Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection

•Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear transport and stability of SREBP2.•SREBP2 regulates cholesterol biosynthesis, mitochondrial ROS generation and cytokine balance.•Leishmania target...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biochemistry & cell biology Vol. 55; pp. 196 - 208
Main Authors Mukherjee, Madhuchhanda, Basu Ball, Writoban, Das, Pijush K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2014
Subjects
ER
ORO
ROS
PM
Online AccessGet full text

Cover

Loading…
Abstract •Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear transport and stability of SREBP2.•SREBP2 regulates cholesterol biosynthesis, mitochondrial ROS generation and cytokine balance.•Leishmania targets a master transcriptional regulator SREBP2 to manipulate a multitude of host events facilitating its invasion and survival. Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
AbstractList Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3 beta to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
•Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear transport and stability of SREBP2.•SREBP2 regulates cholesterol biosynthesis, mitochondrial ROS generation and cytokine balance.•Leishmania targets a master transcriptional regulator SREBP2 to manipulate a multitude of host events facilitating its invasion and survival. Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Author Basu Ball, Writoban
Mukherjee, Madhuchhanda
Das, Pijush K.
Author_xml – sequence: 1
  givenname: Madhuchhanda
  surname: Mukherjee
  fullname: Mukherjee, Madhuchhanda
– sequence: 2
  givenname: Writoban
  surname: Basu Ball
  fullname: Basu Ball, Writoban
– sequence: 3
  givenname: Pijush K.
  surname: Das
  fullname: Das, Pijush K.
  email: pijushdas@iicb.res.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25218172$$D View this record in MEDLINE/PubMed
BookMark eNqNksluFDEQhi0URBZ4A4R85NIdL71yQCJRIEgjgVjOVtmuZjzqtgfbM4JX4KnxaAIHDiQnl6zvr-2vc3Lig0dCnnNWc8a7y02tXTA414LxpmZDzfj4iJzxoR-qdujbkxLLtq9EL9pTcp7ShjHGWyGfkFPRCj7wXpyRXyt0ab2Ad0Bt8GFfIgomuz1kTPTzp5urj4LmQJdgd3P5owuYGLZr-FZCXHQEj9Ssw4wpYwwzBW_p4nIof95GBzMNP5wFnxOdQqQFAz0faqLPNEzU-QlLveCfkscTzAmf3b0X5Ovbmy_Xt9Xqw7v3129WlWk6nqtBgxyEbCUwZKzTyKdm1GAmqw3DkUlrABqG_QhaNNr2oKd-mApsudSskRfk5THvNobvu9KPWlwqi5zLJGGXlCjrlUJI1t2L8q5tul6wRjwE5U0ZgMkHoGIc21byQwMv7tCdXtCqbXQLxJ_qj4EFaI5AMSWliNNfhDN1uBO1Ucc7UYc7UWxQ5U6K7NU_MuMyHFzIEdx8n_j1UYzFpb3DqJJx6A1aF4uVygb3_wS_AfJF3TQ
CitedBy_id crossref_primary_10_1111_pim_12835
crossref_primary_10_3389_fimmu_2020_01649
crossref_primary_10_3390_pathogens12091128
crossref_primary_10_1007_s12038_017_9690_9
crossref_primary_10_1021_acs_jproteome_3c00340
crossref_primary_10_3389_fimmu_2024_1402024
crossref_primary_10_3892_mmr_2019_10577
crossref_primary_10_1016_j_biopha_2021_111920
crossref_primary_10_3389_fcimb_2022_878711
crossref_primary_10_3892_mmr_2018_9667
crossref_primary_10_3389_fimmu_2024_1415794
crossref_primary_10_3389_fphys_2015_00106
crossref_primary_10_1080_08982104_2017_1376682
crossref_primary_10_1016_j_jff_2021_104789
Cites_doi 10.1016/j.bbrc.2011.11.023
10.1371/journal.pntd.0001763
10.1016/S0022-2275(20)32101-5
10.1016/j.atherosclerosis.2011.06.031
10.1042/BC20090138
10.1126/science.288.5471.1647
10.1083/jcb.77.1.72
10.4049/jimmunol.166.6.4020
10.1128/IAI.70.9.4818-4825.2002
10.4049/jimmunol.1004237
10.1371/journal.pntd.0002276
10.1126/science.290.5497.1721
10.1016/j.micpath.2013.11.001
10.1084/jem.194.8.1081
10.1242/jcs.115.11.2303
10.1073/pnas.0506716102
10.1007/s004180100297
10.1016/S0092-8674(02)00797-3
10.1073/pnas.93.16.8413
10.1186/1471-2164-10-119
10.1111/j.1462-5822.2006.00769.x
10.1091/mbc.E05-11-1094
10.1016/j.biocel.2014.01.004
10.1016/S0092-8674(02)00872-3
10.1172/JCI0215593
10.1172/JCI0216500
10.1038/ncomms3883
10.1016/S0092-8674(00)80213-5
10.1038/nri1129
10.1111/j.1432-1033.1986.tb09417.x
10.1016/j.molbiopara.2003.10.002
10.1016/j.ijpara.2007.04.025
10.1021/bi0005097
10.1371/journal.ppat.1002229
10.1046/j.1462-5822.2000.00045.x
10.4049/jimmunol.180.4.2396
10.1016/S0960-9822(00)00788-0
10.1371/journal.ppat.1003114
10.1111/j.1462-5822.2010.01483.x
10.1016/j.cell.2005.08.018
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
L7M
M7N
7S9
L.6
DOI 10.1016/j.biocel.2014.08.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Algology Mycology and Protozoology Abstracts (Microbiology C)
Technology Research Database

AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1878-5875
EndPage 208
ExternalDocumentID 25218172
10_1016_j_biocel_2014_08_019
S1357272514002787
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29J
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
WH7
ZU3
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
L7M
EFKBS
M7N
7S9
L.6
ID FETCH-LOGICAL-c461t-8ba382353a0e006be1f49bacfdbc0e903dcaa40e79ab24bd7abf78f0e0d13b043
IEDL.DBID .~1
ISSN 1357-2725
1878-5875
IngestDate Thu Jul 10 17:41:49 EDT 2025
Tue Aug 05 09:53:43 EDT 2025
Fri Jul 11 06:58:49 EDT 2025
Fri Jul 11 08:24:20 EDT 2025
Thu Apr 03 07:04:04 EDT 2025
Tue Jul 01 01:52:05 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Fri Feb 23 02:27:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords bHLH-Zip
DAPI
HMGCR
ER
ORO
Cholesterol
Mitochondria
Visceral leishmaniasis
MβCD
UCP2
ROS
SREBP2
SCAP
PM
LDLr
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-8ba382353a0e006be1f49bacfdbc0e903dcaa40e79ab24bd7abf78f0e0d13b043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25218172
PQID 1629955316
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2101322306
proquest_miscellaneous_1654672042
proquest_miscellaneous_1651446103
proquest_miscellaneous_1629955316
pubmed_primary_25218172
crossref_primary_10_1016_j_biocel_2014_08_019
crossref_citationtrail_10_1016_j_biocel_2014_08_019
elsevier_sciencedirect_doi_10_1016_j_biocel_2014_08_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The international journal of biochemistry & cell biology
PublicationTitleAlternate Int J Biochem Cell Biol
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Das, Murray, Barranger (bib0060) 1986; 154
Touret, Paroutis, Terebiznik, Harrison, Trombetta, Pypaert (bib0215) 2005; 123
Das, Datta, Bandyopadhyay, Das (bib0065) 2001; 166
Dobbelaere, Fernandez, Heussler (bib0255) 2000; 2
Ndjamen, Kang, Hatsuzawa, Kima (bib0150) 2010; 12
Watarai, Derre, Kirby, Growney, Dietrich, Isberg (bib0240) 2001; 194
Simons, Ikonen (bib0270) 2000; 290
Suss-Toby, Zimmerberg, Ward (bib0275) 1996; 93
Brown, Goldstein (bib0030) 1997; 89
Radhakrishnan, McConnell (bib0180) 2000; 39
Vieira, Corrêa, Einicker-Lamas, Coutinho-Silva (bib0280) 2010; 102
Aikawa, Miller, Johnson, Rabbege (bib0245) 1978; 77
Sen, Roy, Mukherjee, Mukhopadhyay, Roy (bib0195) 2011; 7
Tanaka, Abe-Dohmae, Iwamoto, Fitzgerald, Yokoyama (bib0210) 2011; 217
Yang, Espenshade, Wright, Yabe, Gong, Aebersold (bib0235) 2002; 110
Rosenberger, Brumell, Finlay (bib0265) 2000; 10
Lange, Ye, Rigney, Steck (bib0125) 1999; 40
Basu Ball, Mukherjee, Srivastav, Das (bib0010) 2014; 4
Courret, Fréhel, Gouhier, Pouchelet, Prina, Roux (bib0050) 2002; 115
Du, Kristiana, Wong, Brown (bib0075) 2006; 17
Koopman, Schaart, Hesselink (bib0120) 2001; 116
Horton, Goldstein, Brown (bib0105) 2002; 109
Lecoeur, Giraud, Prévost, Milon, Lang (bib0130) 2013; 7
Ruhland, Leal, Kima (bib0185) 2007; 9
Gatfield, Pieters (bib0260) 2000
Basu Ball, Kar, Mukherjee, Chande, Mukhopadhyaya, Das (bib0005) 2011; 187
Gagnon, Duclos, Rondeau, Chevet, Cameron, Steele-Mortimer (bib0085) 2002; 110
Watarai, Makino, Michikawa, Yanagisawa, Murakami, Shirahata (bib0290) 2002; 70
Chattopadhyay, Jafurulla (bib0040) 2011; 416
Horie, Nishino, Baba, Kuwabara, Nakao, Nishiga (bib0100) 2013; 4
Osorio, Fortéa, de La Llave, Regnault, Coppée, Milon (bib0155) 2009; 10
Kannan, Audet, Huang, Chen, Wu (bib0110) 2008; 180
Rabhi, Rabhi, Ben-Othman, Rasche, Daskalaki, Trentin (bib0175) 2012; 6
Castoreno, Wang, Stockinger, Jarzylo, Du, Pagnon (bib0250) 2005; 102
Mañes, del Real, Martínez (bib0135) 2003; 3
Dai, Rajaram, Curry, Leander, Schlesinger (bib0055) 2013; 9
Dinesh, Pallerla, Kaur, Kishore Babu, Singh (bib0070) 2014; 66
Pucadyil, Tewary, Madhubala, Chattopadhyay (bib0170) 2004; 133
Maxfield, Wüstner (bib0140) 2002; 110
Fernandes, Cortez, Geraldo Yoneyama, Straus, Yoshida, Mortara (bib0080) 2007; 37
Aikawa (10.1016/j.biocel.2014.08.019_bib0245) 1978; 77
Gatfield (10.1016/j.biocel.2014.08.019_bib0260) 2000
Osorio (10.1016/j.biocel.2014.08.019_bib0155) 2009; 10
Basu Ball (10.1016/j.biocel.2014.08.019_bib0005) 2011; 187
Dinesh (10.1016/j.biocel.2014.08.019_bib0070) 2014; 66
Kannan (10.1016/j.biocel.2014.08.019_bib0110) 2008; 180
Radhakrishnan (10.1016/j.biocel.2014.08.019_bib0180) 2000; 39
Koopman (10.1016/j.biocel.2014.08.019_bib0120) 2001; 116
Dobbelaere (10.1016/j.biocel.2014.08.019_bib0255) 2000; 2
Lange (10.1016/j.biocel.2014.08.019_bib0125) 1999; 40
Tanaka (10.1016/j.biocel.2014.08.019_bib0210) 2011; 217
Ndjamen (10.1016/j.biocel.2014.08.019_bib0150) 2010; 12
Das (10.1016/j.biocel.2014.08.019_bib0060) 1986; 154
Yang (10.1016/j.biocel.2014.08.019_bib0235) 2002; 110
Castoreno (10.1016/j.biocel.2014.08.019_bib0250) 2005; 102
Du (10.1016/j.biocel.2014.08.019_bib0075) 2006; 17
Dai (10.1016/j.biocel.2014.08.019_bib0055) 2013; 9
Rosenberger (10.1016/j.biocel.2014.08.019_bib0265) 2000; 10
Chattopadhyay (10.1016/j.biocel.2014.08.019_bib0040) 2011; 416
Das (10.1016/j.biocel.2014.08.019_bib0065) 2001; 166
Horton (10.1016/j.biocel.2014.08.019_bib0105) 2002; 109
Vieira (10.1016/j.biocel.2014.08.019_bib0280) 2010; 102
Fernandes (10.1016/j.biocel.2014.08.019_bib0080) 2007; 37
Brown (10.1016/j.biocel.2014.08.019_bib0030) 1997; 89
Gagnon (10.1016/j.biocel.2014.08.019_bib0085) 2002; 110
Watarai (10.1016/j.biocel.2014.08.019_bib0240) 2001; 194
Lecoeur (10.1016/j.biocel.2014.08.019_bib0130) 2013; 7
Rabhi (10.1016/j.biocel.2014.08.019_bib0175) 2012; 6
Maxfield (10.1016/j.biocel.2014.08.019_bib0140) 2002; 110
Pucadyil (10.1016/j.biocel.2014.08.019_bib0170) 2004; 133
Simons (10.1016/j.biocel.2014.08.019_bib0270) 2000; 290
Courret (10.1016/j.biocel.2014.08.019_bib0050) 2002; 115
Watarai (10.1016/j.biocel.2014.08.019_bib0290) 2002; 70
Horie (10.1016/j.biocel.2014.08.019_bib0100) 2013; 4
Suss-Toby (10.1016/j.biocel.2014.08.019_bib0275) 1996; 93
Basu Ball (10.1016/j.biocel.2014.08.019_bib0010) 2014; 4
Ruhland (10.1016/j.biocel.2014.08.019_bib0185) 2007; 9
Touret (10.1016/j.biocel.2014.08.019_bib0215) 2005; 123
Sen (10.1016/j.biocel.2014.08.019_bib0195) 2011; 7
Mañes (10.1016/j.biocel.2014.08.019_bib0135) 2003; 3
References_xml – volume: 7
  start-page: e1002229
  year: 2011
  ident: bib0195
  article-title: Restoration of IFNgammaR subunit assembly, IFNgamma signaling and parasite clearance in
  publication-title: PLoS Pathog
– volume: 6
  start-page: e1763
  year: 2012
  ident: bib0175
  article-title: Transcriptomic signature of
  publication-title: PLoS Negl Trop Dis
– volume: 9
  start-page: 84
  year: 2007
  end-page: 96
  ident: bib0185
  article-title: Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis
  publication-title: Cell Microbiol
– volume: 217
  start-page: 407
  year: 2011
  end-page: 414
  ident: bib0210
  article-title: HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7
  publication-title: Atherosclerosis
– volume: 70
  start-page: 4818
  year: 2002
  end-page: 4825
  ident: bib0290
  article-title: Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice
  publication-title: Infect Immun
– volume: 39
  start-page: 8119
  year: 2000
  end-page: 8124
  ident: bib0180
  article-title: Chemical activity of cholesterol in membranes
  publication-title: Biochemistry
– volume: 116
  start-page: 63
  year: 2001
  end-page: 68
  ident: bib0120
  article-title: Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids
  publication-title: Histochem Cell Biol
– volume: 66
  start-page: 14
  year: 2014
  end-page: 23
  ident: bib0070
  article-title: Exploring
  publication-title: Microb Pathog
– volume: 110
  start-page: 119
  year: 2002
  end-page: 131
  ident: bib0085
  article-title: Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages
  publication-title: Cell
– volume: 194
  start-page: 1081
  year: 2001
  end-page: 1096
  ident: bib0240
  article-title: is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus
  publication-title: J Exp Med
– volume: 102
  start-page: 13129
  year: 2005
  end-page: 13134
  ident: bib0250
  article-title: Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins
  publication-title: Proc Natl Acad Sci U S A
– volume: 154
  start-page: 445
  year: 1986
  end-page: 450
  ident: bib0060
  article-title: Studies on the turnover of glucocerebrosidase in cultured rat peritoneal macrophages and normal human fibroblasts
  publication-title: Eur J Biochem
– volume: 40
  start-page: 2264
  year: 1999
  end-page: 2270
  ident: bib0125
  article-title: Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol
  publication-title: J Lipid Res
– volume: 166
  start-page: 4020
  year: 2001
  end-page: 4028
  ident: bib0065
  article-title: Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response
  publication-title: J Immunol
– volume: 10
  start-page: 823
  year: 2000
  end-page: 825
  ident: bib0265
  article-title: Microbial pathogenesis: lipid rafts as pathogen portals
  publication-title: Curr Biol
– volume: 4
  start-page: 66
  year: 2014
  end-page: 76
  ident: bib0010
  article-title: activates uncoupling protein 2 transcription to suppress mitochondrial oxidative burst through differential modulation of SREBP2, Sp1 and USF1 transcription factors
  publication-title: Int J Biochem Cell Biol
– volume: 115
  start-page: 2303
  year: 2002
  end-page: 2316
  ident: bib0050
  article-title: Biogenesis of
  publication-title: J Cell Sci
– volume: 37
  start-page: 1431
  year: 2007
  end-page: 1441
  ident: bib0080
  article-title: Novel strategy in
  publication-title: Int J Parasitol
– volume: 102
  start-page: 391
  year: 2010
  end-page: 407
  ident: bib0280
  article-title: Host-cell lipid rafts: a safe door for micro-organisms?
  publication-title: Biol Cell
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  ident: bib0105
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J Clin Invest
– volume: 89
  start-page: 331
  year: 1997
  end-page: 340
  ident: bib0030
  article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
  publication-title: Cell
– volume: 110
  start-page: 891
  year: 2002
  end-page: 898
  ident: bib0140
  article-title: Intracellular cholesterol transport
  publication-title: J Clin Invest
– volume: 10
  start-page: 119
  year: 2009
  ident: bib0155
  article-title: Transcriptional signatures of BALB/c mouse macrophages housing multiplying
  publication-title: BMC Genomics
– volume: 9
  start-page: e1003114
  year: 2013
  ident: bib0055
  article-title: Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for
  publication-title: PLoS Pathog
– volume: 17
  start-page: 2735
  year: 2006
  end-page: 2745
  ident: bib0075
  article-title: Involvement of Akt in ER-to Golgi transport of SCAP/SREBP: a link between key cell proliferative pathway and membrane synthesis
  publication-title: Mol Biol Cell
– volume: 290
  start-page: 1721
  year: 2000
  end-page: 1726
  ident: bib0270
  article-title: How cells handle cholesterol
  publication-title: Science
– volume: 77
  start-page: 72
  year: 1978
  end-page: 82
  ident: bib0245
  article-title: Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite
  publication-title: J Cell Biol
– volume: 187
  start-page: 1322
  year: 2011
  end-page: 1332
  ident: bib0005
  article-title: Uncoupling protein 2 negatively regulates mitochondrial reactive oxygen species generation and induces phosphatase-mediated anti-inflammatory response in experimental visceral leishmaniasis
  publication-title: J Immunol
– volume: 180
  start-page: 2396
  year: 2008
  end-page: 2408
  ident: bib0110
  article-title: Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during
  publication-title: J Immunol
– volume: 4
  start-page: 2883
  year: 2013
  ident: bib0100
  article-title: MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice
  publication-title: Nat Commun
– volume: 110
  start-page: 489
  year: 2002
  end-page: 500
  ident: bib0235
  article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
  publication-title: Cell
– volume: 133
  start-page: 145
  year: 2004
  end-page: 152
  ident: bib0170
  article-title: Cholesterol is required for
  publication-title: Mol Biochem Parasitol
– volume: 12
  start-page: 1480
  year: 2010
  end-page: 1494
  ident: bib0150
  article-title: parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; Parasitophorous vacuoles are hybrid compartments
  publication-title: Cell Microbiol
– volume: 93
  start-page: 8413
  year: 1996
  end-page: 8418
  ident: bib0275
  article-title: invasion the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 91
  year: 2000
  end-page: 99
  ident: bib0255
  article-title: : taking control of host cell proliferation and survival mechanisms
  publication-title: Cell Microbiol
– volume: 123
  start-page: 157
  year: 2005
  end-page: 170
  ident: bib0215
  article-title: Quantitative and dynamic assessment of the contribution of the ER to phagosome formation
  publication-title: Cell
– volume: 416
  start-page: 7
  year: 2011
  end-page: 12
  ident: bib0040
  article-title: Novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis
  publication-title: Biochem Biophys Res Commun
– volume: 3
  start-page: 557
  year: 2003
  end-page: 568
  ident: bib0135
  article-title: Pathogens: raft hijackers
  publication-title: Nat Rev Immunol
– start-page: 1647
  year: 2000
  end-page: 1650
  ident: bib0260
  article-title: Essential role for cholesterol in entry of mycobacteria into macrophages
  publication-title: Science 288
– volume: 7
  start-page: e2276
  year: 2013
  ident: bib0130
  article-title: Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live
  publication-title: PLoS Negl Trop Dis
– volume: 416
  start-page: 7
  year: 2011
  ident: 10.1016/j.biocel.2014.08.019_bib0040
  article-title: Novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.11.023
– volume: 6
  start-page: e1763
  issue: 8
  year: 2012
  ident: 10.1016/j.biocel.2014.08.019_bib0175
  article-title: Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001763
– volume: 40
  start-page: 2264
  issue: 12
  year: 1999
  ident: 10.1016/j.biocel.2014.08.019_bib0125
  article-title: Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)32101-5
– volume: 217
  start-page: 407
  year: 2011
  ident: 10.1016/j.biocel.2014.08.019_bib0210
  article-title: HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2011.06.031
– volume: 102
  start-page: 391
  year: 2010
  ident: 10.1016/j.biocel.2014.08.019_bib0280
  article-title: Host-cell lipid rafts: a safe door for micro-organisms?
  publication-title: Biol Cell
  doi: 10.1042/BC20090138
– start-page: 1647
  year: 2000
  ident: 10.1016/j.biocel.2014.08.019_bib0260
  article-title: Essential role for cholesterol in entry of mycobacteria into macrophages
  publication-title: Science 288
  doi: 10.1126/science.288.5471.1647
– volume: 77
  start-page: 72
  year: 1978
  ident: 10.1016/j.biocel.2014.08.019_bib0245
  article-title: Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite
  publication-title: J Cell Biol
  doi: 10.1083/jcb.77.1.72
– volume: 166
  start-page: 4020
  year: 2001
  ident: 10.1016/j.biocel.2014.08.019_bib0065
  article-title: Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.6.4020
– volume: 70
  start-page: 4818
  year: 2002
  ident: 10.1016/j.biocel.2014.08.019_bib0290
  article-title: Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice
  publication-title: Infect Immun
  doi: 10.1128/IAI.70.9.4818-4825.2002
– volume: 187
  start-page: 1322
  year: 2011
  ident: 10.1016/j.biocel.2014.08.019_bib0005
  article-title: Uncoupling protein 2 negatively regulates mitochondrial reactive oxygen species generation and induces phosphatase-mediated anti-inflammatory response in experimental visceral leishmaniasis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1004237
– volume: 7
  start-page: e2276
  issue: 6
  year: 2013
  ident: 10.1016/j.biocel.2014.08.019_bib0130
  article-title: Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0002276
– volume: 290
  start-page: 1721
  year: 2000
  ident: 10.1016/j.biocel.2014.08.019_bib0270
  article-title: How cells handle cholesterol
  publication-title: Science
  doi: 10.1126/science.290.5497.1721
– volume: 66
  start-page: 14
  year: 2014
  ident: 10.1016/j.biocel.2014.08.019_bib0070
  article-title: Exploring Leishmania donovani 3-hydroxy-3-ethylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies
  publication-title: Microb Pathog
  doi: 10.1016/j.micpath.2013.11.001
– volume: 194
  start-page: 1081
  year: 2001
  ident: 10.1016/j.biocel.2014.08.019_bib0240
  article-title: Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus
  publication-title: J Exp Med
  doi: 10.1084/jem.194.8.1081
– volume: 115
  start-page: 2303
  issue: Pt 11
  year: 2002
  ident: 10.1016/j.biocel.2014.08.019_bib0050
  article-title: Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites
  publication-title: J Cell Sci
  doi: 10.1242/jcs.115.11.2303
– volume: 102
  start-page: 13129
  issue: 37
  year: 2005
  ident: 10.1016/j.biocel.2014.08.019_bib0250
  article-title: Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506716102
– volume: 116
  start-page: 63
  year: 2001
  ident: 10.1016/j.biocel.2014.08.019_bib0120
  article-title: Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids
  publication-title: Histochem Cell Biol
  doi: 10.1007/s004180100297
– volume: 110
  start-page: 119
  year: 2002
  ident: 10.1016/j.biocel.2014.08.019_bib0085
  article-title: Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00797-3
– volume: 93
  start-page: 8413
  year: 1996
  ident: 10.1016/j.biocel.2014.08.019_bib0275
  article-title: Toxoplasma invasion the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.16.8413
– volume: 10
  start-page: 119
  year: 2009
  ident: 10.1016/j.biocel.2014.08.019_bib0155
  article-title: Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-119
– volume: 9
  start-page: 84
  issue: 1
  year: 2007
  ident: 10.1016/j.biocel.2014.08.019_bib0185
  article-title: Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2006.00769.x
– volume: 17
  start-page: 2735
  year: 2006
  ident: 10.1016/j.biocel.2014.08.019_bib0075
  article-title: Involvement of Akt in ER-to Golgi transport of SCAP/SREBP: a link between key cell proliferative pathway and membrane synthesis
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E05-11-1094
– volume: 4
  start-page: 66
  year: 2014
  ident: 10.1016/j.biocel.2014.08.019_bib0010
  article-title: Leishmania donovani activates uncoupling protein 2 transcription to suppress mitochondrial oxidative burst through differential modulation of SREBP2, Sp1 and USF1 transcription factors
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2014.01.004
– volume: 110
  start-page: 489
  issue: 4
  year: 2002
  ident: 10.1016/j.biocel.2014.08.019_bib0235
  article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00872-3
– volume: 109
  start-page: 1125
  year: 2002
  ident: 10.1016/j.biocel.2014.08.019_bib0105
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J Clin Invest
  doi: 10.1172/JCI0215593
– volume: 110
  start-page: 891
  year: 2002
  ident: 10.1016/j.biocel.2014.08.019_bib0140
  article-title: Intracellular cholesterol transport
  publication-title: J Clin Invest
  doi: 10.1172/JCI0216500
– volume: 4
  start-page: 2883
  year: 2013
  ident: 10.1016/j.biocel.2014.08.019_bib0100
  article-title: MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice
  publication-title: Nat Commun
  doi: 10.1038/ncomms3883
– volume: 89
  start-page: 331
  year: 1997
  ident: 10.1016/j.biocel.2014.08.019_bib0030
  article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80213-5
– volume: 3
  start-page: 557
  year: 2003
  ident: 10.1016/j.biocel.2014.08.019_bib0135
  article-title: Pathogens: raft hijackers
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1129
– volume: 154
  start-page: 445
  year: 1986
  ident: 10.1016/j.biocel.2014.08.019_bib0060
  article-title: Studies on the turnover of glucocerebrosidase in cultured rat peritoneal macrophages and normal human fibroblasts
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1986.tb09417.x
– volume: 133
  start-page: 145
  year: 2004
  ident: 10.1016/j.biocel.2014.08.019_bib0170
  article-title: Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis
  publication-title: Mol Biochem Parasitol
  doi: 10.1016/j.molbiopara.2003.10.002
– volume: 37
  start-page: 1431
  year: 2007
  ident: 10.1016/j.biocel.2014.08.019_bib0080
  article-title: Novel strategy in Trypanosoma cruzi cell invasion: implication of cholesterol and host cell microdomains
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2007.04.025
– volume: 39
  start-page: 8119
  issue: 28
  year: 2000
  ident: 10.1016/j.biocel.2014.08.019_bib0180
  article-title: Chemical activity of cholesterol in membranes
  publication-title: Biochemistry
  doi: 10.1021/bi0005097
– volume: 7
  start-page: e1002229
  year: 2011
  ident: 10.1016/j.biocel.2014.08.019_bib0195
  article-title: Restoration of IFNgammaR subunit assembly, IFNgamma signaling and parasite clearance in Leishmania donovani infected macrophages: role of membrane cholesterol
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002229
– volume: 2
  start-page: 91
  year: 2000
  ident: 10.1016/j.biocel.2014.08.019_bib0255
  article-title: Theileria parva: taking control of host cell proliferation and survival mechanisms
  publication-title: Cell Microbiol
  doi: 10.1046/j.1462-5822.2000.00045.x
– volume: 180
  start-page: 2396
  year: 2008
  ident: 10.1016/j.biocel.2014.08.019_bib0110
  article-title: Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.4.2396
– volume: 10
  start-page: 823
  year: 2000
  ident: 10.1016/j.biocel.2014.08.019_bib0265
  article-title: Microbial pathogenesis: lipid rafts as pathogen portals
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00788-0
– volume: 9
  start-page: e1003114
  issue: 1
  year: 2013
  ident: 10.1016/j.biocel.2014.08.019_bib0055
  article-title: Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Fransicella tularensis
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003114
– volume: 12
  start-page: 1480
  year: 2010
  ident: 10.1016/j.biocel.2014.08.019_bib0150
  article-title: Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; Parasitophorous vacuoles are hybrid compartments
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2010.01483.x
– volume: 123
  start-page: 157
  year: 2005
  ident: 10.1016/j.biocel.2014.08.019_bib0215
  article-title: Quantitative and dynamic assessment of the contribution of the ER to phagosome formation
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.018
SSID ssj0001523
Score 2.21259
Snippet •Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear...
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms acidification
Activation
Animals
Blotting, Western
Cell Membrane - immunology
Cell Membrane - metabolism
Cells, Cultured
Cholesterol
Cholesterol - immunology
Cholesterol - metabolism
Circuits
Female
HMGCR
Host-Parasite Interactions - immunology
Humans
Hydroxymethylglutaryl CoA Reductases - genetics
Hydroxymethylglutaryl CoA Reductases - immunology
Hydroxymethylglutaryl CoA Reductases - metabolism
Ion Channels - genetics
Ion Channels - metabolism
Leishmania donovani
Leishmania donovani - immunology
Leishmania donovani - physiology
Leishmaniasis, Visceral - immunology
Leishmaniasis, Visceral - metabolism
Leishmaniasis, Visceral - parasitology
Macrophages
Macrophages - immunology
Macrophages - metabolism
Macrophages - parasitology
membrane fluidity
Membranes
Mice, Inbred BALB C
Mitochondria
Mitochondria - immunology
Mitochondria - metabolism
Mitochondria - parasitology
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
neutralization
Oxidants - immunology
Oxidants - metabolism
Parasites
Pathogens
Phosphatidylinositol 3-Kinases - immunology
Phosphatidylinositol 3-Kinases - metabolism
plasma membrane
Proto-Oncogene Proteins c-akt - immunology
Proto-Oncogene Proteins c-akt - metabolism
reactive oxygen species
Reverse Transcriptase Polymerase Chain Reaction
RNA Interference - immunology
Signal Transduction - immunology
src-Family Kinases - immunology
src-Family Kinases - metabolism
SREBP2
Sterol Regulatory Element Binding Protein 2 - genetics
Sterol Regulatory Element Binding Protein 2 - immunology
Sterol Regulatory Element Binding Protein 2 - metabolism
Survival
tau-protein kinase
transcription factors
Uncoupling Protein 2
Visceral leishmaniasis
Title Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection
URI https://dx.doi.org/10.1016/j.biocel.2014.08.019
https://www.ncbi.nlm.nih.gov/pubmed/25218172
https://www.proquest.com/docview/1629955316
https://www.proquest.com/docview/1651446103
https://www.proquest.com/docview/1654672042
https://www.proquest.com/docview/2101322306
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbSX0iZ9bB9hCqU3dWVbttfHzZKwfYXSNJCbkCyJOMR2aDYhvfQH9Fd3RrZSCk0CvdliBLZn_M1TM4y9Sa00lROWS1cKLvPa81lhNJeFFLUwKCOWQgOf94rlgfxwmB-usUU8C0NllSP2D5ge0HpcmY5fc3raNNP9JMspi4gaP6TP6ES5lCVJ-buff8o8UD-FInsk5kQdj8-FGi_ToJKgBEQiQyNP6rfzb_V0nfkZ1NDuQ_ZgtB9hPjziI7bmug22Oe_Qd25_wFsIFZ0hVL7B7m7Hq3uLONdtk_365JqzI2p7ocH2NBO1a4CON1yQ2Qn7X3e2v6Sw6qHtLc32ctBqmvN1hMgDrWvRve4cEGqGJgv9CejOQovIgGudJYGG_rKxVGADaBIDkukQ66JAJPQeYgFY95gd7O58Wyz5OJGB17JIVnxmNOUN80wLh7-rcYmXldG1t6YWrhKZrbWWwpWVNqk0ttTGlzOPxDbJjJDZE7be9Z17xqAqZqmtfZbl1qJJZgyhidaV9L52hfYTlkVGqHpsV05TM05UrEs7VgP7FLFP0TDNpJowfrXrdGjXcQt9GXms_hI7hRrllp2vo0goZCClWfDr9-dnKilQxeeIbcVNNDk54onIbqRBLZYiql5Pgw47hRPQ75uwp4NcXr13mpP5VqbP__sdX7D7dDfULr5k66vv5-4V2mArsxV-si12Z_7-43LvN7FDNDY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEN8gxsCLQVA5RR0T49t623bbXh_hAjn1IEYg4W2z290NNbQlcBB98QP4qZ3ZthgTgcS3pp0m7c7s_P3tDGPvYitN4YTl0uWCy7T0fJIZzWUmRSkMyoil1MD-QTY7lp9O0pMlNh3OwhCsstf9nU4P2rq_M-5Xc3xeVePDKEmpiogWP5TP8gfsocTtS2MMPvz8g_NAAxVQ9kjNiXw4PxdAXqZCK0EViEiGTp7UcOff9uk2_zPYob019rh3IGG7-8YnbMk162xju8Hguf4B7yFAOkOufJ092hmuVqbDYLcN9mvuqstT6nuhwbY0FLWpgM43XJPfCYdfd3e-xLBooW4tDfdyUGsa9HWKqgdqV2N83TggtRm6LLRnoBsLNaoGvNdYkmhov1eWEDaAPjEgmQ7JLspEQuthQIA1T9nx3u7RdMb7kQy8lFm04BOjqXCYJlo43K_GRV4WRpfemlK4QiS21FoKlxfaxNLYXBufTzwS2ygxQibP2HLTNm6TQZFNYlv6JEmtRZ_MGFInWhfS-9Jl2o9YMjBClX2_chqbcaYGYNo31bFPEfsUTdOMihHjN2-dd_067qHPBx6rv-ROoUm55823g0goZCDVWXD126tLFWVo41NUbtldNClF4pFI7qRBMxajWr2dBiN2yidg4Ddizzu5vPnvOCX_LY9f_Pc_vmErs6P9uZp_PPj8kq3Skw7IuMWWFxdX7hU6ZAvzOmy432lYNcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leishmania+donovani+activates+SREBP2+to+modulate+macrophage+membrane+cholesterol+and+mitochondrial+oxidants+for+establishment+of+infection&rft.jtitle=The+international+journal+of+biochemistry+%26+cell+biology&rft.au=Mukherjee%2C+Madhuchhanda&rft.au=Ball%2C+Writoban+Basu&rft.au=Das%2C+Pijush+K&rft.date=2014-10-01&rft.issn=1357-2725&rft.volume=55&rft.spage=196&rft.epage=208&rft_id=info:doi/10.1016%2Fj.biocel.2014.08.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1357-2725&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1357-2725&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1357-2725&client=summon