Differential Effects of 10 and 20 Hz Brain Stimulation in Chronic Stroke: A tACS-fMRI Study
Transcranial alternating current stimulation (tACS) is an emerging non-invasive neuromodulation technique, which could be potentially applied to enhance stroke rehabilitation. In this study, we aimed to characterize the frequency-specific effects of tACS in chronic stroke. Therefore, concurrent tACS...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 455 - 464 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcranial alternating current stimulation (tACS) is an emerging non-invasive neuromodulation technique, which could be potentially applied to enhance stroke rehabilitation. In this study, we aimed to characterize the frequency-specific effects of tACS in chronic stroke. Therefore, concurrent tACS and functional magnetic resonance imaging (fMRI) were conducted in 13 chronic stroke individuals. Resting-state and task-based fMRI were collected for each subject under different frequencies (10 Hz, 20 Hz, Sham). Task-based fMRI showed that increased activation was found in the ipsilesional precentral area during paretic hand movements after 10 Hz tACS, while increased activation was found in the contralesional precentral area during non-paretic hand movements after both 10 and 20 Hz tACS. Resting-state seed-based functional connectivity (FC) analysis showed that 10 Hz tACS mainly modulated FC within motor-related regions, while 20 Hz tACS also modulated regions beyond the motor-related areas. Graph theory analysis further demonstrated the functional interaction modulated by tACS in the whole-brain level. Taken together, our results showed that tACS might exhibit frequency-specific modulation in chronic stroke. 20 Hz tACS facilitates the functional interaction between the sensorimotor regions and brain regions involved in executive control, while 10 Hz and sham tACS has limited effect on motor-related brain activity. Our results reveal the neural response process under external current stimulation, providing new insight into the neuromodulation mechanism of tACS in a lesioned brain. |
---|---|
AbstractList | Transcranial alternating current stimulation (tACS) is an emerging non-invasive neuromodulation technique, which could be potentially applied to enhance stroke rehabilitation. In this study, we aimed to characterize the frequency-specific effects of tACS in chronic stroke. Therefore, concurrent tACS and functional magnetic resonance imaging (fMRI) were conducted in 13 chronic stroke individuals. Resting-state and task-based fMRI were collected for each subject under different frequencies (10 Hz, 20 Hz, Sham). Task-based fMRI showed that increased activation was found in the ipsilesional precentral area during paretic hand movements after 10 Hz tACS, while increased activation was found in the contralesional precentral area during non-paretic hand movements after both 10 and 20 Hz tACS. Resting-state seed-based functional connectivity (FC) analysis showed that 10 Hz tACS mainly modulated FC within motor-related regions, while 20 Hz tACS also modulated regions beyond the motor-related areas. Graph theory analysis further demonstrated the functional interaction modulated by tACS in the whole-brain level. Taken together, our results showed that tACS might exhibit frequency-specific modulation in chronic stroke. 20 Hz tACS facilitates the functional interaction between the sensorimotor regions and brain regions involved in executive control, while 10 Hz and sham tACS has limited effect on motor-related brain activity. Our results reveal the neural response process under external current stimulation, providing new insight into the neuromodulation mechanism of tACS in a lesioned brain. Transcranial alternating current stimulation (tACS) is an emerging non-invasive neuromodulation technique, which could be potentially applied to enhance stroke rehabilitation. In this study, we aimed to characterize the frequency-specific effects of tACS in chronic stroke. Therefore, concurrent tACS and functional magnetic resonance imaging (fMRI) were conducted in 13 chronic stroke individuals. Resting-state and task-based fMRI were collected for each subject under different frequencies (10 Hz, 20 Hz, Sham). Task-based fMRI showed that increased activation was found in the ipsilesional precentral area during paretic hand movements after 10 Hz tACS, while increased activation was found in the contralesional precentral area during non-paretic hand movements after both 10 and 20 Hz tACS. Resting-state seed-based functional connectivity (FC) analysis showed that 10 Hz tACS mainly modulated FC within motor-related regions, while 20 Hz tACS also modulated regions beyond the motor-related areas. Graph theory analysis further demonstrated the functional interaction modulated by tACS in the whole-brain level. Taken together, our results showed that tACS might exhibit frequency-specific modulation in chronic stroke. 20 Hz tACS facilitates the functional interaction between the sensorimotor regions and brain regions involved in executive control, while 10 Hz and sham tACS has limited effect on motor-related brain activity. Our results reveal the neural response process under external current stimulation, providing new insight into the neuromodulation mechanism of tACS in a lesioned brain.Transcranial alternating current stimulation (tACS) is an emerging non-invasive neuromodulation technique, which could be potentially applied to enhance stroke rehabilitation. In this study, we aimed to characterize the frequency-specific effects of tACS in chronic stroke. Therefore, concurrent tACS and functional magnetic resonance imaging (fMRI) were conducted in 13 chronic stroke individuals. Resting-state and task-based fMRI were collected for each subject under different frequencies (10 Hz, 20 Hz, Sham). Task-based fMRI showed that increased activation was found in the ipsilesional precentral area during paretic hand movements after 10 Hz tACS, while increased activation was found in the contralesional precentral area during non-paretic hand movements after both 10 and 20 Hz tACS. Resting-state seed-based functional connectivity (FC) analysis showed that 10 Hz tACS mainly modulated FC within motor-related regions, while 20 Hz tACS also modulated regions beyond the motor-related areas. Graph theory analysis further demonstrated the functional interaction modulated by tACS in the whole-brain level. Taken together, our results showed that tACS might exhibit frequency-specific modulation in chronic stroke. 20 Hz tACS facilitates the functional interaction between the sensorimotor regions and brain regions involved in executive control, while 10 Hz and sham tACS has limited effect on motor-related brain activity. Our results reveal the neural response process under external current stimulation, providing new insight into the neuromodulation mechanism of tACS in a lesioned brain. |
Author | Lou, Wu-Tao Ti, Eden Chun-Hang Tong, Raymond Kai-Yu Lau, Cathy Choi-Yin Wang, Xin Yuan, Kai Chen, Cheng Chu, Winnie Chiu-Wing Khan, Ahsan |
Author_xml | – sequence: 1 givenname: Kai orcidid: 0000-0001-6105-4772 surname: Yuan fullname: Yuan, Kai organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 2 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 3 givenname: Wu-Tao orcidid: 0000-0002-6844-2847 surname: Lou fullname: Lou, Wu-Tao organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 4 givenname: Ahsan surname: Khan fullname: Khan, Ahsan organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 5 givenname: Eden Chun-Hang surname: Ti fullname: Ti, Eden Chun-Hang organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 6 givenname: Cathy Choi-Yin surname: Lau fullname: Lau, Cathy Choi-Yin organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 7 givenname: Xin orcidid: 0000-0003-2602-3967 surname: Wang fullname: Wang, Xin organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 8 givenname: Winnie Chiu-Wing orcidid: 0000-0003-4962-4132 surname: Chu fullname: Chu, Winnie Chiu-Wing organization: Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong – sequence: 9 givenname: Raymond Kai-Yu orcidid: 0000-0003-4375-653X surname: Tong fullname: Tong, Raymond Kai-Yu email: kytong@cuhk.edu.hk organization: Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35192466$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuPFCEUhYkZ4zz0D2hiSNy4qZYLBRTu2rZ1Ohk1mR5XLghVBUpbDSNFLcZfL_2YWcxCEgLcfOcA95yjkxCDReglkBkAUe9uvq6vlzNKKJ0x4Ixx9gSdAedNRSiQk92e1VXNKDlF5-O4IQSk4PIZOmUcFK2FOEM_PnrnbLIhezPgZdl3ecTRYSDYhB5Tgi__4g_J-IDX2W-nwWQfAy7Hxa8Ug-9KOcXf9j2e4zxfrCv35XpValN_9xw9dWYY7YvjeoG-f1reLC6rq2-fV4v5VdXVAnKlnDStaZkD20jHadf0RgnKJe0VFYY7RyXragWNsHXPWlOXaVQDHGwrbMsu0Org20ez0bfJb02609F4vS_E9FOblH03WG2AENeU7rDe1gygVbJtlYNG1lQqQYrX24PXbYp_JjtmvfVjZ4fBBBunUVPBaLmYMijom0foJk4plJ_uKC5BECEK9fpITe3W9g_Pu4-gAM0B6FIcx2Sd7nzeNzmXrg8aiN6lrfdp613a-ph2kdJH0nv3_4peHUTeWvsgUBIaVsY_p2Gwkg |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3389_fneur_2022_965856 crossref_primary_10_1016_j_brainres_2025_149521 crossref_primary_10_1016_j_neures_2022_10_003 crossref_primary_10_3390_brainsci14080767 crossref_primary_10_3389_fneur_2023_1327383 crossref_primary_10_3390_jcm12072601 crossref_primary_10_1021_acsbiomaterials_2c00456 |
Cites_doi | 10.1523/JNEUROSCI.4636-06.2007 10.1038/nature03288 10.1371/journal.pone.0005226 10.1523/JNEUROSCI.1414-13.2013 10.3390/brainsci11030377 10.1016/j.neuroimage.2013.06.076 10.1038/nature05278 10.1016/j.bbr.2015.07.049 10.1016/S0167-8760(02)00107-1 10.1016/S0167-8760(97)00753-8 10.3389/fnhum.2013.00317 10.1016/j.brs.2016.04.009 10.1016/j.brs.2010.07.002 10.1089/brain.2012.0073 10.1152/jn.2002.88.4.1634 10.3389/fpsyg.2011.00204 10.1016/j.neuroimage.2014.01.012 10.1016/j.neulet.2009.05.037 10.1007/s00221-007-1221-8 10.1016/j.neuroimage.2012.02.070 10.1523/JNEUROSCI.0542-11.2011 10.3389/fnhum.2016.00560 10.1126/scitranslmed.aad5651 10.1523/JNEUROSCI.1163-19.2019 10.3389/fnsys.2010.00013 10.1016/j.neuroimage.2010.09.085 10.1016/j.cub.2008.10.027 10.1016/j.tics.2005.08.011 10.1016/j.tins.2007.02.001 10.1016/j.neuroscience.2018.09.013 10.1080/10749357.2016.1175218 10.1002/hbm.24079 10.1073/pnas.0504136102 10.1016/j.neuroimage.2016.07.005 10.1109/EMBC.2015.7318340 10.1016/j.conb.2010.02.015 10.1109/TNSRE.2020.3027955 10.1038/nrn.2017.26 10.1016/j.clinph.2015.04.068 10.1016/j.brs.2019.07.023 10.1016/j.brs.2016.11.003 10.3390/brainsci11010056 10.1016/j.bbr.2012.11.038 10.12809/hkmj144219 10.1007/s002210050825 10.1038/nrn3137 10.1523/JNEUROSCI.4153-10.2011 10.1111/psyp.13794 10.3758/CABN.7.4.391 10.1016/j.cub.2012.01.024 10.1016/j.neuroimage.2016.06.003 10.1016/j.neuroimage.2011.04.023 10.1523/JNEUROSCI.0868-16.2016 10.1016/j.euroneuro.2010.03.008 10.1016/j.conb.2008.01.007 10.1016/j.conb.2007.12.001 10.1523/JNEUROSCI.3359-09.2009 10.1523/JNEUROSCI.5580-10.2011 10.1016/j.brs.2010.11.001 10.1016/j.neuroimage.2013.04.044 10.1007/s00221-018-5314-3 10.1038/nrneurol.2010.200 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2015.10.024 10.1093/brain/awh288 10.1371/journal.pone.0003990 10.1146/annurev-neuro-070815-013952 10.1111/j.1460-9568.2005.04176.x 10.1016/j.neuroimage.2013.11.037 10.1523/JNEUROSCI.0098-17.2017 10.1103/PhysRevE.69.066133 10.1016/S0304-3940(97)00889-6 10.1016/j.brainresrev.2005.04.005 10.1016/j.brs.2015.01.398 10.1109/TMI.2019.2915206 10.3389/fncel.2017.00214 10.1016/S1474-4422(19)30415-6 10.3389/fnhum.2010.00186 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2022.3153353 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 464 |
ExternalDocumentID | oai_doaj_org_article_a100f82103de4311b97bb9f187427960 35192466 10_1109_TNSRE_2022_3153353 9718333 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: General Research Fund grantid: 14208118 funderid: 10.13039/501100002920 – fundername: Research Grant Council of Hong Kong, Hong Kong – fundername: Medical Research Council grantid: MC_UU_00005/1 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c461t-9f7abab3f1e87f52c8da962572d926a5ff273c49186e4d3ba43baa98151eb6eb3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:30:13 EDT 2025 Fri Jul 11 12:14:50 EDT 2025 Fri Jul 25 06:19:33 EDT 2025 Mon Jul 21 05:45:51 EDT 2025 Tue Jul 01 00:43:24 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Aug 27 02:49:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-9f7abab3f1e87f52c8da962572d926a5ff273c49186e4d3ba43baa98151eb6eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2602-3967 0000-0001-6105-4772 0000-0002-6844-2847 0000-0003-4962-4132 0000-0003-4375-653X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9718333 |
PMID | 35192466 |
PQID | 2635716066 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a100f82103de4311b97bb9f187427960 proquest_miscellaneous_2632151231 ieee_primary_9718333 pubmed_primary_35192466 crossref_citationtrail_10_1109_TNSRE_2022_3153353 crossref_primary_10_1109_TNSRE_2022_3153353 proquest_journals_2635716066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref43 wang (ref44) 2015; 9 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 fox (ref28) 2005; 102 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 guimerà (ref45) 2005; 433 ref76 ref32 ref2 ref1 ref39 ref38 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref27 ba?ar (ref71) 1997; 26 ref29 babiloni (ref14) 2016; 127 ref60 ref62 ref61 |
References_xml | – ident: ref46 doi: 10.1523/JNEUROSCI.4636-06.2007 – volume: 433 start-page: 895 year: 2005 ident: ref45 article-title: Functional cartography of complex metabolic networks publication-title: Nature doi: 10.1038/nature03288 – ident: ref41 doi: 10.1371/journal.pone.0005226 – ident: ref23 doi: 10.1523/JNEUROSCI.1414-13.2013 – ident: ref43 doi: 10.3390/brainsci11030377 – ident: ref16 doi: 10.1016/j.neuroimage.2013.06.076 – ident: ref9 doi: 10.1038/nature05278 – ident: ref22 doi: 10.1016/j.bbr.2015.07.049 – ident: ref73 doi: 10.1016/S0167-8760(02)00107-1 – volume: 26 start-page: 5 year: 1997 ident: ref71 article-title: Alpha oscillations in brain functioning: An integrative theory publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(97)00753-8 – ident: ref6 doi: 10.3389/fnhum.2013.00317 – ident: ref24 doi: 10.1016/j.brs.2016.04.009 – ident: ref15 doi: 10.1016/j.brs.2010.07.002 – ident: ref39 doi: 10.1089/brain.2012.0073 – ident: ref69 doi: 10.1152/jn.2002.88.4.1634 – ident: ref72 doi: 10.3389/fpsyg.2011.00204 – ident: ref48 doi: 10.1016/j.neuroimage.2014.01.012 – ident: ref62 doi: 10.1016/j.neulet.2009.05.037 – ident: ref27 doi: 10.1007/s00221-007-1221-8 – ident: ref34 doi: 10.1016/j.neuroimage.2012.02.070 – ident: ref63 doi: 10.1523/JNEUROSCI.0542-11.2011 – ident: ref54 doi: 10.3389/fnhum.2016.00560 – ident: ref4 doi: 10.1126/scitranslmed.aad5651 – ident: ref64 doi: 10.1523/JNEUROSCI.1163-19.2019 – ident: ref38 doi: 10.3389/fnsys.2010.00013 – ident: ref32 doi: 10.1016/j.neuroimage.2010.09.085 – ident: ref8 doi: 10.1016/j.cub.2008.10.027 – ident: ref47 doi: 10.1016/j.tics.2005.08.011 – ident: ref75 doi: 10.1016/j.tins.2007.02.001 – ident: ref36 doi: 10.1016/j.neuroscience.2018.09.013 – ident: ref25 doi: 10.1080/10749357.2016.1175218 – ident: ref5 doi: 10.1002/hbm.24079 – volume: 102 start-page: 9673 year: 2005 ident: ref28 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.0504136102 – ident: ref56 doi: 10.1016/j.neuroimage.2016.07.005 – volume: 9 start-page: 386 year: 2015 ident: ref44 article-title: GRETNA: A graph theoretical network analysis toolbox for imaging connectomics publication-title: Frontiers Hum Neurosci – ident: ref37 doi: 10.1109/EMBC.2015.7318340 – ident: ref68 doi: 10.1016/j.conb.2010.02.015 – ident: ref3 doi: 10.1109/TNSRE.2020.3027955 – ident: ref79 doi: 10.1038/nrn.2017.26 – volume: 127 start-page: 641 year: 2016 ident: ref14 article-title: Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.04.068 – ident: ref53 doi: 10.1016/j.brs.2019.07.023 – ident: ref26 doi: 10.1016/j.brs.2016.11.003 – ident: ref30 doi: 10.3390/brainsci11010056 – ident: ref21 doi: 10.1016/j.bbr.2012.11.038 – ident: ref35 doi: 10.12809/hkmj144219 – ident: ref66 doi: 10.1007/s002210050825 – ident: ref77 doi: 10.1038/nrn3137 – ident: ref67 doi: 10.1523/JNEUROSCI.4153-10.2011 – ident: ref61 doi: 10.1111/psyp.13794 – ident: ref57 doi: 10.3758/CABN.7.4.391 – ident: ref10 doi: 10.1016/j.cub.2012.01.024 – ident: ref31 doi: 10.1016/j.neuroimage.2016.06.003 – ident: ref60 doi: 10.1016/j.neuroimage.2011.04.023 – ident: ref49 doi: 10.1523/JNEUROSCI.0868-16.2016 – ident: ref29 doi: 10.1016/j.euroneuro.2010.03.008 – ident: ref17 doi: 10.1016/j.conb.2008.01.007 – ident: ref18 doi: 10.1016/j.conb.2007.12.001 – ident: ref12 doi: 10.1523/JNEUROSCI.3359-09.2009 – ident: ref76 doi: 10.1523/JNEUROSCI.5580-10.2011 – ident: ref78 doi: 10.1016/j.brs.2010.11.001 – ident: ref70 doi: 10.1016/j.neuroimage.2013.04.044 – ident: ref50 doi: 10.1007/s00221-018-5314-3 – ident: ref2 doi: 10.1038/nrneurol.2010.200 – ident: ref40 doi: 10.1016/j.neuroimage.2009.10.003 – ident: ref7 doi: 10.1016/j.neuroimage.2015.10.024 – ident: ref65 doi: 10.1093/brain/awh288 – ident: ref74 doi: 10.1371/journal.pone.0003990 – ident: ref58 doi: 10.1146/annurev-neuro-070815-013952 – ident: ref59 doi: 10.1111/j.1460-9568.2005.04176.x – ident: ref55 doi: 10.1016/j.neuroimage.2013.11.037 – ident: ref52 doi: 10.1523/JNEUROSCI.0098-17.2017 – ident: ref42 doi: 10.1103/PhysRevE.69.066133 – ident: ref13 doi: 10.1016/S0304-3940(97)00889-6 – ident: ref19 doi: 10.1016/j.brainresrev.2005.04.005 – ident: ref51 doi: 10.1016/j.brs.2015.01.398 – ident: ref33 doi: 10.1109/TMI.2019.2915206 – ident: ref11 doi: 10.3389/fncel.2017.00214 – ident: ref1 doi: 10.1016/S1474-4422(19)30415-6 – ident: ref20 doi: 10.3389/fnhum.2010.00186 |
SSID | ssj0017657 |
Score | 2.4132495 |
Snippet | Transcranial alternating current stimulation (tACS) is an emerging non-invasive neuromodulation technique, which could be potentially applied to enhance stroke... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 455 |
SubjectTerms | AC motors Brain Brain - physiology Brain mapping Electrical stimuli Electrodes Executive function functional connectivity Functional magnetic resonance imaging Graph theory Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Motor Cortex - physiology Neural networks Neuroimaging Neuromodulation Protocols Rehabilitation Resonant frequency Sensorimotor system Stimulation Stroke Stroke (medical condition) Task analysis Transcranial alternating current stimulation Transcranial Direct Current Stimulation - methods |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwFLQqTlwqKLQEKHpItJcqIrYTJ-a2fGmpBIfdRULiYNmJLSEgW0E4tL--z443ggNw4RTFcazEz86bSZwZQvYoFY7ZukpNbZCgcCNSiXkqtZUsmDCl1kFL7_xCjC_z31fF1TOrL78mrJcH7jtuX9MscxUSE95YbIQaWRojnbeSYyXCb__0xZy3IFPx-0EpinLxi0wm92cX08kJkkHGkKMiwCn4izQU1PqjvcrrSDNknNMV8jlCRRj1l7hKPtn2C_nxXBYYZr0mAPyEyQvF7TVyfRydT3AG30GvUfwIcwc0A902wDIY_4NDbxAB0-7mPrp4Ae5GvVwsfpjf2gMYQTc6mqbufHIGftnh33VyeXoyOxqn0UghrXNBu1S6UhttuKO2Kl3B6qrREolPyRrJhC6cQxBT55JWwuYNNxpjprWsEA1YI5BufyVL7by1GwREIwqudS2awuQWKajGdMZwI7h1jXYJoYt-VXW8Z292cacC28ikCrFQPhYqxiIhv4Zz_vQaG2_WPvThGmp6fexQgKNGxVGj3hs1CVnzwR4akZiiOce2txfBV3EuPyov14OsErFZQnaHwzgL_acV3dr5U6gTsBOnCfnWD5qhbW-ByHIhNj_iwrfIsu-M_iXQNlnqHp7sd4RFndkJM-A_vNUCzw priority: 102 providerName: Directory of Open Access Journals |
Title | Differential Effects of 10 and 20 Hz Brain Stimulation in Chronic Stroke: A tACS-fMRI Study |
URI | https://ieeexplore.ieee.org/document/9718333 https://www.ncbi.nlm.nih.gov/pubmed/35192466 https://www.proquest.com/docview/2635716066 https://www.proquest.com/docview/2632151231 https://doaj.org/article/a100f82103de4311b97bb9f187427960 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXHh0fIIlMpIwAWyje3EibltS6sFaXvY3UqVOER2YktVS4La7IH-esaOE9oKEKe8HCfWjO35_Pg-gLeUCstMVcS60ghQuBaxxH4qNoXMmNC5Up5Lb34iZqfp17PsbAM-jnthjDF-8ZmZuFM_l1-31doNle1LbEg555uwicCt36s1zhjkwrN6YgVO8ZMsGTbIJHJ_dbJcHCEUZAwRKoY3mRPPccJ0LPXkiL_7I0_bH3RW_h5y-q7n-BHMh5_uV5xcTNadnlQ39_gc_7dUj-FhiEHJtHeaJ7Bhmm14d5tvmKx6sgHynizuUHnvwLfPQVIFm4ZL0pMfX5PWEpoQ1dSEJWR2Qw6c8gRZduffgzwYwctAxIu3r9oL84lMSTc9XMZ2vvhC3HrGn0_h9PhodTiLg0JDXKWCdrG0udJKc0tNkduMVUWtJCKqnNWSCZVZi9FRlUpaCJPWXCt0BqVkgWGG0QJx_DPYatrGvAAiapFxpSpRZzo1iG0V9pMMD4IbWysbAR3sVFahzE5F47L0MCaRpTdz6cxcBjNH8GF850dP3vHP1AfO_GNKR7ztb6C1ylCPS0WTxBaIk3lt0KeplrnW0jplQ5YjGoxgx1l4zCQYN4LdwZnK0Ehcl44HCOEqBn0RvBkfY_V2czaqMe3ap_FBGacRPO-dcMx7cOGXf_7mK3jgitePF-3CVne1Nq8xgur0nh952PMV6Bc4BhJL |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALr_IIFDAScIFsYztxYm7b0moL3T3sbqVKHCI7saWqbYLa7IH-esaONzwEiFNezsOasWe-2P4-gNeUCstMVcS60ghQuBaxxDgVm0JmTOhcKc-lN52JyXH66SQ72YD3w1oYY4yffGZGbteP5ddttXK_ynYkdqSc8xtwE-N-RvvVWsOYQS48ryc24RRfypL1EplE7ixni_k-gkHGEKNigpM5-RwnTcdST4_4IyJ54v6gtPL3pNMHn4O7MF1_dj_n5Gy06vSouv6N0fF_63UP7oQslIx7t7kPG6Z5AG9-Zhwmy55ugLwl81_IvLfgy8cgqoKdwznp6Y-vSGsJTYhqasISMrkmu057giy604sgEEbwMFDx4unL9sx8IGPSjfcWsZ3OD4mb0fjtIRwf7C_3JnHQaIirVNAuljZXWmluqSlym7GqqJVETJWzWjKhMmsxP6pSSQth0pprhe6glCww0TBaIJJ_BJtN25gnQEQtMq5UJepMpwbRrcJIyXAjuLG1shHQtZ3KKtTZ6Wiclx7IJLL0Zi6dmctg5gjeDfd87ek7_ll615l_KOmot_0JtFYZWnKpaJLYApEyrw16NdUy11pap23IcsSDEWw5Cw8PCcaNYHvtTGXoJq5KxwSEgBXTvgheDZexgbtRG9WYduXL-LSM0wge9044PHvtwk___M6XcGuynB6VR4ezz8_gtqtq__doGza7y5V5jvlUp1_4ZvQdMjQUnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Effects+of+10+and+20+Hz+Brain+Stimulation+in+Chronic+Stroke%3A+A+tACS-fMRI+Study&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Yuan%2C+Kai&rft.au=Chen%2C+Cheng&rft.au=Lou%2C+Wu-Tao&rft.au=Khan%2C+Ahsan&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=455&rft_id=info:doi/10.1109%2FTNSRE.2022.3153353&rft_id=info%3Apmid%2F35192466&rft.externalDocID=35192466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |