Helminth-induced CD9+ B-cell subset alleviates obesity-associated inflammation via IL-10 production
[Display omitted] •Schistosome infection could expand regulatory B cells (Bregs) in mice.•CD19±CD9± B cells produced more IL-10 than conventional B10 cells.•Adoptive transfer of CD9± B cells from infected mice had the capacity to markedly alleviate obesity-related inflammation.•CD9± B cells induced...
Saved in:
Published in | International journal for parasitology Vol. 52; no. 2-3; pp. 111 - 123 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Schistosome infection could expand regulatory B cells (Bregs) in mice.•CD19±CD9± B cells produced more IL-10 than conventional B10 cells.•Adoptive transfer of CD9± B cells from infected mice had the capacity to markedly alleviate obesity-related inflammation.•CD9± B cells induced by helminth infection play a role in regulation of host metabolic disorders through IL-10 production.
It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10− cells (CD19+CD5−CD1d−) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production. |
---|---|
AbstractList | [Display omitted]
•Schistosome infection could expand regulatory B cells (Bregs) in mice.•CD19±CD9± B cells produced more IL-10 than conventional B10 cells.•Adoptive transfer of CD9± B cells from infected mice had the capacity to markedly alleviate obesity-related inflammation.•CD9± B cells induced by helminth infection play a role in regulation of host metabolic disorders through IL-10 production.
It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10− cells (CD19+CD5−CD1d−) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production. It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19 CD5 CD1d ) and B10 cells (CD19 CD5 CD1d ) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10 B cells in spleen. CD19 CD9 B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9 B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9 B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production. It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10- cells (CD19+CD5-CD1d-) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production.It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10- cells (CD19+CD5-CD1d-) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production. It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19⁺CD5⁺CD1dʰⁱ) and B10⁻ cells (CD19⁺CD5⁻CD1d⁻) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10⁺ B cells in spleen. CD19⁺CD9⁺ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9⁺ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9⁺ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production. |
Author | Li, Chen Wang, Huiquan Xu, Zhipeng Ji, Minjun Li, Maining Xu, Xuejun Chang, Hao Hou, Min Ni, Yangyue |
Author_xml | – sequence: 1 givenname: Maining surname: Li fullname: Li, Maining – sequence: 2 givenname: Huiquan surname: Wang fullname: Wang, Huiquan – sequence: 3 givenname: Yangyue surname: Ni fullname: Ni, Yangyue – sequence: 4 givenname: Chen surname: Li fullname: Li, Chen – sequence: 5 givenname: Xuejun surname: Xu fullname: Xu, Xuejun – sequence: 6 givenname: Hao surname: Chang fullname: Chang, Hao – sequence: 7 givenname: Zhipeng surname: Xu fullname: Xu, Zhipeng – sequence: 8 givenname: Min surname: Hou fullname: Hou, Min – sequence: 9 givenname: Minjun surname: Ji fullname: Ji, Minjun email: jiminjun@njmu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34863801$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKeFf4BQlkhVwvUrsVkgtUNpK43EBtaW49wIj_IYbKdS_z0O025YlK4sXX3nXN9zzsjJNE9IyHsKFQVaf9pXfn-wwVYMGK1AVQD6FdlQ1egSKJcnZAPAoGwk1afkLMY9AJVciDfklAtVcwV0Q9wtDqOf0q_ST93isCu2X_VFcVU6HIYiLm3EVNhhwHtvE8ZibjH69FDaGGe3jrrCT_1gx9EmP09Fxoq7XUmhOIQ5G67Dt-R1b4eI7x7fc_Lz2_WP7W25-35zt73clU7UNJUaadNKqmjd6h456xS33OYbtMVWOZG_36DWjgF1TLZU9rIRktYNCikkc_ycfDz65tW_F4zJjD6ud9gJ5yUaVvO6YZqBegEKDQchFGT0wyO6tCN25hD8aMODecowA5-PgAtzjAF743z6m0YK1g-GglkLM3tzLMyshRlQJheWxeIf8ZP_f2RfjjLMed57DCY6j1Puzwd0yXSzf97gD-4Lr3E |
CitedBy_id | crossref_primary_10_3389_fimmu_2022_953053 crossref_primary_10_3390_pathogens11111373 crossref_primary_10_3389_fcimb_2023_1143950 crossref_primary_10_3389_fimmu_2022_827486 crossref_primary_10_3390_pathogens12060793 crossref_primary_10_2147_JIR_S348079 crossref_primary_10_1007_s00436_024_08450_4 |
Cites_doi | 10.1186/s13071-017-2400-5 10.1007/s11010-019-03561-4 10.4168/aair.2011.3.3.168 10.1111/j.1365-2249.2010.04139.x 10.1016/j.cmet.2013.09.017 10.1111/imr.12800 10.1189/jlb.0804453 10.1016/j.bbrc.2018.06.109 10.1016/j.jaci.2016.07.006 10.1038/cmi.2012.60 10.1002/oby.21769 10.1080/20477724.2017.1308902 10.1016/j.jhep.2016.05.005 10.1128/CMR.05040-11 10.3389/fimmu.2021.611795 10.1016/j.it.2005.11.003 10.1111/j.1398-9995.2010.02524.x 10.1002/eji.201344245 10.1007/978-1-60761-869-0_7 10.1038/cmi.2017.35 10.1681/ASN.2013080837 10.1126/scitranslmed.3005407 10.1016/j.immuni.2009.11.009 10.1016/j.jaci.2015.12.1319 10.1182/blood-2008-02-078071 10.4049/jimmunol.0900270 10.1002/eji.201141869 10.4049/jimmunol.176.9.5374 10.1016/j.celrep.2015.09.070 10.7150/thno.49354 10.1371/journal.pone.0030883 10.1111/all.12697 10.1038/nri843 10.1098/rsif.2021.0200 10.1016/j.jhep.2019.08.005 |
ContentType | Journal Article |
Copyright | 2021 Australian Society for Parasitology Copyright © 2021 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Australian Society for Parasitology – notice: Copyright © 2021 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijpara.2021.08.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1879-0135 |
EndPage | 123 |
ExternalDocumentID | 34863801 10_1016_j_ijpara_2021_08_009 S0020751921003143 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABBQC ABFNM ABFRF ABJNI ABKYH ABLVK ABMAC ABMZM ABOCM ABRWV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AESVU AEXOQ AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HLV HMG HMK HMO HVGLF HX~ HZ~ IHE J1W KOM L7B LCYCR LUGTX LW9 M29 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 QYZTP R2- RIG ROL RPZ SAB SAE SCC SDF SDG SDP SES SEW SIN SNL SPCBC SSH SSI SSZ T5K UNMZH VH1 WH7 WUQ ZCG ZY4 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-9e17b51816b9fe32d83a3a0029aeb8c40017e99c201c25b15f5745167e45452c3 |
IEDL.DBID | .~1 |
ISSN | 0020-7519 1879-0135 |
IngestDate | Fri Jul 11 15:27:22 EDT 2025 Fri Jul 11 06:36:01 EDT 2025 Wed Feb 19 02:26:51 EST 2025 Tue Jul 01 03:54:18 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Fri Feb 23 02:43:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | Immunometabolism CD9 Regulatory B cell Helminths |
Language | English |
License | Copyright © 2021 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-9e17b51816b9fe32d83a3a0029aeb8c40017e99c201c25b15f5745167e45452c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34863801 |
PQID | 2607304480 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2636729208 proquest_miscellaneous_2607304480 pubmed_primary_34863801 crossref_citationtrail_10_1016_j_ijpara_2021_08_009 crossref_primary_10_1016_j_ijpara_2021_08_009 elsevier_sciencedirect_doi_10_1016_j_ijpara_2021_08_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | International journal for parasitology |
PublicationTitleAlternate | Int J Parasitol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | van de Veen, Stanic, Wirz, Jansen, Globinska, Akdis (b0160) 2016; 138 Yang, Rui, Wang, Lu (b0180) 2013; 10 Serra, Santamaria (b0140) 2006; 27 Alhabbab, Nova-Lamperti, Aravena, Burton, Lechler, Dorling, Lombardi (b0005) 2019; 292 Xu, Wang, Zhu, Liu, Song, Ni, Sun, Yang, Hou, Chen, Ji, Fu (b0170) 2017; 25 Yanaba, Bouaziz, Matsushita, Tsubata, Tedder (b0175) 2009; 182 Catalan, Mansilla, Ferrier, Soto, Oleinika, Aguillon, Aravena (b0040) 2021; 12 Flores-Borja, Bosma, Ng, Reddy, Ehrenstein, Isenberg, Mauri (b0060) 2013; 5 Barron, Wynn (b0015) 2011; 41 Braza, Chesne, Durand, Dirou, Brosseau, Mahay, Cheminant, Magnan, Brouard (b0035) 2015; 70 LeBien, Tedder (b0070) 2008; 112 Peng, Yu, Kolanus, Mazzocca, Bieber, Kraft, Novak (b0130) 2011; 66 Baumgart, Tompkins, Leng, Hesse (b0020) 2006; 176 Dimenstein, Carvalho, Oliveira, Gillett (b0055) 1992; 25 Cherukuri, Rothstein, Clark, Carter, Davison, Hernandez-Fuentes, Hewitt, Salama, Baker (b0045) 2014; 25 Pearce, MacDonald (b0125) 2002; 2 Tao, Liu, Gong (b0155) 2019; 459 Bouma, Carter, Recher, Malinova, Adriani, Notarangelo, Burns, Mauri, Thrasher (b0030) 2014; 44 McSorley, Maizels (b0095) 2012; 25 van der Vlugt, Labuda, Ozir-Fazalalikhan, Lievers, Gloudemans, Liu, Barr, Sparwasser, Boon, Ngoa, Feugap, Adegnika, Kremsner, Gray, Yazdanbakhsh, Smits (b0165) 2012; 7 Luo, Zhu, Liu, Song, Zhang, Zhang, Xu, Hou, Yang, Chen, Ji (b0080) 2017; 10 Collyer, Anderson (b0050) 2021; 18 Ni, Xu, Li, Zhu, Liu, Zhang, Chang, Li, Sheng, Li, Hou, Chen, You, McManus, Hu, Duan, Liu, Ji (b0105) 2021; 11 Blair, Noreña, Flores-Borja, Rawlings, Isenberg, Ehrenstein, Mauri (b0025) 2010; 32 Sarvaria, Madrigal, Saudemont (b0135) 2017; 14 Li, Xiang, Zhang, Xu, Hu (b0075) 2018; 503 Okada, Kuhn, Feillet, Bach (b0120) 2010; 160 Asgharpour, Cazanave, Pacana, Seneshaw, Vincent, Banini, Kumar, Daita, Min, Mirshahi, Bedossa, Sun, Hoshida, Koduru, Contaifer, Warncke, Wijesinghe, Sanyal (b0010) 2016; 65 Nishimura, Manabe, Takaki, Nagasaki, Otsu, Yamashita, Sugita, Yoshimura, Eto, Komuro, Kadowaki, Nagai (b0110) 2013; 18 Soares, Antinarelli, Abramo, Macedo, Coimbra, Scopel (b0145) 2017; 111 Mouries, Brescia, Silvestri, Spadoni, Sorribas, Wiest, Mileti, Galbiati, Invernizzi, Adorini, Penna, Rescigno (b0100) 2019; 71 Matsushita, T., D. Le Huu, T. Kobayashi, Y. Hamaguchi, M. Hasegawa, K. Naka, A. Hirao, M. Muramatsu, K. Takehara, M. Fujimoto. 2016. A novel splenic B1 regulatory cell subset suppresses allergic disease through phosphatidylinositol 3-kinase-Akt pathway activation. J. Allergy Clin. Immunol. 138, 1170-82.e9. Matsushita, Tedder (b0090) 2011; 677 Noh, Lee (b0115) 2011; 3 Ha, Waterhouse, Wessells, Wu, Dveksler (b0065) 2005; 77 Sun, Wang, Pefanis, Chao, Rothschild, Tachibana, Chen, Ivanov, Rabadan, Takeda (b0150) 2015; 13 Dimenstein (10.1016/j.ijpara.2021.08.009_b0055) 1992; 25 Xu (10.1016/j.ijpara.2021.08.009_b0170) 2017; 25 Mouries (10.1016/j.ijpara.2021.08.009_b0100) 2019; 71 van der Vlugt (10.1016/j.ijpara.2021.08.009_b0165) 2012; 7 Baumgart (10.1016/j.ijpara.2021.08.009_b0020) 2006; 176 Li (10.1016/j.ijpara.2021.08.009_b0075) 2018; 503 Ni (10.1016/j.ijpara.2021.08.009_b0105) 2021; 11 Peng (10.1016/j.ijpara.2021.08.009_b0130) 2011; 66 Catalan (10.1016/j.ijpara.2021.08.009_b0040) 2021; 12 Collyer (10.1016/j.ijpara.2021.08.009_b0050) 2021; 18 Blair (10.1016/j.ijpara.2021.08.009_b0025) 2010; 32 van de Veen (10.1016/j.ijpara.2021.08.009_b0160) 2016; 138 Sun (10.1016/j.ijpara.2021.08.009_b0150) 2015; 13 Pearce (10.1016/j.ijpara.2021.08.009_b0125) 2002; 2 Sarvaria (10.1016/j.ijpara.2021.08.009_b0135) 2017; 14 Asgharpour (10.1016/j.ijpara.2021.08.009_b0010) 2016; 65 Flores-Borja (10.1016/j.ijpara.2021.08.009_b0060) 2013; 5 Noh (10.1016/j.ijpara.2021.08.009_b0115) 2011; 3 LeBien (10.1016/j.ijpara.2021.08.009_b0070) 2008; 112 Tao (10.1016/j.ijpara.2021.08.009_b0155) 2019; 459 Cherukuri (10.1016/j.ijpara.2021.08.009_b0045) 2014; 25 Matsushita (10.1016/j.ijpara.2021.08.009_b0090) 2011; 677 McSorley (10.1016/j.ijpara.2021.08.009_b0095) 2012; 25 Braza (10.1016/j.ijpara.2021.08.009_b0035) 2015; 70 Luo (10.1016/j.ijpara.2021.08.009_b0080) 2017; 10 Serra (10.1016/j.ijpara.2021.08.009_b0140) 2006; 27 10.1016/j.ijpara.2021.08.009_b0085 Yanaba (10.1016/j.ijpara.2021.08.009_b0175) 2009; 182 Ha (10.1016/j.ijpara.2021.08.009_b0065) 2005; 77 Alhabbab (10.1016/j.ijpara.2021.08.009_b0005) 2019; 292 Bouma (10.1016/j.ijpara.2021.08.009_b0030) 2014; 44 Soares (10.1016/j.ijpara.2021.08.009_b0145) 2017; 111 Nishimura (10.1016/j.ijpara.2021.08.009_b0110) 2013; 18 Okada (10.1016/j.ijpara.2021.08.009_b0120) 2010; 160 Barron (10.1016/j.ijpara.2021.08.009_b0015) 2011; 41 Yang (10.1016/j.ijpara.2021.08.009_b0180) 2013; 10 |
References_xml | – volume: 70 start-page: 1421 year: 2015 end-page: 1431 ident: b0035 article-title: A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation publication-title: Allergy – volume: 503 start-page: 1004 year: 2018 end-page: 1010 ident: b0075 article-title: RNA interference in vivo in publication-title: Biochem. Biophys. Res. Commun. – volume: 66 start-page: 605 year: 2011 end-page: 611 ident: b0130 article-title: Tetraspanins CD9 and CD81 are molecular partners of trimeric FcɛRI on human antigen-presenting cells publication-title: Allergy – volume: 7 year: 2012 ident: b0165 article-title: Schistosomes induce regulatory features in human and mouse CD1d(hi) B cells: inhibition of allergic inflammation by IL-10 and regulatory T cells publication-title: PLoS One – volume: 111 start-page: 107 year: 2017 end-page: 115 ident: b0145 article-title: What do we know about the role of regulatory B cells (Breg) during the course of infection of two major parasitic diseases, malaria and leishmaniasis? publication-title: Pathog. Glob. Health – volume: 65 start-page: 579 year: 2016 end-page: 588 ident: b0010 article-title: A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer publication-title: J. Hepatol. – volume: 13 start-page: 1110 year: 2015 end-page: 1117 ident: b0150 article-title: Transcriptomics identify CD9 as a marker of murine IL-10-competent regulatory B cells publication-title: Cell Rep. – volume: 71 start-page: 1216 year: 2019 end-page: 1228 ident: b0100 article-title: Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development publication-title: J. Hepatol. – volume: 459 start-page: 183 year: 2019 end-page: 188 ident: b0155 article-title: Role and mechanism of the Th17/Treg cell balance in the development and progression of insulin resistance publication-title: Mol. Cell Biochem. – volume: 176 start-page: 5374 year: 2006 end-page: 5387 ident: b0020 article-title: Naturally occurring CD4+Foxp3+ regulatory T cells are an essential, IL-10-independent part of the immunoregulatory network in publication-title: J. Immunol. – volume: 32 start-page: 129 year: 2010 end-page: 140 ident: b0025 article-title: CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients publication-title: Immunity – volume: 44 start-page: 2692 year: 2014 end-page: 2702 ident: b0030 article-title: Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells publication-title: Eur. J. Immunol. – volume: 292 start-page: 164 year: 2019 end-page: 179 ident: b0005 article-title: Regulatory B cells: Development, phenotypes, functions, and role in transplantation publication-title: Immunol. Rev. – volume: 10 start-page: 122 year: 2013 end-page: 132 ident: b0180 article-title: Regulatory B cells in autoimmune diseases publication-title: Cell Mol. Immunol. – volume: 12 year: 2021 ident: b0040 article-title: Immunosuppressive mechanisms of regulatory B cells publication-title: Front Immunol. – volume: 25 start-page: 1091 year: 1992 end-page: 1102 ident: b0055 article-title: Alterations in the levels and lipid composition of plasma lipoproteins (VLDL, LDL and HDL) in Brazilian patients with hepatosplenic schistosomiasis mansoni publication-title: Braz. J. Med. Biol. Res. – volume: 182 start-page: 7459 year: 2009 end-page: 7472 ident: b0175 article-title: The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals publication-title: J. Immunol. – volume: 3 start-page: 168 year: 2011 end-page: 177 ident: b0115 article-title: Regulatory B cells and allergic diseases publication-title: Allergy Asthma Immunol. Res. – volume: 27 start-page: 7 year: 2006 end-page: 10 ident: b0140 article-title: To 'B' regulated: B cells as members of the regulatory workforce publication-title: Trends Immunol. – volume: 25 start-page: 585 year: 2012 end-page: 608 ident: b0095 article-title: Helminth infections and host immune regulation publication-title: Clin. Microbiol. Rev. – volume: 41 start-page: 2509 year: 2011 end-page: 2514 ident: b0015 article-title: Macrophage activation governs schistosomiasis-induced inflammation and fibrosis publication-title: Eur. J. Immunol. – volume: 677 start-page: 99 year: 2011 end-page: 111 ident: b0090 article-title: Identifying regulatory B cells (B10 cells) that produce IL-10 in mice publication-title: Methods Mol. Biol. – volume: 18 start-page: 20210200 year: 2021 ident: b0050 article-title: Probability distributions of helminth parasite burdens within the human host population following repeated rounds of mass drug administration and their impact on the transmission breakpoint publication-title: J. R. Soc. Interface. – volume: 160 start-page: 1 year: 2010 end-page: 9 ident: b0120 article-title: The 'hygiene hypothesis' for autoimmune and allergic diseases: an update publication-title: Clin. Exp. Immunol. – volume: 112 start-page: 1570 year: 2008 end-page: 1580 ident: b0070 article-title: B lymphocytes: how they develop and function publication-title: Blood – volume: 138 start-page: 654 year: 2016 end-page: 665 ident: b0160 article-title: Role of regulatory B cells in immune tolerance to allergens and beyond publication-title: J. Allergy Clin. Immunol. – volume: 5 start-page: 173ra23 year: 2013 ident: b0060 article-title: CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation publication-title: Sci. Transl. Med. – volume: 10 start-page: 453 year: 2017 ident: b0080 article-title: Praziquantel treatment after publication-title: Parasit. Vectors – reference: Matsushita, T., D. Le Huu, T. Kobayashi, Y. Hamaguchi, M. Hasegawa, K. Naka, A. Hirao, M. Muramatsu, K. Takehara, M. Fujimoto. 2016. A novel splenic B1 regulatory cell subset suppresses allergic disease through phosphatidylinositol 3-kinase-Akt pathway activation. J. Allergy Clin. Immunol. 138, 1170-82.e9. – volume: 2 start-page: 499 year: 2002 end-page: 511 ident: b0125 article-title: The immunobiology of schistosomiasis publication-title: Nat. Rev. Immunol. – volume: 14 start-page: 662 year: 2017 end-page: 674 ident: b0135 article-title: B cell regulation in cancer and anti-tumor immunity publication-title: Cell Mol. Immunol. – volume: 25 start-page: 581 year: 2017 end-page: 590 ident: b0170 article-title: PPAR-γ agonist ameliorates liver pathology accompanied by increasing regulatory B and T cells in high-fat-diet mice publication-title: Obesity – volume: 77 start-page: 948 year: 2005 end-page: 957 ident: b0065 article-title: Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1 publication-title: J. Leukoc. Biol. – volume: 25 start-page: 1575 year: 2014 end-page: 1585 ident: b0045 article-title: Immunologic human renal allograft injury associates with an altered IL-10/TNF-α expression ratio in regulatory B cells publication-title: J. Am. Soc. Nephrol. – volume: 11 start-page: 1079 year: 2021 end-page: 1099 ident: b0105 article-title: Therapeutic inhibition of miR-802 protects against obesity through AMPK-mediated regulation of hepatic lipid metabolism publication-title: Theranostics – volume: 18 start-page: 759 year: 2013 end-page: 766 ident: b0110 article-title: Adipose natural regulatory B cells negatively control adipose tissue inflammation publication-title: Cell Metab. – volume: 10 start-page: 453 year: 2017 ident: 10.1016/j.ijpara.2021.08.009_b0080 article-title: Praziquantel treatment after Schistosoma japonicum infection maintains hepatic insulin sensitivity and improves glucose metabolism in mice publication-title: Parasit. Vectors doi: 10.1186/s13071-017-2400-5 – volume: 459 start-page: 183 year: 2019 ident: 10.1016/j.ijpara.2021.08.009_b0155 article-title: Role and mechanism of the Th17/Treg cell balance in the development and progression of insulin resistance publication-title: Mol. Cell Biochem. doi: 10.1007/s11010-019-03561-4 – volume: 3 start-page: 168 year: 2011 ident: 10.1016/j.ijpara.2021.08.009_b0115 article-title: Regulatory B cells and allergic diseases publication-title: Allergy Asthma Immunol. Res. doi: 10.4168/aair.2011.3.3.168 – volume: 160 start-page: 1 year: 2010 ident: 10.1016/j.ijpara.2021.08.009_b0120 article-title: The 'hygiene hypothesis' for autoimmune and allergic diseases: an update publication-title: Clin. Exp. Immunol. doi: 10.1111/j.1365-2249.2010.04139.x – volume: 18 start-page: 759 year: 2013 ident: 10.1016/j.ijpara.2021.08.009_b0110 article-title: Adipose natural regulatory B cells negatively control adipose tissue inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.09.017 – volume: 292 start-page: 164 year: 2019 ident: 10.1016/j.ijpara.2021.08.009_b0005 article-title: Regulatory B cells: Development, phenotypes, functions, and role in transplantation publication-title: Immunol. Rev. doi: 10.1111/imr.12800 – volume: 77 start-page: 948 year: 2005 ident: 10.1016/j.ijpara.2021.08.009_b0065 article-title: Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1 publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0804453 – volume: 503 start-page: 1004 year: 2018 ident: 10.1016/j.ijpara.2021.08.009_b0075 article-title: RNA interference in vivo in Schistosoma japonicum: Establishing and optimization of RNAi mediated suppression of gene expression by long dsRNA in the intra-mammalian life stages of worms publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.06.109 – volume: 138 start-page: 654 year: 2016 ident: 10.1016/j.ijpara.2021.08.009_b0160 article-title: Role of regulatory B cells in immune tolerance to allergens and beyond publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2016.07.006 – volume: 10 start-page: 122 year: 2013 ident: 10.1016/j.ijpara.2021.08.009_b0180 article-title: Regulatory B cells in autoimmune diseases publication-title: Cell Mol. Immunol. doi: 10.1038/cmi.2012.60 – volume: 25 start-page: 581 year: 2017 ident: 10.1016/j.ijpara.2021.08.009_b0170 article-title: PPAR-γ agonist ameliorates liver pathology accompanied by increasing regulatory B and T cells in high-fat-diet mice publication-title: Obesity doi: 10.1002/oby.21769 – volume: 25 start-page: 1091 year: 1992 ident: 10.1016/j.ijpara.2021.08.009_b0055 article-title: Alterations in the levels and lipid composition of plasma lipoproteins (VLDL, LDL and HDL) in Brazilian patients with hepatosplenic schistosomiasis mansoni publication-title: Braz. J. Med. Biol. Res. – volume: 111 start-page: 107 year: 2017 ident: 10.1016/j.ijpara.2021.08.009_b0145 article-title: What do we know about the role of regulatory B cells (Breg) during the course of infection of two major parasitic diseases, malaria and leishmaniasis? publication-title: Pathog. Glob. Health doi: 10.1080/20477724.2017.1308902 – volume: 65 start-page: 579 year: 2016 ident: 10.1016/j.ijpara.2021.08.009_b0010 article-title: A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer publication-title: J. Hepatol. doi: 10.1016/j.jhep.2016.05.005 – volume: 25 start-page: 585 year: 2012 ident: 10.1016/j.ijpara.2021.08.009_b0095 article-title: Helminth infections and host immune regulation publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.05040-11 – volume: 12 year: 2021 ident: 10.1016/j.ijpara.2021.08.009_b0040 article-title: Immunosuppressive mechanisms of regulatory B cells publication-title: Front Immunol. doi: 10.3389/fimmu.2021.611795 – volume: 27 start-page: 7 year: 2006 ident: 10.1016/j.ijpara.2021.08.009_b0140 article-title: To 'B' regulated: B cells as members of the regulatory workforce publication-title: Trends Immunol. doi: 10.1016/j.it.2005.11.003 – volume: 66 start-page: 605 year: 2011 ident: 10.1016/j.ijpara.2021.08.009_b0130 article-title: Tetraspanins CD9 and CD81 are molecular partners of trimeric FcɛRI on human antigen-presenting cells publication-title: Allergy doi: 10.1111/j.1398-9995.2010.02524.x – volume: 44 start-page: 2692 year: 2014 ident: 10.1016/j.ijpara.2021.08.009_b0030 article-title: Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.201344245 – volume: 677 start-page: 99 year: 2011 ident: 10.1016/j.ijpara.2021.08.009_b0090 article-title: Identifying regulatory B cells (B10 cells) that produce IL-10 in mice publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-869-0_7 – volume: 14 start-page: 662 year: 2017 ident: 10.1016/j.ijpara.2021.08.009_b0135 article-title: B cell regulation in cancer and anti-tumor immunity publication-title: Cell Mol. Immunol. doi: 10.1038/cmi.2017.35 – volume: 25 start-page: 1575 year: 2014 ident: 10.1016/j.ijpara.2021.08.009_b0045 article-title: Immunologic human renal allograft injury associates with an altered IL-10/TNF-α expression ratio in regulatory B cells publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2013080837 – volume: 5 start-page: 173ra23 year: 2013 ident: 10.1016/j.ijpara.2021.08.009_b0060 article-title: CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005407 – volume: 32 start-page: 129 year: 2010 ident: 10.1016/j.ijpara.2021.08.009_b0025 article-title: CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients publication-title: Immunity doi: 10.1016/j.immuni.2009.11.009 – ident: 10.1016/j.ijpara.2021.08.009_b0085 doi: 10.1016/j.jaci.2015.12.1319 – volume: 112 start-page: 1570 year: 2008 ident: 10.1016/j.ijpara.2021.08.009_b0070 article-title: B lymphocytes: how they develop and function publication-title: Blood doi: 10.1182/blood-2008-02-078071 – volume: 182 start-page: 7459 issue: 12 year: 2009 ident: 10.1016/j.ijpara.2021.08.009_b0175 article-title: The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals publication-title: J. Immunol. doi: 10.4049/jimmunol.0900270 – volume: 41 start-page: 2509 year: 2011 ident: 10.1016/j.ijpara.2021.08.009_b0015 article-title: Macrophage activation governs schistosomiasis-induced inflammation and fibrosis publication-title: Eur. J. Immunol. doi: 10.1002/eji.201141869 – volume: 176 start-page: 5374 issue: 9 year: 2006 ident: 10.1016/j.ijpara.2021.08.009_b0020 article-title: Naturally occurring CD4+Foxp3+ regulatory T cells are an essential, IL-10-independent part of the immunoregulatory network in Schistosoma mansoni egg-induced inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.176.9.5374 – volume: 13 start-page: 1110 year: 2015 ident: 10.1016/j.ijpara.2021.08.009_b0150 article-title: Transcriptomics identify CD9 as a marker of murine IL-10-competent regulatory B cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.09.070 – volume: 11 start-page: 1079 year: 2021 ident: 10.1016/j.ijpara.2021.08.009_b0105 article-title: Therapeutic inhibition of miR-802 protects against obesity through AMPK-mediated regulation of hepatic lipid metabolism publication-title: Theranostics doi: 10.7150/thno.49354 – volume: 7 year: 2012 ident: 10.1016/j.ijpara.2021.08.009_b0165 article-title: Schistosomes induce regulatory features in human and mouse CD1d(hi) B cells: inhibition of allergic inflammation by IL-10 and regulatory T cells publication-title: PLoS One doi: 10.1371/journal.pone.0030883 – volume: 70 start-page: 1421 year: 2015 ident: 10.1016/j.ijpara.2021.08.009_b0035 article-title: A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation publication-title: Allergy doi: 10.1111/all.12697 – volume: 2 start-page: 499 year: 2002 ident: 10.1016/j.ijpara.2021.08.009_b0125 article-title: The immunobiology of schistosomiasis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri843 – volume: 18 start-page: 20210200 year: 2021 ident: 10.1016/j.ijpara.2021.08.009_b0050 article-title: Probability distributions of helminth parasite burdens within the human host population following repeated rounds of mass drug administration and their impact on the transmission breakpoint publication-title: J. R. Soc. Interface. doi: 10.1098/rsif.2021.0200 – volume: 71 start-page: 1216 year: 2019 ident: 10.1016/j.ijpara.2021.08.009_b0100 article-title: Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.08.005 |
SSID | ssj0015344 |
Score | 2.402935 |
Snippet | [Display omitted]
•Schistosome infection could expand regulatory B cells (Bregs) in mice.•CD19±CD9± B cells produced more IL-10 than conventional B10... It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111 |
SubjectTerms | Animals Antigens, CD19 - metabolism B-lymphocytes B-Lymphocytes, Regulatory CD9 helminthiasis Helminths Helminths - metabolism high fat diet homeostasis Immunometabolism Inflammation insulin resistance interleukin-10 Interleukin-10 - genetics Interleukin-10 - metabolism Mice Mice, Inbred C57BL obesity Obesity - complications Obesity - metabolism parasitology Regulatory B cell Schistosoma japonicum sequence analysis spleen |
Title | Helminth-induced CD9+ B-cell subset alleviates obesity-associated inflammation via IL-10 production |
URI | https://dx.doi.org/10.1016/j.ijpara.2021.08.009 https://www.ncbi.nlm.nih.gov/pubmed/34863801 https://www.proquest.com/docview/2607304480 https://www.proquest.com/docview/2636729208 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7Et-uLCN4k2jZp0xx1VdbnSUG8hCZNsaLdRavgxd_uTNMuCD7AWykJhJnJPNqZ7yNkx4SBVaFJmEpzx8BLIgakCJnKecFlxjNu8Tvk5VUyuBFnt_HtBOl3szDYVtn6fu_TG2_dvtlvpbk_Kkuc8Y0g3iGeF1qmQMRPISRa-d7HuM0DLrRokZgDhqu78bmmx6t8QIBtqBIjD-SJbYnfh6ef0s8mDJ3Mkdk2f6QH_ojzZMJVC2TaM0q-w9PdsHlaJBYCylNZ1fcMqm7QX077R2qXHjL8VE9fwF-4miKRyluJ6SYdeoYAlrX6gg1gfGAvfraRwjJ6egH-lI48SCy8XCI3J8fX_QFrGRWYFUlYM-VCaWII6olRheNRnoIyMvwzlzmTWoExyyllISuwUWzCuIglMvlKJ5CL3PJlMlkNK7dKaAEKjlwOFW6aCIPztDFsLoIss0bKIOwR3glS2xZuHFkvHnXXV_agvfg1il8jGWageoSNd4083MYf62WnI_3FbDREhD92bncq1XCjUPZZ5YavLxoqPHB7ULYGv63hiUSir7RHVrw9jM_LRQpOLQjX_n22dTIT4ZRF0xy-QSbr51e3CblPbbYa494iUwen54OrT3IDAEo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BVUUvVUuhXfqBK7UnZDaJnQ8femihaLcsnEBCvbix46hBkF2xoRWX_qn-wc7EyUqVCkiVuEWRHVnjlzeeZGYewDsTBlaFJuEqKxxHlqQekDLkqhClSHORC0vfIQ-PktGJ_HIany7B774WhtIqO-73nN6ydXdn2FlzOKsqqvGN0N9RPy9CpuwVrA_c9U-M2-Yfxnu4ye-jaP_z8e6Id9IC3MokbLhyYWpi9G6JUaUTUZHhqnL6RZU7k1lJ5O2UsugebRSbMC7jlCRtUydJlNsKfO4yPJBIFySbsPNrkVeCDCK71s8Bp-X19XptUll1Rh29MSyNfOdQyoP8tz-86bzb-r39J_C4O7Cyj94mT2HJ1Wvw0EtYXuPV12l79QwserCLqm6-cwzzETAF291T2-wTp38DbI4E5RpGyi0_KjrfsqmXJOB5BxCcgGhHgPpiSobD2HiCBM5mvist3lyHk3ux8was1NPavQBWIqIiV2BInSXSUAFvjJPLIM-tSdMgHIDoDalt19-cZDbOdZ_Idqa9-TWZX5P6ZqAGwBezZr6_xx3j036P9F841eiC7pj5tt9Sja8w2T6v3fRqrjGkRJ7FODm4bYxIUlIWywbw3ONhsV4hM2TRINz877Vtwero-HCiJ-Ojg5fwKKISjzYz_RWsNJdX7jUevBrzpgU6g2_3_Wb9AaRgObg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Helminth-induced+CD9+%2B+B-cell+subset+alleviates+obesity-associated+inflammation+via+IL-10+production&rft.jtitle=International+journal+for+parasitology&rft.au=Li%2C+Maining&rft.au=Wang%2C+Huiquan&rft.au=Ni%2C+Yangyue&rft.au=Li%2C+Chen&rft.date=2022-02-01&rft.eissn=1879-0135&rft.volume=52&rft.issue=2-3&rft.spage=111&rft_id=info:doi/10.1016%2Fj.ijpara.2021.08.009&rft_id=info%3Apmid%2F34863801&rft.externalDocID=34863801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7519&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7519&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7519&client=summon |