Decoding Articulation Motor Imagery Using Early Connectivity Information in the Motor Cortex: A Functional Near-Infrared Spectroscopy Study

Brain computer interface (BCI) based on speech imagery can help people with motor disorders communicate their thoughts to the outside world in a natural way. Due to being portable, non-invasive, and safe, functional near-infrared spectroscopy (fNIRS) is preferred for developing BCIs. Previous BCIs b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 506 - 518
Main Authors Guo, Zengzhi, Chen, Fei
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain computer interface (BCI) based on speech imagery can help people with motor disorders communicate their thoughts to the outside world in a natural way. Due to being portable, non-invasive, and safe, functional near-infrared spectroscopy (fNIRS) is preferred for developing BCIs. Previous BCIs based on fNIRS mainly relied on activation information, which ignored the functional connectivity between neural areas. In this study, a 4-class speech imagery BCI based on fNIRS is presented to decode simplified articulation motor imagery (only the movements of jaw and lip were retained) of different vowels. Synchronization information in the motor cortex was extracted as features. In multiclass (four classes) settings, the mean subject-dependent classification accuracies approximated or exceeded 40% in the 0-2.5 s and 0-10 s time windows, respectively. In binary class settings (the average classification accuracies of all pairwise comparisons between two vowels), the mean subject-dependent classification accuracies exceeded 70% in the 0-2.5 s and 0-10 s time windows. These results demonstrate that connectivity features can effectively differentiate different vowels even if the time window size was reduced from 10 s to 2.5 s and the decoding performance in both the time windows was almost the same. This finding suggests that speech imagery BCI based on fNIRS can be further optimized in terms of feature extraction and command generation time reduction. In addition, simplified articulation motor imagery of vowels can be distinguished, and therefore, the potential contribution of articulation motor imagery information extracted from the motor cortex should be emphasized in speech imagery BCI based on fNIRS to improve decoding performance.
AbstractList Brain computer interface (BCI) based on speech imagery can help people with motor disorders communicate their thoughts to the outside world in a natural way. Due to being portable, non-invasive, and safe, functional near-infrared spectroscopy (fNIRS) is preferred for developing BCIs. Previous BCIs based on fNIRS mainly relied on activation information, which ignored the functional connectivity between neural areas. In this study, a 4-class speech imagery BCI based on fNIRS is presented to decode simplified articulation motor imagery (only the movements of jaw and lip were retained) of different vowels. Synchronization information in the motor cortex was extracted as features. In multiclass (four classes) settings, the mean subject-dependent classification accuracies approximated or exceeded 40% in the 0-2.5 s and 0-10 s time windows, respectively. In binary class settings (the average classification accuracies of all pairwise comparisons between two vowels), the mean subject-dependent classification accuracies exceeded 70% in the 0-2.5 s and 0-10 s time windows. These results demonstrate that connectivity features can effectively differentiate different vowels even if the time window size was reduced from 10 s to 2.5 s and the decoding performance in both the time windows was almost the same. This finding suggests that speech imagery BCI based on fNIRS can be further optimized in terms of feature extraction and command generation time reduction. In addition, simplified articulation motor imagery of vowels can be distinguished, and therefore, the potential contribution of articulation motor imagery information extracted from the motor cortex should be emphasized in speech imagery BCI based on fNIRS to improve decoding performance.
Brain computer interface (BCI) based on speech imagery can help people with motor disorders communicate their thoughts to the outside world in a natural way. Due to being portable, non-invasive, and safe, functional near-infrared spectroscopy (fNIRS) is preferred for developing BCIs. Previous BCIs based on fNIRS mainly relied on activation information, which ignored the functional connectivity between neural areas. In this study, a 4-class speech imagery BCI based on fNIRS is presented to decode simplified articulation motor imagery (only the movements of jaw and lip were retained) of different vowels. Synchronization information in the motor cortex was extracted as features. In multiclass (four classes) settings, the mean subject-dependent classification accuracies approximated or exceeded 40% in the 0-2.5 s and 0-10 s time windows, respectively. In binary class settings (the average classification accuracies of all pairwise comparisons between two vowels), the mean subject-dependent classification accuracies exceeded 70% in the 0-2.5 s and 0-10 s time windows. These results demonstrate that connectivity features can effectively differentiate different vowels even if the time window size was reduced from 10 s to 2.5 s and the decoding performance in both the time windows was almost the same. This finding suggests that speech imagery BCI based on fNIRS can be further optimized in terms of feature extraction and command generation time reduction. In addition, simplified articulation motor imagery of vowels can be distinguished, and therefore, the potential contribution of articulation motor imagery information extracted from the motor cortex should be emphasized in speech imagery BCI based on fNIRS to improve decoding performance.Brain computer interface (BCI) based on speech imagery can help people with motor disorders communicate their thoughts to the outside world in a natural way. Due to being portable, non-invasive, and safe, functional near-infrared spectroscopy (fNIRS) is preferred for developing BCIs. Previous BCIs based on fNIRS mainly relied on activation information, which ignored the functional connectivity between neural areas. In this study, a 4-class speech imagery BCI based on fNIRS is presented to decode simplified articulation motor imagery (only the movements of jaw and lip were retained) of different vowels. Synchronization information in the motor cortex was extracted as features. In multiclass (four classes) settings, the mean subject-dependent classification accuracies approximated or exceeded 40% in the 0-2.5 s and 0-10 s time windows, respectively. In binary class settings (the average classification accuracies of all pairwise comparisons between two vowels), the mean subject-dependent classification accuracies exceeded 70% in the 0-2.5 s and 0-10 s time windows. These results demonstrate that connectivity features can effectively differentiate different vowels even if the time window size was reduced from 10 s to 2.5 s and the decoding performance in both the time windows was almost the same. This finding suggests that speech imagery BCI based on fNIRS can be further optimized in terms of feature extraction and command generation time reduction. In addition, simplified articulation motor imagery of vowels can be distinguished, and therefore, the potential contribution of articulation motor imagery information extracted from the motor cortex should be emphasized in speech imagery BCI based on fNIRS to improve decoding performance.
Author Chen, Fei
Guo, Zengzhi
Author_xml – sequence: 1
  givenname: Zengzhi
  orcidid: 0000-0002-0142-6981
  surname: Guo
  fullname: Guo, Zengzhi
  email: 11849552@mail.sustech.edu.cn
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Fei
  orcidid: 0000-0002-6988-492X
  surname: Chen
  fullname: Chen, Fei
  email: fchen@sustech.edu.cn
  organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015470$$D View this record in MEDLINE/PubMed
BookMark eNp9ks2O0zAUhSM0iPmBFwAJWWLDJsU_cRyzq0oHKg2DRGfWluNcF1dp3HEcRJ6Bl8ZpO7OYBfLCln2-I-vcc5mddb6DLHtL8IwQLD_d3a5_LmcUUzpjlAou-YvsgnBe5ZgSfDadWZEXjOLz7LLvtxgTUXLxKjtnAhNeCHyR_f0Cxjeu26B5iM4MrY7Od-i7jz6g1U5vIIzovp8ESx3aES1814GJ7reLI1p11ofdEXEdir_gRC58iPDnM5qj66Ez07tu0S3okCck6AANWu-TTfC98fsRrePQjK-zl1a3Pbw57VfZ_fXybvEtv_nxdbWY3-SmKEnMa1lTTiy2uqptqbUsGGt0TeqK1qXGDRG0Frxh2lakAGpIgQ0HXHPKKyulZVfZ6ujbeL1V--B2OozKa6cOFz5slJ7CaEExXFlDbSMphqLSVmLNCptWChADiOT18ei1D_5hgD6qnesNtK3uwA-9okKWpCS4lEn64Zl064eQgplUIs2KlmJSvT-phnoHzdP3HkeWBNVRYFJ4fQCrjIuHEcSgXasIVlM71KEdamqHOrUjofQZ-uj-X-jdEXIA8ARIKTgjJfsH3KDGbQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105593
crossref_primary_10_1088_1741_2552_acb232
Cites_doi 10.1117/1.JBO.19.7.077005
10.1016/j.bspc.2021.102645
10.1088/1741-2552/ac49a7
10.1016/j.neuroscience.2020.04.006
10.1097/00001756-199605170-00012
10.1016/j.medengphy.2015.01.005
10.1016/j.procs.2015.08.189
10.1016/j.neuroimage.2009.03.027
10.3389/fnbot.2018.00069
10.1088/1741-2552/aae4b9
10.1155/2018/1613402
10.1088/1741-2552/ab0328
10.1016/j.bspc.2021.103369
10.1007/s10548-020-00785-2
10.1046/j.1460-9568.1998.00237.x
10.1117/1.NPh.5.1.015003
10.1088/1741-2560/12/3/036004
10.1117/1.JBO.21.9.091303
10.1109/ACCESS.2020.2999133
10.2976/1.2889618
10.1126/science.272.5261.551
10.1016/j.neuroimage.2006.10.043
10.1016/j.neuroscience.2020.10.031
10.1007/s10015-020-00592-9
10.1186/1743-0003-8-34
10.1002/hbm.21363
10.1016/j.neuroimage.2009.04.050
10.1109/TNSRE.2006.875585
10.3389/fnbot.2017.00006
10.3389/fnhum.2014.00810
10.1212/WNL.0000000000000449
10.1073/pnas.87.16.6082
10.3390/s120201211
10.1088/1741-2552/ac25d9
10.1142/S0129065718500314
10.1109/TBME.2019.2897651
10.1088/1741-2552/ac1ab3
10.1093/brain/121.2.253
10.1016/j.neuroimage.2008.08.036
10.1155/2019/6862031
10.1109/TNSRE.2016.2627809
10.1364/BOE.8.000367
10.1002/jnr.24769
10.1111/j.1460-9568.2003.03066.x
10.1109/TASLP.2017.2752365
10.3389/fnhum.2017.00462
10.3390/jcm7120466
10.1002/hbm.1026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3227595
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 518
ExternalDocumentID oai_doaj_org_article_308fc2fd920e48af90a34f4f47010ee7
37015470
10_1109_TNSRE_2022_3227595
9975316
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Shenzhen Sustainable Support Program for High-Level University
  grantid: 20200925154002001
– fundername: National Natural Science Foundation of China
  grantid: 61971212
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-b9b251f0fa8bf6aa9433dab1b82b6a0d172b75d3af814e2c140c5e0b5258f99f3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:25:54 EDT 2025
Fri Jul 11 05:11:46 EDT 2025
Fri Jul 25 02:04:49 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Tue Jul 01 00:43:26 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Wed Aug 27 02:18:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-b9b251f0fa8bf6aa9433dab1b82b6a0d172b75d3af814e2c140c5e0b5258f99f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6988-492X
0000-0002-0142-6981
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9975316
PMID 37015470
PQID 2771532679
PQPubID 85423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_308fc2fd920e48af90a34f4f47010ee7
crossref_citationtrail_10_1109_TNSRE_2022_3227595
proquest_journals_2771532679
ieee_primary_9975316
proquest_miscellaneous_2796161069
crossref_primary_10_1109_TNSRE_2022_3227595
pubmed_primary_37015470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
gray (ref23) 1878
ref24
ref26
ref25
ref20
ref22
ref21
nicolas-alonso (ref1) 2012; 12
ref28
ref27
ref29
References_xml – ident: ref30
  doi: 10.1117/1.JBO.19.7.077005
– ident: ref29
  doi: 10.1016/j.bspc.2021.102645
– ident: ref11
  doi: 10.1088/1741-2552/ac49a7
– ident: ref14
  doi: 10.1016/j.neuroscience.2020.04.006
– ident: ref10
  doi: 10.1097/00001756-199605170-00012
– ident: ref46
  doi: 10.1016/j.medengphy.2015.01.005
– ident: ref6
  doi: 10.1016/j.procs.2015.08.189
– ident: ref35
  doi: 10.1016/j.neuroimage.2009.03.027
– ident: ref48
  doi: 10.3389/fnbot.2018.00069
– ident: ref8
  doi: 10.1088/1741-2552/aae4b9
– ident: ref27
  doi: 10.1155/2018/1613402
– ident: ref15
  doi: 10.1088/1741-2552/ab0328
– ident: ref31
  doi: 10.1016/j.bspc.2021.103369
– ident: ref28
  doi: 10.1007/s10548-020-00785-2
– ident: ref38
  doi: 10.1046/j.1460-9568.1998.00237.x
– year: 1878
  ident: ref23
  publication-title: Anatomy of the Human Body
– ident: ref25
  doi: 10.1117/1.NPh.5.1.015003
– ident: ref45
  doi: 10.1088/1741-2560/12/3/036004
– ident: ref7
  doi: 10.1117/1.JBO.21.9.091303
– ident: ref12
  doi: 10.1109/ACCESS.2020.2999133
– ident: ref50
  doi: 10.2976/1.2889618
– ident: ref32
  doi: 10.1126/science.272.5261.551
– ident: ref22
  doi: 10.1016/j.neuroimage.2006.10.043
– ident: ref43
  doi: 10.1016/j.neuroscience.2020.10.031
– ident: ref17
  doi: 10.1007/s10015-020-00592-9
– ident: ref36
  doi: 10.1186/1743-0003-8-34
– ident: ref34
  doi: 10.1002/hbm.21363
– ident: ref3
  doi: 10.1007/s10015-020-00592-9
– ident: ref40
  doi: 10.1016/j.neuroimage.2009.04.050
– ident: ref33
  doi: 10.1109/TNSRE.2006.875585
– ident: ref20
  doi: 10.3389/fnbot.2017.00006
– ident: ref44
  doi: 10.3389/fnhum.2014.00810
– ident: ref9
  doi: 10.1212/WNL.0000000000000449
– ident: ref49
  doi: 10.1073/pnas.87.16.6082
– volume: 12
  start-page: 1211
  year: 2012
  ident: ref1
  article-title: Brain computer interfaces, a review
  publication-title: SENSORS
  doi: 10.3390/s120201211
– ident: ref26
  doi: 10.1088/1741-2552/ac25d9
– ident: ref21
  doi: 10.1142/S0129065718500314
– ident: ref13
  doi: 10.1109/TBME.2019.2897651
– ident: ref42
  doi: 10.1088/1741-2552/ac1ab3
– ident: ref37
  doi: 10.1093/brain/121.2.253
– ident: ref24
  doi: 10.1016/j.neuroimage.2008.08.036
– ident: ref4
  doi: 10.1155/2019/6862031
– ident: ref47
  doi: 10.1109/TNSRE.2016.2627809
– ident: ref18
  doi: 10.1364/BOE.8.000367
– ident: ref41
  doi: 10.1002/jnr.24769
– ident: ref39
  doi: 10.1111/j.1460-9568.2003.03066.x
– ident: ref2
  doi: 10.1109/TASLP.2017.2752365
– ident: ref19
  doi: 10.3389/fnhum.2017.00462
– ident: ref5
  doi: 10.3390/jcm7120466
– ident: ref16
  doi: 10.1002/hbm.1026
SSID ssj0017657
Score 2.4180217
Snippet Brain computer interface (BCI) based on speech imagery can help people with motor disorders communicate their thoughts to the outside world in a natural way....
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 506
SubjectTerms Articulation (speech)
Brain
Brain computer interface
Classification
command generation time reduction
Computer applications
Cortex (motor)
Decoding
Electroencephalography
Feature extraction
Functional near-infrared spectroscopy
Human-computer interface
Implants
Infrared spectra
Infrared spectroscopy
Jaw
Medical imaging
Mental task performance
Movement disorders
Near infrared radiation
Neural networks
Spectrum analysis
Speech
speech imagery
Symbols
Synchronism
Synchronization
synchronization information
Task analysis
Vowels
Windows (intervals)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUD4CBRkJuKBQx3b8wa2UrgoSeyhbqTfLdmwJCbKobCX6G_jTzDjeaDkAF7S3rCeyPOPMe8n4DSHPpRHBxuBbFqNqpQmitUNgbTIphC4pIWKptliq03P54aK_2Gn1hTVhkzzwtHCHgpkceR4sZ0kany3zQmb4aWASKZVz5JDztmSqfj_Qqmh8wnaWrRScbY_LMHu4Wn46OwFiyPlrCGbdY2eJnZRUlPtrq5U_o86SfRa3ya0KG-nRNN075EYa75IXuxLBdDXpA9CX9Ow39e198vMdcEzMUZN9bdhFP66Bb9P3X1HF4pqW2gFa9I5pqX6JU18JWg8sFZPPIwXAWC2PsU73xxt6RBeQHOsslrBzWjC5xMJ2it3tN6iXuYaJYcni9T1yvjhZHZ-2tQlDG6XqNm2wASBQZtmbkJX3Vgox-NAFw4PybAAAFHQ_CJ9NJxOPQNhin1joeW-ytVncJ3vjekwPCQWo2UcfQ7JAYkI_ADTtBpUtcjauTWxIt_WDi3WNsFHGF1eYCrOu-M6h71z1XUNezTbfJn2Ov45-i-6dR6K2drkAEedqxLl_RVxD9jE45ptYPJvcqYYcbIPF1efAd8e1hhjkStuGPJv_hh2Mn2X8mNZXOMYqwN1MwZgHU5DN9xYaMa5mj_7HxB-Tm7AYYnqBdED2NpdX6QlAqk14WnbPLxgnHCA
  priority: 102
  providerName: Directory of Open Access Journals
Title Decoding Articulation Motor Imagery Using Early Connectivity Information in the Motor Cortex: A Functional Near-Infrared Spectroscopy Study
URI https://ieeexplore.ieee.org/document/9975316
https://www.ncbi.nlm.nih.gov/pubmed/37015470
https://www.proquest.com/docview/2771532679
https://www.proquest.com/docview/2796161069
https://doaj.org/article/308fc2fd920e48af90a34f4f47010ee7
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhAaXkESmUk4ALZOrbjB7e2dFWQuod2K_UW2Y4tVUC2ancllr_An2bseKO2AoRyWWU9eX6Ov7FnvkHoDVfMamdNSZwTJVeWlbq1pPTKW1t5wZhL0RYTcXzOv1zUF2vow5AL471PwWd-FH-mtfx25hZxqmxPxyzQSqyjdXDc-lytYcVAiqTqCR2Yl5xRskqQIXpvOjk7PQJXkNIRwFfWsZbErUEoafXn4ip_55lpvBk_QierK-3DTL6OFnM7cj_viTj-761sooeZeOL9HimP0ZrvttDb2yLDeNorDOB3-PSOfvc2-vUJvNQ4yvX2ueQXPpmBx44_f486GEucog9wUkzGKX7G9ZUpcE55SiaXHQbKmS0PY6Tvj494H49heM1XMYG-V4LJdQyNx2dXqUxPTJ5Z4hj0uHyCzsdH08PjMpdxKB0X1by02gKJCiQYZYMwRnPGWmMrq6gVhrRAoaysW2aCqrinDlw-V3tia1qroHVgT9FGN-v8c4SBrNbOOOvh8XFbt0Buq1YEHb0-KpUrULV6r43LzyiW2vjWJF-H6CZhoYlYaDIWCvR-sLnqFT7-2fogwmVoGdW50w54u03u7A0jKjgaWk2J58oETQzjATYJ3q_3skDbERHDQTIYCrSzAl-TvyQ3DZUSME2F1AV6PfwN34C4sGM6P1vENloAcycC2jzrQTscm8nIkiV58edzvkQP4PZYP6m0gzbm1wv_CmjW3O6m6Ynd1Mt-A774JpY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKOcCFV3ksFDAScIFNvbbXD26lNEqhyaFNpd5WtteWUEtSlUQi_AX-NGOvsyoIEMolSjz7_LzzzXrmG4RecsWsdtaUxDlRcmVZqVtLSq-8tZUXjLmUbTERoxP-8bQ-3UBv-1oY731KPvOD-DWt5bdzt4yvynZ0rAKtxDV0Hfx-XXXVWv2agRRJ1xOmMC85o2RdIkP0znRyfLQPwSClAwCwrGM3iStuKKn15_Yqf2eayeMMb6Px-li7RJOzwXJhB-77bzKO_3syd9CtTD3xboeVu2jDz-6hV1dlhvG00xjAr_HRLwreW-jHB4hTo5_r7HPTLzyeQ8yOD75EJYwVTvkHOGkm45RB47reFDgXPSWTzzMMpDNb7sVc32_v8C4egoPNRzGB2VeCyWVMjsfHF6lRTyyfWeGY9ri6j06G-9O9UZkbOZSOi2pRWm2BRgUSjLJBGKM5Y62xlVXUCkNaIFFW1i0zQVXcUwdBn6s9sTWtVdA6sAdoczaf-UcIA12tnXHWw-Xjtm6B3latCDrGfVQqV6BqfV8bl69RbLZx3qRoh-gmYaGJWGgyFgr0pre56DQ-_jn6fYRLPzLqc6cf4O42ebo3jKjgaGg1JZ4rEzQxjAf4SIh_vZcF2oqI6DeSwVCg7TX4mvws-dpQKQHTVEhdoBf93_AUiEs7ZubnyzhGC-DuRMCYhx1o-20zGXmyJI__vM_n6MZoOj5sDg8mn56gm3CqrHvFtI02F5dL_xRI18I-S3PtJ0IaKOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Articulation+Motor+Imagery+Using+Early+Connectivity+Information+in+the+Motor+Cortex%3A+A+Functional+Near-Infrared+Spectroscopy+Study&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Guo%2C+Zengzhi&rft.au=Chen%2C+Fei&rft.date=2023&rft.eissn=1558-0210&rft.volume=31&rft.spage=506&rft_id=info:doi/10.1109%2FTNSRE.2022.3227595&rft_id=info%3Apmid%2F37015470&rft.externalDocID=37015470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon