Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection
•Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear transport and stability of SREBP2.•SREBP2 regulates cholesterol biosynthesis, mitochondrial ROS generation and cytokine balance.•Leishmania target...
Saved in:
Published in | The international journal of biochemistry & cell biology Vol. 55; pp. 196 - 208 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear transport and stability of SREBP2.•SREBP2 regulates cholesterol biosynthesis, mitochondrial ROS generation and cytokine balance.•Leishmania targets a master transcriptional regulator SREBP2 to manipulate a multitude of host events facilitating its invasion and survival.
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host. |
---|---|
AbstractList | Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3 beta to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host. •Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear transport and stability of SREBP2.•SREBP2 regulates cholesterol biosynthesis, mitochondrial ROS generation and cytokine balance.•Leishmania targets a master transcriptional regulator SREBP2 to manipulate a multitude of host events facilitating its invasion and survival. Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host. Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent trasnscriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host. Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host. Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host. |
Author | Basu Ball, Writoban Mukherjee, Madhuchhanda Das, Pijush K. |
Author_xml | – sequence: 1 givenname: Madhuchhanda surname: Mukherjee fullname: Mukherjee, Madhuchhanda – sequence: 2 givenname: Writoban surname: Basu Ball fullname: Basu Ball, Writoban – sequence: 3 givenname: Pijush K. surname: Das fullname: Das, Pijush K. email: pijushdas@iicb.res.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25218172$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksluFDEQhi0URBZ4A4R85NIdL71yQCJRIEgjgVjOVtmuZjzqtgfbM4JX4KnxaAIHDiQnl6zvr-2vc3Lig0dCnnNWc8a7y02tXTA414LxpmZDzfj4iJzxoR-qdujbkxLLtq9EL9pTcp7ShjHGWyGfkFPRCj7wXpyRXyt0ab2Ad0Bt8GFfIgomuz1kTPTzp5urj4LmQJdgd3P5owuYGLZr-FZCXHQEj9Ssw4wpYwwzBW_p4nIof95GBzMNP5wFnxOdQqQFAz0faqLPNEzU-QlLveCfkscTzAmf3b0X5Ovbmy_Xt9Xqw7v3129WlWk6nqtBgxyEbCUwZKzTyKdm1GAmqw3DkUlrABqG_QhaNNr2oKd-mApsudSskRfk5THvNobvu9KPWlwqi5zLJGGXlCjrlUJI1t2L8q5tul6wRjwE5U0ZgMkHoGIc21byQwMv7tCdXtCqbXQLxJ_qj4EFaI5AMSWliNNfhDN1uBO1Ucc7UYc7UWxQ5U6K7NU_MuMyHFzIEdx8n_j1UYzFpb3DqJJx6A1aF4uVygb3_wS_AfJF3TQ |
CitedBy_id | crossref_primary_10_1111_pim_12835 crossref_primary_10_3389_fimmu_2020_01649 crossref_primary_10_3390_pathogens12091128 crossref_primary_10_1007_s12038_017_9690_9 crossref_primary_10_1021_acs_jproteome_3c00340 crossref_primary_10_3389_fimmu_2024_1402024 crossref_primary_10_3892_mmr_2019_10577 crossref_primary_10_1016_j_biopha_2021_111920 crossref_primary_10_3389_fcimb_2022_878711 crossref_primary_10_3892_mmr_2018_9667 crossref_primary_10_3389_fimmu_2024_1415794 crossref_primary_10_3389_fphys_2015_00106 crossref_primary_10_1080_08982104_2017_1376682 crossref_primary_10_1016_j_jff_2021_104789 |
Cites_doi | 10.1016/j.bbrc.2011.11.023 10.1371/journal.pntd.0001763 10.1016/S0022-2275(20)32101-5 10.1016/j.atherosclerosis.2011.06.031 10.1042/BC20090138 10.1126/science.288.5471.1647 10.1083/jcb.77.1.72 10.4049/jimmunol.166.6.4020 10.1128/IAI.70.9.4818-4825.2002 10.4049/jimmunol.1004237 10.1371/journal.pntd.0002276 10.1126/science.290.5497.1721 10.1016/j.micpath.2013.11.001 10.1084/jem.194.8.1081 10.1242/jcs.115.11.2303 10.1073/pnas.0506716102 10.1007/s004180100297 10.1016/S0092-8674(02)00797-3 10.1073/pnas.93.16.8413 10.1186/1471-2164-10-119 10.1111/j.1462-5822.2006.00769.x 10.1091/mbc.E05-11-1094 10.1016/j.biocel.2014.01.004 10.1016/S0092-8674(02)00872-3 10.1172/JCI0215593 10.1172/JCI0216500 10.1038/ncomms3883 10.1016/S0092-8674(00)80213-5 10.1038/nri1129 10.1111/j.1432-1033.1986.tb09417.x 10.1016/j.molbiopara.2003.10.002 10.1016/j.ijpara.2007.04.025 10.1021/bi0005097 10.1371/journal.ppat.1002229 10.1046/j.1462-5822.2000.00045.x 10.4049/jimmunol.180.4.2396 10.1016/S0960-9822(00)00788-0 10.1371/journal.ppat.1003114 10.1111/j.1462-5822.2010.01483.x 10.1016/j.cell.2005.08.018 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD L7M M7N 7S9 L.6 |
DOI | 10.1016/j.biocel.2014.08.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Algology Mycology and Protozoology Abstracts (Microbiology C) Technology Research Database AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1878-5875 |
EndPage | 208 |
ExternalDocumentID | 25218172 10_1016_j_biocel_2014_08_019 S1357272514002787 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29J 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SSU SSZ T5K WH7 ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD L7M EFKBS M7N 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-8ba382353a0e006be1f49bacfdbc0e903dcaa40e79ab24bd7abf78f0e0d13b043 |
IEDL.DBID | .~1 |
ISSN | 1357-2725 1878-5875 |
IngestDate | Thu Jul 10 17:41:49 EDT 2025 Tue Aug 05 09:53:43 EDT 2025 Fri Jul 11 06:58:49 EDT 2025 Fri Jul 11 08:24:20 EDT 2025 Thu Apr 03 07:04:04 EDT 2025 Tue Jul 01 01:52:05 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Fri Feb 23 02:27:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | bHLH-Zip DAPI HMGCR ER ORO Cholesterol Mitochondria Visceral leishmaniasis MβCD UCP2 ROS SREBP2 SCAP PM LDLr |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-8ba382353a0e006be1f49bacfdbc0e903dcaa40e79ab24bd7abf78f0e0d13b043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25218172 |
PQID | 1629955316 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2101322306 proquest_miscellaneous_1654672042 proquest_miscellaneous_1651446103 proquest_miscellaneous_1629955316 pubmed_primary_25218172 crossref_primary_10_1016_j_biocel_2014_08_019 crossref_citationtrail_10_1016_j_biocel_2014_08_019 elsevier_sciencedirect_doi_10_1016_j_biocel_2014_08_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The international journal of biochemistry & cell biology |
PublicationTitleAlternate | Int J Biochem Cell Biol |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Das, Murray, Barranger (bib0060) 1986; 154 Touret, Paroutis, Terebiznik, Harrison, Trombetta, Pypaert (bib0215) 2005; 123 Das, Datta, Bandyopadhyay, Das (bib0065) 2001; 166 Dobbelaere, Fernandez, Heussler (bib0255) 2000; 2 Ndjamen, Kang, Hatsuzawa, Kima (bib0150) 2010; 12 Watarai, Derre, Kirby, Growney, Dietrich, Isberg (bib0240) 2001; 194 Simons, Ikonen (bib0270) 2000; 290 Suss-Toby, Zimmerberg, Ward (bib0275) 1996; 93 Brown, Goldstein (bib0030) 1997; 89 Radhakrishnan, McConnell (bib0180) 2000; 39 Vieira, Corrêa, Einicker-Lamas, Coutinho-Silva (bib0280) 2010; 102 Aikawa, Miller, Johnson, Rabbege (bib0245) 1978; 77 Sen, Roy, Mukherjee, Mukhopadhyay, Roy (bib0195) 2011; 7 Tanaka, Abe-Dohmae, Iwamoto, Fitzgerald, Yokoyama (bib0210) 2011; 217 Yang, Espenshade, Wright, Yabe, Gong, Aebersold (bib0235) 2002; 110 Rosenberger, Brumell, Finlay (bib0265) 2000; 10 Lange, Ye, Rigney, Steck (bib0125) 1999; 40 Basu Ball, Mukherjee, Srivastav, Das (bib0010) 2014; 4 Courret, Fréhel, Gouhier, Pouchelet, Prina, Roux (bib0050) 2002; 115 Du, Kristiana, Wong, Brown (bib0075) 2006; 17 Koopman, Schaart, Hesselink (bib0120) 2001; 116 Horton, Goldstein, Brown (bib0105) 2002; 109 Lecoeur, Giraud, Prévost, Milon, Lang (bib0130) 2013; 7 Ruhland, Leal, Kima (bib0185) 2007; 9 Gatfield, Pieters (bib0260) 2000 Basu Ball, Kar, Mukherjee, Chande, Mukhopadhyaya, Das (bib0005) 2011; 187 Gagnon, Duclos, Rondeau, Chevet, Cameron, Steele-Mortimer (bib0085) 2002; 110 Watarai, Makino, Michikawa, Yanagisawa, Murakami, Shirahata (bib0290) 2002; 70 Chattopadhyay, Jafurulla (bib0040) 2011; 416 Horie, Nishino, Baba, Kuwabara, Nakao, Nishiga (bib0100) 2013; 4 Osorio, Fortéa, de La Llave, Regnault, Coppée, Milon (bib0155) 2009; 10 Kannan, Audet, Huang, Chen, Wu (bib0110) 2008; 180 Rabhi, Rabhi, Ben-Othman, Rasche, Daskalaki, Trentin (bib0175) 2012; 6 Castoreno, Wang, Stockinger, Jarzylo, Du, Pagnon (bib0250) 2005; 102 Mañes, del Real, Martínez (bib0135) 2003; 3 Dai, Rajaram, Curry, Leander, Schlesinger (bib0055) 2013; 9 Dinesh, Pallerla, Kaur, Kishore Babu, Singh (bib0070) 2014; 66 Pucadyil, Tewary, Madhubala, Chattopadhyay (bib0170) 2004; 133 Maxfield, Wüstner (bib0140) 2002; 110 Fernandes, Cortez, Geraldo Yoneyama, Straus, Yoshida, Mortara (bib0080) 2007; 37 Aikawa (10.1016/j.biocel.2014.08.019_bib0245) 1978; 77 Gatfield (10.1016/j.biocel.2014.08.019_bib0260) 2000 Osorio (10.1016/j.biocel.2014.08.019_bib0155) 2009; 10 Basu Ball (10.1016/j.biocel.2014.08.019_bib0005) 2011; 187 Dinesh (10.1016/j.biocel.2014.08.019_bib0070) 2014; 66 Kannan (10.1016/j.biocel.2014.08.019_bib0110) 2008; 180 Radhakrishnan (10.1016/j.biocel.2014.08.019_bib0180) 2000; 39 Koopman (10.1016/j.biocel.2014.08.019_bib0120) 2001; 116 Dobbelaere (10.1016/j.biocel.2014.08.019_bib0255) 2000; 2 Lange (10.1016/j.biocel.2014.08.019_bib0125) 1999; 40 Tanaka (10.1016/j.biocel.2014.08.019_bib0210) 2011; 217 Ndjamen (10.1016/j.biocel.2014.08.019_bib0150) 2010; 12 Das (10.1016/j.biocel.2014.08.019_bib0060) 1986; 154 Yang (10.1016/j.biocel.2014.08.019_bib0235) 2002; 110 Castoreno (10.1016/j.biocel.2014.08.019_bib0250) 2005; 102 Du (10.1016/j.biocel.2014.08.019_bib0075) 2006; 17 Dai (10.1016/j.biocel.2014.08.019_bib0055) 2013; 9 Rosenberger (10.1016/j.biocel.2014.08.019_bib0265) 2000; 10 Chattopadhyay (10.1016/j.biocel.2014.08.019_bib0040) 2011; 416 Das (10.1016/j.biocel.2014.08.019_bib0065) 2001; 166 Horton (10.1016/j.biocel.2014.08.019_bib0105) 2002; 109 Vieira (10.1016/j.biocel.2014.08.019_bib0280) 2010; 102 Fernandes (10.1016/j.biocel.2014.08.019_bib0080) 2007; 37 Brown (10.1016/j.biocel.2014.08.019_bib0030) 1997; 89 Gagnon (10.1016/j.biocel.2014.08.019_bib0085) 2002; 110 Watarai (10.1016/j.biocel.2014.08.019_bib0240) 2001; 194 Lecoeur (10.1016/j.biocel.2014.08.019_bib0130) 2013; 7 Rabhi (10.1016/j.biocel.2014.08.019_bib0175) 2012; 6 Maxfield (10.1016/j.biocel.2014.08.019_bib0140) 2002; 110 Pucadyil (10.1016/j.biocel.2014.08.019_bib0170) 2004; 133 Simons (10.1016/j.biocel.2014.08.019_bib0270) 2000; 290 Courret (10.1016/j.biocel.2014.08.019_bib0050) 2002; 115 Watarai (10.1016/j.biocel.2014.08.019_bib0290) 2002; 70 Horie (10.1016/j.biocel.2014.08.019_bib0100) 2013; 4 Suss-Toby (10.1016/j.biocel.2014.08.019_bib0275) 1996; 93 Basu Ball (10.1016/j.biocel.2014.08.019_bib0010) 2014; 4 Ruhland (10.1016/j.biocel.2014.08.019_bib0185) 2007; 9 Touret (10.1016/j.biocel.2014.08.019_bib0215) 2005; 123 Sen (10.1016/j.biocel.2014.08.019_bib0195) 2011; 7 Mañes (10.1016/j.biocel.2014.08.019_bib0135) 2003; 3 |
References_xml | – volume: 7 start-page: e1002229 year: 2011 ident: bib0195 article-title: Restoration of IFNgammaR subunit assembly, IFNgamma signaling and parasite clearance in publication-title: PLoS Pathog – volume: 6 start-page: e1763 year: 2012 ident: bib0175 article-title: Transcriptomic signature of publication-title: PLoS Negl Trop Dis – volume: 9 start-page: 84 year: 2007 end-page: 96 ident: bib0185 article-title: Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis publication-title: Cell Microbiol – volume: 217 start-page: 407 year: 2011 end-page: 414 ident: bib0210 article-title: HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7 publication-title: Atherosclerosis – volume: 70 start-page: 4818 year: 2002 end-page: 4825 ident: bib0290 article-title: Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice publication-title: Infect Immun – volume: 39 start-page: 8119 year: 2000 end-page: 8124 ident: bib0180 article-title: Chemical activity of cholesterol in membranes publication-title: Biochemistry – volume: 116 start-page: 63 year: 2001 end-page: 68 ident: bib0120 article-title: Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids publication-title: Histochem Cell Biol – volume: 66 start-page: 14 year: 2014 end-page: 23 ident: bib0070 article-title: Exploring publication-title: Microb Pathog – volume: 110 start-page: 119 year: 2002 end-page: 131 ident: bib0085 article-title: Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages publication-title: Cell – volume: 194 start-page: 1081 year: 2001 end-page: 1096 ident: bib0240 article-title: is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus publication-title: J Exp Med – volume: 102 start-page: 13129 year: 2005 end-page: 13134 ident: bib0250 article-title: Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins publication-title: Proc Natl Acad Sci U S A – volume: 154 start-page: 445 year: 1986 end-page: 450 ident: bib0060 article-title: Studies on the turnover of glucocerebrosidase in cultured rat peritoneal macrophages and normal human fibroblasts publication-title: Eur J Biochem – volume: 40 start-page: 2264 year: 1999 end-page: 2270 ident: bib0125 article-title: Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol publication-title: J Lipid Res – volume: 166 start-page: 4020 year: 2001 end-page: 4028 ident: bib0065 article-title: Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response publication-title: J Immunol – volume: 10 start-page: 823 year: 2000 end-page: 825 ident: bib0265 article-title: Microbial pathogenesis: lipid rafts as pathogen portals publication-title: Curr Biol – volume: 4 start-page: 66 year: 2014 end-page: 76 ident: bib0010 article-title: activates uncoupling protein 2 transcription to suppress mitochondrial oxidative burst through differential modulation of SREBP2, Sp1 and USF1 transcription factors publication-title: Int J Biochem Cell Biol – volume: 115 start-page: 2303 year: 2002 end-page: 2316 ident: bib0050 article-title: Biogenesis of publication-title: J Cell Sci – volume: 37 start-page: 1431 year: 2007 end-page: 1441 ident: bib0080 article-title: Novel strategy in publication-title: Int J Parasitol – volume: 102 start-page: 391 year: 2010 end-page: 407 ident: bib0280 article-title: Host-cell lipid rafts: a safe door for micro-organisms? publication-title: Biol Cell – volume: 109 start-page: 1125 year: 2002 end-page: 1131 ident: bib0105 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J Clin Invest – volume: 89 start-page: 331 year: 1997 end-page: 340 ident: bib0030 article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor publication-title: Cell – volume: 110 start-page: 891 year: 2002 end-page: 898 ident: bib0140 article-title: Intracellular cholesterol transport publication-title: J Clin Invest – volume: 10 start-page: 119 year: 2009 ident: bib0155 article-title: Transcriptional signatures of BALB/c mouse macrophages housing multiplying publication-title: BMC Genomics – volume: 9 start-page: e1003114 year: 2013 ident: bib0055 article-title: Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for publication-title: PLoS Pathog – volume: 17 start-page: 2735 year: 2006 end-page: 2745 ident: bib0075 article-title: Involvement of Akt in ER-to Golgi transport of SCAP/SREBP: a link between key cell proliferative pathway and membrane synthesis publication-title: Mol Biol Cell – volume: 290 start-page: 1721 year: 2000 end-page: 1726 ident: bib0270 article-title: How cells handle cholesterol publication-title: Science – volume: 77 start-page: 72 year: 1978 end-page: 82 ident: bib0245 article-title: Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite publication-title: J Cell Biol – volume: 187 start-page: 1322 year: 2011 end-page: 1332 ident: bib0005 article-title: Uncoupling protein 2 negatively regulates mitochondrial reactive oxygen species generation and induces phosphatase-mediated anti-inflammatory response in experimental visceral leishmaniasis publication-title: J Immunol – volume: 180 start-page: 2396 year: 2008 end-page: 2408 ident: bib0110 article-title: Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during publication-title: J Immunol – volume: 4 start-page: 2883 year: 2013 ident: bib0100 article-title: MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice publication-title: Nat Commun – volume: 110 start-page: 489 year: 2002 end-page: 500 ident: bib0235 article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER publication-title: Cell – volume: 133 start-page: 145 year: 2004 end-page: 152 ident: bib0170 article-title: Cholesterol is required for publication-title: Mol Biochem Parasitol – volume: 12 start-page: 1480 year: 2010 end-page: 1494 ident: bib0150 article-title: parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; Parasitophorous vacuoles are hybrid compartments publication-title: Cell Microbiol – volume: 93 start-page: 8413 year: 1996 end-page: 8418 ident: bib0275 article-title: invasion the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 91 year: 2000 end-page: 99 ident: bib0255 article-title: : taking control of host cell proliferation and survival mechanisms publication-title: Cell Microbiol – volume: 123 start-page: 157 year: 2005 end-page: 170 ident: bib0215 article-title: Quantitative and dynamic assessment of the contribution of the ER to phagosome formation publication-title: Cell – volume: 416 start-page: 7 year: 2011 end-page: 12 ident: bib0040 article-title: Novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis publication-title: Biochem Biophys Res Commun – volume: 3 start-page: 557 year: 2003 end-page: 568 ident: bib0135 article-title: Pathogens: raft hijackers publication-title: Nat Rev Immunol – start-page: 1647 year: 2000 end-page: 1650 ident: bib0260 article-title: Essential role for cholesterol in entry of mycobacteria into macrophages publication-title: Science 288 – volume: 7 start-page: e2276 year: 2013 ident: bib0130 article-title: Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live publication-title: PLoS Negl Trop Dis – volume: 416 start-page: 7 year: 2011 ident: 10.1016/j.biocel.2014.08.019_bib0040 article-title: Novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.11.023 – volume: 6 start-page: e1763 issue: 8 year: 2012 ident: 10.1016/j.biocel.2014.08.019_bib0175 article-title: Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001763 – volume: 40 start-page: 2264 issue: 12 year: 1999 ident: 10.1016/j.biocel.2014.08.019_bib0125 article-title: Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)32101-5 – volume: 217 start-page: 407 year: 2011 ident: 10.1016/j.biocel.2014.08.019_bib0210 article-title: HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2011.06.031 – volume: 102 start-page: 391 year: 2010 ident: 10.1016/j.biocel.2014.08.019_bib0280 article-title: Host-cell lipid rafts: a safe door for micro-organisms? publication-title: Biol Cell doi: 10.1042/BC20090138 – start-page: 1647 year: 2000 ident: 10.1016/j.biocel.2014.08.019_bib0260 article-title: Essential role for cholesterol in entry of mycobacteria into macrophages publication-title: Science 288 doi: 10.1126/science.288.5471.1647 – volume: 77 start-page: 72 year: 1978 ident: 10.1016/j.biocel.2014.08.019_bib0245 article-title: Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite publication-title: J Cell Biol doi: 10.1083/jcb.77.1.72 – volume: 166 start-page: 4020 year: 2001 ident: 10.1016/j.biocel.2014.08.019_bib0065 article-title: Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response publication-title: J Immunol doi: 10.4049/jimmunol.166.6.4020 – volume: 70 start-page: 4818 year: 2002 ident: 10.1016/j.biocel.2014.08.019_bib0290 article-title: Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice publication-title: Infect Immun doi: 10.1128/IAI.70.9.4818-4825.2002 – volume: 187 start-page: 1322 year: 2011 ident: 10.1016/j.biocel.2014.08.019_bib0005 article-title: Uncoupling protein 2 negatively regulates mitochondrial reactive oxygen species generation and induces phosphatase-mediated anti-inflammatory response in experimental visceral leishmaniasis publication-title: J Immunol doi: 10.4049/jimmunol.1004237 – volume: 7 start-page: e2276 issue: 6 year: 2013 ident: 10.1016/j.biocel.2014.08.019_bib0130 article-title: Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002276 – volume: 290 start-page: 1721 year: 2000 ident: 10.1016/j.biocel.2014.08.019_bib0270 article-title: How cells handle cholesterol publication-title: Science doi: 10.1126/science.290.5497.1721 – volume: 66 start-page: 14 year: 2014 ident: 10.1016/j.biocel.2014.08.019_bib0070 article-title: Exploring Leishmania donovani 3-hydroxy-3-ethylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies publication-title: Microb Pathog doi: 10.1016/j.micpath.2013.11.001 – volume: 194 start-page: 1081 year: 2001 ident: 10.1016/j.biocel.2014.08.019_bib0240 article-title: Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus publication-title: J Exp Med doi: 10.1084/jem.194.8.1081 – volume: 115 start-page: 2303 issue: Pt 11 year: 2002 ident: 10.1016/j.biocel.2014.08.019_bib0050 article-title: Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites publication-title: J Cell Sci doi: 10.1242/jcs.115.11.2303 – volume: 102 start-page: 13129 issue: 37 year: 2005 ident: 10.1016/j.biocel.2014.08.019_bib0250 article-title: Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506716102 – volume: 116 start-page: 63 year: 2001 ident: 10.1016/j.biocel.2014.08.019_bib0120 article-title: Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids publication-title: Histochem Cell Biol doi: 10.1007/s004180100297 – volume: 110 start-page: 119 year: 2002 ident: 10.1016/j.biocel.2014.08.019_bib0085 article-title: Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages publication-title: Cell doi: 10.1016/S0092-8674(02)00797-3 – volume: 93 start-page: 8413 year: 1996 ident: 10.1016/j.biocel.2014.08.019_bib0275 article-title: Toxoplasma invasion the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.16.8413 – volume: 10 start-page: 119 year: 2009 ident: 10.1016/j.biocel.2014.08.019_bib0155 article-title: Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes publication-title: BMC Genomics doi: 10.1186/1471-2164-10-119 – volume: 9 start-page: 84 issue: 1 year: 2007 ident: 10.1016/j.biocel.2014.08.019_bib0185 article-title: Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2006.00769.x – volume: 17 start-page: 2735 year: 2006 ident: 10.1016/j.biocel.2014.08.019_bib0075 article-title: Involvement of Akt in ER-to Golgi transport of SCAP/SREBP: a link between key cell proliferative pathway and membrane synthesis publication-title: Mol Biol Cell doi: 10.1091/mbc.E05-11-1094 – volume: 4 start-page: 66 year: 2014 ident: 10.1016/j.biocel.2014.08.019_bib0010 article-title: Leishmania donovani activates uncoupling protein 2 transcription to suppress mitochondrial oxidative burst through differential modulation of SREBP2, Sp1 and USF1 transcription factors publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2014.01.004 – volume: 110 start-page: 489 issue: 4 year: 2002 ident: 10.1016/j.biocel.2014.08.019_bib0235 article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER publication-title: Cell doi: 10.1016/S0092-8674(02)00872-3 – volume: 109 start-page: 1125 year: 2002 ident: 10.1016/j.biocel.2014.08.019_bib0105 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J Clin Invest doi: 10.1172/JCI0215593 – volume: 110 start-page: 891 year: 2002 ident: 10.1016/j.biocel.2014.08.019_bib0140 article-title: Intracellular cholesterol transport publication-title: J Clin Invest doi: 10.1172/JCI0216500 – volume: 4 start-page: 2883 year: 2013 ident: 10.1016/j.biocel.2014.08.019_bib0100 article-title: MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice publication-title: Nat Commun doi: 10.1038/ncomms3883 – volume: 89 start-page: 331 year: 1997 ident: 10.1016/j.biocel.2014.08.019_bib0030 article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor publication-title: Cell doi: 10.1016/S0092-8674(00)80213-5 – volume: 3 start-page: 557 year: 2003 ident: 10.1016/j.biocel.2014.08.019_bib0135 article-title: Pathogens: raft hijackers publication-title: Nat Rev Immunol doi: 10.1038/nri1129 – volume: 154 start-page: 445 year: 1986 ident: 10.1016/j.biocel.2014.08.019_bib0060 article-title: Studies on the turnover of glucocerebrosidase in cultured rat peritoneal macrophages and normal human fibroblasts publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1986.tb09417.x – volume: 133 start-page: 145 year: 2004 ident: 10.1016/j.biocel.2014.08.019_bib0170 article-title: Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis publication-title: Mol Biochem Parasitol doi: 10.1016/j.molbiopara.2003.10.002 – volume: 37 start-page: 1431 year: 2007 ident: 10.1016/j.biocel.2014.08.019_bib0080 article-title: Novel strategy in Trypanosoma cruzi cell invasion: implication of cholesterol and host cell microdomains publication-title: Int J Parasitol doi: 10.1016/j.ijpara.2007.04.025 – volume: 39 start-page: 8119 issue: 28 year: 2000 ident: 10.1016/j.biocel.2014.08.019_bib0180 article-title: Chemical activity of cholesterol in membranes publication-title: Biochemistry doi: 10.1021/bi0005097 – volume: 7 start-page: e1002229 year: 2011 ident: 10.1016/j.biocel.2014.08.019_bib0195 article-title: Restoration of IFNgammaR subunit assembly, IFNgamma signaling and parasite clearance in Leishmania donovani infected macrophages: role of membrane cholesterol publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002229 – volume: 2 start-page: 91 year: 2000 ident: 10.1016/j.biocel.2014.08.019_bib0255 article-title: Theileria parva: taking control of host cell proliferation and survival mechanisms publication-title: Cell Microbiol doi: 10.1046/j.1462-5822.2000.00045.x – volume: 180 start-page: 2396 year: 2008 ident: 10.1016/j.biocel.2014.08.019_bib0110 article-title: Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection publication-title: J Immunol doi: 10.4049/jimmunol.180.4.2396 – volume: 10 start-page: 823 year: 2000 ident: 10.1016/j.biocel.2014.08.019_bib0265 article-title: Microbial pathogenesis: lipid rafts as pathogen portals publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00788-0 – volume: 9 start-page: e1003114 issue: 1 year: 2013 ident: 10.1016/j.biocel.2014.08.019_bib0055 article-title: Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Fransicella tularensis publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003114 – volume: 12 start-page: 1480 year: 2010 ident: 10.1016/j.biocel.2014.08.019_bib0150 article-title: Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; Parasitophorous vacuoles are hybrid compartments publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2010.01483.x – volume: 123 start-page: 157 year: 2005 ident: 10.1016/j.biocel.2014.08.019_bib0215 article-title: Quantitative and dynamic assessment of the contribution of the ER to phagosome formation publication-title: Cell doi: 10.1016/j.cell.2005.08.018 |
SSID | ssj0001523 |
Score | 2.21259 |
Snippet | •Leishmania phagocytosis activates SREBP2 circuit.•PM-ER fusion and membrane raft reorientation-mediated Lyn-PI3K/Akt pathway activation increase nuclear... Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 196 |
SubjectTerms | acidification Activation Animals Blotting, Western Cell Membrane - immunology Cell Membrane - metabolism Cells, Cultured Cholesterol Cholesterol - immunology Cholesterol - metabolism Circuits Female HMGCR Host-Parasite Interactions - immunology Humans Hydroxymethylglutaryl CoA Reductases - genetics Hydroxymethylglutaryl CoA Reductases - immunology Hydroxymethylglutaryl CoA Reductases - metabolism Ion Channels - genetics Ion Channels - metabolism Leishmania donovani Leishmania donovani - immunology Leishmania donovani - physiology Leishmaniasis, Visceral - immunology Leishmaniasis, Visceral - metabolism Leishmaniasis, Visceral - parasitology Macrophages Macrophages - immunology Macrophages - metabolism Macrophages - parasitology membrane fluidity Membranes Mice, Inbred BALB C Mitochondria Mitochondria - immunology Mitochondria - metabolism Mitochondria - parasitology Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism neutralization Oxidants - immunology Oxidants - metabolism Parasites Pathogens Phosphatidylinositol 3-Kinases - immunology Phosphatidylinositol 3-Kinases - metabolism plasma membrane Proto-Oncogene Proteins c-akt - immunology Proto-Oncogene Proteins c-akt - metabolism reactive oxygen species Reverse Transcriptase Polymerase Chain Reaction RNA Interference - immunology Signal Transduction - immunology src-Family Kinases - immunology src-Family Kinases - metabolism SREBP2 Sterol Regulatory Element Binding Protein 2 - genetics Sterol Regulatory Element Binding Protein 2 - immunology Sterol Regulatory Element Binding Protein 2 - metabolism Survival tau-protein kinase transcription factors Uncoupling Protein 2 Visceral leishmaniasis |
Title | Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection |
URI | https://dx.doi.org/10.1016/j.biocel.2014.08.019 https://www.ncbi.nlm.nih.gov/pubmed/25218172 https://www.proquest.com/docview/1629955316 https://www.proquest.com/docview/1651446103 https://www.proquest.com/docview/1654672042 https://www.proquest.com/docview/2101322306 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbSX0iZ9bB9hCqU3dWVbttfHzZKwfYXSNJCbkCyJOMR2aDYhvfQH9Fd3RrZSCk0CvdliBLZn_M1TM4y9Sa00lROWS1cKLvPa81lhNJeFFLUwKCOWQgOf94rlgfxwmB-usUU8C0NllSP2D5ge0HpcmY5fc3raNNP9JMspi4gaP6TP6ES5lCVJ-buff8o8UD-FInsk5kQdj8-FGi_ToJKgBEQiQyNP6rfzb_V0nfkZ1NDuQ_ZgtB9hPjziI7bmug22Oe_Qd25_wFsIFZ0hVL7B7m7Hq3uLONdtk_365JqzI2p7ocH2NBO1a4CON1yQ2Qn7X3e2v6Sw6qHtLc32ctBqmvN1hMgDrWvRve4cEGqGJgv9CejOQovIgGudJYGG_rKxVGADaBIDkukQ66JAJPQeYgFY95gd7O58Wyz5OJGB17JIVnxmNOUN80wLh7-rcYmXldG1t6YWrhKZrbWWwpWVNqk0ttTGlzOPxDbJjJDZE7be9Z17xqAqZqmtfZbl1qJJZgyhidaV9L52hfYTlkVGqHpsV05TM05UrEs7VgP7FLFP0TDNpJowfrXrdGjXcQt9GXms_hI7hRrllp2vo0goZCClWfDr9-dnKilQxeeIbcVNNDk54onIbqRBLZYiql5Pgw47hRPQ75uwp4NcXr13mpP5VqbP__sdX7D7dDfULr5k66vv5-4V2mArsxV-si12Z_7-43LvN7FDNDY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEN8gxsCLQVA5RR0T49t623bbXh_hAjn1IEYg4W2z290NNbQlcBB98QP4qZ3ZthgTgcS3pp0m7c7s_P3tDGPvYitN4YTl0uWCy7T0fJIZzWUmRSkMyoil1MD-QTY7lp9O0pMlNh3OwhCsstf9nU4P2rq_M-5Xc3xeVePDKEmpiogWP5TP8gfsocTtS2MMPvz8g_NAAxVQ9kjNiXw4PxdAXqZCK0EViEiGTp7UcOff9uk2_zPYob019rh3IGG7-8YnbMk162xju8Hguf4B7yFAOkOufJ092hmuVqbDYLcN9mvuqstT6nuhwbY0FLWpgM43XJPfCYdfd3e-xLBooW4tDfdyUGsa9HWKqgdqV2N83TggtRm6LLRnoBsLNaoGvNdYkmhov1eWEDaAPjEgmQ7JLspEQuthQIA1T9nx3u7RdMb7kQy8lFm04BOjqXCYJlo43K_GRV4WRpfemlK4QiS21FoKlxfaxNLYXBufTzwS2ygxQibP2HLTNm6TQZFNYlv6JEmtRZ_MGFInWhfS-9Jl2o9YMjBClX2_chqbcaYGYNo31bFPEfsUTdOMihHjN2-dd_067qHPBx6rv-ROoUm55823g0goZCDVWXD126tLFWVo41NUbtldNClF4pFI7qRBMxajWr2dBiN2yidg4Ddizzu5vPnvOCX_LY9f_Pc_vmErs6P9uZp_PPj8kq3Skw7IuMWWFxdX7hU6ZAvzOmy432lYNcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leishmania+donovani+activates+SREBP2+to+modulate+macrophage+membrane+cholesterol+and+mitochondrial+oxidants+for+establishment+of+infection&rft.jtitle=The+international+journal+of+biochemistry+%26+cell+biology&rft.au=Mukherjee%2C+Madhuchhanda&rft.au=Ball%2C+Writoban+Basu&rft.au=Das%2C+Pijush+K&rft.date=2014-10-01&rft.issn=1357-2725&rft.volume=55&rft.spage=196&rft.epage=208&rft_id=info:doi/10.1016%2Fj.biocel.2014.08.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1357-2725&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1357-2725&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1357-2725&client=summon |