Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy

Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these function...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 52; no. 2; pp. 816 - 830
Main Authors Nishiyama, Akihito, Shimizu, Masahiro, Narita, Tomoyuki, Kodera, Noriyuki, Ozeki, Yuriko, Yokoyama, Akira, Mayanagi, Kouta, Yamaguchi, Takehiro, Hakamata, Mariko, Shaban, Amina Kaboso, Tateishi, Yoshitaka, Ito, Kosuke, Matsumoto, Sohkichi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 25.01.2024
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkad1149

Cover

Abstract Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria. Graphical Abstract Graphical Abstract
AbstractList Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria. Graphical Abstract Graphical Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria. Graphical Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
Author Shaban, Amina Kaboso
Kodera, Noriyuki
Shimizu, Masahiro
Ito, Kosuke
Nishiyama, Akihito
Matsumoto, Sohkichi
Tateishi, Yoshitaka
Yamaguchi, Takehiro
Ozeki, Yuriko
Yokoyama, Akira
Narita, Tomoyuki
Mayanagi, Kouta
Hakamata, Mariko
Author_xml – sequence: 1
  givenname: Akihito
  orcidid: 0000-0003-4416-7710
  surname: Nishiyama
  fullname: Nishiyama, Akihito
  email: anishi@med.niigata-u.ac.jp
– sequence: 2
  givenname: Masahiro
  orcidid: 0000-0001-6249-1018
  surname: Shimizu
  fullname: Shimizu, Masahiro
– sequence: 3
  givenname: Tomoyuki
  surname: Narita
  fullname: Narita, Tomoyuki
– sequence: 4
  givenname: Noriyuki
  orcidid: 0000-0003-4880-8423
  surname: Kodera
  fullname: Kodera, Noriyuki
– sequence: 5
  givenname: Yuriko
  orcidid: 0000-0003-0672-1039
  surname: Ozeki
  fullname: Ozeki, Yuriko
– sequence: 6
  givenname: Akira
  surname: Yokoyama
  fullname: Yokoyama, Akira
– sequence: 7
  givenname: Kouta
  orcidid: 0000-0001-6157-9093
  surname: Mayanagi
  fullname: Mayanagi, Kouta
– sequence: 8
  givenname: Takehiro
  surname: Yamaguchi
  fullname: Yamaguchi, Takehiro
– sequence: 9
  givenname: Mariko
  surname: Hakamata
  fullname: Hakamata, Mariko
– sequence: 10
  givenname: Amina Kaboso
  orcidid: 0000-0001-6306-1298
  surname: Shaban
  fullname: Shaban, Amina Kaboso
– sequence: 11
  givenname: Yoshitaka
  surname: Tateishi
  fullname: Tateishi, Yoshitaka
– sequence: 12
  givenname: Kosuke
  orcidid: 0000-0001-5161-1301
  surname: Ito
  fullname: Ito, Kosuke
– sequence: 13
  givenname: Sohkichi
  surname: Matsumoto
  fullname: Matsumoto, Sohkichi
  email: sohkichi@med.niigata-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38048321$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLeFG2fkGxwI9Th2Pk6oavmoVJULnK2x47SmiR3spFL-e7zaXQRI7WmkN795TzNzQo588JaQ18A-AGvLM4_x7PYeOwDRPiMbKCteiLbiR2TDSiYLYKI5Jicp_WQMBEjxghyXTRZLDhtyf7l6HJ2haGYXPA09RU-dn6PzyRkchpV2LoXY2Wg7OsUwW7cF6OXNOTVhnPaD8x3OWe4WYxMdVxN0btjocKBdiCN6s74kz3sckn21r6fkx-dP3y--FtffvlxdnF8XRlQwF2j6mteC80praCvba41S1lwL0_TSYl1lkWsQAhBlLwVwaZoGbadzAVGeko8732nRo-2MzdvgoKboRoyrCujUvx3v7tRteFDAGmC8ltnh3d4hhl-LTbMaXTJ2GNDbsCTFm7YpgZcMMvrm77A_KYcTZ4DvABNDStH2yrgZtzfL2W7IoWr7R5X_qA5_zEPv_xs6-D6Cv93hYZmeJn8DKEGw4g
CitedBy_id crossref_primary_10_3389_fimmu_2024_1330796
Cites_doi 10.1074/jbc.M111.333385
10.1063/1.4897649
10.1006/jmbi.1999.3110
10.1016/S0022-2836(03)00725-3
10.1186/1472-6807-9-26
10.1139/O10-024
10.1038/s41598-017-06480-w
10.1128/JB.00469-19
10.1038/s41467-017-01466-8
10.1021/acs.nanolett.6b05294
10.1021/bi800010s
10.1073/pnas.72.9.3428
10.1016/j.sbi.2021.01.006
10.1093/nar/gkv268
10.1103/PhysRevLett.100.118301
10.1172/JCI136221
10.1016/j.jmb.2004.02.002
10.1093/nar/gkx431
10.1111/j.1574-6968.2000.tb08911.x
10.1111/j.1742-4658.2011.08267.x
10.1038/ncomms5124
10.1038/s41598-023-40941-9
10.1002/pmic.201500177
10.1002/smll.201401318
10.3389/fmicb.2018.02034
10.1371/journal.pone.0231562
10.1046/j.1365-2958.2003.03855.x
10.1038/s41565-020-00798-9
10.1073/pnas.1910044117
10.1093/nar/28.18.3504
10.1016/j.jmb.2005.10.037
10.1016/S0014-5793(02)03363-X
10.1111/j.1574-6968.1996.tb07995.x
10.3389/fmicb.2018.00067
10.1371/journal.ppat.1002251
10.1371/journal.pone.0204160
10.1099/mic.0.045518-0
10.1111/j.1348-0421.1999.tb01232.x
10.1093/emboj/cdg351
10.1016/0300-9084(94)90026-4
10.1073/pnas.0308230101
10.1007/s12551-017-0356-5
10.1016/j.jmb.2021.166881
10.1073/pnas.1006966107
10.1038/nature09450
10.1186/1472-6807-11-29
10.1016/j.bbadva.2021.100029
10.1021/jacs.6b03729
10.1021/bi200946z
10.1038/s41598-018-26463-9
10.1073/pnas.1402768111
10.1073/pnas.0611686104
10.1073/pnas.1805943115
10.1038/21918
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkad1149
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 830
ExternalDocumentID PMC10810275
38048321
10_1093_nar_gkad1149
10.1093/nar/gkad1149
Genre Journal Article
GrantInformation_xml – fundername: AMED
  grantid: JP20fk0108090
– fundername: CREST
  grantid: JP22gm1610009
– fundername: JST
  grantid: JPMJCR1762
– fundername: Medical Institute of Bioregulation, Kyushu University
– fundername: Japan Agency for Medical Research and Development
– fundername: Japanese Ministry of Education, Culture, Sports, Science and Technology
  grantid: 17K08823
– fundername: Niigata University Interdisciplinary Research
– fundername: Japan Science and Technology Agency
– fundername: World Premier International Research Center Initiative
– fundername: ;
– fundername: ;
  grantid: JP22gm1610009
– fundername: ;
  grantid: JPMJCR1762
– fundername: ;
  grantid: JP20fk0108090; JP20fk0108089
– fundername: ;
  grantid: 17K08823; 20H03483 to; 20K22629 to
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABQTQ
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
AJDVS
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
M49
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c461t-acf7274226bb196efbba5572b4c8f5ea7696e2b1441aa5f54125c88aedbc88143
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:36:05 EDT 2025
Fri Sep 05 08:49:11 EDT 2025
Mon Jul 21 05:58:55 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Tue Jul 01 02:59:26 EDT 2025
Wed Apr 02 07:03:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-acf7274226bb196efbba5572b4c8f5ea7696e2b1441aa5f54125c88aedbc88143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6306-1298
0000-0001-5161-1301
0000-0001-6157-9093
0000-0003-4416-7710
0000-0001-6249-1018
0000-0003-4880-8423
0000-0003-0672-1039
OpenAccessLink https://dx.doi.org/10.1093/nar/gkad1149
PMID 38048321
PQID 2898312301
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10810275
proquest_miscellaneous_2898312301
pubmed_primary_38048321
crossref_citationtrail_10_1093_nar_gkad1149
crossref_primary_10_1093_nar_gkad1149
oup_primary_10_1093_nar_gkad1149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-25
PublicationDateYYYYMMDD 2024-01-25
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Whiteford (2024012516141070000_B38) 2011; 157
Rafiei (2024012516141070000_B6) 2019; 201
Sharadamma (2024012516141070000_B45) 2011; 278
Arold (2024012516141070000_B49) 2010; 107
Shaban (2024012516141070000_B52) 2023; 13
Wolf (2024012516141070000_B3) 1999; 400
Katan (2024012516141070000_B30) 2015; 11
Freeman (2024012516141070000_B35) 2014; 141
Dai (2024012516141070000_B46) 2008; 100
Fukuchi (2024012516141070000_B25) 2009; 9
Dame (2024012516141070000_B40) 2002; 529
Malabirade (2024012516141070000_B54) 2017; 45
Caterino (2024012516141070000_B27) 2011; 89
Ward (2024012516141070000_B21) 2004; 337
McGovern (2024012516141070000_B50) 1994; 76
Rouvière-Yaniv (2024012516141070000_B13) 1975; 72
Ragonis-Bachar (2024012516141070000_B55) 2021; 68
Fukuchi (2024012516141070000_B26) 2011; 11
Gupta (2024012516141070000_B8) 2018; 9
Bhowmick (2024012516141070000_B18) 2014; 5
Fukuchi (2024012516141070000_B23) 2006; 355
Kodera (2024012516141070000_B32) 2010; 468
Savitskaya (2024012516141070000_B2) 2018; 8
Wright (2024012516141070000_B20) 1999; 293
Matsumoto (2024012516141070000_B10) 1999; 43
Ramstein (2024012516141070000_B16) 2003; 331
Griffin (2024012516141070000_B57) 2011; 7
Kodera (2024012516141070000_B33) 2021; 16
Mukherjee (2024012516141070000_B44) 2008; 47
Miyagi (2024012516141070000_B31) 2011; 50
Turner (2024012516141070000_B47) 2018; 115
Loiko (2024012516141070000_B4) 2020; 15
Li (2024012516141070000_B34) 2014; 111
Guo (2024012516141070000_B17) 2007; 104
Pirofski (2024012516141070000_B1) 2020; 130
Grove (2024012516141070000_B14) 2011; 13
Wang (2024012516141070000_B24) 2016; 16
Matsumoto (2024012516141070000_B39) 1996; 135
Enany (2024012516141070000_B51) 2017; 7
Tan (2024012516141070000_B36) 2016; 138
Wu (2024012516141070000_B37) 2021; 433
Wright (2024012516141070000_B22) 1999; 293
Shibata (2024012516141070000_B29) 2017; 8
Scutigliani (2024012516141070000_B7) 2018; 9
Matsumoto (2024012516141070000_B12) 2000; 182
Jiang (2024012516141070000_B53) 2015; 43
Niki (2024012516141070000_B11) 2012; 287
Sridhar (2024012516141070000_B48) 2020; 117
Japaridze (2024012516141070000_B41) 2017; 17
World Health Organization (2024012516141070000_B9) 2020
Swinger (2024012516141070000_B15) 2003; 22
Turbant (2024012516141070000_B56) 2021; 1
Ando (2024012516141070000_B28) 2018; 19
Frenkiel-Krispin (2024012516141070000_B5) 2004; 51
Van Noort (2024012516141070000_B42) 2004; 101
Ohara (2024012516141070000_B19) 2018; 13
Dame (2024012516141070000_B43) 2000; 28
References_xml – volume: 287
  start-page: 27743
  year: 2012
  ident: 2024012516141070000_B11
  article-title: A novel mechanism of growth phase-dependent tolerance to isoniazid in mycobacteria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.333385
– volume: 141
  start-page: 165103
  year: 2014
  ident: 2024012516141070000_B35
  article-title: Coarse-grained modeling of DNA curvature
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4897649
– volume: 293
  start-page: 321
  year: 1999
  ident: 2024012516141070000_B22
  article-title: Intrinsically disordered proteins in cellular signaling and regulation
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3110
– volume: 331
  start-page: 101
  year: 2003
  ident: 2024012516141070000_B16
  article-title: Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and atructure
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00725-3
– volume: 9
  start-page: 26
  year: 2009
  ident: 2024012516141070000_B25
  article-title: Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors
  publication-title: BMC Struct. Biol.
  doi: 10.1186/1472-6807-9-26
– volume: 89
  start-page: 35
  year: 2011
  ident: 2024012516141070000_B27
  article-title: Structure of the H1 C-terminal domain and function in chromatin condensation
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/O10-024
– volume: 7
  start-page: 6810
  year: 2017
  ident: 2024012516141070000_B51
  article-title: Mycobacterial DNA-binding protein 1 is critical for long term survival of Mycobacterium smegmatis and simultaneously coordinates cellular functions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06480-w
– volume: 201
  start-page: e00469-19
  year: 2019
  ident: 2024012516141070000_B6
  article-title: Growth phase-dependent chromosome condensation and heat-stable nucleoid-structuring protein redistribution in Escherichia coli under osmotic stress
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00469-19
– volume: 8
  start-page: 1430
  year: 2017
  ident: 2024012516141070000_B29
  article-title: Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01466-8
– volume: 17
  start-page: 1938
  year: 2017
  ident: 2024012516141070000_B41
  article-title: Hyperplectonemes: a higher order compact and dynamic DNA self-organization
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05294
– year: 2020
  ident: 2024012516141070000_B9
  article-title: Global Tuberculosis Report 2020
– volume: 47
  start-page: 8744
  year: 2008
  ident: 2024012516141070000_B44
  article-title: The C-terminal domain of HU-related histone-like protein Hlp from Mycobacterium smegmatis mediates DNA end-joining
  publication-title: Biochemistry
  doi: 10.1021/bi800010s
– volume: 72
  start-page: 3428
  year: 1975
  ident: 2024012516141070000_B13
  article-title: Characterization of a novel, low-molecular-weight DNA-binding protein fromEscherichia coli
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.72.9.3428
– volume: 68
  start-page: 184
  year: 2021
  ident: 2024012516141070000_B55
  article-title: Functional and pathological amyloid structures in the eyes of 2020 cryo-EM
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2021.01.006
– volume: 43
  start-page: 4332
  year: 2015
  ident: 2024012516141070000_B53
  article-title: Effects of Hfq on the conformation and compaction of DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv268
– volume: 100
  start-page: 118301
  year: 2008
  ident: 2024012516141070000_B46
  article-title: Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.118301
– volume: 130
  start-page: 4525
  year: 2020
  ident: 2024012516141070000_B1
  article-title: The state of latency in microbial pathogenesis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI136221
– volume: 337
  start-page: 635
  year: 2004
  ident: 2024012516141070000_B21
  article-title: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.02.002
– volume: 45
  start-page: 7299
  year: 2017
  ident: 2024012516141070000_B54
  article-title: Compaction and condensation of DNA mediated by the C-terminal domain of Hfq
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx431
– volume: 182
  start-page: 297
  year: 2000
  ident: 2024012516141070000_B12
  article-title: The gene encoding mycobacterial DNA-binding protein I (MDPI) transformed rapidly growing bacteria to slowly growing bacteria
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2000.tb08911.x
– volume: 278
  start-page: 3447
  year: 2011
  ident: 2024012516141070000_B45
  article-title: Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2011.08267.x
– volume: 5
  start-page: 4124
  year: 2014
  ident: 2024012516141070000_B18
  article-title: Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5124
– volume: 13
  start-page: 14157
  year: 2023
  ident: 2024012516141070000_B52
  article-title: Mycobacterial DNA-binding protein 1 is critical for BCG survival in stressful environments and simultaneously regulates gene expression
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-40941-9
– volume: 16
  start-page: 1486
  year: 2016
  ident: 2024012516141070000_B24
  article-title: Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea
  publication-title: Proteomics
  doi: 10.1002/pmic.201500177
– volume: 11
  start-page: 976
  year: 2015
  ident: 2024012516141070000_B30
  article-title: Dynamics of nucleosomal structures measured by high-speed atomic force microscopy
  publication-title: Small
  doi: 10.1002/smll.201401318
– volume: 9
  start-page: 2034
  year: 2018
  ident: 2024012516141070000_B7
  article-title: Interfering with DNA decondensation as a strategy against mycobacteria
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02034
– volume: 15
  start-page: e0231562
  year: 2020
  ident: 2024012516141070000_B4
  article-title: Morphological peculiarities of the DNA–protein complexes in starved Escherichia coli cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0231562
– volume: 51
  start-page: 395
  year: 2004
  ident: 2024012516141070000_B5
  article-title: Nucleoid restructuring in stationary-state bacteria
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03855.x
– volume: 16
  start-page: 181
  year: 2021
  ident: 2024012516141070000_B33
  article-title: Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00798-9
– volume: 117
  start-page: 7216
  year: 2020
  ident: 2024012516141070000_B48
  article-title: Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1910044117
– volume: 28
  start-page: 3504
  year: 2000
  ident: 2024012516141070000_B43
  article-title: H-NS mediated compaction of DNA visualised by atomic force microscopy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.18.3504
– volume: 355
  start-page: 845
  year: 2006
  ident: 2024012516141070000_B23
  article-title: Intrinsically disordered loops inserted into the structural domains of human proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.10.037
– volume: 529
  start-page: 151
  year: 2002
  ident: 2024012516141070000_B40
  article-title: HU: promoting or counteracting DNA compaction?
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(02)03363-X
– volume: 135
  start-page: 237
  year: 1996
  ident: 2024012516141070000_B39
  article-title: A stable Escherichia coli–mycobacteria shuttle vector ‘pSO246’ in Mycobacterium bovis BCG
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1996.tb07995.x
– volume: 9
  start-page: 67
  year: 2018
  ident: 2024012516141070000_B8
  article-title: Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00067
– volume: 7
  start-page: e1002251
  year: 2011
  ident: 2024012516141070000_B57
  article-title: High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002251
– volume: 13
  start-page: e0204160
  year: 2018
  ident: 2024012516141070000_B19
  article-title: Significance of a histone-like protein with its native structure for the diagnosis of asymptomatic tuberculosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204160
– volume: 157
  start-page: 327
  year: 2011
  ident: 2024012516141070000_B38
  article-title: Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid
  publication-title: Microbiology
  doi: 10.1099/mic.0.045518-0
– volume: 13
  start-page: 1
  year: 2011
  ident: 2024012516141070000_B14
  article-title: Functional evolution of bacterial histone-like HU proteins
  publication-title: Curr. Issues Mol. Biol.
– volume: 43
  start-page: 1027
  year: 1999
  ident: 2024012516141070000_B10
  article-title: Identification of a novel DNA-binding protein from Mycobacteriumbovis bacillus Calmette-Guérin
  publication-title: Microbiol. Immunol.
  doi: 10.1111/j.1348-0421.1999.tb01232.x
– volume: 22
  start-page: 3749
  year: 2003
  ident: 2024012516141070000_B15
  article-title: Flexible DNA bending in HU–DNA cocrystal structures
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg351
– volume: 293
  start-page: 321
  year: 1999
  ident: 2024012516141070000_B20
  article-title: Intrinsically unstructured proteins: re-assessing the protein structure–function paradigm
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3110
– volume: 76
  start-page: 1019
  year: 1994
  ident: 2024012516141070000_B50
  article-title: H-NS over-expression induces an artificial stationary phase by silencing global transcription
  publication-title: Biochimie
  doi: 10.1016/0300-9084(94)90026-4
– volume: 101
  start-page: 6969
  year: 2004
  ident: 2024012516141070000_B42
  article-title: Dual architectural roles of HU: formation of flexible hinges and rigid filaments
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308230101
– volume: 19
  start-page: 285
  year: 2018
  ident: 2024012516141070000_B28
  article-title: High-speed atomic force microscopy and its future prospects
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-017-0356-5
– volume: 433
  start-page: 166881
  year: 2021
  ident: 2024012516141070000_B37
  article-title: Binding dynamics of disordered linker histone H1 with a nucleosomal particle
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2021.166881
– volume: 107
  start-page: 15728
  year: 2010
  ident: 2024012516141070000_B49
  article-title: H-NS forms a superhelical protein scaffold for DNA condensation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1006966107
– volume: 468
  start-page: 72
  year: 2010
  ident: 2024012516141070000_B32
  article-title: Video imaging of walking myosin V by high-speed atomic force microscopy
  publication-title: Nature
  doi: 10.1038/nature09450
– volume: 11
  start-page: 29
  year: 2011
  ident: 2024012516141070000_B26
  article-title: Binary classification of protein molecules into intrinsically disordered and ordered segments
  publication-title: BMC Struct. Biol.
  doi: 10.1186/1472-6807-11-29
– volume: 1
  start-page: 100029
  year: 2021
  ident: 2024012516141070000_B56
  article-title: Identification and characterization of the Hfq bacterial amyloid region DNA interactions
  publication-title: BBA Adv.
  doi: 10.1016/j.bbadva.2021.100029
– volume: 138
  start-page: 8512
  year: 2016
  ident: 2024012516141070000_B36
  article-title: Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03729
– volume: 50
  start-page: 7901
  year: 2011
  ident: 2024012516141070000_B31
  article-title: Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy
  publication-title: Biochemistry
  doi: 10.1021/bi200946z
– volume: 8
  start-page: 8197
  year: 2018
  ident: 2024012516141070000_B2
  article-title: C-terminal intrinsically disordered region-dependent organization of the mycobacterial genome by a histone-like protein
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26463-9
– volume: 111
  start-page: 10550
  year: 2014
  ident: 2024012516141070000_B34
  article-title: Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1402768111
– volume: 104
  start-page: 4309
  year: 2007
  ident: 2024012516141070000_B17
  article-title: Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0611686104
– volume: 115
  start-page: 11964
  year: 2018
  ident: 2024012516141070000_B47
  article-title: Highly disordered histone H1−DNA model complexes and their condensates
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1805943115
– volume: 400
  start-page: 83
  year: 1999
  ident: 2024012516141070000_B3
  article-title: DNA protection by stress-induced biocrystallization
  publication-title: Nature
  doi: 10.1038/21918
SSID ssj0014154
Score 2.4576266
Snippet Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant...
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 816
SubjectTerms DNA
Histones
Humans
Intrinsically Disordered Proteins - genetics
Intrinsically Disordered Proteins - metabolism
Molecular Biology
Mycobacterium - genetics
Mycobacterium - metabolism
Title Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy
URI https://www.ncbi.nlm.nih.gov/pubmed/38048321
https://www.proquest.com/docview/2898312301
https://pubmed.ncbi.nlm.nih.gov/PMC10810275
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PT8IwFG4MF70YBX_gD1IT9WIW2LqOciQgISbiBRNuS7u2QsBiZBz4731tBwGj4bSke92afm3e176-rwjdaxXC0jhKAqUYDWKmWMBkgwSSEKkT0SCM22zk10HSf49fRnRUiCQt_gjht0jd8O_6x5RLYO42UQ_8rx3Pw7fRJloATsjLRDlVzZgVB9x_V95xPTvpbFus8vfhyC1v0ztBxwVNxG2P6yk6UKaMKm0DS-TPFX7E7uCm2xEvo8PO-tK2Cpp2_Q3z2Ocr4LnG3OAJ_GNiHB6zFZaF4KaS2Kk0TKwB7g7a2B1I9xXzMc-hWALyC_y5ymDaO1lnaJT0iQarM_Teex52-kFxn0KQxUmYBzzTTRuZjRIhYOIpLQSntBmJOGOaKt5MoDASdonFOdU0BvKTMcaVFPAAYnWOSmZu1CXCluhlRAuZAOESWrCYZgqYCPBHHbKWqqKndVenWSE2bu-8mKU-6E1SACZdA1NFDxvrLy-y8Y8dBtT2mNytIU2h6230gxs1Xy5SWFkyAn66EVbRhYd48yXCrLJ-BG_YDvgbAyvCvfvGTMZOjDsETmVDv1f723aNjiKgRHYDJ6I3qJR_L9UtUJpc1NxWQM2N6h8EfPhR
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+action+of+an+intrinsically+disordered+protein+in+DNA+compaction+that+induces+mycobacterial+dormancy&rft.jtitle=Nucleic+acids+research&rft.au=Nishiyama%2C+Akihito&rft.au=Shimizu%2C+Masahiro&rft.au=Narita%2C+Tomoyuki&rft.au=Kodera%2C+Noriyuki&rft.date=2024-01-25&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=2&rft.spage=816&rft.epage=830&rft_id=info:doi/10.1093%2Fnar%2Fgkad1149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkad1149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon