Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review

Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progressi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 343 - 358
Main Authors Das, Rupam, Moradi, Farshad, Heidari, Hadi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices.
AbstractList Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices.
Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices.
Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices.Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical differences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behavior of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This article reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices.
Author Heidari, Hadi
Das, Rupam
Moradi, Farshad
Author_xml – sequence: 1
  givenname: Rupam
  orcidid: 0000-0001-7351-9928
  surname: Das
  fullname: Das, Rupam
  email: rupam.das@glasgow.ac.uk
  organization: Microelectronics Lab (meLAB), School of Engineering, The University of Glasgow, Glasgow, U.K
– sequence: 2
  givenname: Farshad
  orcidid: 0000-0001-7077-8545
  surname: Moradi
  fullname: Moradi, Farshad
  email: moradi@eng.au.dk
  organization: Integrated Circuits and Electronics Lab (ICELab), Electrical Engineering Department, Aarhus University, Aarhus, Denmark
– sequence: 3
  givenname: Hadi
  orcidid: 0000-0001-8412-8164
  surname: Heidari
  fullname: Heidari, Hadi
  email: hadi.heidari@glasgow.ac.uk
  organization: Microelectronics Lab (meLAB), School of Engineering, The University of Glasgow, Glasgow, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31944987$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEQx4MoatUvoCALXrxszWsf8dbWR4WC4gOPIcnOSmQfNdlV-u1NbevBg6cZht9vGOY_QNtN2wBCxwQPCcHi4nk8GT0NKaZ4SEWaCoq30D4RHMdCCLy97BmNecKTPTTw_h3jJKWC7qI9Figu8mwfTce2tU0Hb051UESqKaJX66AC76tF9NB-gQvju3peqaZTuoJo7JRtoiv4tAb8ZTSKHkMLX4dop1SVh6N1PUAvN9fPk2k8u7-9m4xmseEp6WKltaHciKI0NMlxgbUqdUKykhmdE5qpHKjmkFIATktQKeNFVgqWaYU5NoIdoPPV3rlrP3rwnaytN1CF-6DtvaSMk5RikrGAnv1B39veNeG6QOWcEc5yEqjTNdXrGgo5d7ZWbiE3PwpAvgKMa713UEpjO9XZtunCKypJsFzGIX_ikMs45DqOoNI_6mb7v9LJSrIA8CvkIsU8ydg3Gx2Unw
CODEN ITBCCW
CitedBy_id crossref_primary_10_1109_TBCAS_2024_3430038
crossref_primary_10_1021_acs_chemrev_3c00425
crossref_primary_10_3390_jfb14020058
crossref_primary_10_1016_j_nanoen_2024_110193
crossref_primary_10_1557_s43577_023_00535_2
crossref_primary_10_3390_sym16060753
crossref_primary_10_1016_j_plrev_2024_01_003
crossref_primary_10_1109_TAP_2020_3044636
crossref_primary_10_1109_ACCESS_2024_3351934
crossref_primary_10_1002_adhm_202100158
crossref_primary_10_1016_j_mtadv_2022_100322
crossref_primary_10_1002_adhm_202304447
crossref_primary_10_1016_j_jneumeth_2022_109761
crossref_primary_10_1049_pel2_12797
crossref_primary_10_1109_TBCAS_2022_3228895
crossref_primary_10_1016_j_medj_2021_05_002
crossref_primary_10_1021_acsmaterialslett_1c00438
crossref_primary_10_1088_1741_2552_ac1178
crossref_primary_10_1002_admt_202101086
crossref_primary_10_1155_2021_6074657
crossref_primary_10_1016_j_comnet_2023_109718
crossref_primary_10_1038_s41598_022_13679_z
crossref_primary_10_1109_TBME_2021_3094543
crossref_primary_10_1109_TBCAS_2022_3178581
crossref_primary_10_1007_s10470_023_02166_8
crossref_primary_10_1109_TMTT_2020_3014653
crossref_primary_10_20517_ss_2024_12
crossref_primary_10_1109_TBCAS_2020_3038599
crossref_primary_10_3390_s24237522
crossref_primary_10_1109_JSSC_2022_3207549
crossref_primary_10_1109_TMECH_2023_3248112
crossref_primary_10_1007_s10470_022_01990_8
crossref_primary_10_1109_TBCAS_2023_3336598
crossref_primary_10_1109_TEMC_2024_3439468
crossref_primary_10_1002_advs_202002693
crossref_primary_10_1007_s44174_024_00267_0
crossref_primary_10_1016_j_rio_2021_100168
crossref_primary_10_1039_D3NH00461A
crossref_primary_10_1016_j_neurom_2024_01_003
crossref_primary_10_1002_adhm_202000779
crossref_primary_10_1109_ACCESS_2023_3321796
crossref_primary_10_1021_acs_nanolett_1c00425
crossref_primary_10_1021_acsmaterialslett_2c00095
crossref_primary_10_1109_TBCAS_2023_3264988
crossref_primary_10_1587_elex_21_20240338
crossref_primary_10_1109_JSAC_2024_3399253
crossref_primary_10_1021_acs_analchem_0c02225
crossref_primary_10_1109_ACCESS_2021_3064307
crossref_primary_10_1109_TCSI_2024_3395472
crossref_primary_10_3390_app11062487
crossref_primary_10_1109_LAWP_2024_3506616
crossref_primary_10_1002_adma_202201864
crossref_primary_10_3390_s22166096
crossref_primary_10_1587_elex_21_20240575
crossref_primary_10_1002_aisy_202300527
crossref_primary_10_3390_electronics10050590
crossref_primary_10_1007_s40820_024_01602_2
crossref_primary_10_1109_TVLSI_2024_3455428
crossref_primary_10_3390_jlpea14030036
crossref_primary_10_1002_aesr_202300004
crossref_primary_10_1016_j_aeue_2023_155010
crossref_primary_10_1038_s41598_024_70591_4
crossref_primary_10_1002_nano_202000242
crossref_primary_10_3390_electronics10232895
crossref_primary_10_1002_adma_202103208
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_3390_electronics12194009
crossref_primary_10_2139_ssrn_4458051
crossref_primary_10_1109_TNSRE_2021_3090269
crossref_primary_10_1002_adsr_202400142
crossref_primary_10_1371_journal_pone_0311753
crossref_primary_10_1016_j_aeue_2023_154527
crossref_primary_10_1016_j_esr_2024_101328
crossref_primary_10_1088_1361_6439_ac12a1
crossref_primary_10_1098_rsta_2021_0009
crossref_primary_10_1016_j_device_2023_100068
crossref_primary_10_1002_adma_202303267
crossref_primary_10_1098_rsta_2021_0007
crossref_primary_10_1109_TTE_2024_3422993
crossref_primary_10_1109_ACCESS_2020_3042928
crossref_primary_10_1016_j_cobme_2024_100562
crossref_primary_10_1109_MCOM_005_2101090
crossref_primary_10_1109_MAP_2023_3301398
crossref_primary_10_34133_bmr_0012
crossref_primary_10_1021_acsaelm_2c01608
crossref_primary_10_1016_j_smaim_2020_08_002
crossref_primary_10_1088_1741_2552_abf590
crossref_primary_10_1055_s_0041_1725137
crossref_primary_10_1002_advs_202307369
crossref_primary_10_1002_aisy_202100082
crossref_primary_10_1002_cta_4307
crossref_primary_10_1109_RBME_2021_3110084
crossref_primary_10_1109_TAP_2022_3209236
crossref_primary_10_35848_1347_4065_acbd58
crossref_primary_10_1016_j_nanoen_2021_106123
crossref_primary_10_1126_sciadv_abm5023
Cites_doi 10.1038/s41586-018-0823-6
10.1371/journal.pone.0206137
10.1109/CICC.2018.8357047
10.1016/j.cobme.2017.09.003
10.1126/sciadv.aav2842
10.1088/1741-2560/10/4/046016
10.1038/natrevmats.2016.63
10.1088/1741-2560/12/1/011001
10.1038/nrn3383
10.1016/j.jneumeth.2005.08.015
10.1126/sciadv.1601649
10.1088/1741-2560/8/4/045006
10.1002/adma.201501810
10.1109/10.83588
10.1021/acs.nanolett.8b04895
10.1038/nnano.2015.115
10.1038/s41563-019-0292-9
10.1038/nmeth.3536
10.1002/mus.23696
10.1021/acsbiomaterials.5b00429
10.1109/TBCAS.2018.2852267
10.1038/nprot.2011.413
10.1016/j.conb.2017.12.007
10.1016/j.clinph.2014.04.021
10.1109/ISCAS.2019.8702343
10.1021/nn5024522
10.1146/annurev-bioeng-061008-124927
10.1088/1741-2560/10/4/045002
10.1109/MEMB.2005.1511497
10.1088/1741-2560/2/4/003
10.1002/adma.201800534
10.1016/j.jneumeth.2007.12.014
10.1038/nmat3468
10.1016/j.jneumeth.2011.03.012
10.1109/ISCAS.2019.8702735
10.3389/fnins.2018.00764
10.3390/mi9110538
10.1109/JPROC.2016.2574938
10.1109/JSSC.2018.2865474
10.1109/TNSRE.2011.2109399
10.1016/j.biomaterials.2008.04.023
10.1021/acsami.8b20542
10.3389/fnins.2018.00132
10.1002/adfm.201700905
10.1016/j.biomaterials.2011.04.051
10.1039/C5LC00588D
10.1152/jn.1942.5.4.275
10.1016/j.biomaterials.2014.07.039
10.1038/natrevmats.2016.93
10.1038/nrneurol.2012.219
10.1038/srep28381
10.1088/1741-2560/12/5/056002
10.1063/1.1745583
10.1073/pnas.1424875112
10.1109/JERM.2019.2903930
10.1016/j.cell.2015.06.058
10.1109/VLSIC.2016.7573559
10.1002/adma.201304140
10.1016/j.clinph.2005.11.002
10.1109/ICECS.2018.8617874
10.1109/JMEMS.2014.2375326
10.1038/nbt.3415
10.1002/smll.201702479
10.3389/fnbeh.2014.00069
10.1109/TBCAS.2012.2192932
10.1016/j.neuron.2015.10.032
10.3389/fneng.2014.00015
10.3389/fnins.2014.00423
10.3390/ma11101995
10.1016/j.neuron.2014.12.035
10.1021/acs.nanolett.6b02673
10.1038/nn.3905
10.1109/PRIME.2019.8787735
10.1038/nrn2196
10.1016/j.actbio.2017.02.010
10.1109/NER.2019.8716998
10.1586/ern.09.12
10.1016/S1388-2457(99)00141-8
10.1109/ACCESS.2018.2860793
10.1109/TBME.2015.2445713
10.1021/nn406223e
10.1038/nnano.2008.174
10.1126/scitranslmed.aad7577
10.1109/IEMBS.2008.4650549
10.1038/ncomms6258
10.1136/jnnp.2005.069245
10.1073/pnas.1605269113
10.1166/jolpe.2019.1597
10.1126/science.1260318
10.3791/50609
10.1177/2331216518772963
10.1038/nature24636
10.1088/1741-2560/11/4/046005
10.1152/jn.00149.2017
10.1016/j.jneumeth.2017.10.002
10.1021/acsnano.5b01060
10.1038/s41583-019-0169-6
10.1109/TBME.2012.2217395
10.1109/TBME.2004.827264
10.1038/nprot.2013.080
10.1109/IEMBS.2009.5332676
10.1038/s41467-019-11628-5
10.1038/nmeth.f.324
10.1088/1741-2560/1/2/001
10.1114/1.1581292
10.1073/pnas.1100815108
10.3389/fnins.2016.00011
10.1109/TNSRE.2015.2399856
10.1109/MCOM.2018.1700917
10.1038/ncpneuro0750
10.1109/TBCAS.2013.2282318
10.1038/nmeth.2936
10.7554/eLife.07192
10.1016/j.biomaterials.2014.01.038
10.1038/nbt.3093
10.1038/ncomms6259
10.1039/C5LC00809C
10.1073/pnas.1717695114
10.1371/journal.pone.0072691
10.1126/science.1067996
10.1039/C7LC00103G
10.1109/JBHI.2015.2424985
10.1038/srep30570
10.1016/S1364-6613(00)01560-6
10.1109/TBCAS.2016.2646901
10.1109/10.914800
10.1109/TBCAS.2019.2930498
10.1038/nature06976
10.1021/acs.nanolett.8b04456
10.1126/sciadv.1601966
10.1016/j.neuron.2016.12.031
10.1126/science.1226325
10.1109/TBCAS.2018.2799623
10.1016/S0168-0102(99)00041-3
10.1002/adma.201304496
10.1063/1.5024243
10.1016/j.neuron.2016.06.034
10.1016/j.biomaterials.2014.10.040
10.1016/j.conb.2017.12.009
10.1152/jn.1940.3.1.74
10.1126/science.1232437
10.1126/science.aah4496
10.1073/pnas.1718721115
10.1088/1361-6439/aa6ad4
10.1038/nnano.2011.249
10.1038/nbt.2834
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2020.2966920
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 358
ExternalDocumentID 31944987
10_1109_TBCAS_2020_2966920
8960457
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: EPSRC, U.K.
  grantid: EP/R511705/1
– fundername: STARDUST Project
  grantid: 767092
– fundername: European Union's Horizon 2020 Hybrid Enhanced Regenerative Medicine Systems
  grantid: 824164
– fundername: Scottish Research Partnership in Engineering
  grantid: PEER1718/03
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c461t-abbc24c9dfc2580d0bafb517f3cb8127a8e2b4e62ee42fea634d7f937ba040c93
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 00:14:30 EDT 2025
Mon Jun 30 04:09:38 EDT 2025
Thu Apr 03 07:04:24 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Tue Jul 01 03:26:35 EDT 2025
Wed Aug 27 02:41:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-abbc24c9dfc2580d0bafb517f3cb8127a8e2b4e62ee42fea634d7f937ba040c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7077-8545
0000-0001-7351-9928
0000-0001-8412-8164
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8960457
PMID 31944987
PQID 2384314381
PQPubID 85510
PageCount 16
ParticipantIDs proquest_journals_2384314381
crossref_citationtrail_10_1109_TBCAS_2020_2966920
proquest_miscellaneous_2341620173
pubmed_primary_31944987
ieee_primary_8960457
crossref_primary_10_1109_TBCAS_2020_2966920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
sparta (ref125) 2011; 7
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref148
park (ref118) 2014; 5
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref153
ref151
ref152
ref150
ref24
ref23
ref26
ref25
singh (ref107) 2000; 8
ref20
kuzum (ref97) 2014; 5
ref22
ref21
ref28
ref27
ref29
zhao (ref141) 2018
ghanbari (ref133) 2019
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref96
ref124
ref99
ref11
ref98
ref10
ref17
ref16
ref19
ref18
ref93
ref134
ref92
ref131
ref95
ref132
ref94
ref130
ref91
ref90
ref89
ref139
ref137
ref86
ref138
ref85
ref135
ref88
ref136
ref87
schwaerzle (ref127) 2017; 27
ref144
ref82
ref145
ref81
ref142
ref84
ref143
ref83
ref140
ref80
ref79
ref108
ref78
ref109
ref106
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref153
  doi: 10.1038/s41586-018-0823-6
– ident: ref75
  doi: 10.1371/journal.pone.0206137
– ident: ref145
  doi: 10.1109/CICC.2018.8357047
– ident: ref54
  doi: 10.1016/j.cobme.2017.09.003
– ident: ref71
  doi: 10.1126/sciadv.aav2842
– ident: ref73
  doi: 10.1088/1741-2560/10/4/046016
– ident: ref63
  doi: 10.1038/natrevmats.2016.63
– ident: ref44
  doi: 10.1088/1741-2560/12/1/011001
– ident: ref70
  doi: 10.1038/nrn3383
– ident: ref14
  doi: 10.1016/j.jneumeth.2005.08.015
– ident: ref35
  doi: 10.1126/sciadv.1601649
– ident: ref58
  doi: 10.1088/1741-2560/8/4/045006
– ident: ref101
  doi: 10.1002/adma.201501810
– ident: ref6
  doi: 10.1109/10.83588
– ident: ref104
  doi: 10.1021/acs.nanolett.8b04895
– ident: ref66
  doi: 10.1038/nnano.2015.115
– ident: ref81
  doi: 10.1038/s41563-019-0292-9
– ident: ref134
  doi: 10.1038/nmeth.3536
– ident: ref112
  doi: 10.1002/mus.23696
– ident: ref84
  doi: 10.1021/acsbiomaterials.5b00429
– ident: ref121
  doi: 10.1109/TBCAS.2018.2852267
– volume: 7
  start-page: 12
  year: 2011
  ident: ref125
  article-title: Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2011.413
– ident: ref16
  doi: 10.1016/j.conb.2017.12.007
– ident: ref28
  doi: 10.1016/j.clinph.2014.04.021
– ident: ref150
  doi: 10.1109/ISCAS.2019.8702343
– ident: ref77
  doi: 10.1021/nn5024522
– ident: ref106
  doi: 10.1146/annurev-bioeng-061008-124927
– ident: ref83
  doi: 10.1088/1741-2560/10/4/045002
– ident: ref48
  doi: 10.1109/MEMB.2005.1511497
– ident: ref67
  doi: 10.1088/1741-2560/2/4/003
– ident: ref40
  doi: 10.1002/adma.201800534
– ident: ref116
  doi: 10.1016/j.jneumeth.2007.12.014
– ident: ref80
  doi: 10.1038/nmat3468
– ident: ref59
  doi: 10.1016/j.jneumeth.2011.03.012
– ident: ref129
  doi: 10.1109/ISCAS.2019.8702735
– ident: ref18
  doi: 10.3389/fnins.2018.00764
– ident: ref117
  doi: 10.3390/mi9110538
– ident: ref39
  doi: 10.1109/JPROC.2016.2574938
– ident: ref152
  doi: 10.1109/JSSC.2018.2865474
– ident: ref45
  doi: 10.1109/TNSRE.2011.2109399
– ident: ref62
  doi: 10.1016/j.biomaterials.2008.04.023
– ident: ref76
  doi: 10.1021/acsami.8b20542
– ident: ref119
  doi: 10.3389/fnins.2018.00132
– ident: ref34
  doi: 10.1002/adfm.201700905
– ident: ref98
  doi: 10.1016/j.biomaterials.2011.04.051
– ident: ref37
  doi: 10.1039/C5LC00588D
– ident: ref19
  doi: 10.1152/jn.1942.5.4.275
– ident: ref90
  doi: 10.1016/j.biomaterials.2014.07.039
– ident: ref55
  doi: 10.1038/natrevmats.2016.93
– ident: ref7
  doi: 10.1038/nrneurol.2012.219
– ident: ref126
  doi: 10.1038/srep28381
– ident: ref139
  doi: 10.1088/1741-2560/12/5/056002
– ident: ref20
  doi: 10.1063/1.1745583
– ident: ref30
  doi: 10.1073/pnas.1424875112
– ident: ref148
  doi: 10.1109/JERM.2019.2903930
– volume: 8
  start-page: 276
  year: 2000
  ident: ref107
  article-title: Recruitment properties of intramuscular and nerve-trunk stimulating electrodes
  publication-title: IEEE Trans Rehabil Eng
– ident: ref147
  doi: 10.1016/j.cell.2015.06.058
– ident: ref4
  doi: 10.1109/VLSIC.2016.7573559
– ident: ref86
  doi: 10.1002/adma.201304140
– ident: ref32
  doi: 10.1016/j.clinph.2005.11.002
– ident: ref135
  doi: 10.1109/ICECS.2018.8617874
– ident: ref89
  doi: 10.1109/JMEMS.2014.2375326
– ident: ref88
  doi: 10.1038/nbt.3415
– ident: ref138
  doi: 10.1002/smll.201702479
– ident: ref113
  doi: 10.3389/fnbeh.2014.00069
– ident: ref87
  doi: 10.1109/TBCAS.2012.2192932
– ident: ref128
  doi: 10.1016/j.neuron.2015.10.032
– ident: ref95
  doi: 10.3389/fneng.2014.00015
– year: 2019
  ident: ref133
  article-title: A Sub-mm ultrasonic free-floating implant for multi-mote neural recording
– ident: ref43
  doi: 10.3389/fnins.2014.00423
– ident: ref47
  doi: 10.3390/ma11101995
– ident: ref42
  doi: 10.1016/j.neuron.2014.12.035
– ident: ref51
  doi: 10.1021/acs.nanolett.6b02673
– ident: ref102
  doi: 10.1038/nn.3905
– ident: ref36
  doi: 10.1021/acs.nanolett.8b04895
– ident: ref142
  doi: 10.1109/PRIME.2019.8787735
– ident: ref9
  doi: 10.1038/nrn2196
– ident: ref85
  doi: 10.1016/j.actbio.2017.02.010
– ident: ref149
  doi: 10.1109/NER.2019.8716998
– ident: ref21
  doi: 10.1586/ern.09.12
– ident: ref23
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref140
  doi: 10.1109/ACCESS.2018.2860793
– ident: ref78
  doi: 10.1109/TBME.2015.2445713
– ident: ref103
  doi: 10.1021/nn406223e
– ident: ref52
  doi: 10.1109/10.83588
– ident: ref96
  doi: 10.1038/nnano.2008.174
– ident: ref109
  doi: 10.1126/scitranslmed.aad7577
– ident: ref3
  doi: 10.1109/IEMBS.2008.4650549
– volume: 5
  year: 2014
  ident: ref118
  article-title: Graphene-based carbon-layered electrode array technologyfor neural imaging and optogenetic applications
  publication-title: Nature Commun
  doi: 10.1038/ncomms6258
– start-page: 1
  year: 2018
  ident: ref141
  article-title: Simulation of photovoltaic cells in implantable application
  publication-title: Proc IEEE Sensors
– ident: ref31
  doi: 10.1136/jnnp.2005.069245
– ident: ref93
  doi: 10.1073/pnas.1605269113
– ident: ref136
  doi: 10.1166/jolpe.2019.1597
– ident: ref72
  doi: 10.1126/science.1260318
– ident: ref91
  doi: 10.3791/50609
– ident: ref8
  doi: 10.1177/2331216518772963
– ident: ref49
  doi: 10.1038/nature24636
– ident: ref123
  doi: 10.1088/1741-2560/11/4/046005
– ident: ref56
  doi: 10.1152/jn.00149.2017
– ident: ref57
  doi: 10.1016/j.jneumeth.2017.10.002
– ident: ref82
  doi: 10.1021/acsnano.5b01060
– ident: ref5
  doi: 10.1038/s41583-019-0169-6
– ident: ref132
  doi: 10.1109/TBME.2012.2217395
– ident: ref33
  doi: 10.1109/TBME.2004.827264
– ident: ref124
  doi: 10.1038/nprot.2013.080
– ident: ref105
  doi: 10.1109/IEMBS.2009.5332676
– ident: ref50
  doi: 10.1038/s41467-019-11628-5
– ident: ref108
  doi: 10.1038/nmeth.f.324
– ident: ref25
  doi: 10.1088/1741-2560/1/2/001
– ident: ref60
  doi: 10.1114/1.1581292
– ident: ref114
  doi: 10.1073/pnas.1100815108
– ident: ref53
  doi: 10.3389/fnins.2016.00011
– ident: ref92
  doi: 10.1109/TNSRE.2015.2399856
– ident: ref15
  doi: 10.1109/MCOM.2018.1700917
– ident: ref10
  doi: 10.1038/ncpneuro0750
– ident: ref24
  doi: 10.1109/TBCAS.2013.2282318
– ident: ref64
  doi: 10.1038/nmeth.2936
– ident: ref122
  doi: 10.7554/eLife.07192
– ident: ref13
  doi: 10.1016/j.biomaterials.2014.01.038
– ident: ref131
  doi: 10.1038/nbt.3093
– volume: 5
  year: 2014
  ident: ref97
  article-title: Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging
  publication-title: Nature Commun
  doi: 10.1038/ncomms6259
– ident: ref46
  doi: 10.1039/C5LC00809C
– ident: ref68
  doi: 10.1038/nmat3468
– ident: ref69
  doi: 10.1073/pnas.1717695114
– ident: ref110
  doi: 10.1371/journal.pone.0072691
– ident: ref11
  doi: 10.1126/science.1067996
– ident: ref130
  doi: 10.1039/C7LC00103G
– ident: ref2
  doi: 10.1021/acs.nanolett.8b04895
– ident: ref17
  doi: 10.1109/JBHI.2015.2424985
– ident: ref115
  doi: 10.1038/srep30570
– ident: ref29
  doi: 10.1016/S1364-6613(00)01560-6
– ident: ref26
  doi: 10.1109/TBCAS.2016.2646901
– ident: ref65
  doi: 10.1109/10.914800
– ident: ref120
  doi: 10.1109/TBCAS.2019.2930498
– ident: ref1
  doi: 10.1038/nature06976
– ident: ref99
  doi: 10.1021/acs.nanolett.8b04456
– ident: ref79
  doi: 10.1126/sciadv.1601966
– ident: ref137
  doi: 10.1016/j.neuron.2016.12.031
– ident: ref41
  doi: 10.1126/science.1226325
– ident: ref146
  doi: 10.1109/TBCAS.2018.2799623
– ident: ref74
  doi: 10.1016/S0168-0102(99)00041-3
– ident: ref100
  doi: 10.1002/adma.201304496
– ident: ref143
  doi: 10.1063/1.5024243
– ident: ref144
  doi: 10.1016/j.neuron.2016.06.034
– ident: ref12
  doi: 10.1016/j.biomaterials.2014.10.040
– ident: ref61
  doi: 10.1016/j.conb.2017.12.009
– ident: ref22
  doi: 10.1152/jn.1940.3.1.74
– ident: ref38
  doi: 10.1126/science.1232437
– ident: ref94
  doi: 10.1126/science.aah4496
– ident: ref151
  doi: 10.1073/pnas.1718721115
– volume: 27
  year: 2017
  ident: ref127
  article-title: Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications
  publication-title: J Micromech Microeng
  doi: 10.1088/1361-6439/aa6ad4
– ident: ref27
  doi: 10.1038/nnano.2011.249
– ident: ref111
  doi: 10.1038/nbt.2834
SSID ssj0056292
Score 2.5530887
SecondaryResourceType review_article
Snippet Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 343
SubjectTerms Animal behavior
Animals
Biocompatibility
Biocompatible Materials
biointegration
Brain
Brain - physiology
Brain - surgery
Electrodes
Electroencephalography
Electrophysiological recording
Equipment Design
Flexible components
Humans
implantable neural device
Implantable Neurostimulators
Implantation
Implants
Inflammation
Materials Testing
mechanical flexibility
Mice
Neurons
Oscillations
Pliability
Probes
Recording
Spatiotemporal phenomena
Surgical implants
Wireless communication
wireless power transfer
Wireless Technology
Title Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review
URI https://ieeexplore.ieee.org/document/8960457
https://www.ncbi.nlm.nih.gov/pubmed/31944987
https://www.proquest.com/docview/2384314381
https://www.proquest.com/docview/2341620173
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnODQ8my3UGQkbjRLHk6ccNsFViskEBIgcYv8mEioq2zV7h7aX98Z5yGEWsQtSpxk4rE938Qz3wCcqITjKVIZYJGQgyLjKjAuiwL2DZKK7An6aMKb22z2KK-f0qcBfOtzYRDRB5_hiA_9Xr5b2BX_KjvLmUkkVWuwRo5bk6vVrbpkxn0BZMYjzOOddgkyYXH2MLkY35MrGIejmNB9wbW9XxghX1Xl_wDTG5rpR7jpRGziS76PVkszsn9esTe-9xu24EOLOMW4GSLbMMB6BzZf8BDuwmzyvOh5I5zQtRMcFTtnFPpb3HEhNTrNRMKkB861EhOuLCEu0a8z52Ismj2GPXicXj1czIK2xEJgZRYtA22MjaUtXGXjNA9daHRl0khViTVk-pXOMTakrxiR1Ig6S6RTFUEao2n22yLZh_V6UeNnEJnSTqsotZqcHOnC3CplTBwhpjLLTDKEqOvz0rb841wGY156PyQsSq-nkvVUtnoawml_z4-GfePN1rvc333LtquHcNiptmwn6K-SkApBJ-Y3G8Jxf5mmFu-X6BoXK25DaJUAkiLZPzVDon82rVxSFrn68u93HsAGS9aE-BzC-vLnCr8SelmaIz9s_wLzIOig
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeJXHQgEjcYNsE8eOE267hWqBboXEVuot8mMiIapsBbsH-PXMOA9VCBC3KHGSicf2fBPPfAPw0uQcT6FVglVODoqSTeJCkSXsG-QN2ROM0YTL02Jxpj6c6_MdeD3mwiBiDD7DKR_Gvfyw9lv-VXZYMpOINtfgOtl9LbtsrWHdJUMeSyAzImEmbz2kyKTV4Wp-NPtMzqBMp5LwfcXVva-YoVhX5e8QM5qa49uwHITsIky-TrcbN_U_f-Nv_N-vuAO3eswpZt0guQs72N6DvStMhPuwmH9Zj8wRQdg2CI6LvWAc-kN84lJqdJqphEkTnG0l5lxbQrzFuNK8ETPR7TLch7Pjd6ujRdIXWUi8KrJNYp3zUvkqNF7qMg2ps43TmWly78j4G1uidKQxiUiKRFvkKpiGQI2zNP99lT-A3Xbd4iMQhbHBmkx7S26OCmnpjXFOZohaFYXLJ5ANfV77noGcC2Fc1NETSas66qlmPdW9nibwarznsuPf-Gfrfe7vsWXf1RM4GFRb91P0e01YhcATM5xN4MV4mSYX75jYFtdbbkN4lSCSIdkfdkNifDatXUpVpXn853c-hxuL1fKkPnl_-vEJ3GQpu4CfA9jdfNviU8IyG_csDuFfP4Lr6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biointegrated+and+Wirelessly+Powered+Implantable+Brain+Devices%3A+A+Review&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Das%2C+Rupam&rft.au=Moradi%2C+Farshad&rft.au=Heidari%2C+Hadi&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1932-4545&rft.volume=14&rft.issue=2&rft.spage=343&rft.epage=358&rft_id=info:doi/10.1109%2FTBCAS.2020.2966920&rft.externalDocID=8960457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon