Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review
Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progressi...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 343 - 358 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices. |
---|---|
AbstractList | Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices. Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices. Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices.Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices. |
Author | Heidari, Hadi Das, Rupam Moradi, Farshad |
Author_xml | – sequence: 1 givenname: Rupam orcidid: 0000-0001-7351-9928 surname: Das fullname: Das, Rupam email: rupam.das@glasgow.ac.uk organization: Microelectronics Lab (meLAB), School of Engineering, The University of Glasgow, Glasgow, U.K – sequence: 2 givenname: Farshad orcidid: 0000-0001-7077-8545 surname: Moradi fullname: Moradi, Farshad email: moradi@eng.au.dk organization: Integrated Circuits and Electronics Lab (ICELab), Electrical Engineering Department, Aarhus University, Aarhus, Denmark – sequence: 3 givenname: Hadi orcidid: 0000-0001-8412-8164 surname: Heidari fullname: Heidari, Hadi email: hadi.heidari@glasgow.ac.uk organization: Microelectronics Lab (meLAB), School of Engineering, The University of Glasgow, Glasgow, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31944987$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEQx4MoatUvoCALXrxszWsf8dbWR4WC4gOPIcnOSmQfNdlV-u1NbevBg6cZht9vGOY_QNtN2wBCxwQPCcHi4nk8GT0NKaZ4SEWaCoq30D4RHMdCCLy97BmNecKTPTTw_h3jJKWC7qI9Figu8mwfTce2tU0Hb051UESqKaJX66AC76tF9NB-gQvju3peqaZTuoJo7JRtoiv4tAb8ZTSKHkMLX4dop1SVh6N1PUAvN9fPk2k8u7-9m4xmseEp6WKltaHciKI0NMlxgbUqdUKykhmdE5qpHKjmkFIATktQKeNFVgqWaYU5NoIdoPPV3rlrP3rwnaytN1CF-6DtvaSMk5RikrGAnv1B39veNeG6QOWcEc5yEqjTNdXrGgo5d7ZWbiE3PwpAvgKMa713UEpjO9XZtunCKypJsFzGIX_ikMs45DqOoNI_6mb7v9LJSrIA8CvkIsU8ydg3Gx2Unw |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_1109_TBCAS_2024_3430038 crossref_primary_10_1021_acs_chemrev_3c00425 crossref_primary_10_3390_jfb14020058 crossref_primary_10_1016_j_nanoen_2024_110193 crossref_primary_10_1557_s43577_023_00535_2 crossref_primary_10_3390_sym16060753 crossref_primary_10_1016_j_plrev_2024_01_003 crossref_primary_10_1109_TAP_2020_3044636 crossref_primary_10_1109_ACCESS_2024_3351934 crossref_primary_10_1002_adhm_202100158 crossref_primary_10_1016_j_mtadv_2022_100322 crossref_primary_10_1002_adhm_202304447 crossref_primary_10_1016_j_jneumeth_2022_109761 crossref_primary_10_1049_pel2_12797 crossref_primary_10_1109_TBCAS_2022_3228895 crossref_primary_10_1016_j_medj_2021_05_002 crossref_primary_10_1021_acsmaterialslett_1c00438 crossref_primary_10_1088_1741_2552_ac1178 crossref_primary_10_1002_admt_202101086 crossref_primary_10_1155_2021_6074657 crossref_primary_10_1016_j_comnet_2023_109718 crossref_primary_10_1038_s41598_022_13679_z crossref_primary_10_1109_TBME_2021_3094543 crossref_primary_10_1109_TBCAS_2022_3178581 crossref_primary_10_1007_s10470_023_02166_8 crossref_primary_10_1109_TMTT_2020_3014653 crossref_primary_10_20517_ss_2024_12 crossref_primary_10_1109_TBCAS_2020_3038599 crossref_primary_10_3390_s24237522 crossref_primary_10_1109_JSSC_2022_3207549 crossref_primary_10_1109_TMECH_2023_3248112 crossref_primary_10_1007_s10470_022_01990_8 crossref_primary_10_1109_TBCAS_2023_3336598 crossref_primary_10_1109_TEMC_2024_3439468 crossref_primary_10_1002_advs_202002693 crossref_primary_10_1007_s44174_024_00267_0 crossref_primary_10_1016_j_rio_2021_100168 crossref_primary_10_1039_D3NH00461A crossref_primary_10_1016_j_neurom_2024_01_003 crossref_primary_10_1002_adhm_202000779 crossref_primary_10_1109_ACCESS_2023_3321796 crossref_primary_10_1021_acs_nanolett_1c00425 crossref_primary_10_1021_acsmaterialslett_2c00095 crossref_primary_10_1109_TBCAS_2023_3264988 crossref_primary_10_1587_elex_21_20240338 crossref_primary_10_1109_JSAC_2024_3399253 crossref_primary_10_1021_acs_analchem_0c02225 crossref_primary_10_1109_ACCESS_2021_3064307 crossref_primary_10_1109_TCSI_2024_3395472 crossref_primary_10_3390_app11062487 crossref_primary_10_1109_LAWP_2024_3506616 crossref_primary_10_1002_adma_202201864 crossref_primary_10_3390_s22166096 crossref_primary_10_1587_elex_21_20240575 crossref_primary_10_1002_aisy_202300527 crossref_primary_10_3390_electronics10050590 crossref_primary_10_1007_s40820_024_01602_2 crossref_primary_10_1109_TVLSI_2024_3455428 crossref_primary_10_3390_jlpea14030036 crossref_primary_10_1002_aesr_202300004 crossref_primary_10_1016_j_aeue_2023_155010 crossref_primary_10_1038_s41598_024_70591_4 crossref_primary_10_1002_nano_202000242 crossref_primary_10_3390_electronics10232895 crossref_primary_10_1002_adma_202103208 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_3390_electronics12194009 crossref_primary_10_2139_ssrn_4458051 crossref_primary_10_1109_TNSRE_2021_3090269 crossref_primary_10_1002_adsr_202400142 crossref_primary_10_1371_journal_pone_0311753 crossref_primary_10_1016_j_aeue_2023_154527 crossref_primary_10_1016_j_esr_2024_101328 crossref_primary_10_1088_1361_6439_ac12a1 crossref_primary_10_1098_rsta_2021_0009 crossref_primary_10_1016_j_device_2023_100068 crossref_primary_10_1002_adma_202303267 crossref_primary_10_1098_rsta_2021_0007 crossref_primary_10_1109_TTE_2024_3422993 crossref_primary_10_1109_ACCESS_2020_3042928 crossref_primary_10_1016_j_cobme_2024_100562 crossref_primary_10_1109_MCOM_005_2101090 crossref_primary_10_1109_MAP_2023_3301398 crossref_primary_10_34133_bmr_0012 crossref_primary_10_1021_acsaelm_2c01608 crossref_primary_10_1016_j_smaim_2020_08_002 crossref_primary_10_1088_1741_2552_abf590 crossref_primary_10_1055_s_0041_1725137 crossref_primary_10_1002_advs_202307369 crossref_primary_10_1002_aisy_202100082 crossref_primary_10_1002_cta_4307 crossref_primary_10_1109_RBME_2021_3110084 crossref_primary_10_1109_TAP_2022_3209236 crossref_primary_10_35848_1347_4065_acbd58 crossref_primary_10_1016_j_nanoen_2021_106123 crossref_primary_10_1126_sciadv_abm5023 |
Cites_doi | 10.1038/s41586-018-0823-6 10.1371/journal.pone.0206137 10.1109/CICC.2018.8357047 10.1016/j.cobme.2017.09.003 10.1126/sciadv.aav2842 10.1088/1741-2560/10/4/046016 10.1038/natrevmats.2016.63 10.1088/1741-2560/12/1/011001 10.1038/nrn3383 10.1016/j.jneumeth.2005.08.015 10.1126/sciadv.1601649 10.1088/1741-2560/8/4/045006 10.1002/adma.201501810 10.1109/10.83588 10.1021/acs.nanolett.8b04895 10.1038/nnano.2015.115 10.1038/s41563-019-0292-9 10.1038/nmeth.3536 10.1002/mus.23696 10.1021/acsbiomaterials.5b00429 10.1109/TBCAS.2018.2852267 10.1038/nprot.2011.413 10.1016/j.conb.2017.12.007 10.1016/j.clinph.2014.04.021 10.1109/ISCAS.2019.8702343 10.1021/nn5024522 10.1146/annurev-bioeng-061008-124927 10.1088/1741-2560/10/4/045002 10.1109/MEMB.2005.1511497 10.1088/1741-2560/2/4/003 10.1002/adma.201800534 10.1016/j.jneumeth.2007.12.014 10.1038/nmat3468 10.1016/j.jneumeth.2011.03.012 10.1109/ISCAS.2019.8702735 10.3389/fnins.2018.00764 10.3390/mi9110538 10.1109/JPROC.2016.2574938 10.1109/JSSC.2018.2865474 10.1109/TNSRE.2011.2109399 10.1016/j.biomaterials.2008.04.023 10.1021/acsami.8b20542 10.3389/fnins.2018.00132 10.1002/adfm.201700905 10.1016/j.biomaterials.2011.04.051 10.1039/C5LC00588D 10.1152/jn.1942.5.4.275 10.1016/j.biomaterials.2014.07.039 10.1038/natrevmats.2016.93 10.1038/nrneurol.2012.219 10.1038/srep28381 10.1088/1741-2560/12/5/056002 10.1063/1.1745583 10.1073/pnas.1424875112 10.1109/JERM.2019.2903930 10.1016/j.cell.2015.06.058 10.1109/VLSIC.2016.7573559 10.1002/adma.201304140 10.1016/j.clinph.2005.11.002 10.1109/ICECS.2018.8617874 10.1109/JMEMS.2014.2375326 10.1038/nbt.3415 10.1002/smll.201702479 10.3389/fnbeh.2014.00069 10.1109/TBCAS.2012.2192932 10.1016/j.neuron.2015.10.032 10.3389/fneng.2014.00015 10.3389/fnins.2014.00423 10.3390/ma11101995 10.1016/j.neuron.2014.12.035 10.1021/acs.nanolett.6b02673 10.1038/nn.3905 10.1109/PRIME.2019.8787735 10.1038/nrn2196 10.1016/j.actbio.2017.02.010 10.1109/NER.2019.8716998 10.1586/ern.09.12 10.1016/S1388-2457(99)00141-8 10.1109/ACCESS.2018.2860793 10.1109/TBME.2015.2445713 10.1021/nn406223e 10.1038/nnano.2008.174 10.1126/scitranslmed.aad7577 10.1109/IEMBS.2008.4650549 10.1038/ncomms6258 10.1136/jnnp.2005.069245 10.1073/pnas.1605269113 10.1166/jolpe.2019.1597 10.1126/science.1260318 10.3791/50609 10.1177/2331216518772963 10.1038/nature24636 10.1088/1741-2560/11/4/046005 10.1152/jn.00149.2017 10.1016/j.jneumeth.2017.10.002 10.1021/acsnano.5b01060 10.1038/s41583-019-0169-6 10.1109/TBME.2012.2217395 10.1109/TBME.2004.827264 10.1038/nprot.2013.080 10.1109/IEMBS.2009.5332676 10.1038/s41467-019-11628-5 10.1038/nmeth.f.324 10.1088/1741-2560/1/2/001 10.1114/1.1581292 10.1073/pnas.1100815108 10.3389/fnins.2016.00011 10.1109/TNSRE.2015.2399856 10.1109/MCOM.2018.1700917 10.1038/ncpneuro0750 10.1109/TBCAS.2013.2282318 10.1038/nmeth.2936 10.7554/eLife.07192 10.1016/j.biomaterials.2014.01.038 10.1038/nbt.3093 10.1038/ncomms6259 10.1039/C5LC00809C 10.1073/pnas.1717695114 10.1371/journal.pone.0072691 10.1126/science.1067996 10.1039/C7LC00103G 10.1109/JBHI.2015.2424985 10.1038/srep30570 10.1016/S1364-6613(00)01560-6 10.1109/TBCAS.2016.2646901 10.1109/10.914800 10.1109/TBCAS.2019.2930498 10.1038/nature06976 10.1021/acs.nanolett.8b04456 10.1126/sciadv.1601966 10.1016/j.neuron.2016.12.031 10.1126/science.1226325 10.1109/TBCAS.2018.2799623 10.1016/S0168-0102(99)00041-3 10.1002/adma.201304496 10.1063/1.5024243 10.1016/j.neuron.2016.06.034 10.1016/j.biomaterials.2014.10.040 10.1016/j.conb.2017.12.009 10.1152/jn.1940.3.1.74 10.1126/science.1232437 10.1126/science.aah4496 10.1073/pnas.1718721115 10.1088/1361-6439/aa6ad4 10.1038/nnano.2011.249 10.1038/nbt.2834 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2020.2966920 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 358 |
ExternalDocumentID | 31944987 10_1109_TBCAS_2020_2966920 8960457 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: EPSRC, U.K. grantid: EP/R511705/1 – fundername: STARDUST Project grantid: 767092 – fundername: European Union's Horizon 2020 Hybrid Enhanced Regenerative Medicine Systems grantid: 824164 – fundername: Scottish Research Partnership in Engineering grantid: PEER1718/03 |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c461t-abbc24c9dfc2580d0bafb517f3cb8127a8e2b4e62ee42fea634d7f937ba040c93 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 00:14:30 EDT 2025 Mon Jun 30 04:09:38 EDT 2025 Thu Apr 03 07:04:24 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 01 03:26:35 EDT 2025 Wed Aug 27 02:41:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-abbc24c9dfc2580d0bafb517f3cb8127a8e2b4e62ee42fea634d7f937ba040c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7077-8545 0000-0001-7351-9928 0000-0001-8412-8164 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8960457 |
PMID | 31944987 |
PQID | 2384314381 |
PQPubID | 85510 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2384314381 crossref_citationtrail_10_1109_TBCAS_2020_2966920 proquest_miscellaneous_2341620173 pubmed_primary_31944987 ieee_primary_8960457 crossref_primary_10_1109_TBCAS_2020_2966920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 sparta (ref125) 2011; 7 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref148 park (ref118) 2014; 5 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref153 ref151 ref152 ref150 ref24 ref23 ref26 ref25 singh (ref107) 2000; 8 ref20 kuzum (ref97) 2014; 5 ref22 ref21 ref28 ref27 ref29 zhao (ref141) 2018 ghanbari (ref133) 2019 ref13 ref12 ref128 ref15 ref129 ref14 ref126 ref96 ref124 ref99 ref11 ref98 ref10 ref17 ref16 ref19 ref18 ref93 ref134 ref92 ref131 ref95 ref132 ref94 ref130 ref91 ref90 ref89 ref139 ref137 ref86 ref138 ref85 ref135 ref88 ref136 ref87 schwaerzle (ref127) 2017; 27 ref144 ref82 ref145 ref81 ref142 ref84 ref143 ref83 ref140 ref80 ref79 ref108 ref78 ref109 ref106 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref153 doi: 10.1038/s41586-018-0823-6 – ident: ref75 doi: 10.1371/journal.pone.0206137 – ident: ref145 doi: 10.1109/CICC.2018.8357047 – ident: ref54 doi: 10.1016/j.cobme.2017.09.003 – ident: ref71 doi: 10.1126/sciadv.aav2842 – ident: ref73 doi: 10.1088/1741-2560/10/4/046016 – ident: ref63 doi: 10.1038/natrevmats.2016.63 – ident: ref44 doi: 10.1088/1741-2560/12/1/011001 – ident: ref70 doi: 10.1038/nrn3383 – ident: ref14 doi: 10.1016/j.jneumeth.2005.08.015 – ident: ref35 doi: 10.1126/sciadv.1601649 – ident: ref58 doi: 10.1088/1741-2560/8/4/045006 – ident: ref101 doi: 10.1002/adma.201501810 – ident: ref6 doi: 10.1109/10.83588 – ident: ref104 doi: 10.1021/acs.nanolett.8b04895 – ident: ref66 doi: 10.1038/nnano.2015.115 – ident: ref81 doi: 10.1038/s41563-019-0292-9 – ident: ref134 doi: 10.1038/nmeth.3536 – ident: ref112 doi: 10.1002/mus.23696 – ident: ref84 doi: 10.1021/acsbiomaterials.5b00429 – ident: ref121 doi: 10.1109/TBCAS.2018.2852267 – volume: 7 start-page: 12 year: 2011 ident: ref125 article-title: Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits publication-title: Nature Protocols doi: 10.1038/nprot.2011.413 – ident: ref16 doi: 10.1016/j.conb.2017.12.007 – ident: ref28 doi: 10.1016/j.clinph.2014.04.021 – ident: ref150 doi: 10.1109/ISCAS.2019.8702343 – ident: ref77 doi: 10.1021/nn5024522 – ident: ref106 doi: 10.1146/annurev-bioeng-061008-124927 – ident: ref83 doi: 10.1088/1741-2560/10/4/045002 – ident: ref48 doi: 10.1109/MEMB.2005.1511497 – ident: ref67 doi: 10.1088/1741-2560/2/4/003 – ident: ref40 doi: 10.1002/adma.201800534 – ident: ref116 doi: 10.1016/j.jneumeth.2007.12.014 – ident: ref80 doi: 10.1038/nmat3468 – ident: ref59 doi: 10.1016/j.jneumeth.2011.03.012 – ident: ref129 doi: 10.1109/ISCAS.2019.8702735 – ident: ref18 doi: 10.3389/fnins.2018.00764 – ident: ref117 doi: 10.3390/mi9110538 – ident: ref39 doi: 10.1109/JPROC.2016.2574938 – ident: ref152 doi: 10.1109/JSSC.2018.2865474 – ident: ref45 doi: 10.1109/TNSRE.2011.2109399 – ident: ref62 doi: 10.1016/j.biomaterials.2008.04.023 – ident: ref76 doi: 10.1021/acsami.8b20542 – ident: ref119 doi: 10.3389/fnins.2018.00132 – ident: ref34 doi: 10.1002/adfm.201700905 – ident: ref98 doi: 10.1016/j.biomaterials.2011.04.051 – ident: ref37 doi: 10.1039/C5LC00588D – ident: ref19 doi: 10.1152/jn.1942.5.4.275 – ident: ref90 doi: 10.1016/j.biomaterials.2014.07.039 – ident: ref55 doi: 10.1038/natrevmats.2016.93 – ident: ref7 doi: 10.1038/nrneurol.2012.219 – ident: ref126 doi: 10.1038/srep28381 – ident: ref139 doi: 10.1088/1741-2560/12/5/056002 – ident: ref20 doi: 10.1063/1.1745583 – ident: ref30 doi: 10.1073/pnas.1424875112 – ident: ref148 doi: 10.1109/JERM.2019.2903930 – volume: 8 start-page: 276 year: 2000 ident: ref107 article-title: Recruitment properties of intramuscular and nerve-trunk stimulating electrodes publication-title: IEEE Trans Rehabil Eng – ident: ref147 doi: 10.1016/j.cell.2015.06.058 – ident: ref4 doi: 10.1109/VLSIC.2016.7573559 – ident: ref86 doi: 10.1002/adma.201304140 – ident: ref32 doi: 10.1016/j.clinph.2005.11.002 – ident: ref135 doi: 10.1109/ICECS.2018.8617874 – ident: ref89 doi: 10.1109/JMEMS.2014.2375326 – ident: ref88 doi: 10.1038/nbt.3415 – ident: ref138 doi: 10.1002/smll.201702479 – ident: ref113 doi: 10.3389/fnbeh.2014.00069 – ident: ref87 doi: 10.1109/TBCAS.2012.2192932 – ident: ref128 doi: 10.1016/j.neuron.2015.10.032 – ident: ref95 doi: 10.3389/fneng.2014.00015 – year: 2019 ident: ref133 article-title: A Sub-mm ultrasonic free-floating implant for multi-mote neural recording – ident: ref43 doi: 10.3389/fnins.2014.00423 – ident: ref47 doi: 10.3390/ma11101995 – ident: ref42 doi: 10.1016/j.neuron.2014.12.035 – ident: ref51 doi: 10.1021/acs.nanolett.6b02673 – ident: ref102 doi: 10.1038/nn.3905 – ident: ref36 doi: 10.1021/acs.nanolett.8b04895 – ident: ref142 doi: 10.1109/PRIME.2019.8787735 – ident: ref9 doi: 10.1038/nrn2196 – ident: ref85 doi: 10.1016/j.actbio.2017.02.010 – ident: ref149 doi: 10.1109/NER.2019.8716998 – ident: ref21 doi: 10.1586/ern.09.12 – ident: ref23 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref140 doi: 10.1109/ACCESS.2018.2860793 – ident: ref78 doi: 10.1109/TBME.2015.2445713 – ident: ref103 doi: 10.1021/nn406223e – ident: ref52 doi: 10.1109/10.83588 – ident: ref96 doi: 10.1038/nnano.2008.174 – ident: ref109 doi: 10.1126/scitranslmed.aad7577 – ident: ref3 doi: 10.1109/IEMBS.2008.4650549 – volume: 5 year: 2014 ident: ref118 article-title: Graphene-based carbon-layered electrode array technologyfor neural imaging and optogenetic applications publication-title: Nature Commun doi: 10.1038/ncomms6258 – start-page: 1 year: 2018 ident: ref141 article-title: Simulation of photovoltaic cells in implantable application publication-title: Proc IEEE Sensors – ident: ref31 doi: 10.1136/jnnp.2005.069245 – ident: ref93 doi: 10.1073/pnas.1605269113 – ident: ref136 doi: 10.1166/jolpe.2019.1597 – ident: ref72 doi: 10.1126/science.1260318 – ident: ref91 doi: 10.3791/50609 – ident: ref8 doi: 10.1177/2331216518772963 – ident: ref49 doi: 10.1038/nature24636 – ident: ref123 doi: 10.1088/1741-2560/11/4/046005 – ident: ref56 doi: 10.1152/jn.00149.2017 – ident: ref57 doi: 10.1016/j.jneumeth.2017.10.002 – ident: ref82 doi: 10.1021/acsnano.5b01060 – ident: ref5 doi: 10.1038/s41583-019-0169-6 – ident: ref132 doi: 10.1109/TBME.2012.2217395 – ident: ref33 doi: 10.1109/TBME.2004.827264 – ident: ref124 doi: 10.1038/nprot.2013.080 – ident: ref105 doi: 10.1109/IEMBS.2009.5332676 – ident: ref50 doi: 10.1038/s41467-019-11628-5 – ident: ref108 doi: 10.1038/nmeth.f.324 – ident: ref25 doi: 10.1088/1741-2560/1/2/001 – ident: ref60 doi: 10.1114/1.1581292 – ident: ref114 doi: 10.1073/pnas.1100815108 – ident: ref53 doi: 10.3389/fnins.2016.00011 – ident: ref92 doi: 10.1109/TNSRE.2015.2399856 – ident: ref15 doi: 10.1109/MCOM.2018.1700917 – ident: ref10 doi: 10.1038/ncpneuro0750 – ident: ref24 doi: 10.1109/TBCAS.2013.2282318 – ident: ref64 doi: 10.1038/nmeth.2936 – ident: ref122 doi: 10.7554/eLife.07192 – ident: ref13 doi: 10.1016/j.biomaterials.2014.01.038 – ident: ref131 doi: 10.1038/nbt.3093 – volume: 5 year: 2014 ident: ref97 article-title: Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging publication-title: Nature Commun doi: 10.1038/ncomms6259 – ident: ref46 doi: 10.1039/C5LC00809C – ident: ref68 doi: 10.1038/nmat3468 – ident: ref69 doi: 10.1073/pnas.1717695114 – ident: ref110 doi: 10.1371/journal.pone.0072691 – ident: ref11 doi: 10.1126/science.1067996 – ident: ref130 doi: 10.1039/C7LC00103G – ident: ref2 doi: 10.1021/acs.nanolett.8b04895 – ident: ref17 doi: 10.1109/JBHI.2015.2424985 – ident: ref115 doi: 10.1038/srep30570 – ident: ref29 doi: 10.1016/S1364-6613(00)01560-6 – ident: ref26 doi: 10.1109/TBCAS.2016.2646901 – ident: ref65 doi: 10.1109/10.914800 – ident: ref120 doi: 10.1109/TBCAS.2019.2930498 – ident: ref1 doi: 10.1038/nature06976 – ident: ref99 doi: 10.1021/acs.nanolett.8b04456 – ident: ref79 doi: 10.1126/sciadv.1601966 – ident: ref137 doi: 10.1016/j.neuron.2016.12.031 – ident: ref41 doi: 10.1126/science.1226325 – ident: ref146 doi: 10.1109/TBCAS.2018.2799623 – ident: ref74 doi: 10.1016/S0168-0102(99)00041-3 – ident: ref100 doi: 10.1002/adma.201304496 – ident: ref143 doi: 10.1063/1.5024243 – ident: ref144 doi: 10.1016/j.neuron.2016.06.034 – ident: ref12 doi: 10.1016/j.biomaterials.2014.10.040 – ident: ref61 doi: 10.1016/j.conb.2017.12.009 – ident: ref22 doi: 10.1152/jn.1940.3.1.74 – ident: ref38 doi: 10.1126/science.1232437 – ident: ref94 doi: 10.1126/science.aah4496 – ident: ref151 doi: 10.1073/pnas.1718721115 – volume: 27 year: 2017 ident: ref127 article-title: Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications publication-title: J Micromech Microeng doi: 10.1088/1361-6439/aa6ad4 – ident: ref27 doi: 10.1038/nnano.2011.249 – ident: ref111 doi: 10.1038/nbt.2834 |
SSID | ssj0056292 |
Score | 2.5530887 |
SecondaryResourceType | review_article |
Snippet | Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 343 |
SubjectTerms | Animal behavior Animals Biocompatibility Biocompatible Materials biointegration Brain Brain - physiology Brain - surgery Electrodes Electroencephalography Electrophysiological recording Equipment Design Flexible components Humans implantable neural device Implantable Neurostimulators Implantation Implants Inflammation Materials Testing mechanical flexibility Mice Neurons Oscillations Pliability Probes Recording Spatiotemporal phenomena Surgical implants Wireless communication wireless power transfer Wireless Technology |
Title | Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review |
URI | https://ieeexplore.ieee.org/document/8960457 https://www.ncbi.nlm.nih.gov/pubmed/31944987 https://www.proquest.com/docview/2384314381 https://www.proquest.com/docview/2341620173 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnODQ8my3UGQkbjRLHk6ccNsFViskEBIgcYv8mEioq2zV7h7aX98Z5yGEWsQtSpxk4rE938Qz3wCcqITjKVIZYJGQgyLjKjAuiwL2DZKK7An6aMKb22z2KK-f0qcBfOtzYRDRB5_hiA_9Xr5b2BX_KjvLmUkkVWuwRo5bk6vVrbpkxn0BZMYjzOOddgkyYXH2MLkY35MrGIejmNB9wbW9XxghX1Xl_wDTG5rpR7jpRGziS76PVkszsn9esTe-9xu24EOLOMW4GSLbMMB6BzZf8BDuwmzyvOh5I5zQtRMcFTtnFPpb3HEhNTrNRMKkB861EhOuLCEu0a8z52Ismj2GPXicXj1czIK2xEJgZRYtA22MjaUtXGXjNA9daHRl0khViTVk-pXOMTakrxiR1Ig6S6RTFUEao2n22yLZh_V6UeNnEJnSTqsotZqcHOnC3CplTBwhpjLLTDKEqOvz0rb841wGY156PyQsSq-nkvVUtnoawml_z4-GfePN1rvc333LtquHcNiptmwn6K-SkApBJ-Y3G8Jxf5mmFu-X6BoXK25DaJUAkiLZPzVDon82rVxSFrn68u93HsAGS9aE-BzC-vLnCr8SelmaIz9s_wLzIOig |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeJXHQgEjcYNsE8eOE267hWqBboXEVuot8mMiIapsBbsH-PXMOA9VCBC3KHGSicf2fBPPfAPw0uQcT6FVglVODoqSTeJCkSXsG-QN2ROM0YTL02Jxpj6c6_MdeD3mwiBiDD7DKR_Gvfyw9lv-VXZYMpOINtfgOtl9LbtsrWHdJUMeSyAzImEmbz2kyKTV4Wp-NPtMzqBMp5LwfcXVva-YoVhX5e8QM5qa49uwHITsIky-TrcbN_U_f-Nv_N-vuAO3eswpZt0guQs72N6DvStMhPuwmH9Zj8wRQdg2CI6LvWAc-kN84lJqdJqphEkTnG0l5lxbQrzFuNK8ETPR7TLch7Pjd6ujRdIXWUi8KrJNYp3zUvkqNF7qMg2ps43TmWly78j4G1uidKQxiUiKRFvkKpiGQI2zNP99lT-A3Xbd4iMQhbHBmkx7S26OCmnpjXFOZohaFYXLJ5ANfV77noGcC2Fc1NETSas66qlmPdW9nibwarznsuPf-Gfrfe7vsWXf1RM4GFRb91P0e01YhcATM5xN4MV4mSYX75jYFtdbbkN4lSCSIdkfdkNifDatXUpVpXn853c-hxuL1fKkPnl_-vEJ3GQpu4CfA9jdfNviU8IyG_csDuFfP4Lr6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biointegrated+and+Wirelessly+Powered+Implantable+Brain+Devices%3A+A+Review&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Das%2C+Rupam&rft.au=Moradi%2C+Farshad&rft.au=Heidari%2C+Hadi&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1932-4545&rft.volume=14&rft.issue=2&rft.spage=343&rft.epage=358&rft_id=info:doi/10.1109%2FTBCAS.2020.2966920&rft.externalDocID=8960457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |