Multi-Source Transfer Learning for EEG Classification Based on Domain Adversarial Neural Network

Electroencephalogram (EEG) classification has attracted great attention in recent years, and many models have been presented for this task. Nevertheless, EEG data vary from subject to subject, which may lead to the performance of a classifier degrades due to individual differences. To collect enough...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 218 - 228
Main Authors Liu, Dezheng, Zhang, Jia, Wu, Hanrui, Liu, Siwei, Long, Jinyi
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG) classification has attracted great attention in recent years, and many models have been presented for this task. Nevertheless, EEG data vary from subject to subject, which may lead to the performance of a classifier degrades due to individual differences. To collect enough labeled data to model would address the issue, but it is often time-consuming and labor-intensive. In this paper, we propose a new multi-source transfer learning method based on domain adversarial neural network for EEG classification. Specifically, we design a domain adversarial neural network, which includes a feature extractor, a classifier, and a domain discriminator, and therefore reduce the domain shift to achieve the purpose. In addition, a unified multi-source optimization framework is constructed to further improve the performance, and the result for EEG classification is induced by the weighted combination of the predictions from multiple source domains. Experiments on three publicly available EEG datasets validate the advantages of the proposed method.
AbstractList Electroencephalogram (EEG) classification has attracted great attention in recent years, and many models have been presented for this task. Nevertheless, EEG data vary from subject to subject, which may lead to the performance of a classifier degrades due to individual differences. To collect enough labeled data to model would address the issue, but it is often time-consuming and labor-intensive. In this paper, we propose a new multi-source transfer learning method based on domain adversarial neural network for EEG classification. Specifically, we design a domain adversarial neural network, which includes a feature extractor, a classifier, and a domain discriminator, and therefore reduce the domain shift to achieve the purpose. In addition, a unified multi-source optimization framework is constructed to further improve the performance, and the result for EEG classification is induced by the weighted combination of the predictions from multiple source domains. Experiments on three publicly available EEG datasets validate the advantages of the proposed method.
Electroencephalogram (EEG) classification has attracted great attention in recent years, and many models have been presented for this task. Nevertheless, EEG data vary from subject to subject, which may lead to the performance of a classifier degrades due to individual differences. To collect enough labeled data to model would address the issue, but it is often time-consuming and labor-intensive. In this paper, we propose a new multi-source transfer learning method based on domain adversarial neural network for EEG classification. Specifically, we design a domain adversarial neural network, which includes a feature extractor, a classifier, and a domain discriminator, and therefore reduce the domain shift to achieve the purpose. In addition, a unified multi-source optimization framework is constructed to further improve the performance, and the result for EEG classification is induced by the weighted combination of the predictions from multiple source domains. Experiments on three publicly available EEG datasets validate the advantages of the proposed method.Electroencephalogram (EEG) classification has attracted great attention in recent years, and many models have been presented for this task. Nevertheless, EEG data vary from subject to subject, which may lead to the performance of a classifier degrades due to individual differences. To collect enough labeled data to model would address the issue, but it is often time-consuming and labor-intensive. In this paper, we propose a new multi-source transfer learning method based on domain adversarial neural network for EEG classification. Specifically, we design a domain adversarial neural network, which includes a feature extractor, a classifier, and a domain discriminator, and therefore reduce the domain shift to achieve the purpose. In addition, a unified multi-source optimization framework is constructed to further improve the performance, and the result for EEG classification is induced by the weighted combination of the predictions from multiple source domains. Experiments on three publicly available EEG datasets validate the advantages of the proposed method.
Author Liu, Siwei
Long, Jinyi
Wu, Hanrui
Liu, Dezheng
Zhang, Jia
Author_xml – sequence: 1
  givenname: Dezheng
  surname: Liu
  fullname: Liu, Dezheng
  organization: College of Information Science and Technology, Jinan University, Guangzhou, China
– sequence: 2
  givenname: Jia
  orcidid: 0000-0002-6079-2818
  surname: Zhang
  fullname: Zhang, Jia
  organization: College of Information Science and Technology, Jinan University, Guangzhou, China
– sequence: 3
  givenname: Hanrui
  orcidid: 0000-0003-3565-6635
  surname: Wu
  fullname: Wu, Hanrui
  organization: College of Information Science and Technology, Jinan University, Guangzhou, China
– sequence: 4
  givenname: Siwei
  orcidid: 0000-0001-9188-5622
  surname: Liu
  fullname: Liu, Siwei
  organization: College of Information Science and Technology, Jinan University, Guangzhou, China
– sequence: 5
  givenname: Jinyi
  orcidid: 0000-0001-6150-987X
  surname: Long
  fullname: Long, Jinyi
  email: jinyil@jnu.edu.cn
  organization: College of Information Science and Technology, Jinan University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36331634$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhiNURD_gD4CEInHpJYvHdhznWJalVFqKRJezmSTjyks2bu2Ein-P96M99MBpRqPnfcee9zQ7GvxAWfYW2AyA1R9X1zc_FjPOOJ8JDrUE_SI7gbLUBePAjra9kIUUnB1npzGuGYNKldWr7FgoIUAJeZL9-jb1oytu_BRaylcBh2gp5EvCMLjhNrc-5IvFZT7vMUZnXYuj80P-CSN1eWo--w26Ib_o_lCIGBz2-TVNYVfGBx9-v85eWuwjvTnUs-znl8Vq_rVYfr-8ml8si1YqGItGaMu7WgE2tZRtralTaJuaiEnFOQgNWHVMMl03HIUWRNJi2ZSCq67VXJxlV3vfzuPa3AW3wfDXeHRmN_Dh1mAYXduTYQigVCeqRlpZSaulTls5qMqWAmDrdb73ugv-fqI4mo2LLfU9DuSnaHgleCmBa5nQD8_QdTrlkH6aqCoFkCCWqPcHamo21D097zGHBOg90AYfYyBrWjfuTj0GdL0BZraRm13kZhu5OUSepPyZ9NH9v6J3e5EjoidBXYuagRD_AIPBtFU
CODEN ITNSB3
CitedBy_id crossref_primary_10_3390_brainsci14070688
crossref_primary_10_1109_TNSRE_2024_3445115
crossref_primary_10_1109_TII_2024_3450010
crossref_primary_10_1088_1741_2552_ad5fbd
crossref_primary_10_1080_10255842_2024_2404541
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_1088_1741_2552_ad1f7a
crossref_primary_10_1088_1741_2552_ad5761
crossref_primary_10_1109_ACCESS_2024_3430838
crossref_primary_10_3390_app14062253
crossref_primary_10_1109_ACCESS_2024_3421569
crossref_primary_10_1016_j_jneumeth_2024_110332
crossref_primary_10_1109_ACCESS_2024_3403106
crossref_primary_10_1016_j_engappai_2025_110340
crossref_primary_10_1016_j_knosys_2023_111365
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1007_s11517_024_03032_z
Cites_doi 10.1109/RBME.2017.2656388
10.1007/s13755-019-0076-2
10.1016/j.neunet.2014.05.012
10.1145/1961189.1961199
10.1007/978-3-319-70093-9_57
10.1155/2018/9871603
10.1002/hbm.23730
10.3390/s19030551
10.1609/aaai.v30i1.10306
10.1109/TNSRE.2019.2923315
10.1109/JSEN.2021.3101684
10.1109/TBME.2019.2913914
10.1109/CAC.2018.8623637
10.1088/1741-2552/ac4430
10.1109/TBME.2017.2742541
10.1007/978-3-030-27526-6_49
10.1109/TNSRE.2020.2985996
10.1109/ICCV.2013.274
10.1145/3492804
10.1088/1741-2552/aace8c
10.1145/3391229
10.1016/j.bspc.2020.102172
10.1109/ACCESS.2019.2930958
10.2307/2283970
10.1109/TKDE.2017.2659740
10.1109/JSEN.2016.2519886
10.1016/S1388-2457(02)00057-3
10.1088/1741-2552/ab405f
10.1016/j.neucom.2017.10.013
10.1109/ICASSP.2018.8462115
10.1109/TCDS.2019.2949306
10.1109/TAFFC.2019.2916015
10.1109/TCDS.2018.2826840
10.1109/TCYB.2019.2904052
10.1109/TNSRE.2011.2116125
10.1109/MSP.2008.4408446
10.1109/WACV48630.2021.00134
10.1109/CVPR.2017.547
10.1109/TBCAS.2019.2929053
10.1109/MCI.2015.2501545
10.1109/TBME.2021.3115799
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.neuroimage.2007.01.051
10.1109/IWW-BCI.2019.8737345
10.1109/TKDE.2009.191
10.1109/TNNLS.2020.3010780
10.1109/TAFFC.2017.2714671
10.1109/TAFFC.2018.2885474
10.1007/978-0-387-45528-0
10.1088/1741-2552/ab0ab5
10.1109/TNSRE.2020.3006180
10.1109/TBME.2004.827088
10.1109/TNSRE.2020.2966749
10.1109/TKDE.2020.3014697
10.3156/jsoft.29.5_177_2
10.1109/CVPR.2018.00577
10.1007/978-0-387-78189-1_8
10.1109/RBME.2011.2172408
10.1088/1741-2560/4/2/R01
10.1088/1741-2552/ab64a0
10.1109/ICCV.2017.194
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3219418
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 228
ExternalDocumentID oai_doaj_org_article_0a1166d37b4f474f848ab92167f53112
36331634
10_1109_TNSRE_2022_3219418
9939013
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Outstanding Youth Project of Guangdong Natural Science Foundation of China
  grantid: 2021B1515020076
  funderid: 10.13039/501100003453
– fundername: National Natural Science Foundation of Guangdong, China
  grantid: 2019A1515012175; 2022A1515010468
  funderid: 10.13039/501100003453
– fundername: Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization
  grantid: 2021B1212040007
– fundername: Fundamental Research Funds for the Central Universities, Jinan University
  grantid: 21621026; 21622326
  funderid: 10.13039/501100004024
– fundername: National Natural Science Foundation of China
  grantid: 62206111; 62276115; 62106084
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-b38f2d961ab944c98ed6afb9ee046221381a7d04089b2a383ee4fa5b5326dc823
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:26:21 EDT 2025
Thu Jul 10 19:57:07 EDT 2025
Sun Jul 13 04:27:01 EDT 2025
Thu Apr 03 07:03:17 EDT 2025
Tue Jul 01 00:43:26 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Wed Aug 27 02:18:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-b38f2d961ab944c98ed6afb9ee046221381a7d04089b2a383ee4fa5b5326dc823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9188-5622
0000-0002-6079-2818
0000-0001-6150-987X
0000-0003-3565-6635
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9939013
PMID 36331634
PQID 2771532840
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_2732541284
doaj_primary_oai_doaj_org_article_0a1166d37b4f474f848ab92167f53112
proquest_journals_2771532840
ieee_primary_9939013
pubmed_primary_36331634
crossref_citationtrail_10_1109_TNSRE_2022_3219418
crossref_primary_10_1109_TNSRE_2022_3219418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Schlögl (ref50) 2005
ref51
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
Kingma (ref61) 2014
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
Maaten (ref66) 2008; 9
ref39
ref38
Zheng (ref9)
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
Demir (ref42) 2018
ref60
ref62
References_xml – ident: ref2
  doi: 10.1109/RBME.2017.2656388
– ident: ref10
  doi: 10.1007/s13755-019-0076-2
– ident: ref12
  doi: 10.1016/j.neunet.2014.05.012
– ident: ref60
  doi: 10.1145/1961189.1961199
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref66
  article-title: Visualizing datausing t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref39
  doi: 10.1007/978-3-319-70093-9_57
– ident: ref28
  doi: 10.1155/2018/9871603
– ident: ref45
  doi: 10.1002/hbm.23730
– ident: ref47
  doi: 10.3390/s19030551
– ident: ref57
  doi: 10.1609/aaai.v30i1.10306
– ident: ref29
  doi: 10.1109/TNSRE.2019.2923315
– ident: ref52
  doi: 10.1109/JSEN.2021.3101684
– ident: ref56
  doi: 10.1109/TBME.2019.2913914
– ident: ref53
  doi: 10.1109/CAC.2018.8623637
– ident: ref54
  doi: 10.1088/1741-2552/ac4430
– ident: ref30
  doi: 10.1109/TBME.2017.2742541
– ident: ref40
  doi: 10.1007/978-3-030-27526-6_49
– ident: ref11
  doi: 10.1109/TNSRE.2020.2985996
– ident: ref58
  doi: 10.1109/ICCV.2013.274
– ident: ref22
  doi: 10.1145/3492804
– ident: ref26
  doi: 10.1088/1741-2552/aace8c
– ident: ref24
  doi: 10.1145/3391229
– ident: ref32
  doi: 10.1016/j.bspc.2020.102172
– ident: ref38
  doi: 10.1109/ACCESS.2019.2930958
– ident: ref64
  doi: 10.2307/2283970
– volume-title: Dataset IIIB: Non-stationary 2-class BCI data
  year: 2005
  ident: ref50
– ident: ref48
  doi: 10.1109/TKDE.2017.2659740
– ident: ref6
  doi: 10.1109/JSEN.2016.2519886
– ident: ref1
  doi: 10.1016/S1388-2457(02)00057-3
– year: 2014
  ident: ref61
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– start-page: 2732
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref9
  article-title: Personalizing EEG-based affective models with transfer learning
– ident: ref46
  doi: 10.1088/1741-2552/ab405f
– ident: ref31
  doi: 10.1016/j.neucom.2017.10.013
– ident: ref41
  doi: 10.1109/ICASSP.2018.8462115
– ident: ref15
  doi: 10.1109/TCDS.2019.2949306
– ident: ref37
  doi: 10.1109/TAFFC.2019.2916015
– ident: ref13
  doi: 10.1109/TCDS.2018.2826840
– ident: ref14
  doi: 10.1109/TCYB.2019.2904052
– ident: ref3
  doi: 10.1109/TNSRE.2011.2116125
– ident: ref5
  doi: 10.1109/MSP.2008.4408446
– ident: ref20
  doi: 10.1109/WACV48630.2021.00134
– ident: ref59
  doi: 10.1109/CVPR.2017.547
– ident: ref35
  doi: 10.1109/TBCAS.2019.2929053
– year: 2018
  ident: ref42
  article-title: Patch-based image inpainting with generative adversarial networks
  publication-title: arXiv:1803.07422
– ident: ref8
  doi: 10.1109/MCI.2015.2501545
– ident: ref62
  doi: 10.1109/TBME.2021.3115799
– ident: ref65
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref51
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: ref17
  doi: 10.1109/IWW-BCI.2019.8737345
– ident: ref25
  doi: 10.1109/TKDE.2009.191
– ident: ref16
  doi: 10.1109/TNNLS.2020.3010780
– ident: ref34
  doi: 10.1109/TAFFC.2017.2714671
– ident: ref19
  doi: 10.1109/TAFFC.2018.2885474
– ident: ref27
  doi: 10.1007/978-0-387-45528-0
– ident: ref33
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref18
  doi: 10.1109/TNSRE.2020.3006180
– ident: ref49
  doi: 10.1109/TBME.2004.827088
– ident: ref63
  doi: 10.1109/TNSRE.2020.2966749
– ident: ref23
  doi: 10.1109/TKDE.2020.3014697
– ident: ref21
  doi: 10.3156/jsoft.29.5_177_2
– ident: ref43
  doi: 10.1109/CVPR.2018.00577
– ident: ref55
  doi: 10.1007/978-0-387-78189-1_8
– ident: ref4
  doi: 10.1109/RBME.2011.2172408
– ident: ref7
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref36
  doi: 10.1088/1741-2552/ab64a0
– ident: ref44
  doi: 10.1109/ICCV.2017.194
SSID ssj0017657
Score 2.49404
Snippet Electroencephalogram (EEG) classification has attracted great attention in recent years, and many models have been presented for this task. Nevertheless, EEG...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 218
SubjectTerms adversarial learning
Brain modeling
Brain-computer interfaces
Classification
Classifiers
Deep learning
Domains
EEG
electroencephalogram
Electroencephalography
Feature extraction
Generative adversarial networks
Humans
Learning
Machine Learning
multi-source fusion
Neural networks
Neural Networks, Computer
Optimization
Performance enhancement
Training
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnHqpaCklhVauVLhUgcR27PhYYCmqBAdYJG6u49hVpZKtYPn_nXG80fZAe-kpUdaxsp43ejP-mAfw0aETVb7xpZG-KqXmsUTcyLJytC7EG1EFmhq4uFTnN_LrbXO7JvVFe8LG8sDjwB1Vrq6V6oXuZJRaxla2rjO8VjoifJK-MEfOWyVTef1Aq0avjshU5mh-eX01w2SQ80OBLipJ4mONhlK1_iyv8nSkmRjnbBNe5FCRfR4_8SU8C8Mr2F8vC8zmY00AdsCu_qi4vQXf0sna8jrNzbPESDHcs1xO9TvDWJXNZl9YEsWk7ULpPXaMpNYzvDld3LkfA0t6zQ-OUMqojke6pI3jr-HmbDY_OS-zmkLppaqXZSfayHujahw-Kb1pQ69c7EwIdD6V10jdTvfo063puMPENQQZXdM1GOD1vuViGzaGxRB2gEV8inlWh33VlF5jSBOU9k6iYYz2sYB6NbjW5z9Oihc_bUo5KmOTQSwZxGaDFPBpeufXWGjjr62PyWZTSyqSnR4gdGyGjv0XdArYIotPnWCohtGRKGBvhQCbHfrBcq2RG5DLqwI-TD-jK9L6ihvC4pHaILglEX4Bb0bkTH0LJQSGvvLt__jwXXhOqvfjTNAebCzvH8M7jI2W3fvkBr8BAEcFEw
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Source Transfer Learning for EEG Classification Based on Domain Adversarial Neural Network
URI https://ieeexplore.ieee.org/document/9939013
https://www.ncbi.nlm.nih.gov/pubmed/36331634
https://www.proquest.com/docview/2771532840
https://www.proquest.com/docview/2732541284
https://doaj.org/article/0a1166d37b4f474f848ab92167f53112
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGBQnmklMpIwAWy9St2cqSwpUJqD-1W6s3Yjl0hIIva3Qu_nrHzEEWAOCVKHO9aM-P5Zmx_A_DCohFRX_mykZ6WUvNYot7Iktq0LsQrQUNKDZycquML-fGyutyAN9NZmBBC3nwWZuk2r-W3S79OqbID9KXovsQmbGLg1p_VmlYMtMqsnmjAspSC0_GADG0OFqfnZ3MMBTmfCTRQyVKRPqGEQCwib_mjTNs_1Fn5O-TMrufoHpyMf7rfcfJltl65mf_xG5_j_45qG-4OGJS87ZXmPmyE7gG8_JVvmCx6sgHyipzdovLegU_5yG55npP-JLu6GK7JwNN6RRAEk_n8A8nVNtM-pPwdOURv2RK8eb_8Zj93JBeCvrFJ_UkiCMmXvCP9IVwczRfvjsuhTEPppWKr0ok68rZRzLpGSt_UoVU2uiaEdPCVM8QEVrc4WdSN4xYj4hBktJWrEDm2vubiEWx1yy48ARLxKQZwDvtiKW5HrBSU9lY6RHHaxwLYKCzjh4GnUhpfTY5laGOyrE2StRlkXcDr6ZvvPYPHP1sfJh2YWib27fwARWYGYzbUMqZUK7STUWoZa1nj2DlTOuKUxngBO0nMUyeDhAvYGzXKDDPFjeFao84iSKAFPJ9eo42nhRvbheU6tUGrkQlJFPC418Sp71GPd__8m0_hDg5P9EmjPdhaXa_DM4RRK7ef0w_72Yp-AkJWFHo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr_IIFDAScIFs40fs5EhhywLdPbRbqTdjOzZCQBa1uxd-PWPnIYoAcUqUON61Zsbzje35BuCpQSMqXOnyWrgiF4qFHPVG5IWJ-0Ks5IWPSwPzhZydiPen5ekWvBxzYbz36fCZn8TbtJffrNwmLpXtoS9F98UvwWX0-yXrsrXGPQMlE68nmrDIBWfFkCJT1HvLxfHRFINBxiYcTVTQWKaPS84RjYgLHikR9_eVVv4OOpPzObgO8-Fvd2dOvkw2aztxP35jdPzfcd2Aaz0KJa86tbkJW769Bc9-ZRwmy45ugDwnRxfIvHfgY0razY_Tsj9Jzi74M9IztX4iCIPJdPqWpHqb8SRS-o7so79sCN68WX0zn1uSSkGfm2gAJFKEpEs6k34bTg6my9ezvC_UkDsh6Tq3vAqsqSU1thbC1ZVvpAm29j6mvjKKqMCoBqeLqrbMYEzsvQimtCVix8ZVjN-B7XbV-ntAAj7FEM5iXzRG7oiWvFTOCIs4TrmQAR2EpV0_8FhM46tO0UxR6yRrHWWte1ln8GL85nvH4fHP1vtRB8aWkX87PUCR6d6cdWEolbLhyooglAiVqHDsjEoVcFKjLIOdKOaxk17CGewOGqX7ueJcM6VQZxEmFBk8GV-jlcetG9P61Sa2QbsREUtkcLfTxLHvQY_v__k3H8OV2XJ-qA_fLT48gKs4VN4tIe3C9vps4x8iqFrbR8mWfgJNFBbP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Source+Transfer+Learning+for+EEG+Classification+Based+on+Domain+Adversarial+Neural+Network&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liu%2C+Dezheng&rft.au=Zhang%2C+Jia&rft.au=Wu%2C+Hanrui&rft.au=Liu%2C+Siwei&rft.date=2023&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=31&rft.spage=218&rft.epage=228&rft_id=info:doi/10.1109%2FTNSRE.2022.3219418&rft_id=info%3Apmid%2F36331634&rft.externalDocID=9939013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon