Enhancement of air-stability, π-stacking ability, and charge transport properties of fluoroalkyl side chain engineered n-type naphthalene tetracarboxylic diimide compounds
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a...
Saved in:
Published in | RSC advances Vol. 11; no. 1; pp. 57 - 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. |
---|---|
AbstractList | In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π–π stacking ability. This is also in good agreement for the predicted π–π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π–π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. |
Author | Gogoi, Gautomi Bhattacharya, Labanya Sharma, Sagar Sahu, Sridhar Sarma, Neelotpal Sen Sahoo, Smruti R |
AuthorAffiliation | High Performance Computing Lab Department of Chemistry Physical Sciences Division Indian Institute of Technology (Indian School of Mines) Assam Don Bosco University Cotton University Institute of Advanced Study in Science and Technology School of Fundamental and Applied Sciences Advanced Materials Laboratory Department of Physics |
AuthorAffiliation_xml | – name: Institute of Advanced Study in Science and Technology – name: High Performance Computing Lab – name: School of Fundamental and Applied Sciences – name: Department of Chemistry – name: Advanced Materials Laboratory – name: Physical Sciences Division – name: Indian Institute of Technology (Indian School of Mines) – name: Cotton University – name: Department of Physics – name: Assam Don Bosco University |
Author_xml | – sequence: 1 givenname: Gautomi surname: Gogoi fullname: Gogoi, Gautomi – sequence: 2 givenname: Labanya surname: Bhattacharya fullname: Bhattacharya, Labanya – sequence: 3 givenname: Smruti R surname: Sahoo fullname: Sahoo, Smruti R – sequence: 4 givenname: Sridhar surname: Sahu fullname: Sahu, Sridhar – sequence: 5 givenname: Neelotpal Sen surname: Sarma fullname: Sarma, Neelotpal Sen – sequence: 6 givenname: Sagar surname: Sharma fullname: Sharma, Sagar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35423045$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1TAQhiNURC90wx5kiU2FCNix4yQbpOpQLlIlJARry3EmJ24dO7UdxNnxQLwLr4TT0x5KhYQ39tjf_2s8M4fZnnUWsuwJwa8Ips3rDnuJa8pK9SA7KDDjeYF5s3fnvJ8dh3CB0-IlKTh5lO3TkhUUs_Ig-3lmB2kVjGAjcj2S2uchylYbHTcv0a8fS6QutV2j3aW0HVKD9GtA0UsbJucjmrybwEcNYbHpzey8k-ZyY1DQHSy8tgjsWlsADx2yedxMgKychjhIAzaZQbJT0rfu-8ZohTqtx2utGyc32y48zh720gQ4vtmPsq_vzr6sPuTnn95_XJ2e54pxEvOWUsrbqiYKS8AYOlJS2khCOFRMtS3ualr0rATMOlpLynnfcwZJ02AlWUWPsjdb32luR-hUqo2XRkxej9JvhJNa_P1i9SDW7puoeYNZQZLByY2Bd1czhChGHRQYIy24OYgidSKhVVX-Hy0LVjQ1rXhCn99DL9zsbaqEKFhdMkYooYl6djf5Xda3PU8A3gLKuxA89ELpKKN2y1-0EQSLZbLEW_z59HqyVkny4p7k1vWf8NMt7IPacX_GlP4GMmTcFw |
CitedBy_id | crossref_primary_10_3390_molecules29184376 crossref_primary_10_1016_j_jma_2023_11_008 crossref_primary_10_1039_D3TC01497E crossref_primary_10_1021_acs_chemrev_1c00078 crossref_primary_10_1016_j_microc_2023_109524 crossref_primary_10_1002_advs_202204872 crossref_primary_10_1021_acs_macromol_2c01164 crossref_primary_10_1021_acsomega_3c05172 crossref_primary_10_1051_e3sconf_202343001050 |
Cites_doi | 10.1021/acsami.9b04671 10.1021/ja805407g 10.1021/acs.jpca.6b07552 10.1021/am500522x 10.1021/jp1025625 10.1021/acs.jpca.8b00261 10.1039/c2cc33886f 10.1021/cr900271s 10.1021/cr100380z 10.1021/ct400481r 10.1002/anie.200701920 10.1007/s00214-019-2516-0 10.1021/acsami.6b04753 10.1039/c3cp44673e 10.1002/jcc.22885 10.1039/c2cc31619f 10.1002/pi.1974 10.1107/S1600536808036738 10.1002/adma.201304346 10.1021/cr500225d 10.1039/C3RA47257D 10.1071/CH04130 10.1021/ja000870g 10.1007/s00216-011-5363-y 10.1021/acsami.9b04486 10.1002/1439-7641(20010316)2:3<167::AID-CPHC167>3.0.CO;2-F 10.1063/1.2803073 10.1002/adfm.201000655 10.1002/adfm.200701045 10.1002/jcc.20823 10.1007/s00894-019-3922-x 10.1021/acsomega.8b02713 10.1021/cm062352w 10.1016/j.synthmet.2009.08.004 10.1002/adfm.201000425 10.1002/ejoc.201800161 10.1021/acs.chemmater.8b04800 10.1021/acs.cgd.7b01385 10.1016/j.mattod.2013.04.005 10.1021/cm7032614 10.1021/cm049391x 10.1021/ja0771989 10.1021/jp076278w 10.1016/j.orgel.2006.06.010 10.1021/jp1099464 10.1016/S0379-6779(97)80097-5 10.1039/C6TC00755D 10.1039/c1cp20391f 10.1021/ja962461j 10.1039/C4CP03231D 10.1021/jacs.6b05118 10.1021/cm504545e 10.1016/S0379-6779(96)03761-7 10.1021/jo0612269 10.1038/35006603 10.1021/jo2001963 10.1021/jo101498b 10.1021/ja809555c 10.1039/C6CC01148A |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/d0ra08345c |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 7 |
ExternalDocumentID | PMC8690421 35423045 10_1039_D0RA08345C d0ra08345c |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: DST/INSPIRE/04/2014/000185 |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAEMU AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABJNI ABPDG ABXOH AEFDR AESAV AETIL AFLYV AFPKN AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANBJS ANUXI APEMP CITATION ECGLT EJD H13 HZ~ J3G J3H M~E PGMZT RAOCF RPM YAE -JG NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c461t-b3336b781c0ae00ed15339a116e74cbb0d832f45e04d38a366ff64e36b90ca473 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 14:07:29 EDT 2025 Thu Jul 10 17:39:55 EDT 2025 Thu Jul 10 22:45:37 EDT 2025 Mon Jun 30 03:35:23 EDT 2025 Thu Jan 02 22:54:20 EST 2025 Tue Jul 01 04:05:37 EDT 2025 Thu Apr 24 23:00:22 EDT 2025 Sat Jan 08 03:51:58 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-b3336b781c0ae00ed15339a116e74cbb0d832f45e04d38a366ff64e36b90ca473 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0ra08345c ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7427-9054 |
OpenAccessLink | http://dx.doi.org/10.1039/d0ra08345c |
PMID | 35423045 |
PQID | 2485441313 |
PQPubID | 2047525 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_35423045 crossref_primary_10_1039_D0RA08345C proquest_journals_2485441313 proquest_miscellaneous_2524298376 rsc_primary_d0ra08345c crossref_citationtrail_10_1039_D0RA08345C proquest_miscellaneous_2651690775 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8690421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Yan (D0RA08345C-(cit10)/*[position()=1]) 2019; 11 Gonthier (D0RA08345C-(cit62)/*[position()=1]) 2012; 48 Oh (D0RA08345C-(cit47)/*[position()=1]) 2007; 91 M de Leeuw (D0RA08345C-(cit51)/*[position()=1]) 1997; 87 Jones (D0RA08345C-(cit46)/*[position()=1]) 2008; 18 Liu (D0RA08345C-(cit48)/*[position()=1]) 2010; 114 Allard (D0RA08345C-(cit2)/*[position()=1]) 2008; 47 Murray (D0RA08345C-(cit57)/*[position()=1]) 1996 Wang (D0RA08345C-(cit1)/*[position()=1]) 2012; 112 Kielar (D0RA08345C-(cit9)/*[position()=1]) 2019; 11 Gogoi (D0RA08345C-(cit58)/*[position()=1]) 2019; 25 Jung (D0RA08345C-(cit20)/*[position()=1]) 2009; 159 Lee (D0RA08345C-(cit26)/*[position()=1]) 2008; 112 Krishna (D0RA08345C-(cit37)/*[position()=1]) 2016; 138 Lu (D0RA08345C-(cit36)/*[position()=1]) 2020; 139 Li (D0RA08345C-(cit49)/*[position()=1]) 2011; 13 Lu (D0RA08345C-(cit35)/*[position()=1]) 2012; 33 Lai (D0RA08345C-(cit61)/*[position()=1]) 2018; 3 Sutradhar (D0RA08345C-(cit52)/*[position()=1]) 2018; 122 Purushotham (D0RA08345C-(cit54)/*[position()=1]) 2013; 15 Guo (D0RA08345C-(cit28)/*[position()=1]) 2014; 114 Devarapalli (D0RA08345C-(cit40)/*[position()=1]) 2019; 31 Facchetti (D0RA08345C-(cit6)/*[position()=1]) 2013; 16 Back (D0RA08345C-(cit18)/*[position()=1]) 2015; 27 Chang (D0RA08345C-(cit45)/*[position()=1]) 2010; 114 Blouin (D0RA08345C-(cit50)/*[position()=1]) 2008; 130 Canola (D0RA08345C-(cit32)/*[position()=1]) 2014; 16 Li (D0RA08345C-(cit7)/*[position()=1]) 2017; 2 Clarke (D0RA08345C-(cit8)/*[position()=1]) 2010; 110 Thalacker (D0RA08345C-(cit14)/*[position()=1]) 2006; 71 Lv (D0RA08345C-(cit42)/*[position()=1]) 2012; 48 Chang (D0RA08345C-(cit63)/*[position()=1]) 2010; 114 Wang (D0RA08345C-(cit66)/*[position()=1]) 2012; 112 Katz (D0RA08345C-(cit23)/*[position()=1]) 2001; 2 Liu (D0RA08345C-(cit56)/*[position()=1]) 2016; 52 Zhang (D0RA08345C-(cit29)/*[position()=1]) 2016; 8 Laquindanum (D0RA08345C-(cit19)/*[position()=1]) 1996; 118 Andric (D0RA08345C-(cit55)/*[position()=1]) 2004; 57 Oh (D0RA08345C-(cit21)/*[position()=1]) 2010; 20 Usta (D0RA08345C-(cit44)/*[position()=1]) 2009; 131 Jung (D0RA08345C-(cit27)/*[position()=1]) 2010; 20 Geffroy (D0RA08345C-(cit4)/*[position()=1]) 2006; 55 Zhao (D0RA08345C-(cit38)/*[position()=1]) 2016; 120 Gamier (D0RA08345C-(cit65)/*[position()=1]) 1996; 81 Katz (D0RA08345C-(cit25)/*[position()=1]) 2000; 404 Pandeeswar (D0RA08345C-(cit39)/*[position()=1]) 2014; 4 Raju (D0RA08345C-(cit59)/*[position()=1]) 2013; 9 O'Boyle (D0RA08345C-(cit34)/*[position()=1]) 2008; 29 Shukla (D0RA08345C-(cit43)/*[position()=1]) 2008; 64 Gupta (D0RA08345C-(cit5)/*[position()=1]) 2018 See (D0RA08345C-(cit30)/*[position()=1]) 2008; 20 Chen (D0RA08345C-(cit13)/*[position()=1]) 2009; 131 Ma (D0RA08345C-(cit22)/*[position()=1]) 2016; 4 Kergoat (D0RA08345C-(cit11)/*[position()=1]) 2012; 402 Huang (D0RA08345C-(cit16)/*[position()=1]) 2011; 76 Liu (D0RA08345C-(cit17)/*[position()=1]) 2014; 6 Alvey (D0RA08345C-(cit41)/*[position()=1]) 2010; 75 Yao (D0RA08345C-(cit60)/*[position()=1]) 2018; 18 Sirringhaus (D0RA08345C-(cit3)/*[position()=1]) 2014; 26 Purushotham (D0RA08345C-(cit64)/*[position()=1]) 2013; 15 Newman (D0RA08345C-(cit12)/*[position()=1]) 2004; 16 Chang (D0RA08345C-(cit53)/*[position()=1]) 2010; 114 Katz (D0RA08345C-(cit24)/*[position()=1]) 2000; 122 Chen (D0RA08345C-(cit15)/*[position()=1]) 2007; 19 Singh (D0RA08345C-(cit31)/*[position()=1]) 2006; 7 |
References_xml | – issn: 1996 publication-title: Molecular electrostatic potentials: concepts and applications doi: Murray Sen – issn: 2013 publication-title: Gaussian 09 in Revision E.01 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox – volume: 11 start-page: 21775 year: 2019 ident: D0RA08345C-(cit9)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04671 – volume-title: Molecular electrostatic potentials: concepts and applications year: 1996 ident: D0RA08345C-(cit57)/*[position()=1] – volume: 131 start-page: 8 year: 2009 ident: D0RA08345C-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805407g – volume: 120 start-page: 7554 year: 2016 ident: D0RA08345C-(cit38)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.6b07552 – volume: 6 start-page: 6765 year: 2014 ident: D0RA08345C-(cit17)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500522x – volume: 114 start-page: 11595 year: 2010 ident: D0RA08345C-(cit63)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1025625 – volume: 122 start-page: 4111 year: 2018 ident: D0RA08345C-(cit52)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b00261 – volume: 48 start-page: 9239 year: 2012 ident: D0RA08345C-(cit62)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc33886f – volume: 110 start-page: 6736 year: 2010 ident: D0RA08345C-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900271s – volume: 112 start-page: 2208 year: 2012 ident: D0RA08345C-(cit66)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100380z – volume: 9 start-page: 3479 year: 2013 ident: D0RA08345C-(cit59)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400481r – volume: 47 start-page: 4070 year: 2008 ident: D0RA08345C-(cit2)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701920 – volume: 139 start-page: 1 year: 2020 ident: D0RA08345C-(cit36)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-019-2516-0 – volume: 8 start-page: 18277 year: 2016 ident: D0RA08345C-(cit29)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04753 – volume: 15 start-page: 5039 year: 2013 ident: D0RA08345C-(cit54)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44673e – volume: 33 start-page: 580 year: 2012 ident: D0RA08345C-(cit35)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 48 start-page: 5154 year: 2012 ident: D0RA08345C-(cit42)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc31619f – volume: 55 start-page: 572 year: 2006 ident: D0RA08345C-(cit4)/*[position()=1] publication-title: Polym. Int. doi: 10.1002/pi.1974 – volume: 114 start-page: 11595 year: 2010 ident: D0RA08345C-(cit53)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1025625 – volume: 64 start-page: o2327 year: 2008 ident: D0RA08345C-(cit43)/*[position()=1] publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online doi: 10.1107/S1600536808036738 – volume: 26 start-page: 1319 year: 2014 ident: D0RA08345C-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304346 – volume: 114 start-page: 8943 year: 2014 ident: D0RA08345C-(cit28)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500225d – volume: 4 start-page: 20154 year: 2014 ident: D0RA08345C-(cit39)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C3RA47257D – volume: 2 start-page: 1 year: 2017 ident: D0RA08345C-(cit7)/*[position()=1] publication-title: Nat. Rev. Mater. – volume: 57 start-page: 1011 year: 2004 ident: D0RA08345C-(cit55)/*[position()=1] publication-title: Aust. J. Chem. doi: 10.1071/CH04130 – volume: 122 start-page: 7787 year: 2000 ident: D0RA08345C-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja000870g – volume: 402 start-page: 1813 year: 2012 ident: D0RA08345C-(cit11)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-5363-y – volume: 11 start-page: 20214 year: 2019 ident: D0RA08345C-(cit10)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04486 – volume: 112 start-page: 2208 year: 2012 ident: D0RA08345C-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100380z – volume: 2 start-page: 167 year: 2001 ident: D0RA08345C-(cit23)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/1439-7641(20010316)2:3<167::AID-CPHC167>3.0.CO;2-F – volume: 91 start-page: 212107 year: 2007 ident: D0RA08345C-(cit47)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2803073 – volume: 20 start-page: 2930 year: 2010 ident: D0RA08345C-(cit27)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000655 – volume: 18 start-page: 1329 year: 2008 ident: D0RA08345C-(cit46)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200701045 – volume: 29 start-page: 839 year: 2008 ident: D0RA08345C-(cit34)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20823 – volume: 25 start-page: 1 year: 2019 ident: D0RA08345C-(cit58)/*[position()=1] publication-title: J. Mol. Model. doi: 10.1007/s00894-019-3922-x – volume: 3 start-page: 18656 year: 2018 ident: D0RA08345C-(cit61)/*[position()=1] publication-title: ACS Omega doi: 10.1021/acsomega.8b02713 – volume: 19 start-page: 816 year: 2007 ident: D0RA08345C-(cit15)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm062352w – volume: 159 start-page: 2117 year: 2009 ident: D0RA08345C-(cit20)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/j.synthmet.2009.08.004 – volume: 20 start-page: 2148 year: 2010 ident: D0RA08345C-(cit21)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000425 – start-page: 1608 year: 2018 ident: D0RA08345C-(cit5)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201800161 – volume: 31 start-page: 1391 year: 2019 ident: D0RA08345C-(cit40)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04800 – volume: 18 start-page: 7 year: 2018 ident: D0RA08345C-(cit60)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01385 – volume: 16 start-page: 123 year: 2013 ident: D0RA08345C-(cit6)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2013.04.005 – volume: 20 start-page: 3609 year: 2008 ident: D0RA08345C-(cit30)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm7032614 – volume: 114 start-page: 11595 year: 2010 ident: D0RA08345C-(cit45)/*[position()=1] publication-title: J. Mater. Chem. C – volume: 16 start-page: 4436 year: 2004 ident: D0RA08345C-(cit12)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm049391x – volume: 130 start-page: 732 year: 2008 ident: D0RA08345C-(cit50)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0771989 – volume: 112 start-page: 1694 year: 2008 ident: D0RA08345C-(cit26)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp076278w – volume: 7 start-page: 480 year: 2006 ident: D0RA08345C-(cit31)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2006.06.010 – volume: 114 start-page: 22316 year: 2010 ident: D0RA08345C-(cit48)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1099464 – volume: 87 start-page: 53 year: 1997 ident: D0RA08345C-(cit51)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/S0379-6779(97)80097-5 – volume: 4 start-page: 4546 year: 2016 ident: D0RA08345C-(cit22)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC00755D – volume: 13 start-page: 11148 year: 2011 ident: D0RA08345C-(cit49)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20391f – volume: 118 start-page: 11331 year: 1996 ident: D0RA08345C-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja962461j – volume: 16 start-page: 21550 year: 2014 ident: D0RA08345C-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03231D – volume: 138 start-page: 13561 year: 2016 ident: D0RA08345C-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05118 – volume: 27 start-page: 1732 year: 2015 ident: D0RA08345C-(cit18)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm504545e – volume: 81 start-page: 163 year: 1996 ident: D0RA08345C-(cit65)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/S0379-6779(96)03761-7 – volume: 15 start-page: 5039 year: 2013 ident: D0RA08345C-(cit64)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44673e – volume: 71 start-page: 8098 year: 2006 ident: D0RA08345C-(cit14)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo0612269 – volume: 404 start-page: 478 year: 2000 ident: D0RA08345C-(cit25)/*[position()=1] publication-title: Nature doi: 10.1038/35006603 – volume: 76 start-page: 2386 year: 2011 ident: D0RA08345C-(cit16)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo2001963 – volume: 75 start-page: 7682 year: 2010 ident: D0RA08345C-(cit41)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo101498b – volume: 131 start-page: 5586 year: 2009 ident: D0RA08345C-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809555c – volume: 52 start-page: 4902 year: 2016 ident: D0RA08345C-(cit56)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01148A |
SSID | ssj0000651261 |
Score | 2.3585598 |
Snippet | In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 57 |
SubjectTerms | absorption Absorption spectra Chains Charge transport Chemistry Density functional theory Diimide Electron affinity moieties Molecular orbitals Naphthalene nitrogen Potential energy Stability Stacking Substitutes Transport properties |
Title | Enhancement of air-stability, π-stacking ability, and charge transport properties of fluoroalkyl side chain engineered n-type naphthalene tetracarboxylic diimide compounds |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35423045 https://www.proquest.com/docview/2485441313 https://www.proquest.com/docview/2524298376 https://www.proquest.com/docview/2651690775 https://pubmed.ncbi.nlm.nih.gov/PMC8690421 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l7QEuiL9CoFSLoAcELl7v2o6PVeiPkOCQNCicorW9xlYTu3IdiXLiTXgB3oVXYmbtrB1aEHCxop1Zy_F8np2ZnZ0h5HnCAiWUF1icJ54lwlBYgXBjy5ERczzOhBPj2eF3772TiXg7dae93rdO1tKyCvejL9eeK_kfqcIYyBVPyf6DZM1NYQB-g3zhChKG61_J-DBPUWhmPz8rLTD2dLqrfnd7w6O9gY1j0Zk-jNiS9HE2rJKksEtEXd8ck7XOMc-6LkSbzJdFWcj52eX8JTb1RH4sMNJUMMS8AUtHcHN5nlYprDRgsFYKbhfJMiw-X2L97DjLFnou6B3s4HTRtYZH4-EqCcGY9sfFp0JnGBzLZVUsMhMvSGUF_wMe-VLWB7pD0GNmURnLtNBR3_GihDfe5kECYanHyyxOZdmNcjisE-VQWhs64MiD8Ou-LkZ1sysQrfVwXfS6WdH9a5cKm2Ol1dguJVihwo3aBdGkKbbEDbLlgB8CinRr9GEy_WjCeGDBAabZqvAtD163k9ZNnSv-y9U03I1y1XVGWzent8mtxi2hBzXG7pCeyu-SG8NVN8B75HsHa7RI6BrWXtEfXw3KqBkEjNEaY9RgjLYYw9t0MEYRY1RjjLYYozXGaAdj9BeM0QZj1GDsPpkcHZ4OT6ym04cVCY9VVsg590J_wCJbKttWMXohgWTMU76IwtCOYeFJhKtsEfOB5J6XJJ5QMCewIyl8vk028yJXDwkNEx6CEyQTjr62iqTjDBiPuDvwmXKV7JMXK6HMoqYMPnZjmc90OgYPZm_s0YEW4LBPnhne87r4y7VcOyvZzhrlcDHDSoHgaXDG--SpIYPMcD9O5qpYAo8L9nEwgCX-Dzye3sj2fbdPHtRwMY_CXYFbOkDx14BkGLB0_Dolz1JdQh770AmH9ck2QM7wt9B99DvCY3Kz_Tx3yGZVLtUTMMurcFeHs3abD-QnwZLysg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+air-stability%2C+%CF%80-stacking+ability%2C+and+charge+transport+properties+of+fluoroalkyl+side+chain+engineered+n-type+naphthalene+tetracarboxylic+diimide+compounds&rft.jtitle=RSC+advances&rft.au=Gogoi%2C+Gautomi&rft.au=Bhattacharya%2C+Labanya&rft.au=Sahoo%2C+Smruti+R&rft.au=Sahu%2C+Sridhar&rft.date=2021-01-01&rft.eissn=2046-2069&rft.volume=11&rft.issue=1&rft.spage=57&rft.epage=7&rft_id=info:doi/10.1039%2Fd0ra08345c&rft.externalDocID=d0ra08345c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |