Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy
Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these function...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 2; pp. 816 - 830 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
25.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gkad1149 |
Cover
Abstract | Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria. Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria. Graphical Abstract Graphical Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria. Graphical Abstract Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria. |
Author | Shaban, Amina Kaboso Kodera, Noriyuki Shimizu, Masahiro Ito, Kosuke Nishiyama, Akihito Matsumoto, Sohkichi Tateishi, Yoshitaka Yamaguchi, Takehiro Ozeki, Yuriko Yokoyama, Akira Narita, Tomoyuki Mayanagi, Kouta Hakamata, Mariko |
Author_xml | – sequence: 1 givenname: Akihito orcidid: 0000-0003-4416-7710 surname: Nishiyama fullname: Nishiyama, Akihito email: anishi@med.niigata-u.ac.jp – sequence: 2 givenname: Masahiro orcidid: 0000-0001-6249-1018 surname: Shimizu fullname: Shimizu, Masahiro – sequence: 3 givenname: Tomoyuki surname: Narita fullname: Narita, Tomoyuki – sequence: 4 givenname: Noriyuki orcidid: 0000-0003-4880-8423 surname: Kodera fullname: Kodera, Noriyuki – sequence: 5 givenname: Yuriko orcidid: 0000-0003-0672-1039 surname: Ozeki fullname: Ozeki, Yuriko – sequence: 6 givenname: Akira surname: Yokoyama fullname: Yokoyama, Akira – sequence: 7 givenname: Kouta orcidid: 0000-0001-6157-9093 surname: Mayanagi fullname: Mayanagi, Kouta – sequence: 8 givenname: Takehiro surname: Yamaguchi fullname: Yamaguchi, Takehiro – sequence: 9 givenname: Mariko surname: Hakamata fullname: Hakamata, Mariko – sequence: 10 givenname: Amina Kaboso orcidid: 0000-0001-6306-1298 surname: Shaban fullname: Shaban, Amina Kaboso – sequence: 11 givenname: Yoshitaka surname: Tateishi fullname: Tateishi, Yoshitaka – sequence: 12 givenname: Kosuke orcidid: 0000-0001-5161-1301 surname: Ito fullname: Ito, Kosuke – sequence: 13 givenname: Sohkichi surname: Matsumoto fullname: Matsumoto, Sohkichi email: sohkichi@med.niigata-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38048321$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URLeFG2fkGxwI9Th2Pk6oavmoVJULnK2x47SmiR3spFL-e7zaXQRI7WmkN795TzNzQo588JaQ18A-AGvLM4_x7PYeOwDRPiMbKCteiLbiR2TDSiYLYKI5Jicp_WQMBEjxghyXTRZLDhtyf7l6HJ2haGYXPA09RU-dn6PzyRkchpV2LoXY2Wg7OsUwW7cF6OXNOTVhnPaD8x3OWe4WYxMdVxN0btjocKBdiCN6s74kz3sckn21r6fkx-dP3y--FtffvlxdnF8XRlQwF2j6mteC80praCvba41S1lwL0_TSYl1lkWsQAhBlLwVwaZoGbadzAVGeko8732nRo-2MzdvgoKboRoyrCujUvx3v7tRteFDAGmC8ltnh3d4hhl-LTbMaXTJ2GNDbsCTFm7YpgZcMMvrm77A_KYcTZ4DvABNDStH2yrgZtzfL2W7IoWr7R5X_qA5_zEPv_xs6-D6Cv93hYZmeJn8DKEGw4g |
CitedBy_id | crossref_primary_10_3389_fimmu_2024_1330796 |
Cites_doi | 10.1074/jbc.M111.333385 10.1063/1.4897649 10.1006/jmbi.1999.3110 10.1016/S0022-2836(03)00725-3 10.1186/1472-6807-9-26 10.1139/O10-024 10.1038/s41598-017-06480-w 10.1128/JB.00469-19 10.1038/s41467-017-01466-8 10.1021/acs.nanolett.6b05294 10.1021/bi800010s 10.1073/pnas.72.9.3428 10.1016/j.sbi.2021.01.006 10.1093/nar/gkv268 10.1103/PhysRevLett.100.118301 10.1172/JCI136221 10.1016/j.jmb.2004.02.002 10.1093/nar/gkx431 10.1111/j.1574-6968.2000.tb08911.x 10.1111/j.1742-4658.2011.08267.x 10.1038/ncomms5124 10.1038/s41598-023-40941-9 10.1002/pmic.201500177 10.1002/smll.201401318 10.3389/fmicb.2018.02034 10.1371/journal.pone.0231562 10.1046/j.1365-2958.2003.03855.x 10.1038/s41565-020-00798-9 10.1073/pnas.1910044117 10.1093/nar/28.18.3504 10.1016/j.jmb.2005.10.037 10.1016/S0014-5793(02)03363-X 10.1111/j.1574-6968.1996.tb07995.x 10.3389/fmicb.2018.00067 10.1371/journal.ppat.1002251 10.1371/journal.pone.0204160 10.1099/mic.0.045518-0 10.1111/j.1348-0421.1999.tb01232.x 10.1093/emboj/cdg351 10.1016/0300-9084(94)90026-4 10.1073/pnas.0308230101 10.1007/s12551-017-0356-5 10.1016/j.jmb.2021.166881 10.1073/pnas.1006966107 10.1038/nature09450 10.1186/1472-6807-11-29 10.1016/j.bbadva.2021.100029 10.1021/jacs.6b03729 10.1021/bi200946z 10.1038/s41598-018-26463-9 10.1073/pnas.1402768111 10.1073/pnas.0611686104 10.1073/pnas.1805943115 10.1038/21918 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkad1149 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 830 |
ExternalDocumentID | PMC10810275 38048321 10_1093_nar_gkad1149 10.1093/nar/gkad1149 |
Genre | Journal Article |
GrantInformation_xml | – fundername: AMED grantid: JP20fk0108090 – fundername: CREST grantid: JP22gm1610009 – fundername: JST grantid: JPMJCR1762 – fundername: Medical Institute of Bioregulation, Kyushu University – fundername: Japan Agency for Medical Research and Development – fundername: Japanese Ministry of Education, Culture, Sports, Science and Technology grantid: 17K08823 – fundername: Niigata University Interdisciplinary Research – fundername: Japan Science and Technology Agency – fundername: World Premier International Research Center Initiative – fundername: ; – fundername: ; grantid: JP22gm1610009 – fundername: ; grantid: JPMJCR1762 – fundername: ; grantid: JP20fk0108090; JP20fk0108089 – fundername: ; grantid: 17K08823; 20H03483 to; 20K22629 to |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABQTQ ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AHMBA AIAGR AJDVS ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI M49 MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION OVT CGR CUY CVF ECM EIF NPM 7X8 ESTFP 5PM |
ID | FETCH-LOGICAL-c461t-acf7274226bb196efbba5572b4c8f5ea7696e2b1441aa5f54125c88aedbc88143 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:36:05 EDT 2025 Fri Sep 05 08:49:11 EDT 2025 Mon Jul 21 05:58:55 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Tue Jul 01 02:59:26 EDT 2025 Wed Apr 02 07:03:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-acf7274226bb196efbba5572b4c8f5ea7696e2b1441aa5f54125c88aedbc88143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6306-1298 0000-0001-5161-1301 0000-0001-6157-9093 0000-0003-4416-7710 0000-0001-6249-1018 0000-0003-4880-8423 0000-0003-0672-1039 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkad1149 |
PMID | 38048321 |
PQID | 2898312301 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10810275 proquest_miscellaneous_2898312301 pubmed_primary_38048321 crossref_citationtrail_10_1093_nar_gkad1149 crossref_primary_10_1093_nar_gkad1149 oup_primary_10_1093_nar_gkad1149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-25 |
PublicationDateYYYYMMDD | 2024-01-25 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Whiteford (2024012516141070000_B38) 2011; 157 Rafiei (2024012516141070000_B6) 2019; 201 Sharadamma (2024012516141070000_B45) 2011; 278 Arold (2024012516141070000_B49) 2010; 107 Shaban (2024012516141070000_B52) 2023; 13 Wolf (2024012516141070000_B3) 1999; 400 Katan (2024012516141070000_B30) 2015; 11 Freeman (2024012516141070000_B35) 2014; 141 Dai (2024012516141070000_B46) 2008; 100 Fukuchi (2024012516141070000_B25) 2009; 9 Dame (2024012516141070000_B40) 2002; 529 Malabirade (2024012516141070000_B54) 2017; 45 Caterino (2024012516141070000_B27) 2011; 89 Ward (2024012516141070000_B21) 2004; 337 McGovern (2024012516141070000_B50) 1994; 76 Rouvière-Yaniv (2024012516141070000_B13) 1975; 72 Ragonis-Bachar (2024012516141070000_B55) 2021; 68 Fukuchi (2024012516141070000_B26) 2011; 11 Gupta (2024012516141070000_B8) 2018; 9 Bhowmick (2024012516141070000_B18) 2014; 5 Fukuchi (2024012516141070000_B23) 2006; 355 Kodera (2024012516141070000_B32) 2010; 468 Savitskaya (2024012516141070000_B2) 2018; 8 Wright (2024012516141070000_B20) 1999; 293 Matsumoto (2024012516141070000_B10) 1999; 43 Ramstein (2024012516141070000_B16) 2003; 331 Griffin (2024012516141070000_B57) 2011; 7 Kodera (2024012516141070000_B33) 2021; 16 Mukherjee (2024012516141070000_B44) 2008; 47 Miyagi (2024012516141070000_B31) 2011; 50 Turner (2024012516141070000_B47) 2018; 115 Loiko (2024012516141070000_B4) 2020; 15 Li (2024012516141070000_B34) 2014; 111 Guo (2024012516141070000_B17) 2007; 104 Pirofski (2024012516141070000_B1) 2020; 130 Grove (2024012516141070000_B14) 2011; 13 Wang (2024012516141070000_B24) 2016; 16 Matsumoto (2024012516141070000_B39) 1996; 135 Enany (2024012516141070000_B51) 2017; 7 Tan (2024012516141070000_B36) 2016; 138 Wu (2024012516141070000_B37) 2021; 433 Wright (2024012516141070000_B22) 1999; 293 Shibata (2024012516141070000_B29) 2017; 8 Scutigliani (2024012516141070000_B7) 2018; 9 Matsumoto (2024012516141070000_B12) 2000; 182 Jiang (2024012516141070000_B53) 2015; 43 Niki (2024012516141070000_B11) 2012; 287 Sridhar (2024012516141070000_B48) 2020; 117 Japaridze (2024012516141070000_B41) 2017; 17 World Health Organization (2024012516141070000_B9) 2020 Swinger (2024012516141070000_B15) 2003; 22 Turbant (2024012516141070000_B56) 2021; 1 Ando (2024012516141070000_B28) 2018; 19 Frenkiel-Krispin (2024012516141070000_B5) 2004; 51 Van Noort (2024012516141070000_B42) 2004; 101 Ohara (2024012516141070000_B19) 2018; 13 Dame (2024012516141070000_B43) 2000; 28 |
References_xml | – volume: 287 start-page: 27743 year: 2012 ident: 2024012516141070000_B11 article-title: A novel mechanism of growth phase-dependent tolerance to isoniazid in mycobacteria publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.333385 – volume: 141 start-page: 165103 year: 2014 ident: 2024012516141070000_B35 article-title: Coarse-grained modeling of DNA curvature publication-title: J. Chem. Phys. doi: 10.1063/1.4897649 – volume: 293 start-page: 321 year: 1999 ident: 2024012516141070000_B22 article-title: Intrinsically disordered proteins in cellular signaling and regulation publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3110 – volume: 331 start-page: 101 year: 2003 ident: 2024012516141070000_B16 article-title: Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and atructure publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00725-3 – volume: 9 start-page: 26 year: 2009 ident: 2024012516141070000_B25 article-title: Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors publication-title: BMC Struct. Biol. doi: 10.1186/1472-6807-9-26 – volume: 89 start-page: 35 year: 2011 ident: 2024012516141070000_B27 article-title: Structure of the H1 C-terminal domain and function in chromatin condensation publication-title: Biochem. Cell Biol. doi: 10.1139/O10-024 – volume: 7 start-page: 6810 year: 2017 ident: 2024012516141070000_B51 article-title: Mycobacterial DNA-binding protein 1 is critical for long term survival of Mycobacterium smegmatis and simultaneously coordinates cellular functions publication-title: Sci. Rep. doi: 10.1038/s41598-017-06480-w – volume: 201 start-page: e00469-19 year: 2019 ident: 2024012516141070000_B6 article-title: Growth phase-dependent chromosome condensation and heat-stable nucleoid-structuring protein redistribution in Escherichia coli under osmotic stress publication-title: J. Bacteriol. doi: 10.1128/JB.00469-19 – volume: 8 start-page: 1430 year: 2017 ident: 2024012516141070000_B29 article-title: Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy publication-title: Nat. Commun. doi: 10.1038/s41467-017-01466-8 – volume: 17 start-page: 1938 year: 2017 ident: 2024012516141070000_B41 article-title: Hyperplectonemes: a higher order compact and dynamic DNA self-organization publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05294 – year: 2020 ident: 2024012516141070000_B9 article-title: Global Tuberculosis Report 2020 – volume: 47 start-page: 8744 year: 2008 ident: 2024012516141070000_B44 article-title: The C-terminal domain of HU-related histone-like protein Hlp from Mycobacterium smegmatis mediates DNA end-joining publication-title: Biochemistry doi: 10.1021/bi800010s – volume: 72 start-page: 3428 year: 1975 ident: 2024012516141070000_B13 article-title: Characterization of a novel, low-molecular-weight DNA-binding protein fromEscherichia coli publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.72.9.3428 – volume: 68 start-page: 184 year: 2021 ident: 2024012516141070000_B55 article-title: Functional and pathological amyloid structures in the eyes of 2020 cryo-EM publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2021.01.006 – volume: 43 start-page: 4332 year: 2015 ident: 2024012516141070000_B53 article-title: Effects of Hfq on the conformation and compaction of DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv268 – volume: 100 start-page: 118301 year: 2008 ident: 2024012516141070000_B46 article-title: Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.118301 – volume: 130 start-page: 4525 year: 2020 ident: 2024012516141070000_B1 article-title: The state of latency in microbial pathogenesis publication-title: J. Clin. Invest. doi: 10.1172/JCI136221 – volume: 337 start-page: 635 year: 2004 ident: 2024012516141070000_B21 article-title: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.02.002 – volume: 45 start-page: 7299 year: 2017 ident: 2024012516141070000_B54 article-title: Compaction and condensation of DNA mediated by the C-terminal domain of Hfq publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx431 – volume: 182 start-page: 297 year: 2000 ident: 2024012516141070000_B12 article-title: The gene encoding mycobacterial DNA-binding protein I (MDPI) transformed rapidly growing bacteria to slowly growing bacteria publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2000.tb08911.x – volume: 278 start-page: 3447 year: 2011 ident: 2024012516141070000_B45 article-title: Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange publication-title: FEBS J. doi: 10.1111/j.1742-4658.2011.08267.x – volume: 5 start-page: 4124 year: 2014 ident: 2024012516141070000_B18 article-title: Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors publication-title: Nat. Commun. doi: 10.1038/ncomms5124 – volume: 13 start-page: 14157 year: 2023 ident: 2024012516141070000_B52 article-title: Mycobacterial DNA-binding protein 1 is critical for BCG survival in stressful environments and simultaneously regulates gene expression publication-title: Sci. Rep. doi: 10.1038/s41598-023-40941-9 – volume: 16 start-page: 1486 year: 2016 ident: 2024012516141070000_B24 article-title: Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea publication-title: Proteomics doi: 10.1002/pmic.201500177 – volume: 11 start-page: 976 year: 2015 ident: 2024012516141070000_B30 article-title: Dynamics of nucleosomal structures measured by high-speed atomic force microscopy publication-title: Small doi: 10.1002/smll.201401318 – volume: 9 start-page: 2034 year: 2018 ident: 2024012516141070000_B7 article-title: Interfering with DNA decondensation as a strategy against mycobacteria publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02034 – volume: 15 start-page: e0231562 year: 2020 ident: 2024012516141070000_B4 article-title: Morphological peculiarities of the DNA–protein complexes in starved Escherichia coli cells publication-title: PLoS One doi: 10.1371/journal.pone.0231562 – volume: 51 start-page: 395 year: 2004 ident: 2024012516141070000_B5 article-title: Nucleoid restructuring in stationary-state bacteria publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03855.x – volume: 16 start-page: 181 year: 2021 ident: 2024012516141070000_B33 article-title: Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00798-9 – volume: 117 start-page: 7216 year: 2020 ident: 2024012516141070000_B48 article-title: Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1910044117 – volume: 28 start-page: 3504 year: 2000 ident: 2024012516141070000_B43 article-title: H-NS mediated compaction of DNA visualised by atomic force microscopy publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.18.3504 – volume: 355 start-page: 845 year: 2006 ident: 2024012516141070000_B23 article-title: Intrinsically disordered loops inserted into the structural domains of human proteins publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.10.037 – volume: 529 start-page: 151 year: 2002 ident: 2024012516141070000_B40 article-title: HU: promoting or counteracting DNA compaction? publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)03363-X – volume: 135 start-page: 237 year: 1996 ident: 2024012516141070000_B39 article-title: A stable Escherichia coli–mycobacteria shuttle vector ‘pSO246’ in Mycobacterium bovis BCG publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1996.tb07995.x – volume: 9 start-page: 67 year: 2018 ident: 2024012516141070000_B8 article-title: Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00067 – volume: 7 start-page: e1002251 year: 2011 ident: 2024012516141070000_B57 article-title: High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002251 – volume: 13 start-page: e0204160 year: 2018 ident: 2024012516141070000_B19 article-title: Significance of a histone-like protein with its native structure for the diagnosis of asymptomatic tuberculosis publication-title: PLoS One doi: 10.1371/journal.pone.0204160 – volume: 157 start-page: 327 year: 2011 ident: 2024012516141070000_B38 article-title: Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid publication-title: Microbiology doi: 10.1099/mic.0.045518-0 – volume: 13 start-page: 1 year: 2011 ident: 2024012516141070000_B14 article-title: Functional evolution of bacterial histone-like HU proteins publication-title: Curr. Issues Mol. Biol. – volume: 43 start-page: 1027 year: 1999 ident: 2024012516141070000_B10 article-title: Identification of a novel DNA-binding protein from Mycobacteriumbovis bacillus Calmette-Guérin publication-title: Microbiol. Immunol. doi: 10.1111/j.1348-0421.1999.tb01232.x – volume: 22 start-page: 3749 year: 2003 ident: 2024012516141070000_B15 article-title: Flexible DNA bending in HU–DNA cocrystal structures publication-title: EMBO J. doi: 10.1093/emboj/cdg351 – volume: 293 start-page: 321 year: 1999 ident: 2024012516141070000_B20 article-title: Intrinsically unstructured proteins: re-assessing the protein structure–function paradigm publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3110 – volume: 76 start-page: 1019 year: 1994 ident: 2024012516141070000_B50 article-title: H-NS over-expression induces an artificial stationary phase by silencing global transcription publication-title: Biochimie doi: 10.1016/0300-9084(94)90026-4 – volume: 101 start-page: 6969 year: 2004 ident: 2024012516141070000_B42 article-title: Dual architectural roles of HU: formation of flexible hinges and rigid filaments publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0308230101 – volume: 19 start-page: 285 year: 2018 ident: 2024012516141070000_B28 article-title: High-speed atomic force microscopy and its future prospects publication-title: Biophys. Rev. doi: 10.1007/s12551-017-0356-5 – volume: 433 start-page: 166881 year: 2021 ident: 2024012516141070000_B37 article-title: Binding dynamics of disordered linker histone H1 with a nucleosomal particle publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2021.166881 – volume: 107 start-page: 15728 year: 2010 ident: 2024012516141070000_B49 article-title: H-NS forms a superhelical protein scaffold for DNA condensation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1006966107 – volume: 468 start-page: 72 year: 2010 ident: 2024012516141070000_B32 article-title: Video imaging of walking myosin V by high-speed atomic force microscopy publication-title: Nature doi: 10.1038/nature09450 – volume: 11 start-page: 29 year: 2011 ident: 2024012516141070000_B26 article-title: Binary classification of protein molecules into intrinsically disordered and ordered segments publication-title: BMC Struct. Biol. doi: 10.1186/1472-6807-11-29 – volume: 1 start-page: 100029 year: 2021 ident: 2024012516141070000_B56 article-title: Identification and characterization of the Hfq bacterial amyloid region DNA interactions publication-title: BBA Adv. doi: 10.1016/j.bbadva.2021.100029 – volume: 138 start-page: 8512 year: 2016 ident: 2024012516141070000_B36 article-title: Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03729 – volume: 50 start-page: 7901 year: 2011 ident: 2024012516141070000_B31 article-title: Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy publication-title: Biochemistry doi: 10.1021/bi200946z – volume: 8 start-page: 8197 year: 2018 ident: 2024012516141070000_B2 article-title: C-terminal intrinsically disordered region-dependent organization of the mycobacterial genome by a histone-like protein publication-title: Sci. Rep. doi: 10.1038/s41598-018-26463-9 – volume: 111 start-page: 10550 year: 2014 ident: 2024012516141070000_B34 article-title: Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1402768111 – volume: 104 start-page: 4309 year: 2007 ident: 2024012516141070000_B17 article-title: Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0611686104 – volume: 115 start-page: 11964 year: 2018 ident: 2024012516141070000_B47 article-title: Highly disordered histone H1−DNA model complexes and their condensates publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1805943115 – volume: 400 start-page: 83 year: 1999 ident: 2024012516141070000_B3 article-title: DNA protection by stress-induced biocrystallization publication-title: Nature doi: 10.1038/21918 |
SSID | ssj0014154 |
Score | 2.4576266 |
Snippet | Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant... Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 816 |
SubjectTerms | DNA Histones Humans Intrinsically Disordered Proteins - genetics Intrinsically Disordered Proteins - metabolism Molecular Biology Mycobacterium - genetics Mycobacterium - metabolism |
Title | Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38048321 https://www.proquest.com/docview/2898312301 https://pubmed.ncbi.nlm.nih.gov/PMC10810275 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PT8IwFG4MF70YBX_gD1IT9WIW2LqOciQgISbiBRNuS7u2QsBiZBz4731tBwGj4bSke92afm3e176-rwjdaxXC0jhKAqUYDWKmWMBkgwSSEKkT0SCM22zk10HSf49fRnRUiCQt_gjht0jd8O_6x5RLYO42UQ_8rx3Pw7fRJloATsjLRDlVzZgVB9x_V95xPTvpbFus8vfhyC1v0ztBxwVNxG2P6yk6UKaMKm0DS-TPFX7E7uCm2xEvo8PO-tK2Cpp2_Q3z2Ocr4LnG3OAJ_GNiHB6zFZaF4KaS2Kk0TKwB7g7a2B1I9xXzMc-hWALyC_y5ymDaO1lnaJT0iQarM_Teex52-kFxn0KQxUmYBzzTTRuZjRIhYOIpLQSntBmJOGOaKt5MoDASdonFOdU0BvKTMcaVFPAAYnWOSmZu1CXCluhlRAuZAOESWrCYZgqYCPBHHbKWqqKndVenWSE2bu-8mKU-6E1SACZdA1NFDxvrLy-y8Y8dBtT2mNytIU2h6230gxs1Xy5SWFkyAn66EVbRhYd48yXCrLJ-BG_YDvgbAyvCvfvGTMZOjDsETmVDv1f723aNjiKgRHYDJ6I3qJR_L9UtUJpc1NxWQM2N6h8EfPhR |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+action+of+an+intrinsically+disordered+protein+in+DNA+compaction+that+induces+mycobacterial+dormancy&rft.jtitle=Nucleic+acids+research&rft.au=Nishiyama%2C+Akihito&rft.au=Shimizu%2C+Masahiro&rft.au=Narita%2C+Tomoyuki&rft.au=Kodera%2C+Noriyuki&rft.date=2024-01-25&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=2&rft.spage=816&rft.epage=830&rft_id=info:doi/10.1093%2Fnar%2Fgkad1149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkad1149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |