Degradation of paternal mitochondria via mitophagy

In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochond...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1865; no. 6; p. 129886
Main Authors Sasaki, Taeko, Sato, Miyuki
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development. •In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.•Mitophagy of paternal mitochondria functions as the mechanisms of maternal inheritance of mtDNA•Digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.
AbstractList In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.BACKGROUNDIn most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos.SCOPE OF REVIEWIn this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos.Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.MAJOR CONCLUSIONSStudies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.GENERAL SIGNIFICANCEMaternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.
In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.
In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development.
In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal mitochondria and their mtDNA are selectively eliminated from embryos. Studies based on Caenorhabditis elegans have revealed that paternal mitochondria and their mtDNA are selectively degraded in embryos via mitophagy. Thus, mitophagy functions as the mechanisms of maternal inheritance of mtDNA. The mitophagy of paternal mitochondria is conserved in other species, and the underlying molecular mechanisms have begun to be elucidated. In addition to mitophagy, autophagy-independent digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA. Maternal inheritance of mtDNA is strictly controlled via multistep mechanisms. These studies also demonstrate a physiological role of mitophagy during animal development. •In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.•Mitophagy of paternal mitochondria functions as the mechanisms of maternal inheritance of mtDNA•Digestion of paternal mtDNA before and after fertilization serves as another mechanism for maternal inheritance of mtDNA.
ArticleNumber 129886
Author Sasaki, Taeko
Sato, Miyuki
Author_xml – sequence: 1
  givenname: Taeko
  surname: Sasaki
  fullname: Sasaki, Taeko
– sequence: 2
  givenname: Miyuki
  surname: Sato
  fullname: Sato, Miyuki
  email: m-sato@gunma-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33636253$$D View this record in MEDLINE/PubMed
BookMark eNqFkF1LwzAUhoNM3If-A5FdetOar6apF4LMTxh4o9chTU-3jLaZSTfYv7ez240X7kA4EJ73hfOM0aBxDSB0TXBMMBF3qzjP9QKamGJKYkIzKcUZGhGZ0khiLAZohBnmESciGaJxCCvcTZIlF2jImGCCJmyE6BMsvC50a10zdeV0rVvwja6mtW2dWbqm8FZPt93bf6yXerG7ROelrgJcHfYEfb08f87eovnH6_vscR4ZLkgb5Vkqc5KnWoLAmSC6xJImUkPJgZYp4JwJDUAFkEynphCcGiNTwTkjjEjOJui27117972B0KraBgNVpRtwm6BoknSnp5jj0yjPOMMilbJDbw7oJq-hUGtva-136qikA-57wHgXgodSGdv--mm9tpUiWO39q5Xq_au9f9X778L8T_jYfyL20Meg87m14FUwFhoDhfVgWlU4-3_BD3xGnpk
CitedBy_id crossref_primary_10_1016_j_isci_2024_111268
crossref_primary_10_7759_cureus_39812
crossref_primary_10_1038_s41467_024_45863_2
crossref_primary_10_1016_j_cmet_2022_10_005
crossref_primary_10_3390_ani14101437
crossref_primary_10_1016_j_metabol_2023_155679
crossref_primary_10_1007_s10528_022_10318_0
crossref_primary_10_1242_bio_061730
crossref_primary_10_1016_j_semcdb_2023_04_006
crossref_primary_10_1508_cytologia_87_163
Cites_doi 10.1074/jbc.M110.209338
10.1126/science.1205405
10.1016/0014-4827(91)90467-9
10.1038/nature14893
10.4161/auto.19243
10.1016/j.molcel.2015.08.016
10.1073/pnas.92.10.4542
10.1016/j.devcel.2013.11.022
10.1016/j.cell.2016.11.042
10.1038/46466
10.1126/science.283.5407.1482
10.7554/eLife.17896
10.1126/science.1211878
10.4161/auto.19242
10.1016/j.cell.2012.09.004
10.1126/science.1210333
10.1073/pnas.1303231110
10.1126/science.aaf4777
10.1038/ncomms12569
10.1073/pnas.0506911103
10.1016/j.cub.2017.02.014
10.1016/j.devcel.2014.04.005
10.1242/dev.117879
10.1016/j.bbagrm.2011.11.005
10.1038/cr.2011.182
10.1016/j.ydbio.2019.06.016
10.1016/j.ydbio.2019.05.015
10.1038/290457a0
10.1016/j.bbamcr.2013.03.010
10.1038/s41598-020-59277-9
10.1073/pnas.93.24.13859
10.1042/EBC20170096
10.15252/embj.2020104705
10.1038/ni.1800
10.1007/s10265-009-0298-5
10.1016/j.devcel.2011.12.021
10.1038/s41556-017-0008-9
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2021.129886
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 33636253
10_1016_j_bbagen_2021_129886
S0304416521000441
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAYWO
AAYXX
ACRLP
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSU
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-b978b1b7a8e60961af08258aef4e2f7e0b36aee26e19a7cd642cc876443131843
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 03:02:31 EDT 2025
Fri Jul 11 00:27:57 EDT 2025
Thu Apr 03 07:06:48 EDT 2025
Tue Jul 01 00:22:15 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Sun Apr 06 06:54:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Allophagy
Mitochondria
Mitochondrial DNA
Fertilization
Mitophagy
Maternal inheritance
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-b978b1b7a8e60961af08258aef4e2f7e0b36aee26e19a7cd642cc876443131843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 33636253
PQID 2494306788
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552027040
proquest_miscellaneous_2494306788
pubmed_primary_33636253
crossref_citationtrail_10_1016_j_bbagen_2021_129886
crossref_primary_10_1016_j_bbagen_2021_129886
elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_129886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-Jun
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lim, Rubio-Peña, Sobraske, Molina, Brookes, Galy, Nehrke (bb0125) 2019; 454
Al Rawi, Louvet-Vallee, Djeddi, Sachse, Culetto, Hajjar, Boyd, Legouis, Galy (bb0055) 2012; 8
DeLuca, O’Farrell (bb0135) 2012; 22
Sutovsky, Moreno, Ramalho-Santos, Dominko, Simerly, Schatten (bb0170) 1999; 402
Sato, Sato (bb0035) 2013; 1833
Molina, Lim, Boyd (bb0115) 2019; 453
Al Rawi, Louvet-Vallee, Djeddi, Sachse, Culetto, Hajjar, Boyd, Legouis, Galy (bb0040) 2011; 334
Yoshii, Kishi, Ishihara, Mizushima (bb0080) 2011; 286
Luo, Ge, Wang, Jiang, Wang, Ouyang, Hou, Schatten, Sun (bb0175) 2013; 110
Moriyama, Kawano (bb0160) 2010; 123
Wei, Chiang, Sumpter, Mishra, Levine (bb0120) 2017; 168
Yu, O’Farrell, Yakubovich, DeLuca (bb0140) 2017; 27
Zhang, Burr, Chinnery (bb0185) 2018; 62
Sharpley, Marciniak, Eckel-Mahan, McManus, Crimi, Waymire, Lin, Masubuchi, Friend, Koike, Chalkia, Macgregor, Sassone-Corsi, Wallace (bb0190) 2012; 151
Bogenhagen (bb0025) 2012; 1819
Rojansky, Cha, Chan (bb0180) 2016; 5
Fiesel, Moussaud-Lamodière, Ando, Springer (bb0195) 2014; 127
Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (bb0095) 2009; 10
Sato, Sato, Tomura, Kosako, Sato (bb0090) 2018; 20
Wang, Zhang, Chen, Liang, Yin, Miao, Kang, Xue (bb0130) 2016; 7
Kaneda, Hayashi, Takahama, Taya, Lindahl, Yonekawa (bb0165) 1995; 92
Nishimura, Shikanai, Kawamoto, Toh (bb0150) 2020; 10
Zhou, Li, Li, Nakagawa, Lin, Lee, Harry, Skeen-Gaar, Suehiro, William, Mitani, Yuan, Kang, Xue (bb0085) 2016; 353
Sato, Sato (bb0045) 2011; 334
Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bb0110) 2015; 524
Nishimura, Yoshinari, Naruse, Yamada, Sumi, Mitani, Higashiyama, Kuroiwa (bb0155) 2006; 103
Onishi, Yamano, Sato, Matsuda, Okamoto (bb0005) 2021; 40
Ankel-Simons, Cummins (bb0030) 1996; 93
Heo, Ordureau, Paulo, Rinehart, Harper (bb0105) 2015; 60
Satoh, Kuroiwa (bb0020) 1991; 196
Politi, Gal, Kalifa, Ravid, Elazar, Arama (bb0145) 2014; 29
Wallace (bb0015) 1999; 283
Sato, Sato (bb0060) 2012; 8
Anderson, Bankier, Barrell, de Bruijn, Coulson, Drouin, Eperon, Nierlich, Roe, Sanger, Schreier, Smith, Staden, Young (bb0010) 1981; 290
L'Hernault (bb0050) 2006
Zhou, Li, Xue (bb0065) 2011; 21
Wild, Farhan, McEwan, Wagner, Rogov, Brady, Richter, Korac, Waidmann, Choudhary, Dötsch, Bumann, Dikic (bb0100) 2011; 333
Manil-Segalen, Lefebvre, Jenzer, Trichet, Boulogne, Satiat-Jeunemaitre, Legouis (bb0070) 2014; 28
Djeddi, Al Rawi, Deuve, Perrois, Liu, Russeau, Sachse, Galy (bb0075) 2015; 142
Sato (10.1016/j.bbagen.2021.129886_bb0045) 2011; 334
Sato (10.1016/j.bbagen.2021.129886_bb0060) 2012; 8
Luo (10.1016/j.bbagen.2021.129886_bb0175) 2013; 110
Heo (10.1016/j.bbagen.2021.129886_bb0105) 2015; 60
L'Hernault (10.1016/j.bbagen.2021.129886_bb0050) 2006
Wang (10.1016/j.bbagen.2021.129886_bb0130) 2016; 7
Al Rawi (10.1016/j.bbagen.2021.129886_bb0040) 2011; 334
Moriyama (10.1016/j.bbagen.2021.129886_bb0160) 2010; 123
Zhou (10.1016/j.bbagen.2021.129886_bb0065) 2011; 21
Djeddi (10.1016/j.bbagen.2021.129886_bb0075) 2015; 142
Sharpley (10.1016/j.bbagen.2021.129886_bb0190) 2012; 151
Zhou (10.1016/j.bbagen.2021.129886_bb0085) 2016; 353
Yu (10.1016/j.bbagen.2021.129886_bb0140) 2017; 27
Sato (10.1016/j.bbagen.2021.129886_bb0090) 2018; 20
Onishi (10.1016/j.bbagen.2021.129886_bb0005) 2021; 40
Satoh (10.1016/j.bbagen.2021.129886_bb0020) 1991; 196
Lazarou (10.1016/j.bbagen.2021.129886_bb0110) 2015; 524
Wallace (10.1016/j.bbagen.2021.129886_bb0015) 1999; 283
Kaneda (10.1016/j.bbagen.2021.129886_bb0165) 1995; 92
Bogenhagen (10.1016/j.bbagen.2021.129886_bb0025) 2012; 1819
Al Rawi (10.1016/j.bbagen.2021.129886_bb0055) 2012; 8
Manil-Segalen (10.1016/j.bbagen.2021.129886_bb0070) 2014; 28
Thurston (10.1016/j.bbagen.2021.129886_bb0095) 2009; 10
Wild (10.1016/j.bbagen.2021.129886_bb0100) 2011; 333
Rojansky (10.1016/j.bbagen.2021.129886_bb0180) 2016; 5
Nishimura (10.1016/j.bbagen.2021.129886_bb0150) 2020; 10
Zhang (10.1016/j.bbagen.2021.129886_bb0185) 2018; 62
Politi (10.1016/j.bbagen.2021.129886_bb0145) 2014; 29
Ankel-Simons (10.1016/j.bbagen.2021.129886_bb0030) 1996; 93
Yoshii (10.1016/j.bbagen.2021.129886_bb0080) 2011; 286
Wei (10.1016/j.bbagen.2021.129886_bb0120) 2017; 168
Lim (10.1016/j.bbagen.2021.129886_bb0125) 2019; 454
Sato (10.1016/j.bbagen.2021.129886_bb0035) 2013; 1833
DeLuca (10.1016/j.bbagen.2021.129886_bb0135) 2012; 22
Anderson (10.1016/j.bbagen.2021.129886_bb0010) 1981; 290
Molina (10.1016/j.bbagen.2021.129886_bb0115) 2019; 453
Nishimura (10.1016/j.bbagen.2021.129886_bb0155) 2006; 103
Sutovsky (10.1016/j.bbagen.2021.129886_bb0170) 1999; 402
Fiesel (10.1016/j.bbagen.2021.129886_bb0195) 2014; 127
References_xml – volume: 10
  start-page: 1215
  year: 2009
  end-page: 1221
  ident: bb0095
  article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
  publication-title: Nat. Immunol.
– volume: 28
  start-page: 43
  year: 2014
  end-page: 55
  ident: bb0070
  article-title: The
  publication-title: Dev. Cell
– volume: 5
  year: 2016
  ident: bb0180
  article-title: Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1
  publication-title: eLife
– volume: 110
  start-page: 13038
  year: 2013
  end-page: 13043
  ident: bb0175
  article-title: Unique insights into maternal mitochondrial inheritance in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 151
  start-page: 333
  year: 2012
  end-page: 343
  ident: bb0190
  article-title: Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition
  publication-title: Cell
– volume: 353
  start-page: 394
  year: 2016
  end-page: 399
  ident: bb0085
  article-title: Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization
  publication-title: Science
– volume: 334
  start-page: 1144
  year: 2011
  end-page: 1147
  ident: bb0040
  article-title: Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission
  publication-title: Science
– volume: 1819
  start-page: 914
  year: 2012
  end-page: 920
  ident: bb0025
  article-title: Mitochondrial DNA nucleoid structure
  publication-title: Biochim. Biophys. Acta
– volume: 168
  start-page: 224
  year: 2017
  end-page: 238
  ident: bb0120
  article-title: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
  publication-title: Cell
– volume: 8
  start-page: 424
  year: 2012
  end-page: 425
  ident: bb0060
  article-title: Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy
  publication-title: Autophagy
– volume: 283
  start-page: 1482
  year: 1999
  end-page: 1488
  ident: bb0015
  article-title: Mitochondrial diseases in man and mouse
  publication-title: Science
– volume: 20
  start-page: 81
  year: 2018
  end-page: 91
  ident: bb0090
  article-title: The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in
  publication-title: Nat. Cell Biol.
– volume: 333
  start-page: 228
  year: 2011
  end-page: 233
  ident: bb0100
  article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
  publication-title: Science
– volume: 7
  start-page: 12569
  year: 2016
  ident: bb0130
  article-title: Kinetics and specificity of paternal mitochondrial elimination in
  publication-title: Nat. Commun.
– volume: 286
  start-page: 19630
  year: 2011
  end-page: 19640
  ident: bb0080
  article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 660
  year: 2012
  end-page: 668
  ident: bb0135
  article-title: Barriers to male transmission of mitochondrial DNA in sperm development
  publication-title: Dev. Cell
– volume: 402
  start-page: 371
  year: 1999
  end-page: 372
  ident: bb0170
  article-title: Ubiquitin tag for sperm mitochondria
  publication-title: Nature
– volume: 142
  start-page: 1705
  year: 2015
  end-page: 1716
  ident: bb0075
  article-title: Sperm-inherited organelle clearance in
  publication-title: Development
– volume: 60
  start-page: 7
  year: 2015
  end-page: 20
  ident: bb0105
  article-title: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
  publication-title: Mol. Cell
– volume: 93
  start-page: 13859
  year: 1996
  end-page: 13863
  ident: bb0030
  article-title: Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1833
  start-page: 1979
  year: 2013
  end-page: 1984
  ident: bb0035
  article-title: Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA
  publication-title: Biochim. Biophys. Acta
– volume: 92
  start-page: 4542
  year: 1995
  end-page: 4546
  ident: bb0165
  article-title: Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 290
  start-page: 457
  year: 1981
  end-page: 465
  ident: bb0010
  article-title: Sequence and organization of the human mitochondrial genome
  publication-title: Nature
– volume: 10
  start-page: 2468
  year: 2020
  ident: bb0150
  article-title: Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in
  publication-title: Sci. Rep.
– volume: 123
  start-page: 139
  year: 2010
  end-page: 148
  ident: bb0160
  article-title: Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold
  publication-title: J. Plant Res.
– volume: 8
  start-page: 421
  year: 2012
  end-page: 423
  ident: bb0055
  article-title: Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles
  publication-title: Autophagy
– volume: 453
  start-page: 168
  year: 2019
  end-page: 179
  ident: bb0115
  article-title: Ubiquitination is required for the initial removal of paternal organelles in
  publication-title: Dev. Biol.
– volume: 62
  start-page: 225
  year: 2018
  end-page: 234
  ident: bb0185
  article-title: The mitochondrial DNA genetic bottleneck: inheritance and beyond
  publication-title: Essays Biochem.
– volume: 454
  start-page: 15
  year: 2019
  end-page: 20
  ident: bb0125
  article-title: Fndc-1 contributes to paternal mitochondria elimination in
  publication-title: Dev. Biol.
– volume: 40
  year: 2021
  ident: bb0005
  article-title: Molecular mechanisms and physiological functions of mitophagy
  publication-title: EMBO J.
– volume: 196
  start-page: 137
  year: 1991
  end-page: 140
  ident: bb0020
  article-title: Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell
  publication-title: Exp. Cell Res.
– year: 2006
  ident: bb0050
  article-title: Spermatogenesis
  publication-title: The
– volume: 524
  start-page: 309
  year: 2015
  end-page: 314
  ident: bb0110
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
– volume: 103
  start-page: 1382
  year: 2006
  end-page: 1387
  ident: bb0155
  article-title: Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 29
  start-page: 305
  year: 2014
  end-page: 320
  ident: bb0145
  article-title: Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in
  publication-title: Dev. Cell
– volume: 21
  start-page: 1662
  year: 2011
  end-page: 1669
  ident: bb0065
  article-title: Elimination of paternal mitochondria through the lysosomal degradation pathway in
  publication-title: Cell Res.
– volume: 334
  start-page: 1141
  year: 2011
  end-page: 1144
  ident: bb0045
  article-title: Degradation of paternal mitochondria by fertilization-triggered autophagy in
  publication-title: Science
– volume: 127
  start-page: 3488
  year: 2014
  end-page: 3504
  ident: bb0195
  article-title: A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently
  publication-title: J. Cell Sci.
– volume: 27
  start-page: 1033
  year: 2017
  end-page: 1039
  ident: bb0140
  article-title: The mitochondrial DNA polymerase promotes elimination of paternal mitochondrial genomes
  publication-title: Curr. Biol.
– volume: 286
  start-page: 19630
  year: 2011
  ident: 10.1016/j.bbagen.2021.129886_bb0080
  article-title: Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.209338
– volume: 333
  start-page: 228
  year: 2011
  ident: 10.1016/j.bbagen.2021.129886_bb0100
  article-title: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
  publication-title: Science
  doi: 10.1126/science.1205405
– volume: 196
  start-page: 137
  year: 1991
  ident: 10.1016/j.bbagen.2021.129886_bb0020
  article-title: Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(91)90467-9
– volume: 524
  start-page: 309
  year: 2015
  ident: 10.1016/j.bbagen.2021.129886_bb0110
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
  doi: 10.1038/nature14893
– volume: 8
  start-page: 424
  year: 2012
  ident: 10.1016/j.bbagen.2021.129886_bb0060
  article-title: Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy
  publication-title: Autophagy
  doi: 10.4161/auto.19243
– volume: 60
  start-page: 7
  year: 2015
  ident: 10.1016/j.bbagen.2021.129886_bb0105
  article-title: The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.016
– volume: 92
  start-page: 4542
  year: 1995
  ident: 10.1016/j.bbagen.2021.129886_bb0165
  article-title: Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.92.10.4542
– volume: 28
  start-page: 43
  year: 2014
  ident: 10.1016/j.bbagen.2021.129886_bb0070
  article-title: The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.11.022
– volume: 168
  start-page: 224
  year: 2017
  ident: 10.1016/j.bbagen.2021.129886_bb0120
  article-title: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.042
– volume: 127
  start-page: 3488
  year: 2014
  ident: 10.1016/j.bbagen.2021.129886_bb0195
  article-title: A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently
  publication-title: J. Cell Sci.
– volume: 402
  start-page: 371
  year: 1999
  ident: 10.1016/j.bbagen.2021.129886_bb0170
  article-title: Ubiquitin tag for sperm mitochondria
  publication-title: Nature
  doi: 10.1038/46466
– volume: 283
  start-page: 1482
  year: 1999
  ident: 10.1016/j.bbagen.2021.129886_bb0015
  article-title: Mitochondrial diseases in man and mouse
  publication-title: Science
  doi: 10.1126/science.283.5407.1482
– volume: 5
  year: 2016
  ident: 10.1016/j.bbagen.2021.129886_bb0180
  article-title: Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1
  publication-title: eLife
  doi: 10.7554/eLife.17896
– volume: 334
  start-page: 1144
  year: 2011
  ident: 10.1016/j.bbagen.2021.129886_bb0040
  article-title: Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission
  publication-title: Science
  doi: 10.1126/science.1211878
– volume: 8
  start-page: 421
  year: 2012
  ident: 10.1016/j.bbagen.2021.129886_bb0055
  article-title: Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles
  publication-title: Autophagy
  doi: 10.4161/auto.19242
– volume: 151
  start-page: 333
  year: 2012
  ident: 10.1016/j.bbagen.2021.129886_bb0190
  article-title: Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.004
– volume: 334
  start-page: 1141
  year: 2011
  ident: 10.1016/j.bbagen.2021.129886_bb0045
  article-title: Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos
  publication-title: Science
  doi: 10.1126/science.1210333
– volume: 110
  start-page: 13038
  year: 2013
  ident: 10.1016/j.bbagen.2021.129886_bb0175
  article-title: Unique insights into maternal mitochondrial inheritance in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1303231110
– volume: 353
  start-page: 394
  year: 2016
  ident: 10.1016/j.bbagen.2021.129886_bb0085
  article-title: Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization
  publication-title: Science
  doi: 10.1126/science.aaf4777
– volume: 7
  start-page: 12569
  year: 2016
  ident: 10.1016/j.bbagen.2021.129886_bb0130
  article-title: Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12569
– volume: 103
  start-page: 1382
  year: 2006
  ident: 10.1016/j.bbagen.2021.129886_bb0155
  article-title: Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0506911103
– volume: 27
  start-page: 1033
  year: 2017
  ident: 10.1016/j.bbagen.2021.129886_bb0140
  article-title: The mitochondrial DNA polymerase promotes elimination of paternal mitochondrial genomes
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.02.014
– volume: 29
  start-page: 305
  year: 2014
  ident: 10.1016/j.bbagen.2021.129886_bb0145
  article-title: Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.04.005
– volume: 142
  start-page: 1705
  year: 2015
  ident: 10.1016/j.bbagen.2021.129886_bb0075
  article-title: Sperm-inherited organelle clearance in C. elegans relies on LC3-dependent autophagosome targeting to the pericentrosomal area
  publication-title: Development
  doi: 10.1242/dev.117879
– year: 2006
  ident: 10.1016/j.bbagen.2021.129886_bb0050
  article-title: Spermatogenesis
– volume: 1819
  start-page: 914
  year: 2012
  ident: 10.1016/j.bbagen.2021.129886_bb0025
  article-title: Mitochondrial DNA nucleoid structure
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.11.005
– volume: 21
  start-page: 1662
  year: 2011
  ident: 10.1016/j.bbagen.2021.129886_bb0065
  article-title: Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.182
– volume: 454
  start-page: 15
  year: 2019
  ident: 10.1016/j.bbagen.2021.129886_bb0125
  article-title: Fndc-1 contributes to paternal mitochondria elimination in C. elegans
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2019.06.016
– volume: 453
  start-page: 168
  year: 2019
  ident: 10.1016/j.bbagen.2021.129886_bb0115
  article-title: Ubiquitination is required for the initial removal of paternal organelles in C. elegans
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2019.05.015
– volume: 290
  start-page: 457
  year: 1981
  ident: 10.1016/j.bbagen.2021.129886_bb0010
  article-title: Sequence and organization of the human mitochondrial genome
  publication-title: Nature
  doi: 10.1038/290457a0
– volume: 1833
  start-page: 1979
  year: 2013
  ident: 10.1016/j.bbagen.2021.129886_bb0035
  article-title: Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2013.03.010
– volume: 10
  start-page: 2468
  year: 2020
  ident: 10.1016/j.bbagen.2021.129886_bb0150
  article-title: Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in Cryptococcus neoformans
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59277-9
– volume: 93
  start-page: 13859
  year: 1996
  ident: 10.1016/j.bbagen.2021.129886_bb0030
  article-title: Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.24.13859
– volume: 62
  start-page: 225
  year: 2018
  ident: 10.1016/j.bbagen.2021.129886_bb0185
  article-title: The mitochondrial DNA genetic bottleneck: inheritance and beyond
  publication-title: Essays Biochem.
  doi: 10.1042/EBC20170096
– volume: 40
  year: 2021
  ident: 10.1016/j.bbagen.2021.129886_bb0005
  article-title: Molecular mechanisms and physiological functions of mitophagy
  publication-title: EMBO J.
  doi: 10.15252/embj.2020104705
– volume: 10
  start-page: 1215
  year: 2009
  ident: 10.1016/j.bbagen.2021.129886_bb0095
  article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1800
– volume: 123
  start-page: 139
  year: 2010
  ident: 10.1016/j.bbagen.2021.129886_bb0160
  article-title: Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-009-0298-5
– volume: 22
  start-page: 660
  year: 2012
  ident: 10.1016/j.bbagen.2021.129886_bb0135
  article-title: Barriers to male transmission of mitochondrial DNA in sperm development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.12.021
– volume: 20
  start-page: 81
  year: 2018
  ident: 10.1016/j.bbagen.2021.129886_bb0090
  article-title: The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-017-0008-9
SSID ssj0000595
Score 2.402575
SecondaryResourceType review_article
Snippet In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal...
In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally.BACKGROUNDIn most sexually reproducing organisms, mitochondrial DNA...
In most sexually reproducing organisms, mitochondrial DNA (mtDNA) is inherited maternally. In this review, we summarise recent knowledge on how paternal...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129886
SubjectTerms Allophagy
animal development
Caenorhabditis elegans
digestion
Fertilization
Maternal inheritance
Mitochondria
Mitochondrial DNA
Mitophagy
Title Degradation of paternal mitochondria via mitophagy
URI https://dx.doi.org/10.1016/j.bbagen.2021.129886
https://www.ncbi.nlm.nih.gov/pubmed/33636253
https://www.proquest.com/docview/2494306788
https://www.proquest.com/docview/2552027040
Volume 1865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KRfQiWl_1UVbwuq2bZB89lmqpil5U6C0kadYHui3aCr34253Z7FYEteBhDxuSJUwm38zsvACOh5x6WCTWV0IIX6DG4euQM19oHpr4hOkgr85_dR3178TFIBxUoFvmwlBYZYH9DtNztC5GWgU1W-PHx9YNOfVQnUD5k7sl8wx2EROXNz--wjxQfQidJwG3grPL9Lk8xktrvLRUBZUFTRR8CWVU_yyeflM_czHUW4e1Qn_0Om6LG1CxWQ2WXUfJWQ1WumUDt01gp1QIwvVM8kapN1au4LP3grcYUS8bIvN57_jQwPhB3c-24K53dtvt-0WLBN-IKJj4Go1AHehYJTai5i0qJZMvUTYVlqWxPdE8UtayyAZtFZshWhvGIAAK1Bs4tXrZhmo2yuwueEwJHpMT0TAtEAJValiKykRoozZ-zNSBl5SRpqgfTm0snmUZKPYkHT0l0VM6etbBn68au_oZC-bHJdHlNz6QCPELVh6VZySR0OT3UJkdTd8kWpiCLKMk-WNOGNJvIIS0Ouy4A57vl_MIxXzI9_69t31YpTcXYnYA1cnr1B6iMjPRjZxbG7DUOb_sX38Cj6HvWQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kRfQivl2fFbzGtXm03aOsyvraiwreQpJNfaDdRVdh_70zTasIPsBDL2lSwiT5ZqYzmQ9gty-IwyLzzEgpmUSLg1klOJNWKJfucxuX1fkvekn3Wp7eqJsJ6NR3YSitssL-gOklWlctrUqareH9feuSgnpoTqD-KcOS6AJNUnUq1YDJg5Ozbu8TkFVJvkL9GQ2ob9CVaV7W4rmlQqg83kPdl9Gl6u811E8WaKmJjudgtjIho4Mwy3mY8MUCTAVSyfECTHdqDrdF4IdUCyLQJkWDPBqaUPM5esKDjMBX9HH_RW_4UMPwztyOl-D6-Oiq02UVSwJzMolHzKIfaGObmswnxN9icvL6MuNz6Xme-n0rEuM9T3zcNqnro8PhHGKgRNNBENvLMjSKQeFXIeJGipTiiI5biShocsdztCeUT9r4MdcEUUtGu6qEODFZPOo6V-xBB3lqkqcO8mwC-xg1DCU0_uif1kLXX7aCRpT_Y-ROvUYaBU2hD1P4weuLRidTknOUZb_0UYr-BCGqNWElLPDHfIVIUNMrsfbvuW3DdPfq4lyfn_TO1mGG3oSMsw1ojJ5f_SbaNiO7Ve3dd80c8go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+paternal+mitochondria+via+mitophagy&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Sasaki%2C+Taeko&rft.au=Sato%2C+Miyuki&rft.date=2021-06-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1865&rft.issue=6&rft.spage=129886&rft_id=info:doi/10.1016%2Fj.bbagen.2021.129886&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon