Degradation of paternal mitochondria via mitophagy
In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochond...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 6; p. 129886 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.
In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos.
Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.
Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.
•In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.•Mitophagy of paternal mitochondria functions as the mechanisms of maternal inheritance of mtDNA•Digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. |
---|---|
AbstractList | In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.BACKGROUNDIn most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos.SCOPE OF REVIEWIn this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos.Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.MAJOR CONCLUSIONSStudies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.GENERAL SIGNIFICANCEMaternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development. In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development. In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development. In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development. •In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.•Mitophagy of paternal mitochondria functions as the mechanisms of maternal inheritance of mtDNA•Digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. |
ArticleNumber | 129886 |
Author | Sasaki, Taeko Sato, Miyuki |
Author_xml | – sequence: 1 givenname: Taeko surname: Sasaki fullname: Sasaki, Taeko – sequence: 2 givenname: Miyuki surname: Sato fullname: Sato, Miyuki email: m-sato@gunma-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33636253$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkF1LwzAUhoNM3If-A5FdetOar6apF4LMTxh4o9chTU-3jLaZSTfYv7ez240X7kA4EJ73hfOM0aBxDSB0TXBMMBF3qzjP9QKamGJKYkIzKcUZGhGZ0khiLAZohBnmESciGaJxCCvcTZIlF2jImGCCJmyE6BMsvC50a10zdeV0rVvwja6mtW2dWbqm8FZPt93bf6yXerG7ROelrgJcHfYEfb08f87eovnH6_vscR4ZLkgb5Vkqc5KnWoLAmSC6xJImUkPJgZYp4JwJDUAFkEynphCcGiNTwTkjjEjOJui27117972B0KraBgNVpRtwm6BoknSnp5jj0yjPOMMilbJDbw7oJq-hUGtva-136qikA-57wHgXgodSGdv--mm9tpUiWO39q5Xq_au9f9X778L8T_jYfyL20Meg87m14FUwFhoDhfVgWlU4-3_BD3xGnpk |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111268 crossref_primary_10_7759_cureus_39812 crossref_primary_10_1038_s41467_024_45863_2 crossref_primary_10_1016_j_cmet_2022_10_005 crossref_primary_10_3390_ani14101437 crossref_primary_10_1016_j_metabol_2023_155679 crossref_primary_10_1007_s10528_022_10318_0 crossref_primary_10_1242_bio_061730 crossref_primary_10_1016_j_semcdb_2023_04_006 crossref_primary_10_1508_cytologia_87_163 |
Cites_doi | 10.1074/jbc.M110.209338 10.1126/science.1205405 10.1016/0014-4827(91)90467-9 10.1038/nature14893 10.4161/auto.19243 10.1016/j.molcel.2015.08.016 10.1073/pnas.92.10.4542 10.1016/j.devcel.2013.11.022 10.1016/j.cell.2016.11.042 10.1038/46466 10.1126/science.283.5407.1482 10.7554/eLife.17896 10.1126/science.1211878 10.4161/auto.19242 10.1016/j.cell.2012.09.004 10.1126/science.1210333 10.1073/pnas.1303231110 10.1126/science.aaf4777 10.1038/ncomms12569 10.1073/pnas.0506911103 10.1016/j.cub.2017.02.014 10.1016/j.devcel.2014.04.005 10.1242/dev.117879 10.1016/j.bbagrm.2011.11.005 10.1038/cr.2011.182 10.1016/j.ydbio.2019.06.016 10.1016/j.ydbio.2019.05.015 10.1038/290457a0 10.1016/j.bbamcr.2013.03.010 10.1038/s41598-020-59277-9 10.1073/pnas.93.24.13859 10.1042/EBC20170096 10.15252/embj.2020104705 10.1038/ni.1800 10.1007/s10265-009-0298-5 10.1016/j.devcel.2011.12.021 10.1038/s41556-017-0008-9 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier B.V. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2021.129886 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 33636253 10_1016_j_bbagen_2021_129886 S0304416521000441 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAYWO AAYXX ACRLP ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSU NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-b978b1b7a8e60961af08258aef4e2f7e0b36aee26e19a7cd642cc876443131843 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 03:02:31 EDT 2025 Fri Jul 11 00:27:57 EDT 2025 Thu Apr 03 07:06:48 EDT 2025 Tue Jul 01 00:22:15 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Sun Apr 06 06:54:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Allophagy Mitochondria Mitochondrial DNA Fertilization Mitophagy Maternal inheritance |
Language | English |
License | Copyright © 2021. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-b978b1b7a8e60961af08258aef4e2f7e0b36aee26e19a7cd642cc876443131843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33636253 |
PQID | 2494306788 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2552027040 proquest_miscellaneous_2494306788 pubmed_primary_33636253 crossref_citationtrail_10_1016_j_bbagen_2021_129886 crossref_primary_10_1016_j_bbagen_2021_129886 elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_129886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 2021-Jun 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lim, Rubio-Peña, Sobraske, Molina, Brookes, Galy, Nehrke (bb0125) 2019; 454 Al Rawi, Louvet-Vallee, Djeddi, Sachse, Culetto, Hajjar, Boyd, Legouis, Galy (bb0055) 2012; 8 DeLuca, O’Farrell (bb0135) 2012; 22 Sutovsky, Moreno, Ramalho-Santos, Dominko, Simerly, Schatten (bb0170) 1999; 402 Sato, Sato (bb0035) 2013; 1833 Molina, Lim, Boyd (bb0115) 2019; 453 Al Rawi, Louvet-Vallee, Djeddi, Sachse, Culetto, Hajjar, Boyd, Legouis, Galy (bb0040) 2011; 334 Yoshii, Kishi, Ishihara, Mizushima (bb0080) 2011; 286 Luo, Ge, Wang, Jiang, Wang, Ouyang, Hou, Schatten, Sun (bb0175) 2013; 110 Moriyama, Kawano (bb0160) 2010; 123 Wei, Chiang, Sumpter, Mishra, Levine (bb0120) 2017; 168 Yu, O’Farrell, Yakubovich, DeLuca (bb0140) 2017; 27 Zhang, Burr, Chinnery (bb0185) 2018; 62 Sharpley, Marciniak, Eckel-Mahan, McManus, Crimi, Waymire, Lin, Masubuchi, Friend, Koike, Chalkia, Macgregor, Sassone-Corsi, Wallace (bb0190) 2012; 151 Bogenhagen (bb0025) 2012; 1819 Rojansky, Cha, Chan (bb0180) 2016; 5 Fiesel, Moussaud-Lamodière, Ando, Springer (bb0195) 2014; 127 Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (bb0095) 2009; 10 Sato, Sato, Tomura, Kosako, Sato (bb0090) 2018; 20 Wang, Zhang, Chen, Liang, Yin, Miao, Kang, Xue (bb0130) 2016; 7 Kaneda, Hayashi, Takahama, Taya, Lindahl, Yonekawa (bb0165) 1995; 92 Nishimura, Shikanai, Kawamoto, Toh (bb0150) 2020; 10 Zhou, Li, Li, Nakagawa, Lin, Lee, Harry, Skeen-Gaar, Suehiro, William, Mitani, Yuan, Kang, Xue (bb0085) 2016; 353 Sato, Sato (bb0045) 2011; 334 Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bb0110) 2015; 524 Nishimura, Yoshinari, Naruse, Yamada, Sumi, Mitani, Higashiyama, Kuroiwa (bb0155) 2006; 103 Onishi, Yamano, Sato, Matsuda, Okamoto (bb0005) 2021; 40 Ankel-Simons, Cummins (bb0030) 1996; 93 Heo, Ordureau, Paulo, Rinehart, Harper (bb0105) 2015; 60 Satoh, Kuroiwa (bb0020) 1991; 196 Politi, Gal, Kalifa, Ravid, Elazar, Arama (bb0145) 2014; 29 Wallace (bb0015) 1999; 283 Sato, Sato (bb0060) 2012; 8 Anderson, Bankier, Barrell, de Bruijn, Coulson, Drouin, Eperon, Nierlich, Roe, Sanger, Schreier, Smith, Staden, Young (bb0010) 1981; 290 L'Hernault (bb0050) 2006 Zhou, Li, Xue (bb0065) 2011; 21 Wild, Farhan, McEwan, Wagner, Rogov, Brady, Richter, Korac, Waidmann, Choudhary, Dötsch, Bumann, Dikic (bb0100) 2011; 333 Manil-Segalen, Lefebvre, Jenzer, Trichet, Boulogne, Satiat-Jeunemaitre, Legouis (bb0070) 2014; 28 Djeddi, Al Rawi, Deuve, Perrois, Liu, Russeau, Sachse, Galy (bb0075) 2015; 142 Sato (10.1016/j.bbagen.2021.129886_bb0045) 2011; 334 Sato (10.1016/j.bbagen.2021.129886_bb0060) 2012; 8 Luo (10.1016/j.bbagen.2021.129886_bb0175) 2013; 110 Heo (10.1016/j.bbagen.2021.129886_bb0105) 2015; 60 L'Hernault (10.1016/j.bbagen.2021.129886_bb0050) 2006 Wang (10.1016/j.bbagen.2021.129886_bb0130) 2016; 7 Al Rawi (10.1016/j.bbagen.2021.129886_bb0040) 2011; 334 Moriyama (10.1016/j.bbagen.2021.129886_bb0160) 2010; 123 Zhou (10.1016/j.bbagen.2021.129886_bb0065) 2011; 21 Djeddi (10.1016/j.bbagen.2021.129886_bb0075) 2015; 142 Sharpley (10.1016/j.bbagen.2021.129886_bb0190) 2012; 151 Zhou (10.1016/j.bbagen.2021.129886_bb0085) 2016; 353 Yu (10.1016/j.bbagen.2021.129886_bb0140) 2017; 27 Sato (10.1016/j.bbagen.2021.129886_bb0090) 2018; 20 Onishi (10.1016/j.bbagen.2021.129886_bb0005) 2021; 40 Satoh (10.1016/j.bbagen.2021.129886_bb0020) 1991; 196 Lazarou (10.1016/j.bbagen.2021.129886_bb0110) 2015; 524 Wallace (10.1016/j.bbagen.2021.129886_bb0015) 1999; 283 Kaneda (10.1016/j.bbagen.2021.129886_bb0165) 1995; 92 Bogenhagen (10.1016/j.bbagen.2021.129886_bb0025) 2012; 1819 Al Rawi (10.1016/j.bbagen.2021.129886_bb0055) 2012; 8 Manil-Segalen (10.1016/j.bbagen.2021.129886_bb0070) 2014; 28 Thurston (10.1016/j.bbagen.2021.129886_bb0095) 2009; 10 Wild (10.1016/j.bbagen.2021.129886_bb0100) 2011; 333 Rojansky (10.1016/j.bbagen.2021.129886_bb0180) 2016; 5 Nishimura (10.1016/j.bbagen.2021.129886_bb0150) 2020; 10 Zhang (10.1016/j.bbagen.2021.129886_bb0185) 2018; 62 Politi (10.1016/j.bbagen.2021.129886_bb0145) 2014; 29 Ankel-Simons (10.1016/j.bbagen.2021.129886_bb0030) 1996; 93 Yoshii (10.1016/j.bbagen.2021.129886_bb0080) 2011; 286 Wei (10.1016/j.bbagen.2021.129886_bb0120) 2017; 168 Lim (10.1016/j.bbagen.2021.129886_bb0125) 2019; 454 Sato (10.1016/j.bbagen.2021.129886_bb0035) 2013; 1833 DeLuca (10.1016/j.bbagen.2021.129886_bb0135) 2012; 22 Anderson (10.1016/j.bbagen.2021.129886_bb0010) 1981; 290 Molina (10.1016/j.bbagen.2021.129886_bb0115) 2019; 453 Nishimura (10.1016/j.bbagen.2021.129886_bb0155) 2006; 103 Sutovsky (10.1016/j.bbagen.2021.129886_bb0170) 1999; 402 Fiesel (10.1016/j.bbagen.2021.129886_bb0195) 2014; 127 |
References_xml | – volume: 10 start-page: 1215 year: 2009 end-page: 1221 ident: bb0095 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria publication-title: Nat. Immunol. – volume: 28 start-page: 43 year: 2014 end-page: 55 ident: bb0070 article-title: The publication-title: Dev. Cell – volume: 5 year: 2016 ident: bb0180 article-title: Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1 publication-title: eLife – volume: 110 start-page: 13038 year: 2013 end-page: 13043 ident: bb0175 article-title: Unique insights into maternal mitochondrial inheritance in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 151 start-page: 333 year: 2012 end-page: 343 ident: bb0190 article-title: Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition publication-title: Cell – volume: 353 start-page: 394 year: 2016 end-page: 399 ident: bb0085 article-title: Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization publication-title: Science – volume: 334 start-page: 1144 year: 2011 end-page: 1147 ident: bb0040 article-title: Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission publication-title: Science – volume: 1819 start-page: 914 year: 2012 end-page: 920 ident: bb0025 article-title: Mitochondrial DNA nucleoid structure publication-title: Biochim. Biophys. Acta – volume: 168 start-page: 224 year: 2017 end-page: 238 ident: bb0120 article-title: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor publication-title: Cell – volume: 8 start-page: 424 year: 2012 end-page: 425 ident: bb0060 article-title: Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy publication-title: Autophagy – volume: 283 start-page: 1482 year: 1999 end-page: 1488 ident: bb0015 article-title: Mitochondrial diseases in man and mouse publication-title: Science – volume: 20 start-page: 81 year: 2018 end-page: 91 ident: bb0090 article-title: The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in publication-title: Nat. Cell Biol. – volume: 333 start-page: 228 year: 2011 end-page: 233 ident: bb0100 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science – volume: 7 start-page: 12569 year: 2016 ident: bb0130 article-title: Kinetics and specificity of paternal mitochondrial elimination in publication-title: Nat. Commun. – volume: 286 start-page: 19630 year: 2011 end-page: 19640 ident: bb0080 article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane publication-title: J. Biol. Chem. – volume: 22 start-page: 660 year: 2012 end-page: 668 ident: bb0135 article-title: Barriers to male transmission of mitochondrial DNA in sperm development publication-title: Dev. Cell – volume: 402 start-page: 371 year: 1999 end-page: 372 ident: bb0170 article-title: Ubiquitin tag for sperm mitochondria publication-title: Nature – volume: 142 start-page: 1705 year: 2015 end-page: 1716 ident: bb0075 article-title: Sperm-inherited organelle clearance in publication-title: Development – volume: 60 start-page: 7 year: 2015 end-page: 20 ident: bb0105 article-title: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy publication-title: Mol. Cell – volume: 93 start-page: 13859 year: 1996 end-page: 13863 ident: bb0030 article-title: Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1833 start-page: 1979 year: 2013 end-page: 1984 ident: bb0035 article-title: Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA publication-title: Biochim. Biophys. Acta – volume: 92 start-page: 4542 year: 1995 end-page: 4546 ident: bb0165 article-title: Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 290 start-page: 457 year: 1981 end-page: 465 ident: bb0010 article-title: Sequence and organization of the human mitochondrial genome publication-title: Nature – volume: 10 start-page: 2468 year: 2020 ident: bb0150 article-title: Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in publication-title: Sci. Rep. – volume: 123 start-page: 139 year: 2010 end-page: 148 ident: bb0160 article-title: Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold publication-title: J. Plant Res. – volume: 8 start-page: 421 year: 2012 end-page: 423 ident: bb0055 article-title: Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles publication-title: Autophagy – volume: 453 start-page: 168 year: 2019 end-page: 179 ident: bb0115 article-title: Ubiquitination is required for the initial removal of paternal organelles in publication-title: Dev. Biol. – volume: 62 start-page: 225 year: 2018 end-page: 234 ident: bb0185 article-title: The mitochondrial DNA genetic bottleneck: inheritance and beyond publication-title: Essays Biochem. – volume: 454 start-page: 15 year: 2019 end-page: 20 ident: bb0125 article-title: Fndc-1 contributes to paternal mitochondria elimination in publication-title: Dev. Biol. – volume: 40 year: 2021 ident: bb0005 article-title: Molecular mechanisms and physiological functions of mitophagy publication-title: EMBO J. – volume: 196 start-page: 137 year: 1991 end-page: 140 ident: bb0020 article-title: Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell publication-title: Exp. Cell Res. – year: 2006 ident: bb0050 article-title: Spermatogenesis publication-title: The – volume: 524 start-page: 309 year: 2015 end-page: 314 ident: bb0110 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature – volume: 103 start-page: 1382 year: 2006 end-page: 1387 ident: bb0155 article-title: Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 305 year: 2014 end-page: 320 ident: bb0145 article-title: Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in publication-title: Dev. Cell – volume: 21 start-page: 1662 year: 2011 end-page: 1669 ident: bb0065 article-title: Elimination of paternal mitochondria through the lysosomal degradation pathway in publication-title: Cell Res. – volume: 334 start-page: 1141 year: 2011 end-page: 1144 ident: bb0045 article-title: Degradation of paternal mitochondria by fertilization-triggered autophagy in publication-title: Science – volume: 127 start-page: 3488 year: 2014 end-page: 3504 ident: bb0195 article-title: A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently publication-title: J. Cell Sci. – volume: 27 start-page: 1033 year: 2017 end-page: 1039 ident: bb0140 article-title: The mitochondrial DNA polymerase promotes elimination of paternal mitochondrial genomes publication-title: Curr. Biol. – volume: 286 start-page: 19630 year: 2011 ident: 10.1016/j.bbagen.2021.129886_bb0080 article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.209338 – volume: 333 start-page: 228 year: 2011 ident: 10.1016/j.bbagen.2021.129886_bb0100 article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth publication-title: Science doi: 10.1126/science.1205405 – volume: 196 start-page: 137 year: 1991 ident: 10.1016/j.bbagen.2021.129886_bb0020 article-title: Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(91)90467-9 – volume: 524 start-page: 309 year: 2015 ident: 10.1016/j.bbagen.2021.129886_bb0110 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature doi: 10.1038/nature14893 – volume: 8 start-page: 424 year: 2012 ident: 10.1016/j.bbagen.2021.129886_bb0060 article-title: Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy publication-title: Autophagy doi: 10.4161/auto.19243 – volume: 60 start-page: 7 year: 2015 ident: 10.1016/j.bbagen.2021.129886_bb0105 article-title: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.016 – volume: 92 start-page: 4542 year: 1995 ident: 10.1016/j.bbagen.2021.129886_bb0165 article-title: Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.10.4542 – volume: 28 start-page: 43 year: 2014 ident: 10.1016/j.bbagen.2021.129886_bb0070 article-title: The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39 publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.11.022 – volume: 168 start-page: 224 year: 2017 ident: 10.1016/j.bbagen.2021.129886_bb0120 article-title: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor publication-title: Cell doi: 10.1016/j.cell.2016.11.042 – volume: 127 start-page: 3488 year: 2014 ident: 10.1016/j.bbagen.2021.129886_bb0195 article-title: A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently publication-title: J. Cell Sci. – volume: 402 start-page: 371 year: 1999 ident: 10.1016/j.bbagen.2021.129886_bb0170 article-title: Ubiquitin tag for sperm mitochondria publication-title: Nature doi: 10.1038/46466 – volume: 283 start-page: 1482 year: 1999 ident: 10.1016/j.bbagen.2021.129886_bb0015 article-title: Mitochondrial diseases in man and mouse publication-title: Science doi: 10.1126/science.283.5407.1482 – volume: 5 year: 2016 ident: 10.1016/j.bbagen.2021.129886_bb0180 article-title: Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1 publication-title: eLife doi: 10.7554/eLife.17896 – volume: 334 start-page: 1144 year: 2011 ident: 10.1016/j.bbagen.2021.129886_bb0040 article-title: Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission publication-title: Science doi: 10.1126/science.1211878 – volume: 8 start-page: 421 year: 2012 ident: 10.1016/j.bbagen.2021.129886_bb0055 article-title: Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles publication-title: Autophagy doi: 10.4161/auto.19242 – volume: 151 start-page: 333 year: 2012 ident: 10.1016/j.bbagen.2021.129886_bb0190 article-title: Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition publication-title: Cell doi: 10.1016/j.cell.2012.09.004 – volume: 334 start-page: 1141 year: 2011 ident: 10.1016/j.bbagen.2021.129886_bb0045 article-title: Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos publication-title: Science doi: 10.1126/science.1210333 – volume: 110 start-page: 13038 year: 2013 ident: 10.1016/j.bbagen.2021.129886_bb0175 article-title: Unique insights into maternal mitochondrial inheritance in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1303231110 – volume: 353 start-page: 394 year: 2016 ident: 10.1016/j.bbagen.2021.129886_bb0085 article-title: Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization publication-title: Science doi: 10.1126/science.aaf4777 – volume: 7 start-page: 12569 year: 2016 ident: 10.1016/j.bbagen.2021.129886_bb0130 article-title: Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans publication-title: Nat. Commun. doi: 10.1038/ncomms12569 – volume: 103 start-page: 1382 year: 2006 ident: 10.1016/j.bbagen.2021.129886_bb0155 article-title: Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0506911103 – volume: 27 start-page: 1033 year: 2017 ident: 10.1016/j.bbagen.2021.129886_bb0140 article-title: The mitochondrial DNA polymerase promotes elimination of paternal mitochondrial genomes publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.02.014 – volume: 29 start-page: 305 year: 2014 ident: 10.1016/j.bbagen.2021.129886_bb0145 article-title: Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.04.005 – volume: 142 start-page: 1705 year: 2015 ident: 10.1016/j.bbagen.2021.129886_bb0075 article-title: Sperm-inherited organelle clearance in C. elegans relies on LC3-dependent autophagosome targeting to the pericentrosomal area publication-title: Development doi: 10.1242/dev.117879 – year: 2006 ident: 10.1016/j.bbagen.2021.129886_bb0050 article-title: Spermatogenesis – volume: 1819 start-page: 914 year: 2012 ident: 10.1016/j.bbagen.2021.129886_bb0025 article-title: Mitochondrial DNA nucleoid structure publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.11.005 – volume: 21 start-page: 1662 year: 2011 ident: 10.1016/j.bbagen.2021.129886_bb0065 article-title: Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans publication-title: Cell Res. doi: 10.1038/cr.2011.182 – volume: 454 start-page: 15 year: 2019 ident: 10.1016/j.bbagen.2021.129886_bb0125 article-title: Fndc-1 contributes to paternal mitochondria elimination in C. elegans publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2019.06.016 – volume: 453 start-page: 168 year: 2019 ident: 10.1016/j.bbagen.2021.129886_bb0115 article-title: Ubiquitination is required for the initial removal of paternal organelles in C. elegans publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2019.05.015 – volume: 290 start-page: 457 year: 1981 ident: 10.1016/j.bbagen.2021.129886_bb0010 article-title: Sequence and organization of the human mitochondrial genome publication-title: Nature doi: 10.1038/290457a0 – volume: 1833 start-page: 1979 year: 2013 ident: 10.1016/j.bbagen.2021.129886_bb0035 article-title: Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.03.010 – volume: 10 start-page: 2468 year: 2020 ident: 10.1016/j.bbagen.2021.129886_bb0150 article-title: Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in Cryptococcus neoformans publication-title: Sci. Rep. doi: 10.1038/s41598-020-59277-9 – volume: 93 start-page: 13859 year: 1996 ident: 10.1016/j.bbagen.2021.129886_bb0030 article-title: Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.24.13859 – volume: 62 start-page: 225 year: 2018 ident: 10.1016/j.bbagen.2021.129886_bb0185 article-title: The mitochondrial DNA genetic bottleneck: inheritance and beyond publication-title: Essays Biochem. doi: 10.1042/EBC20170096 – volume: 40 year: 2021 ident: 10.1016/j.bbagen.2021.129886_bb0005 article-title: Molecular mechanisms and physiological functions of mitophagy publication-title: EMBO J. doi: 10.15252/embj.2020104705 – volume: 10 start-page: 1215 year: 2009 ident: 10.1016/j.bbagen.2021.129886_bb0095 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria publication-title: Nat. Immunol. doi: 10.1038/ni.1800 – volume: 123 start-page: 139 year: 2010 ident: 10.1016/j.bbagen.2021.129886_bb0160 article-title: Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum publication-title: J. Plant Res. doi: 10.1007/s10265-009-0298-5 – volume: 22 start-page: 660 year: 2012 ident: 10.1016/j.bbagen.2021.129886_bb0135 article-title: Barriers to male transmission of mitochondrial DNA in sperm development publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.12.021 – volume: 20 start-page: 81 year: 2018 ident: 10.1016/j.bbagen.2021.129886_bb0090 article-title: The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans publication-title: Nat. Cell Biol. doi: 10.1038/s41556-017-0008-9 |
SSID | ssj0000595 |
Score | 2.402575 |
SecondaryResourceType | review_article |
Snippet | In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.
In this review, we summarise recent knowledge on how paternal... In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.BACKGROUNDIn most sexually reproducing organisms, mitochondrial DNA... In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129886 |
SubjectTerms | Allophagy animal development Caenorhabditis elegans digestion Fertilization Maternal inheritance Mitochondria Mitochondrial DNA Mitophagy |
Title | Degradation of paternal mitochondria via mitophagy |
URI | https://dx.doi.org/10.1016/j.bbagen.2021.129886 https://www.ncbi.nlm.nih.gov/pubmed/33636253 https://www.proquest.com/docview/2494306788 https://www.proquest.com/docview/2552027040 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KRfQiWl_1UVbwuq2bZB89lmqpil5U6C0kadYHui3aCr34253Z7FYEteBhDxuSJUwm38zsvACOh5x6WCTWV0IIX6DG4euQM19oHpr4hOkgr85_dR3178TFIBxUoFvmwlBYZYH9DtNztC5GWgU1W-PHx9YNOfVQnUD5k7sl8wx2EROXNz--wjxQfQidJwG3grPL9Lk8xktrvLRUBZUFTRR8CWVU_yyeflM_czHUW4e1Qn_0Om6LG1CxWQ2WXUfJWQ1WumUDt01gp1QIwvVM8kapN1au4LP3grcYUS8bIvN57_jQwPhB3c-24K53dtvt-0WLBN-IKJj4Go1AHehYJTai5i0qJZMvUTYVlqWxPdE8UtayyAZtFZshWhvGIAAK1Bs4tXrZhmo2yuwueEwJHpMT0TAtEAJValiKykRoozZ-zNSBl5SRpqgfTm0snmUZKPYkHT0l0VM6etbBn68au_oZC-bHJdHlNz6QCPELVh6VZySR0OT3UJkdTd8kWpiCLKMk-WNOGNJvIIS0Ouy4A57vl_MIxXzI9_69t31YpTcXYnYA1cnr1B6iMjPRjZxbG7DUOb_sX38Cj6HvWQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRfQivl2fFbzGtXm03aOsyvraiwreQpJNfaDdRVdh_70zTasIPsBDL2lSwiT5ZqYzmQ9gty-IwyLzzEgpmUSLg1klOJNWKJfucxuX1fkvekn3Wp7eqJsJ6NR3YSitssL-gOklWlctrUqareH9feuSgnpoTqD-KcOS6AJNUnUq1YDJg5Ozbu8TkFVJvkL9GQ2ob9CVaV7W4rmlQqg83kPdl9Gl6u811E8WaKmJjudgtjIho4Mwy3mY8MUCTAVSyfECTHdqDrdF4IdUCyLQJkWDPBqaUPM5esKDjMBX9HH_RW_4UMPwztyOl-D6-Oiq02UVSwJzMolHzKIfaGObmswnxN9icvL6MuNz6Xme-n0rEuM9T3zcNqnro8PhHGKgRNNBENvLMjSKQeFXIeJGipTiiI5biShocsdztCeUT9r4MdcEUUtGu6qEODFZPOo6V-xBB3lqkqcO8mwC-xg1DCU0_uif1kLXX7aCRpT_Y-ROvUYaBU2hD1P4weuLRidTknOUZb_0UYr-BCGqNWElLPDHfIVIUNMrsfbvuW3DdPfq4lyfn_TO1mGG3oSMsw1ojJ5f_SbaNiO7Ve3dd80c8go |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+paternal+mitochondria+via+mitophagy&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Sasaki%2C+Taeko&rft.au=Sato%2C+Miyuki&rft.date=2021-06-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1865&rft.issue=6&rft.spage=129886&rft_id=info:doi/10.1016%2Fj.bbagen.2021.129886&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |