Enhancement of air-stability, π-stacking ability, and charge transport properties of fluoroalkyl side chain engineered n-type naphthalene tetracarboxylic diimide compounds

In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 1; pp. 57 - 7
Main Authors Gogoi, Gautomi, Bhattacharya, Labanya, Sahoo, Smruti R, Sahu, Sridhar, Sarma, Neelotpal Sen, Sharma, Sagar
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored.
AbstractList In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π–π stacking ability. This is also in good agreement for the predicted π–π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π–π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<−4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties. In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored.
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.
In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile acceptor moiety naphthalene tetracarboxylic diimide (NDI) has been explored. A density functional theory (DFT) study has been carried out for a series of 24 compounds having different side chains (alkyl, fluoroalkyl) through the imide nitrogen position of NDI moiety. The fluoroalkyl side chain engineered NDI compounds have much deeper highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) than those of their alkyl substituted compounds due to the electron withdrawing nature of fluoroalkyl groups. The higher electron affinity (EA > 2.8 eV) and low-lying LUMO levels (<-4.00 eV) for fluoroalkyl substituted NDIs reveal that they may exhibit better air-stability with superior n-type character. The computed optical absorption spectra (∼386 nm) for all the investigated NDIs using time-dependent DFT (TD-DFT) lie in the ultra-violet (UV) region of the solar spectrum. In addition, the low value of the LOLIPOP (Localized Orbital Locator Integrated Pi Over Plane) index for fluoroalkyl side chain comprising NDI compounds indicates better π-π stacking ability. This is also in good agreement for the predicted π-π stacking interaction obtained from a molecular electrostatic potential energy surface (ESP) study. The π-π stacking is thought to be of cofacial interaction for the fluoroalkyl substituted compounds and herringbone interaction for the alkyl substituted compounds. The calculated results shed light on why side chain engineering with fluoroalkyl groups can effectively lead to better air-stability, π-stacking ability and improved charge transport properties.
Author Gogoi, Gautomi
Bhattacharya, Labanya
Sharma, Sagar
Sahu, Sridhar
Sarma, Neelotpal Sen
Sahoo, Smruti R
AuthorAffiliation High Performance Computing Lab
Department of Chemistry
Physical Sciences Division
Indian Institute of Technology (Indian School of Mines)
Assam Don Bosco University
Cotton University
Institute of Advanced Study in Science and Technology
School of Fundamental and Applied Sciences
Advanced Materials Laboratory
Department of Physics
AuthorAffiliation_xml – name: Institute of Advanced Study in Science and Technology
– name: High Performance Computing Lab
– name: School of Fundamental and Applied Sciences
– name: Department of Chemistry
– name: Advanced Materials Laboratory
– name: Physical Sciences Division
– name: Indian Institute of Technology (Indian School of Mines)
– name: Cotton University
– name: Department of Physics
– name: Assam Don Bosco University
Author_xml – sequence: 1
  givenname: Gautomi
  surname: Gogoi
  fullname: Gogoi, Gautomi
– sequence: 2
  givenname: Labanya
  surname: Bhattacharya
  fullname: Bhattacharya, Labanya
– sequence: 3
  givenname: Smruti R
  surname: Sahoo
  fullname: Sahoo, Smruti R
– sequence: 4
  givenname: Sridhar
  surname: Sahu
  fullname: Sahu, Sridhar
– sequence: 5
  givenname: Neelotpal Sen
  surname: Sarma
  fullname: Sarma, Neelotpal Sen
– sequence: 6
  givenname: Sagar
  surname: Sharma
  fullname: Sharma, Sagar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35423045$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1TAQhiNURC90wx5kiU2FCNix4yQbpOpQLlIlJARry3EmJ24dO7UdxNnxQLwLr4TT0x5KhYQ39tjf_2s8M4fZnnUWsuwJwa8Ips3rDnuJa8pK9SA7KDDjeYF5s3fnvJ8dh3CB0-IlKTh5lO3TkhUUs_Ig-3lmB2kVjGAjcj2S2uchylYbHTcv0a8fS6QutV2j3aW0HVKD9GtA0UsbJucjmrybwEcNYbHpzey8k-ZyY1DQHSy8tgjsWlsADx2yedxMgKychjhIAzaZQbJT0rfu-8ZohTqtx2utGyc32y48zh720gQ4vtmPsq_vzr6sPuTnn95_XJ2e54pxEvOWUsrbqiYKS8AYOlJS2khCOFRMtS3ualr0rATMOlpLynnfcwZJ02AlWUWPsjdb32luR-hUqo2XRkxej9JvhJNa_P1i9SDW7puoeYNZQZLByY2Bd1czhChGHRQYIy24OYgidSKhVVX-Hy0LVjQ1rXhCn99DL9zsbaqEKFhdMkYooYl6djf5Xda3PU8A3gLKuxA89ELpKKN2y1-0EQSLZbLEW_z59HqyVkny4p7k1vWf8NMt7IPacX_GlP4GMmTcFw
CitedBy_id crossref_primary_10_3390_molecules29184376
crossref_primary_10_1016_j_jma_2023_11_008
crossref_primary_10_1039_D3TC01497E
crossref_primary_10_1021_acs_chemrev_1c00078
crossref_primary_10_1016_j_microc_2023_109524
crossref_primary_10_1002_advs_202204872
crossref_primary_10_1021_acs_macromol_2c01164
crossref_primary_10_1021_acsomega_3c05172
crossref_primary_10_1051_e3sconf_202343001050
Cites_doi 10.1021/acsami.9b04671
10.1021/ja805407g
10.1021/acs.jpca.6b07552
10.1021/am500522x
10.1021/jp1025625
10.1021/acs.jpca.8b00261
10.1039/c2cc33886f
10.1021/cr900271s
10.1021/cr100380z
10.1021/ct400481r
10.1002/anie.200701920
10.1007/s00214-019-2516-0
10.1021/acsami.6b04753
10.1039/c3cp44673e
10.1002/jcc.22885
10.1039/c2cc31619f
10.1002/pi.1974
10.1107/S1600536808036738
10.1002/adma.201304346
10.1021/cr500225d
10.1039/C3RA47257D
10.1071/CH04130
10.1021/ja000870g
10.1007/s00216-011-5363-y
10.1021/acsami.9b04486
10.1002/1439-7641(20010316)2:3<167::AID-CPHC167>3.0.CO;2-F
10.1063/1.2803073
10.1002/adfm.201000655
10.1002/adfm.200701045
10.1002/jcc.20823
10.1007/s00894-019-3922-x
10.1021/acsomega.8b02713
10.1021/cm062352w
10.1016/j.synthmet.2009.08.004
10.1002/adfm.201000425
10.1002/ejoc.201800161
10.1021/acs.chemmater.8b04800
10.1021/acs.cgd.7b01385
10.1016/j.mattod.2013.04.005
10.1021/cm7032614
10.1021/cm049391x
10.1021/ja0771989
10.1021/jp076278w
10.1016/j.orgel.2006.06.010
10.1021/jp1099464
10.1016/S0379-6779(97)80097-5
10.1039/C6TC00755D
10.1039/c1cp20391f
10.1021/ja962461j
10.1039/C4CP03231D
10.1021/jacs.6b05118
10.1021/cm504545e
10.1016/S0379-6779(96)03761-7
10.1021/jo0612269
10.1038/35006603
10.1021/jo2001963
10.1021/jo101498b
10.1021/ja809555c
10.1039/C6CC01148A
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d0ra08345c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

AGRICOLA
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 7
ExternalDocumentID PMC8690421
35423045
10_1039_D0RA08345C
d0ra08345c
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: DST/INSPIRE/04/2014/000185
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAEMU
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABJNI
ABPDG
ABXOH
AEFDR
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANBJS
ANUXI
APEMP
CITATION
ECGLT
EJD
H13
HZ~
J3G
J3H
M~E
PGMZT
RAOCF
RPM
YAE
-JG
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-b3336b781c0ae00ed15339a116e74cbb0d832f45e04d38a366ff64e36b90ca473
ISSN 2046-2069
IngestDate Thu Aug 21 14:07:29 EDT 2025
Thu Jul 10 17:39:55 EDT 2025
Thu Jul 10 22:45:37 EDT 2025
Mon Jun 30 03:35:23 EDT 2025
Thu Jan 02 22:54:20 EST 2025
Tue Jul 01 04:05:37 EDT 2025
Thu Apr 24 23:00:22 EDT 2025
Sat Jan 08 03:51:58 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-b3336b781c0ae00ed15339a116e74cbb0d832f45e04d38a366ff64e36b90ca473
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0ra08345c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7427-9054
OpenAccessLink http://dx.doi.org/10.1039/d0ra08345c
PMID 35423045
PQID 2485441313
PQPubID 2047525
PageCount 14
ParticipantIDs pubmed_primary_35423045
crossref_primary_10_1039_D0RA08345C
proquest_journals_2485441313
proquest_miscellaneous_2524298376
rsc_primary_d0ra08345c
crossref_citationtrail_10_1039_D0RA08345C
proquest_miscellaneous_2651690775
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8690421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Yan (D0RA08345C-(cit10)/*[position()=1]) 2019; 11
Gonthier (D0RA08345C-(cit62)/*[position()=1]) 2012; 48
Oh (D0RA08345C-(cit47)/*[position()=1]) 2007; 91
M de Leeuw (D0RA08345C-(cit51)/*[position()=1]) 1997; 87
Jones (D0RA08345C-(cit46)/*[position()=1]) 2008; 18
Liu (D0RA08345C-(cit48)/*[position()=1]) 2010; 114
Allard (D0RA08345C-(cit2)/*[position()=1]) 2008; 47
Murray (D0RA08345C-(cit57)/*[position()=1]) 1996
Wang (D0RA08345C-(cit1)/*[position()=1]) 2012; 112
Kielar (D0RA08345C-(cit9)/*[position()=1]) 2019; 11
Gogoi (D0RA08345C-(cit58)/*[position()=1]) 2019; 25
Jung (D0RA08345C-(cit20)/*[position()=1]) 2009; 159
Lee (D0RA08345C-(cit26)/*[position()=1]) 2008; 112
Krishna (D0RA08345C-(cit37)/*[position()=1]) 2016; 138
Lu (D0RA08345C-(cit36)/*[position()=1]) 2020; 139
Li (D0RA08345C-(cit49)/*[position()=1]) 2011; 13
Lu (D0RA08345C-(cit35)/*[position()=1]) 2012; 33
Lai (D0RA08345C-(cit61)/*[position()=1]) 2018; 3
Sutradhar (D0RA08345C-(cit52)/*[position()=1]) 2018; 122
Purushotham (D0RA08345C-(cit54)/*[position()=1]) 2013; 15
Guo (D0RA08345C-(cit28)/*[position()=1]) 2014; 114
Devarapalli (D0RA08345C-(cit40)/*[position()=1]) 2019; 31
Facchetti (D0RA08345C-(cit6)/*[position()=1]) 2013; 16
Back (D0RA08345C-(cit18)/*[position()=1]) 2015; 27
Chang (D0RA08345C-(cit45)/*[position()=1]) 2010; 114
Blouin (D0RA08345C-(cit50)/*[position()=1]) 2008; 130
Canola (D0RA08345C-(cit32)/*[position()=1]) 2014; 16
Li (D0RA08345C-(cit7)/*[position()=1]) 2017; 2
Clarke (D0RA08345C-(cit8)/*[position()=1]) 2010; 110
Thalacker (D0RA08345C-(cit14)/*[position()=1]) 2006; 71
Lv (D0RA08345C-(cit42)/*[position()=1]) 2012; 48
Chang (D0RA08345C-(cit63)/*[position()=1]) 2010; 114
Wang (D0RA08345C-(cit66)/*[position()=1]) 2012; 112
Katz (D0RA08345C-(cit23)/*[position()=1]) 2001; 2
Liu (D0RA08345C-(cit56)/*[position()=1]) 2016; 52
Zhang (D0RA08345C-(cit29)/*[position()=1]) 2016; 8
Laquindanum (D0RA08345C-(cit19)/*[position()=1]) 1996; 118
Andric (D0RA08345C-(cit55)/*[position()=1]) 2004; 57
Oh (D0RA08345C-(cit21)/*[position()=1]) 2010; 20
Usta (D0RA08345C-(cit44)/*[position()=1]) 2009; 131
Jung (D0RA08345C-(cit27)/*[position()=1]) 2010; 20
Geffroy (D0RA08345C-(cit4)/*[position()=1]) 2006; 55
Zhao (D0RA08345C-(cit38)/*[position()=1]) 2016; 120
Gamier (D0RA08345C-(cit65)/*[position()=1]) 1996; 81
Katz (D0RA08345C-(cit25)/*[position()=1]) 2000; 404
Pandeeswar (D0RA08345C-(cit39)/*[position()=1]) 2014; 4
Raju (D0RA08345C-(cit59)/*[position()=1]) 2013; 9
O'Boyle (D0RA08345C-(cit34)/*[position()=1]) 2008; 29
Shukla (D0RA08345C-(cit43)/*[position()=1]) 2008; 64
Gupta (D0RA08345C-(cit5)/*[position()=1]) 2018
See (D0RA08345C-(cit30)/*[position()=1]) 2008; 20
Chen (D0RA08345C-(cit13)/*[position()=1]) 2009; 131
Ma (D0RA08345C-(cit22)/*[position()=1]) 2016; 4
Kergoat (D0RA08345C-(cit11)/*[position()=1]) 2012; 402
Huang (D0RA08345C-(cit16)/*[position()=1]) 2011; 76
Liu (D0RA08345C-(cit17)/*[position()=1]) 2014; 6
Alvey (D0RA08345C-(cit41)/*[position()=1]) 2010; 75
Yao (D0RA08345C-(cit60)/*[position()=1]) 2018; 18
Sirringhaus (D0RA08345C-(cit3)/*[position()=1]) 2014; 26
Purushotham (D0RA08345C-(cit64)/*[position()=1]) 2013; 15
Newman (D0RA08345C-(cit12)/*[position()=1]) 2004; 16
Chang (D0RA08345C-(cit53)/*[position()=1]) 2010; 114
Katz (D0RA08345C-(cit24)/*[position()=1]) 2000; 122
Chen (D0RA08345C-(cit15)/*[position()=1]) 2007; 19
Singh (D0RA08345C-(cit31)/*[position()=1]) 2006; 7
References_xml – issn: 1996
  publication-title: Molecular electrostatic potentials: concepts and applications
  doi: Murray Sen
– issn: 2013
  publication-title: Gaussian 09 in Revision E.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox
– volume: 11
  start-page: 21775
  year: 2019
  ident: D0RA08345C-(cit9)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04671
– volume-title: Molecular electrostatic potentials: concepts and applications
  year: 1996
  ident: D0RA08345C-(cit57)/*[position()=1]
– volume: 131
  start-page: 8
  year: 2009
  ident: D0RA08345C-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805407g
– volume: 120
  start-page: 7554
  year: 2016
  ident: D0RA08345C-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b07552
– volume: 6
  start-page: 6765
  year: 2014
  ident: D0RA08345C-(cit17)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500522x
– volume: 114
  start-page: 11595
  year: 2010
  ident: D0RA08345C-(cit63)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1025625
– volume: 122
  start-page: 4111
  year: 2018
  ident: D0RA08345C-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b00261
– volume: 48
  start-page: 9239
  year: 2012
  ident: D0RA08345C-(cit62)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33886f
– volume: 110
  start-page: 6736
  year: 2010
  ident: D0RA08345C-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900271s
– volume: 112
  start-page: 2208
  year: 2012
  ident: D0RA08345C-(cit66)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100380z
– volume: 9
  start-page: 3479
  year: 2013
  ident: D0RA08345C-(cit59)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400481r
– volume: 47
  start-page: 4070
  year: 2008
  ident: D0RA08345C-(cit2)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701920
– volume: 139
  start-page: 1
  year: 2020
  ident: D0RA08345C-(cit36)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-019-2516-0
– volume: 8
  start-page: 18277
  year: 2016
  ident: D0RA08345C-(cit29)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04753
– volume: 15
  start-page: 5039
  year: 2013
  ident: D0RA08345C-(cit54)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44673e
– volume: 33
  start-page: 580
  year: 2012
  ident: D0RA08345C-(cit35)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 48
  start-page: 5154
  year: 2012
  ident: D0RA08345C-(cit42)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31619f
– volume: 55
  start-page: 572
  year: 2006
  ident: D0RA08345C-(cit4)/*[position()=1]
  publication-title: Polym. Int.
  doi: 10.1002/pi.1974
– volume: 114
  start-page: 11595
  year: 2010
  ident: D0RA08345C-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1025625
– volume: 64
  start-page: o2327
  year: 2008
  ident: D0RA08345C-(cit43)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online
  doi: 10.1107/S1600536808036738
– volume: 26
  start-page: 1319
  year: 2014
  ident: D0RA08345C-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304346
– volume: 114
  start-page: 8943
  year: 2014
  ident: D0RA08345C-(cit28)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500225d
– volume: 4
  start-page: 20154
  year: 2014
  ident: D0RA08345C-(cit39)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C3RA47257D
– volume: 2
  start-page: 1
  year: 2017
  ident: D0RA08345C-(cit7)/*[position()=1]
  publication-title: Nat. Rev. Mater.
– volume: 57
  start-page: 1011
  year: 2004
  ident: D0RA08345C-(cit55)/*[position()=1]
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH04130
– volume: 122
  start-page: 7787
  year: 2000
  ident: D0RA08345C-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja000870g
– volume: 402
  start-page: 1813
  year: 2012
  ident: D0RA08345C-(cit11)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-011-5363-y
– volume: 11
  start-page: 20214
  year: 2019
  ident: D0RA08345C-(cit10)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04486
– volume: 112
  start-page: 2208
  year: 2012
  ident: D0RA08345C-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100380z
– volume: 2
  start-page: 167
  year: 2001
  ident: D0RA08345C-(cit23)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/1439-7641(20010316)2:3<167::AID-CPHC167>3.0.CO;2-F
– volume: 91
  start-page: 212107
  year: 2007
  ident: D0RA08345C-(cit47)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2803073
– volume: 20
  start-page: 2930
  year: 2010
  ident: D0RA08345C-(cit27)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000655
– volume: 18
  start-page: 1329
  year: 2008
  ident: D0RA08345C-(cit46)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200701045
– volume: 29
  start-page: 839
  year: 2008
  ident: D0RA08345C-(cit34)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20823
– volume: 25
  start-page: 1
  year: 2019
  ident: D0RA08345C-(cit58)/*[position()=1]
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-019-3922-x
– volume: 3
  start-page: 18656
  year: 2018
  ident: D0RA08345C-(cit61)/*[position()=1]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02713
– volume: 19
  start-page: 816
  year: 2007
  ident: D0RA08345C-(cit15)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm062352w
– volume: 159
  start-page: 2117
  year: 2009
  ident: D0RA08345C-(cit20)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2009.08.004
– volume: 20
  start-page: 2148
  year: 2010
  ident: D0RA08345C-(cit21)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000425
– start-page: 1608
  year: 2018
  ident: D0RA08345C-(cit5)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201800161
– volume: 31
  start-page: 1391
  year: 2019
  ident: D0RA08345C-(cit40)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04800
– volume: 18
  start-page: 7
  year: 2018
  ident: D0RA08345C-(cit60)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01385
– volume: 16
  start-page: 123
  year: 2013
  ident: D0RA08345C-(cit6)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.04.005
– volume: 20
  start-page: 3609
  year: 2008
  ident: D0RA08345C-(cit30)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm7032614
– volume: 114
  start-page: 11595
  year: 2010
  ident: D0RA08345C-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. C
– volume: 16
  start-page: 4436
  year: 2004
  ident: D0RA08345C-(cit12)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm049391x
– volume: 130
  start-page: 732
  year: 2008
  ident: D0RA08345C-(cit50)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0771989
– volume: 112
  start-page: 1694
  year: 2008
  ident: D0RA08345C-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp076278w
– volume: 7
  start-page: 480
  year: 2006
  ident: D0RA08345C-(cit31)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2006.06.010
– volume: 114
  start-page: 22316
  year: 2010
  ident: D0RA08345C-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1099464
– volume: 87
  start-page: 53
  year: 1997
  ident: D0RA08345C-(cit51)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(97)80097-5
– volume: 4
  start-page: 4546
  year: 2016
  ident: D0RA08345C-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC00755D
– volume: 13
  start-page: 11148
  year: 2011
  ident: D0RA08345C-(cit49)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20391f
– volume: 118
  start-page: 11331
  year: 1996
  ident: D0RA08345C-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja962461j
– volume: 16
  start-page: 21550
  year: 2014
  ident: D0RA08345C-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03231D
– volume: 138
  start-page: 13561
  year: 2016
  ident: D0RA08345C-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05118
– volume: 27
  start-page: 1732
  year: 2015
  ident: D0RA08345C-(cit18)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm504545e
– volume: 81
  start-page: 163
  year: 1996
  ident: D0RA08345C-(cit65)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(96)03761-7
– volume: 15
  start-page: 5039
  year: 2013
  ident: D0RA08345C-(cit64)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44673e
– volume: 71
  start-page: 8098
  year: 2006
  ident: D0RA08345C-(cit14)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0612269
– volume: 404
  start-page: 478
  year: 2000
  ident: D0RA08345C-(cit25)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35006603
– volume: 76
  start-page: 2386
  year: 2011
  ident: D0RA08345C-(cit16)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo2001963
– volume: 75
  start-page: 7682
  year: 2010
  ident: D0RA08345C-(cit41)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo101498b
– volume: 131
  start-page: 5586
  year: 2009
  ident: D0RA08345C-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809555c
– volume: 52
  start-page: 4902
  year: 2016
  ident: D0RA08345C-(cit56)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01148A
SSID ssj0000651261
Score 2.3585598
Snippet In this study, the impact of fluoroalkyl side chain substitution on the air-stability, π-stacking ability, and charge transport properties of the versatile...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms absorption
Absorption spectra
Chains
Charge transport
Chemistry
Density functional theory
Diimide
Electron affinity
moieties
Molecular orbitals
Naphthalene
nitrogen
Potential energy
Stability
Stacking
Substitutes
Transport properties
Title Enhancement of air-stability, π-stacking ability, and charge transport properties of fluoroalkyl side chain engineered n-type naphthalene tetracarboxylic diimide compounds
URI https://www.ncbi.nlm.nih.gov/pubmed/35423045
https://www.proquest.com/docview/2485441313
https://www.proquest.com/docview/2524298376
https://www.proquest.com/docview/2651690775
https://pubmed.ncbi.nlm.nih.gov/PMC8690421
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l7QEuiL9CoFSLoAcELl7v2o6PVeiPkOCQNCicorW9xlYTu3IdiXLiTXgB3oVXYmbtrB1aEHCxop1Zy_F8np2ZnZ0h5HnCAiWUF1icJ54lwlBYgXBjy5ERczzOhBPj2eF3772TiXg7dae93rdO1tKyCvejL9eeK_kfqcIYyBVPyf6DZM1NYQB-g3zhChKG61_J-DBPUWhmPz8rLTD2dLqrfnd7w6O9gY1j0Zk-jNiS9HE2rJKksEtEXd8ck7XOMc-6LkSbzJdFWcj52eX8JTb1RH4sMNJUMMS8AUtHcHN5nlYprDRgsFYKbhfJMiw-X2L97DjLFnou6B3s4HTRtYZH4-EqCcGY9sfFp0JnGBzLZVUsMhMvSGUF_wMe-VLWB7pD0GNmURnLtNBR3_GihDfe5kECYanHyyxOZdmNcjisE-VQWhs64MiD8Ou-LkZ1sysQrfVwXfS6WdH9a5cKm2Ol1dguJVihwo3aBdGkKbbEDbLlgB8CinRr9GEy_WjCeGDBAabZqvAtD163k9ZNnSv-y9U03I1y1XVGWzent8mtxi2hBzXG7pCeyu-SG8NVN8B75HsHa7RI6BrWXtEfXw3KqBkEjNEaY9RgjLYYw9t0MEYRY1RjjLYYozXGaAdj9BeM0QZj1GDsPpkcHZ4OT6ym04cVCY9VVsg590J_wCJbKttWMXohgWTMU76IwtCOYeFJhKtsEfOB5J6XJJ5QMCewIyl8vk028yJXDwkNEx6CEyQTjr62iqTjDBiPuDvwmXKV7JMXK6HMoqYMPnZjmc90OgYPZm_s0YEW4LBPnhne87r4y7VcOyvZzhrlcDHDSoHgaXDG--SpIYPMcD9O5qpYAo8L9nEwgCX-Dzye3sj2fbdPHtRwMY_CXYFbOkDx14BkGLB0_Dolz1JdQh770AmH9ck2QM7wt9B99DvCY3Kz_Tx3yGZVLtUTMMurcFeHs3abD-QnwZLysg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+air-stability%2C+%CF%80-stacking+ability%2C+and+charge+transport+properties+of+fluoroalkyl+side+chain+engineered+n-type+naphthalene+tetracarboxylic+diimide+compounds&rft.jtitle=RSC+advances&rft.au=Gogoi%2C+Gautomi&rft.au=Bhattacharya%2C+Labanya&rft.au=Sahoo%2C+Smruti+R&rft.au=Sahu%2C+Sridhar&rft.date=2021-01-01&rft.eissn=2046-2069&rft.volume=11&rft.issue=1&rft.spage=57&rft.epage=7&rft_id=info:doi/10.1039%2Fd0ra08345c&rft.externalDocID=d0ra08345c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon