazmat.2004.01.002
10.1021/es803092k
10.1016/j.cej.2013.10.081
10.1016/j.coche.2016.01.003
10.1016/j.jbiosc.2013.05.035
10.1039/C6RA01644H
10.1039/C5RA02388B
10.1080/1023666X.2016.1168602
10.1016/j.biombioe.2014.03.059
10.1016/j.jhazmat.2015.07.038
10.1021/acssuschemeng.7b02170
10.1039/C6RA01895E
10.1016/j.geoderma.2011.04.021
10.1021/es405647e
10.1016/j.watres.2014.10.009
10.1016/j.chemosphere.2009.06.053
10.1016/j.biortech.2014.06.043
10.1021/ie201801d
10.1016/j.jhazmat.2010.04.027
10.1007/s11356-015-4849-0
10.1007/s00374-011-0624-7
10.1016/j.powtec.2012.09.045
10.1016/j.msec.2006.06.007
10.1016/j.chemosphere.2012.06.002
10.1080/10643389.2015.1096880
10.1016/j.jiec.2015.10.007
10.1016/j.jhazmat.2015.11.047
10.1016/j.jhazmat.2005.03.024
10.2174/15734137113096660114
10.1016/j.chemosphere.2016.01.043
10.1016/S0021-9614(03)00153-8
10.1016/j.watres.2006.02.036
10.1016/j.cej.2012.06.116
10.1016/j.jhazmat.2009.09.115
10.1021/acs.est.6b02247
10.1016/j.cej.2013.07.036
10.1016/j.biortech.2015.07.047
10.2166/wst.2017.067
10.1016/j.biortech.2014.04.048
10.1016/j.carbon.2015.04.050
10.1016/j.jhazmat.2016.01.052
10.1039/C5RA12137J
10.1016/j.powtec.2012.05.005
10.1016/S0960-8524(01)00093-1
10.1016/j.chemosphere.2013.10.071
10.1016/j.cej.2017.04.058
10.1007/s10967-015-4598-z
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2017.10.037
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
EndPage 63
ExternalDocumentID 29053998
10_1016_j_envpol_2017_10_037
S0269749117332517
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c461t-bc0f5ed309bbefa9693d5d6c4e3f08e749246178754e20298a6ae4340b017bf03
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Aug 07 14:42:29 EDT 2025
Fri Jul 11 10:36:46 EDT 2025
Wed Feb 19 02:43:19 EST 2025
Thu Apr 24 22:54:13 EDT 2025
Tue Jul 01 00:54:30 EDT 2025
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sorption
Ni(II)
Engineered biochar
Ball mill
Carbonaceous sorbents
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-bc0f5ed309bbefa9693d5d6c4e3f08e749246178754e20298a6ae4340b017bf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5137-4916
0000-0003-3769-0191
PMID 29053998
PQID 1954078501
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2000568626
proquest_miscellaneous_1954078501
pubmed_primary_29053998
crossref_citationtrail_10_1016_j_envpol_2017_10_037
crossref_primary_10_1016_j_envpol_2017_10_037
elsevier_sciencedirect_doi_10_1016_j_envpol_2017_10_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
2018-Feb
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ding, Hu, Zimmerman, Gao (bib9) 2014; 167
Cao, Ma, Gao, Harris (bib6) 2009; 43
Meena, Mishra, Rai, Rajagopal, Nagar (bib30) 2005; 122
Wang, Gao, Li, Creamer, He (bib53) 2017; 322
Kurniawan, Chan, Lo, Babel (bib21) 2006; 366
Lee, Lee, Park, Park, Lee, Kim, An, Yun, Lee, Choi (bib22) 2017; 166
Yao, Gao, Zhang, Inyang, Zimmerman (bib60) 2012; 89
Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bib19) 2016; 46
Sun, Tang, Gong, Zhang (bib46) 2015; 22
Tahir, Rauf (bib48) 2003; 35
Sato, Yoshihara, Moriyama, Machida, Tatsumoto (bib41) 2007; 253
Zhou, Gao, Zimmerman, Fang, Sun, Cao (bib64) 2013; 231
Cao, Yan, Xue, Wang, Wang, Huang, Zhang, Lyu (bib5) 2016
Luo, Zhang, Luo, Luo, Crittenden (bib25) 2016; 50
Ma, Li, Ren, Wang (bib29) 2014; 33
Ullah, Ali, Abd Hamid (bib51) 2014; 10
Inyang, Gao, Zimmerman, Zhang, Chen (bib18) 2014; 236
Ijagbemi, Baek, Kim (bib17) 2010; 174
Lyu, Tang, Huang, Gai, Zeng, Liber, Gong (bib28) 2017; 322
Ngomsik, Bee, Siaugue, Cabuil, Cote (bib35) 2006; 40
Akhtar, Iqbal, Iqbal (bib2) 2004; 108
Smith (bib43) 1999; 6
Zhang, Liu, Li, Xu, Zheng, Tan, Wang, Guo, Guo, Wang (bib61) 2015; 5
Fang, Gao, Zimmerman, Ro, Chen (bib12) 2016; 6
Shan, Deng, Zhao, Wang, Wang, Huang, Yu, Winglee, Wiesner (bib42) 2016; 305
Soares, Rocha, Goncalves, Figueiredo, Orfao, Pereira (bib44) 2015; 91
Chen, Zhang, Wang, Lu, Zhou, Zhang, Ren (bib7) 2014; 164
Lyu, Gao, He, Ding, Tang, Crittenden (bib26) 2017
Yao, Gao, Wu, Zhang, Yang (bib59) 2015; 7
Gao, Wang, Rondinone, He, Liang (bib13) 2015; 300
Sun, Gao, Yao, Fang, Zhang, Zhou, Chen, Yang (bib47) 2014; 240
Tang, Zhu, Kookana, Katayama (bib50) 2013; 116
Ramanujan, Purushotham, Chia (bib39) 2007; 27
Yao, Gao, Fang, Zhang, Chen, Zhou, Creamer, Sun, Yang (bib58) 2014; 242
Mockovčiaková, Orolínová, Škvarla (bib31) 2010; 180
Munkhbayar, Nine, Jeoun, Bat-Erdene, Chung, Jeong (bib33) 2013; 234
Rajkovich, Enders, Hanley, Hyland, Zimmerman, Lehmann (bib38) 2011; 48
Zhang, Gao (bib62) 2013; 226
Yao, Gao, Chen, Jiang, Inyang, Zimmerman, Cao, Yang, Xue, Li (bib57) 2012; 209
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib1) 2014; 99
Lyu, Gong, Tang, Huang, Wang (bib27) 2016
Creamer, Gao, Zhang (bib8) 2014; 249
Hasar (bib15) 2003; 97
Peterson, Jackson, Kim, Palmquist (bib36) 2012; 228
Fan, Chang, Chen, Baek, Dai (bib11) 2016; 11
Ding, Hu, Wan, Wang, Gao (bib10) 2016; 33
Liu, Gao, Fang, Wang, Cao (bib24) 2016; 6
Najafi, Moradi, Rajabi, Asif, Tyagi, Agarwal, Gupta (bib34) 2015; 208
Wang, Wang, Liao, Yang, Liu, Tang (bib55) 2016; 308
Zhang, Hao, Wang, Chen (bib63) 2017; 75
Richard, Rajadurai, Manikandan (bib40) 2016; 21
Wang, Gao, Li, Wan, Creamer (bib54) 2015; 5
Mukherjee, Zimmerman, Harris (bib32) 2011; 163
Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib37) 2016; 148
Liang, Zhao, Qian, Freeland, Feng (bib23) 2012; 51
Kadirvelu, Senthilkumar, Thamaraiselvi, Subburam (bib20) 2002; 81
Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (bib56) 2012; 200
Guo, Chen (bib14) 2014; 48
Tang, Lv, Gong, Huang (bib49) 2015; 196
Brewer, Chuang, Masiello, Gonnermann, Gao, Dugan, Driver, Panzacchi, Zygourakis, Davies (bib4) 2014; 66
Wang, Gao, Wang, Fang, Xue, Yang (bib52) 2015; 197
Boehm (bib3) 1994; 32
Spokas, Koskinen, Baker, Reicosky (bib45) 2009; 77
Hu, Ding, Zimmerman, Wang, Gao (bib16) 2015; 68
Spokas (10.1016/j.envpol.2017.10.037_bib45) 2009; 77
Peterson (10.1016/j.envpol.2017.10.037_bib36) 2012; 228
Wang (10.1016/j.envpol.2017.10.037_bib54) 2015; 5
Smith (10.1016/j.envpol.2017.10.037_bib43) 1999; 6
Cao (10.1016/j.envpol.2017.10.037_bib5) 2016
Boehm (10.1016/j.envpol.2017.10.037_bib3) 1994; 32
Zhang (10.1016/j.envpol.2017.10.037_bib61) 2015; 5
Wang (10.1016/j.envpol.2017.10.037_bib52) 2015; 197
Mockovčiaková (10.1016/j.envpol.2017.10.037_bib31) 2010; 180
Yao (10.1016/j.envpol.2017.10.037_bib60) 2012; 89
Inyang (10.1016/j.envpol.2017.10.037_bib19) 2016; 46
Liang (10.1016/j.envpol.2017.10.037_bib23) 2012; 51
Luo (10.1016/j.envpol.2017.10.037_bib25) 2016; 50
Tahir (10.1016/j.envpol.2017.10.037_bib48) 2003; 35
Lee (10.1016/j.envpol.2017.10.037_bib22) 2017; 166
Brewer (10.1016/j.envpol.2017.10.037_bib4) 2014; 66
Gao (10.1016/j.envpol.2017.10.037_bib13) 2015; 300
Ding (10.1016/j.envpol.2017.10.037_bib9) 2014; 167
Meena (10.1016/j.envpol.2017.10.037_bib30) 2005; 122
Rajkovich (10.1016/j.envpol.2017.10.037_bib38) 2011; 48
Ramanujan (10.1016/j.envpol.2017.10.037_bib39) 2007; 27
Yao (10.1016/j.envpol.2017.10.037_bib58) 2014; 242
Zhang (10.1016/j.envpol.2017.10.037_bib62) 2013; 226
Wang (10.1016/j.envpol.2017.10.037_bib53) 2017; 322
Hu (10.1016/j.envpol.2017.10.037_bib16) 2015; 68
Rajapaksha (10.1016/j.envpol.2017.10.037_bib37) 2016; 148
Tang (10.1016/j.envpol.2017.10.037_bib50) 2013; 116
Ijagbemi (10.1016/j.envpol.2017.10.037_bib17) 2010; 174
Fan (10.1016/j.envpol.2017.10.037_bib11) 2016; 11
Ma (10.1016/j.envpol.2017.10.037_bib29) 2014; 33
Najafi (10.1016/j.envpol.2017.10.037_bib34) 2015; 208
Creamer (10.1016/j.envpol.2017.10.037_bib8) 2014; 249
Zhang (10.1016/j.envpol.2017.10.037_bib63) 2017; 75
Kadirvelu (10.1016/j.envpol.2017.10.037_bib20) 2002; 81
Cao (10.1016/j.envpol.2017.10.037_bib6) 2009; 43
Munkhbayar (10.1016/j.envpol.2017.10.037_bib33) 2013; 234
Fang (10.1016/j.envpol.2017.10.037_bib12) 2016; 6
Wang (10.1016/j.envpol.2017.10.037_bib55) 2016; 308
Liu (10.1016/j.envpol.2017.10.037_bib24) 2016; 6
Lyu (10.1016/j.envpol.2017.10.037_bib27) 2016
Ahmad (10.1016/j.envpol.2017.10.037_bib1) 2014; 99
Ding (10.1016/j.envpol.2017.10.037_bib10) 2016; 33
Xue (10.1016/j.envpol.2017.10.037_bib56) 2012; 200
Mukherjee (10.1016/j.envpol.2017.10.037_bib32) 2011; 163
Richard (10.1016/j.envpol.2017.10.037_bib40) 2016; 21
Sun (10.1016/j.envpol.2017.10.037_bib47) 2014; 240
Zhou (10.1016/j.envpol.2017.10.037_bib64) 2013; 231
Shan (10.1016/j.envpol.2017.10.037_bib42) 2016; 305
Inyang (10.1016/j.envpol.2017.10.037_bib18) 2014; 236
Yao (10.1016/j.envpol.2017.10.037_bib57) 2012; 209
Sato (10.1016/j.envpol.2017.10.037_bib41) 2007; 253
Sun (10.1016/j.envpol.2017.10.037_bib46) 2015; 22
Kurniawan (10.1016/j.envpol.2017.10.037_bib21) 2006; 366
Akhtar (10.1016/j.envpol.2017.10.037_bib2) 2004; 108
Chen (10.1016/j.envpol.2017.10.037_bib7) 2014; 164
Hasar (10.1016/j.envpol.2017.10.037_bib15) 2003; 97
Soares (10.1016/j.envpol.2017.10.037_bib44) 2015; 91
Ullah (10.1016/j.envpol.2017.10.037_bib51) 2014; 10
Tang (10.1016/j.envpol.2017.10.037_bib49) 2015; 196
Lyu (10.1016/j.envpol.2017.10.037_bib28) 2017; 322
Ngomsik (10.1016/j.envpol.2017.10.037_bib35) 2006; 40
Yao (10.1016/j.envpol.2017.10.037_bib59) 2015; 7
Lyu (10.1016/j.envpol.2017.10.037_bib26) 2017
Guo (10.1016/j.envpol.2017.10.037_bib14) 2014; 48
References_xml – volume: 305
  start-page: 156
  year: 2016
  end-page: 163
  ident: bib42
  article-title: Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling
  publication-title: J. Hazard. Mater.
– volume: 236
  start-page: 39
  year: 2014
  end-page: 46
  ident: bib18
  article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites
  publication-title: Chem. Eng. J.
– volume: 116
  start-page: 653
  year: 2013
  end-page: 659
  ident: bib50
  article-title: Characteristics of biochar and its application in remediation of contaminated soil
  publication-title: J. Biosci. Bioeng.
– volume: 35
  start-page: 2003
  year: 2003
  end-page: 2009
  ident: bib48
  article-title: Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution
  publication-title: J. Chem. Thermodyn.
– volume: 231
  start-page: 512
  year: 2013
  end-page: 518
  ident: bib64
  article-title: Sorption of heavy metals on chitosan-modified biochars and its biological effects
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 10634
  year: 2015
  end-page: 10640
  ident: bib59
  article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 406
  year: 2016
  end-page: 433
  ident: bib19
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 200
  start-page: 673
  year: 2012
  end-page: 680
  ident: bib56
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chem. Eng. J.
– volume: 75
  start-page: 1849
  year: 2017
  end-page: 1861
  ident: bib63
  article-title: Adsorption of iron(III), cobalt(II), and nickel(II) on activated carbon derived from xanthoceras sorbifolia bunge hull: mechanisms, kinetics and influencing parameters
  publication-title: Water Sci. Technol.
– volume: 366
  start-page: 409
  year: 2006
  end-page: 426
  ident: bib21
  article-title: Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals
  publication-title: Sci. Total Environ.
– volume: 208
  start-page: 106
  year: 2015
  end-page: 113
  ident: bib34
  article-title: Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide
  publication-title: J. Mol. Liq.
– volume: 108
  start-page: 85
  year: 2004
  end-page: 94
  ident: bib2
  article-title: Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of chlorella sorokiniana: characterization studies
  publication-title: J. Hazard. Mater.
– volume: 50
  start-page: 13002
  year: 2016
  end-page: 13012
  ident: bib25
  article-title: Capturing lithium from wastewater using a fixed bed packed with 3-D MnO2 Ion cages
  publication-title: Environ. Sci. Technol.
– year: 2017
  ident: bib26
  article-title: Ball-milled carbon nanomaterials for energy and environmental applications
  publication-title: ACS Sustain. Chem. Eng.
– start-page: 1
  year: 2016
  end-page: 17
  ident: bib27
  article-title: Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 97
  start-page: 49
  year: 2003
  end-page: 57
  ident: bib15
  article-title: Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 24314
  year: 2016
  end-page: 24319
  ident: bib24
  article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal
  publication-title: RSC Adv.
– volume: 91
  start-page: 114
  year: 2015
  end-page: 121
  ident: bib44
  article-title: Easy method to prepare N-doped carbon nanotubes by ball milling
  publication-title: Carbon
– volume: 81
  start-page: 87
  year: 2002
  end-page: 90
  ident: bib20
  article-title: Activated carbon prepared from biomass as adsorbent: elimination of Ni (II) from aqueous solution
  publication-title: Bioresour. Technol.
– volume: 166
  start-page: 203
  year: 2017
  end-page: 211
  ident: bib22
  article-title: Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam
  publication-title: Chemosphere
– volume: 68
  start-page: 206
  year: 2015
  end-page: 226
  ident: bib16
  article-title: Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis
  publication-title: Water Res.
– volume: 77
  start-page: 574
  year: 2009
  end-page: 581
  ident: bib45
  article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil
  publication-title: Chemosphere
– volume: 48
  start-page: 9103
  year: 2014
  end-page: 9112
  ident: bib14
  article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components
  publication-title: Environ. Sci. Technol.
– volume: 300
  start-page: 443
  year: 2015
  end-page: 450
  ident: bib13
  article-title: Degradation of trichloroethene with a novel ball milled Fe-C nanocomposite
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 161
  year: 1999
  end-page: 182
  ident: bib43
  article-title: Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits
  publication-title: Environ. Geochem. Min. Deposits., Part B
– volume: 164
  start-page: 47
  year: 2014
  end-page: 54
  ident: bib7
  article-title: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge
  publication-title: Bioresour. Technol.
– volume: 89
  start-page: 1467
  year: 2012
  end-page: 1471
  ident: bib60
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
– volume: 163
  start-page: 247
  year: 2011
  end-page: 255
  ident: bib32
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
– volume: 249
  start-page: 174
  year: 2014
  end-page: 179
  ident: bib8
  article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood
  publication-title: Chem. Eng. J.
– volume: 40
  start-page: 1848
  year: 2006
  end-page: 1856
  ident: bib35
  article-title: Nickel adsorption by magnetic alginate microcapsules containing an extractant
  publication-title: Water Res.
– volume: 122
  start-page: 161
  year: 2005
  end-page: 170
  ident: bib30
  article-title: Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent
  publication-title: J. Hazard. Mater.
– volume: 21
  start-page: 462
  year: 2016
  end-page: 477
  ident: bib40
  article-title: Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites
  publication-title: Int. J. Polym. Anal. Charact.
– volume: 308
  start-page: 1095
  year: 2016
  end-page: 1102
  ident: bib55
  article-title: Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling
  publication-title: J. Radioanalytical Nucl. Chem.
– volume: 322
  start-page: 172
  year: 2017
  end-page: 181
  ident: bib53
  article-title: Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent Iron nanocomposite: batch and continuous flow tests
  publication-title: J. Hazard. Mater.
– volume: 33
  start-page: 1395
  year: 2014
  end-page: 1403
  ident: bib29
  article-title: Effects of biochar application on soil properties and greenhouse gas emission
  publication-title: J. Ecol.
– volume: 51
  start-page: 2407
  year: 2012
  end-page: 2418
  ident: bib23
  article-title: Effects of stabilizers and water chemistry on arsenate sorption by polysaccharide-stabilized magnetite nanoparticles
  publication-title: Ind. Eng. Chem. Res.
– volume: 27
  start-page: 659
  year: 2007
  end-page: 664
  ident: bib39
  article-title: Processing and characterization of activated carbon coated magnetic particles for biomedical applications
  publication-title: Mater. Sci. Eng. C-biomimetic Supramol. Syst.
– volume: 10
  start-page: 344
  year: 2014
  end-page: 354
  ident: bib51
  article-title: Structure-controlled nanomaterial synthesis using surfactant-assisted ball milling- a review
  publication-title: Curr. Nanosci.
– volume: 197
  start-page: 356
  year: 2015
  end-page: 362
  ident: bib52
  article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO
  publication-title: Bioresour. Technol.
– volume: 228
  start-page: 115
  year: 2012
  end-page: 120
  ident: bib36
  article-title: Increasing biochar surface area: optimization of ball milling parameters
  publication-title: Powder Technol.
– volume: 240
  start-page: 574
  year: 2014
  end-page: 578
  ident: bib47
  article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 759
  year: 1994
  end-page: 769
  ident: bib3
  article-title: Some aspects of the surface chemistry of carbon blacks and other carbons
  publication-title: Carbon
– volume: 5
  start-page: 67971
  year: 2015
  end-page: 67978
  ident: bib54
  article-title: Sorption of arsenate onto magnetic iron-manganese (Fe-Mn) biochar composites
  publication-title: RSC Adv.
– volume: 242
  start-page: 136
  year: 2014
  end-page: 143
  ident: bib58
  article-title: Characterization and environmental applications of clay-biochar composites
  publication-title: Chem. Eng. J.
– volume: 167
  start-page: 569
  year: 2014
  end-page: 573
  ident: bib9
  article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass
  publication-title: Bioresour. Technol.
– volume: 234
  start-page: 132
  year: 2013
  end-page: 140
  ident: bib33
  article-title: Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant
  publication-title: Powder Technol.
– volume: 22
  start-page: 16640
  year: 2015
  end-page: 16651
  ident: bib46
  article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 209
  start-page: 408
  year: 2012
  end-page: 413
  ident: bib57
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 24906
  year: 2016
  end-page: 24911
  ident: bib12
  article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium
  publication-title: RSC Adv.
– volume: 196
  start-page: 355
  year: 2015
  end-page: 363
  ident: bib49
  article-title: Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: bib6
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 46955
  year: 2015
  end-page: 46964
  ident: bib61
  article-title: Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(vi) from aqueous solution
  publication-title: RSC Adv.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bib1
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 66
  start-page: 176
  year: 2014
  end-page: 185
  ident: bib4
  article-title: New approaches to measuring biochar density and porosity
  publication-title: Biomass Bioenergy
– volume: 322
  start-page: 516
  year: 2017
  end-page: 524
  ident: bib28
  article-title: Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite
  publication-title: Chem. Eng. J.
– year: 2016
  ident: bib5
  article-title: Effects of Solution Chemistry Conditions and Adsorbent Surface Properties on Adsorption of Ni (II) on Laiyang Bentonite
– volume: 148
  start-page: 276
  year: 2016
  end-page: 291
  ident: bib37
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
– volume: 226
  start-page: 286
  year: 2013
  end-page: 292
  ident: bib62
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
– volume: 253
  start-page: 8554
  year: 2007
  end-page: 8559
  ident: bib41
  article-title: Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution
  publication-title: Appl. Surf. Sci.
– volume: 174
  start-page: 746
  year: 2010
  end-page: 755
  ident: bib17
  article-title: Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni 2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies
  publication-title: J. Hazard. Mater.
– volume: 11
  start-page: 52
  year: 2016
  end-page: 58
  ident: bib11
  article-title: Functionalized graphene nanoplatelets from ball milling for energy applications
  publication-title: Curr. Opin. Chem. Eng.
– volume: 180
  start-page: 274
  year: 2010
  end-page: 281
  ident: bib31
  article-title: Enhancement of the bentonite sorption properties
  publication-title: J. Hazard. Mater.
– volume: 48
  start-page: 271
  year: 2011
  end-page: 284
  ident: bib38
  article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil
  publication-title: Biol. Fertil. Soils
– volume: 33
  start-page: 239
  year: 2016
  end-page: 245
  ident: bib10
  article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests
  publication-title: J. Ind. Eng. Chem.
– volume: 226
  start-page: 286
  year: 2013
  ident: 10.1016/j.envpol.2017.10.037_bib62
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.077
– volume: 32
  start-page: 759
  year: 1994
  ident: 10.1016/j.envpol.2017.10.037_bib3
  article-title: Some aspects of the surface chemistry of carbon blacks and other carbons
  publication-title: Carbon
  doi: 10.1016/0008-6223(94)90031-0
– volume: 209
  start-page: 408
  year: 2012
  ident: 10.1016/j.envpol.2017.10.037_bib57
  article-title: Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.01.046
– volume: 236
  start-page: 39
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib18
  article-title: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.074
– volume: 197
  start-page: 356
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib52
  article-title: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.132
– volume: 366
  start-page: 409
  year: 2006
  ident: 10.1016/j.envpol.2017.10.037_bib21
  article-title: Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.10.001
– volume: 166
  start-page: 203
  year: 2017
  ident: 10.1016/j.envpol.2017.10.037_bib22
  article-title: Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.093
– volume: 253
  start-page: 8554
  year: 2007
  ident: 10.1016/j.envpol.2017.10.037_bib41
  article-title: Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.04.025
– volume: 97
  start-page: 49
  year: 2003
  ident: 10.1016/j.envpol.2017.10.037_bib15
  article-title: Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(02)00237-6
– volume: 208
  start-page: 106
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib34
  article-title: Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2015.04.033
– volume: 242
  start-page: 136
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib58
  article-title: Characterization and environmental applications of clay-biochar composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.062
– volume: 249
  start-page: 174
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib8
  article-title: Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.105
– volume: 7
  start-page: 10634
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib59
  article-title: Engineered biochar from biofuel residue: characterization and its silver removal potential
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03131
– volume: 33
  start-page: 1395
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib29
  article-title: Effects of biochar application on soil properties and greenhouse gas emission
  publication-title: J. Ecol.
– volume: 108
  start-page: 85
  year: 2004
  ident: 10.1016/j.envpol.2017.10.037_bib2
  article-title: Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of chlorella sorokiniana: characterization studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.01.002
– volume: 43
  start-page: 3285
  year: 2009
  ident: 10.1016/j.envpol.2017.10.037_bib6
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 240
  start-page: 574
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib47
  article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.081
– volume: 11
  start-page: 52
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib11
  article-title: Functionalized graphene nanoplatelets from ball milling for energy applications
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2016.01.003
– volume: 6
  start-page: 161
  year: 1999
  ident: 10.1016/j.envpol.2017.10.037_bib43
  article-title: Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits
  publication-title: Environ. Geochem. Min. Deposits., Part B
– volume: 116
  start-page: 653
  year: 2013
  ident: 10.1016/j.envpol.2017.10.037_bib50
  article-title: Characteristics of biochar and its application in remediation of contaminated soil
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2013.05.035
– volume: 6
  start-page: 24906
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib12
  article-title: Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01644H
– volume: 5
  start-page: 46955
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib61
  article-title: Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(vi) from aqueous solution
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02388B
– volume: 21
  start-page: 462
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib40
  article-title: Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites
  publication-title: Int. J. Polym. Anal. Charact.
  doi: 10.1080/1023666X.2016.1168602
– volume: 66
  start-page: 176
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib4
  article-title: New approaches to measuring biochar density and porosity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.03.059
– volume: 300
  start-page: 443
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib13
  article-title: Degradation of trichloroethene with a novel ball milled Fe-C nanocomposite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.07.038
– year: 2017
  ident: 10.1016/j.envpol.2017.10.037_bib26
  article-title: Ball-milled carbon nanomaterials for energy and environmental applications
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02170
– volume: 6
  start-page: 24314
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib24
  article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01895E
– volume: 163
  start-page: 247
  year: 2011
  ident: 10.1016/j.envpol.2017.10.037_bib32
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.021
– volume: 48
  start-page: 9103
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib14
  article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405647e
– volume: 68
  start-page: 206
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib16
  article-title: Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.009
– volume: 77
  start-page: 574
  year: 2009
  ident: 10.1016/j.envpol.2017.10.037_bib45
  article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.06.053
– volume: 167
  start-page: 569
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib9
  article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.06.043
– volume: 51
  start-page: 2407
  year: 2012
  ident: 10.1016/j.envpol.2017.10.037_bib23
  article-title: Effects of stabilizers and water chemistry on arsenate sorption by polysaccharide-stabilized magnetite nanoparticles
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201801d
– volume: 180
  start-page: 274
  year: 2010
  ident: 10.1016/j.envpol.2017.10.037_bib31
  article-title: Enhancement of the bentonite sorption properties
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.04.027
– volume: 22
  start-page: 16640
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib46
  article-title: Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-015-4849-0
– volume: 48
  start-page: 271
  year: 2011
  ident: 10.1016/j.envpol.2017.10.037_bib38
  article-title: Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-011-0624-7
– volume: 234
  start-page: 132
  year: 2013
  ident: 10.1016/j.envpol.2017.10.037_bib33
  article-title: Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.09.045
– volume: 27
  start-page: 659
  year: 2007
  ident: 10.1016/j.envpol.2017.10.037_bib39
  article-title: Processing and characterization of activated carbon coated magnetic particles for biomedical applications
  publication-title: Mater. Sci. Eng. C-biomimetic Supramol. Syst.
  doi: 10.1016/j.msec.2006.06.007
– volume: 89
  start-page: 1467
  year: 2012
  ident: 10.1016/j.envpol.2017.10.037_bib60
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.06.002
– volume: 46
  start-page: 406
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib19
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2015.1096880
– volume: 33
  start-page: 239
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib10
  article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.10.007
– volume: 305
  start-page: 156
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib42
  article-title: Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.11.047
– volume: 122
  start-page: 161
  year: 2005
  ident: 10.1016/j.envpol.2017.10.037_bib30
  article-title: Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.03.024
– volume: 10
  start-page: 344
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib51
  article-title: Structure-controlled nanomaterial synthesis using surfactant-assisted ball milling- a review
  publication-title: Curr. Nanosci.
  doi: 10.2174/15734137113096660114
– volume: 148
  start-page: 276
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib37
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.043
– volume: 35
  start-page: 2003
  year: 2003
  ident: 10.1016/j.envpol.2017.10.037_bib48
  article-title: Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/S0021-9614(03)00153-8
– volume: 40
  start-page: 1848
  year: 2006
  ident: 10.1016/j.envpol.2017.10.037_bib35
  article-title: Nickel adsorption by magnetic alginate microcapsules containing an extractant
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.02.036
– volume: 200
  start-page: 673
  year: 2012
  ident: 10.1016/j.envpol.2017.10.037_bib56
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.06.116
– volume: 174
  start-page: 746
  year: 2010
  ident: 10.1016/j.envpol.2017.10.037_bib17
  article-title: Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni 2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.09.115
– volume: 50
  start-page: 13002
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib25
  article-title: Capturing lithium from wastewater using a fixed bed packed with 3-D MnO2 Ion cages
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02247
– volume: 231
  start-page: 512
  year: 2013
  ident: 10.1016/j.envpol.2017.10.037_bib64
  article-title: Sorption of heavy metals on chitosan-modified biochars and its biological effects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.07.036
– volume: 196
  start-page: 355
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib49
  article-title: Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.07.047
– volume: 75
  start-page: 1849
  year: 2017
  ident: 10.1016/j.envpol.2017.10.037_bib63
  article-title: Adsorption of iron(III), cobalt(II), and nickel(II) on activated carbon derived from xanthoceras sorbifolia bunge hull: mechanisms, kinetics and influencing parameters
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.067
– volume: 164
  start-page: 47
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib7
  article-title: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.04.048
– start-page: 1
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib27
  article-title: Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 91
  start-page: 114
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib44
  article-title: Easy method to prepare N-doped carbon nanotubes by ball milling
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.04.050
– volume: 322
  start-page: 172
  year: 2017
  ident: 10.1016/j.envpol.2017.10.037_bib53
  article-title: Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent Iron nanocomposite: batch and continuous flow tests
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.01.052
– volume: 5
  start-page: 67971
  year: 2015
  ident: 10.1016/j.envpol.2017.10.037_bib54
  article-title: Sorption of arsenate onto magnetic iron-manganese (Fe-Mn) biochar composites
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12137J
– year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib5
– volume: 228
  start-page: 115
  year: 2012
  ident: 10.1016/j.envpol.2017.10.037_bib36
  article-title: Increasing biochar surface area: optimization of ball milling parameters
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.05.005
– volume: 81
  start-page: 87
  year: 2002
  ident: 10.1016/j.envpol.2017.10.037_bib20
  article-title: Activated carbon prepared from biomass as adsorbent: elimination of Ni (II) from aqueous solution
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00093-1
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.envpol.2017.10.037_bib1
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 322
  start-page: 516
  year: 2017
  ident: 10.1016/j.envpol.2017.10.037_bib28
  article-title: Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.058
– volume: 308
  start-page: 1095
  year: 2016
  ident: 10.1016/j.envpol.2017.10.037_bib55
  article-title: Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling
  publication-title: J. Radioanalytical Nucl. Chem.
  doi: 10.1007/s10967-015-4598-z
SSID ssj0004333
Score 2.6600595
Snippet With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms adsorption
aqueous solutions
bagasse
Ball mill
biochar
Carbonaceous sorbents
electrostatic interactions
Engineered biochar
milling
moieties
Ni(II)
nickel
Sorption
surface area
temperature
titration
zeta potential
Title Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms
URI https://dx.doi.org/10.1016/j.envpol.2017.10.037
https://www.ncbi.nlm.nih.gov/pubmed/29053998
https://www.proquest.com/docview/1954078501
https://www.proquest.com/docview/2000568626
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N4wUeEHQMythkJMSb16T-SMJbNXUqIO0FJu0tihMbFbVJ1HRIvPDG_707O-k2iWkSj7F8juXznc_nu98BfHACpVlry4WLNZfKVTyTTnBnU5WWhaqmxkf5XujFpfxypa724GzIhaGwyl73B53utXXfMulXc9Iul5NveHtAYxiFNRGCgLcog10mtMtP_9yGeUgRysljZ069h_Q5H-Nl619tQw8QcXJKMV5UDf3fx9ND5qc_hs5fwPPefmSzMMWXsGfrERzMarw7r3-zj8xHdHpX-Qie3QEbHMHh_DanDUfohbo7gL8BwbhjjWOmWK0YVSJCEtbUDM1DFpwfVFnLQwuwoq5Y12xaUpSsJWf-hlBZPfmyoTSuT2x-p3AAa8zO9dt56h--wC_9Ym0p83jZrbtXcHk-_3624H11Bl5KHW-5KSOnbCWizBjrikxnolKVLqUVLkotrjVB1aE-UNJOCei90IWVQpLnNTEuEoewXze1fQOs0LFVaWXI1pQmdmkpRCzVtExwVGwdgxiYkpc9dDlV0FjlQ4zazzywMidWUiuycgx8R9UG6I5H-icDv_N7WzDH0-URyvfD9shROunJpahtc93lhKeHRpiK4of7ULKUokQdPYbXYW_t5jvNIoIOTt_-99yO4Cl-pSHQ_B3sbzfX9hjtqK058YJyAk9mn78uLm4AKVogOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEGwpbHkZCbilm8SPJEgcKthqS0svtFJvIU5stGg3iTZbUC_c-EX8QWacZFskqkpIvToex_LY47H9zTcAryzH1ayU8bgNlCekLbxEWO5ZE8s4z2QRaofyPVKTE_HxVJ6uwe8-FoZglZ3tb226s9ZdyagbzVE9nY4-4-kBnWFcrBHnRLzVISsPzPkPPLc17_Y_oJJfh-He-Pj9xOtSC3i5UMHS07lvpSm4n2htbJaohBeyULkw3PqxwWaJZw0nsxQmJJbyTGVGcEHXhpG2Psd2b8FtgeaC0ibs_LzAlQje5q_H3nnUvT5ez4HKTPm9rujFI4h2CFRG6df_vR9e5e-6fW_vPtzrHFa2247JA1gz5QA2d0s8rM_P2RvmIKTubn4AG5fYDQewNb4IosMWOivSbMKvljK5YZVlOpvNGKU-QhFWlQz9UdbetlAqL8dlwLKyYE21qMkys5peDxZEA-vEpxXFjb1l40uZClilV3fNjZP-6jIK0y_mhkKdp828eQgnN6KzLVgvq9I8BpapwMi40OTcCh3YOOc8EDLMI2wVS4fAe6WkeceVTik7ZmkPivuWtqpMSZVUiqocgreSqluukGvqR72-07_mfIrb2TWSL_vpkaI5oDeerDTVWZMSgR96fdIPrq5D0VmSIoPUEB61c2vV3zDxias43v7vvr2AO5PjT4fp4f7RwRO4i1_iFuX-FNaXizPzDJ24pX7uFg2DLze9Sv8ARM9bRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ball+milling+on+the+physicochemical+and+sorptive+properties+of+biochar%3A+Experimental+observations+and+governing+mechanisms&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Lyu%2C+Honghong&rft.au=Gao%2C+Bin&rft.au=He%2C+Feng&rft.au=Zimmerman%2C+Andrew+R.&rft.date=2018-02-01&rft.issn=0269-7491&rft.volume=233+p.54-63&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.envpol.2017.10.037&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon