Plant selenium hyperaccumulation- Ecological effects and potential implications for selenium cycling and community structure
Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000–15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 11; pp. 2372 - 2382 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000–15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.
We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling.
Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling.
The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity.
•Selenium hyperaccumulators concentrate and transform Se within and around them.•Hyperaccumulation profoundly affects ecological interactions.•Hyperaccumulators may influence species composition and Se cycling. |
---|---|
AbstractList | Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000–15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.
We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling.
Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling.
The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity.
•Selenium hyperaccumulators concentrate and transform Se within and around them.•Hyperaccumulation profoundly affects ecological interactions.•Hyperaccumulators may influence species composition and Se cycling. Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms. We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling. Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling. The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity. Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.BACKGROUNDSelenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling.SCOPE OF REVIEWWe review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling.Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling.MAJOR CONCLUSIONSSelenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling.The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity.GENERAL SIGNIFICANCEThe implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity. Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000–15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms.We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling.Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling.The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity. |
Author | Pilon-Smits, Elizabeth A.H. Reynolds, R. Jason B. |
Author_xml | – sequence: 1 givenname: R. Jason B. surname: Reynolds fullname: Reynolds, R. Jason B. – sequence: 2 givenname: Elizabeth A.H. surname: Pilon-Smits fullname: Pilon-Smits, Elizabeth A.H. email: epsmits@colostate.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29704528$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFrFDEYxYNU7Lb6H4jM0cuM-TLJ7KwHQUpthYIe9Bwy33yzZskka5IRFvzjzXZbBA82lwfJ7z3IexfszAdPjL0G3gCH7t2uGQazJd8IDn3DZVPkGVtBvxZ1z3l3xla85bKW0KlzdpHSjpejNuoFOxebNZdK9Cv2-6szPleJHHm7zNWPw56iQVzmxZlsg6-rawwubC0aV9E0EeZUGT9W-5DJZ1tu7bx35flIp2oK8W8aHtBZv73nMczz4m0-VCnHBfMS6SV7PhmX6NWDXrLvn66_Xd3Wd19uPl99vKtRdpDrfgCJihsFhjroeAuASqpeAslxGswAG94qPplxLQmFGIzsCDoxTGJAAWN7yd6ecvcx_FwoZT3bhOTK1yksSQtoS22Kg3oa5a2QatNDV9A3D-gyzDTqfbSziQf9WG4B3p8AjCGlSJNGm-9rytFYp4Hr45J6p09L6uOSmktdpJjlP-bH_CdsH042Kn3-shR1QkseabSxTKfHYP8f8AfkOLvw |
CitedBy_id | crossref_primary_10_3390_plants11243432 crossref_primary_10_1016_j_envpol_2018_08_035 crossref_primary_10_1080_11263504_2020_1779835 crossref_primary_10_3390_soilsystems4030057 crossref_primary_10_3390_microorganisms12112144 crossref_primary_10_1007_s00425_022_04017_8 crossref_primary_10_1080_00380768_2021_1972754 crossref_primary_10_1016_j_ecoenv_2023_115832 crossref_primary_10_1016_j_jes_2021_05_015 crossref_primary_10_1016_j_jece_2023_110468 crossref_primary_10_1093_hr_uhac270 crossref_primary_10_3390_plants12010044 crossref_primary_10_1007_s11104_024_07072_0 crossref_primary_10_1016_j_chemosphere_2023_139812 crossref_primary_10_1016_j_chemosphere_2022_136858 crossref_primary_10_1016_j_scitotenv_2020_144664 crossref_primary_10_1111_pce_15278 crossref_primary_10_3390_su15010592 crossref_primary_10_1016_j_plantsci_2025_112456 crossref_primary_10_1016_j_jhazmat_2021_128122 crossref_primary_10_1088_1742_6596_2920_1_012031 crossref_primary_10_3390_plants11202712 |
Cites_doi | 10.1111/j.1399-3054.2006.00739.x 10.1104/pp.104.056549 10.1016/j.foodchem.2014.11.147 10.1104/pp.106.081158 10.1021/jf60134a018 10.1046/j.1469-8137.2003.00786.x 10.1007/s004250050402 10.1111/j.1469-8137.2007.02119.x 10.1126/science.84.2187.484 10.1111/ppl.12094 10.1007/s004250050630 10.1002/jsfa.7231 10.1007/s11157-009-9145-3 10.3732/ajb.0800287 10.1007/s11104-005-8161-5 10.1007/s00442-007-0907-8 10.1111/j.1469-8137.2006.01943.x 10.1016/j.jtemb.2005.02.009 10.1016/j.foodchem.2014.06.071 10.1016/j.apgeochem.2013.12.010 10.1111/ppl.12149 10.1093/jxb/err247 10.3389/fpls.2015.00002 10.1007/s11258-008-9470-6 10.1016/j.jcs.2012.11.012 10.1111/j.1432-1033.1996.0235u.x 10.1371/journal.pone.0093359 10.1007/s12011-009-8328-7 10.1093/aob/mcm084 10.3732/ajb.1000369 10.1007/s00425-012-1789-5 10.1007/s11120-005-5222-9 10.1146/annurev.arplant.49.1.643 10.3390/nu7064199 10.1046/j.1469-8137.2001.00004.x 10.1104/pp.110.156570 10.1371/journal.pone.0050516 10.1007/s12011-011-8998-9 10.1021/ie50319a018 10.1016/j.atmosenv.2007.07.035 10.1016/j.cub.2011.07.033 10.1111/nph.14378 10.1016/S0065-2504(08)60149-X 10.1007/s000490050002 10.1130/0016-7606(1972)83[181:SAISAI]2.0.CO;2 10.1111/jam.12842 10.1111/j.1574-6976.2008.00123.x 10.1002/j.1537-2197.1939.tb12900.x 10.1002/etc.3273 10.3732/ajb.1200124 10.1016/j.apgeochem.2011.03.109 10.1016/j.envexpbot.2013.07.001 10.1146/annurev.arplant.51.1.401 10.1111/j.1438-8677.2011.00535.x 10.1016/j.plaphy.2012.07.018 10.1080/15226514.2014.987372 10.1007/s00425-013-1996-8 10.1016/j.apsoil.2015.08.016 10.1007/s00425-013-1983-0 10.1016/j.apgeochem.2014.06.024 10.1111/j.1469-8137.2011.04043.x 10.3389/fpls.2015.00113 10.1111/nph.13071 10.1111/j.1469-8137.2011.03832.x 10.1111/nph.13164 10.1890/04-0922 10.1104/pp.112.199307 10.1093/aob/mct163 10.1111/j.1469-8137.2007.02285.x 10.1111/nph.14838 10.1016/j.envexpbot.2011.12.011 10.1016/j.cub.2006.09.015 10.1007/s10311-014-0487-x 10.3732/ajb.1400041 10.1579/0044-7447(2007)36[94:SGAH]2.0.CO;2 10.1146/annurev.micro.60.080805.142053 10.1007/s11104-010-0446-7 10.1186/gb-2013-14-6-209 10.1016/S0065-2113(02)79003-2 10.1111/j.1469-8137.2011.03670.x 10.1073/pnas.1503926112 10.1016/j.geoderma.2017.02.019 10.1104/pp.119.1.123 10.1007/s12011-011-8958-4 10.1111/j.1469-8137.2004.01067.x |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2018.04.018 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Ecology |
EISSN | 1872-8006 |
EndPage | 2382 |
ExternalDocumentID | 29704528 10_1016_j_bbagen_2018_04_018 S0304416518301119 |
Genre | Journal Article Review |
GeographicLocations | Western United States |
GeographicLocations_xml | – name: Western United States |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-8b14c50a51ae6160311c545841e4dfbab190350fad74ec22ba46e162bf2bc21d3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Thu Jul 10 20:42:40 EDT 2025 Fri Jul 11 03:46:23 EDT 2025 Wed Feb 19 02:40:51 EST 2025 Tue Jul 01 00:22:10 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Hyperaccumulation Cycling Ecology Selenium Plants Defense |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-8b14c50a51ae6160311c545841e4dfbab190350fad74ec22ba46e162bf2bc21d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 29704528 |
PQID | 2032459816 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2131875015 proquest_miscellaneous_2032459816 pubmed_primary_29704528 crossref_citationtrail_10_1016_j_bbagen_2018_04_018 crossref_primary_10_1016_j_bbagen_2018_04_018 elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_04_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Byers, Williams, Lakin (bb0145) 1936; 28 Schiavon, Lima, Jiang, Hawkesford (bb0235) 2017 White, Bowen, Marshall, Broadley (bb0250) 2007; 100 Sharma, McDonald, Sohn, Anquandah, Pettine, Zboril (bb0100) 2014; 13 Li, Liang, Peng, Cui, Huang, Lin (bb0180) 2017; 295 Cappa, Cappa, El Mehdawi, McAleer, Simmons, Pilon-Smits (bb0025) 2014; 101 Wangeline, Rodolfo Valdez, Lindblom, Bowling, Brent Reeves, Pilon-Smits (bb0375) 2011; 98 Lindblom, Valdez-Barillas, Fakra, Marcus, Wangeline, Pilon-Smits (bb0390) 2013; 88 Sors, Ellis, Salt (bb0195) 2005; 0 Tuttle, Fahy, Elliott, Grauch, Stillings (bb0160) 2014; 46 Plant, Bone, Voulvoulis, Kinniburgh, Smedley, Fordyce, Klinck (bb0110) 2013 Freeman, Tamaoki, Stushnoff, Quinn, Cappa, Devonshire, Fakra, Marcus, McGrath, Van Hoewyk, Pilon-Smits (bb0270) 2010; 153 Quinn, Prins, Freeman, Gross, Hantzis, Reynolds, in Yang, Covey, Bañuelos, Pickering, Fakra, Marcus, Arathi, Pilon-Smits (bb0260) 2011; 192 Galeas, Klamper, Bennett, Freeman, Kondratieff, Quinn, Pilon-Smits (bb0465) 2008; 177 Winkel, Vriens, Jones, Schneider, Pilon-Smits, Bañuelos (bb0105) 2015; 7 Shahabivand, Maivan, Goltapeh, Sharifi, Aliloo (bb0405) 2012; 60 El Mehdawi, Cappa, Fakra, Self, Pilon-Smits (bb0280) 2012; 194 Zilber-Rosenberg, Rosenberg (bb0440) 2008; 32 El Mehdawi, Paschke, Pilon-Smits (bb0020) 2015; 206 Van Hoewyk (bb0205) 2013; 112 Prins, Hantzis, Quinn, Pilon-Smits (bb0225) 2011; 62 Wen, Carignan (bb0115) 2007; 41 Durán, Acuña, Jorquera, Azcón, Borie, Cornejo, Mora (bb0400) 2013; 57 Hladun, Di, Liu, Trumble (bb0490) 2016; 35 Bañuelos, Arroyo, Pickering, Yang, Freeman (bb0275) 2015; 166 El Mehdawi, Pilon-Smits (bb0445) 2012; 14 Galeas, Zhang, Freeman, Wegner, Pilon-Smits (bb0080) 2007; 173 Schiavon, Pilon-Smits (bb0175) 2017; 213 Harris, Schneberg, Pilon-Smits (bb0255) 2014; 239 Heckman, Geiser, Eidell, Stauffer, Kardos, Hedges (bb0365) 2001 Hooper, Chapin, Ewel (bb0085) 2005; 75 Boyd, Martens (bb0070) 1992 Valdez Barillas, Quinn, Freeman, Lindblom, Fakra, Marcus, Gilligan, Alford, Wangeline, Pilon-Smits (bb0380) 2012; 159 Cappa, Yetter, Fakra, Cappa, Detar, Landes, Pilon-Smits, Simmons (bb0355) 2015; 205 Lyi, Heller, Rutzke, Welch, Kochian, Li (bb0215) 2005; 138 Salt, Smith, Raskin (bb0065) 1998; 49 Ahmad, Waraich, Nawaz, Ashraf, Khalid (bb0330) 2016; 96 Alford, Pilon-Smits, Fakra, Paschke (bb0285) 2012; 99 Han, Li, Xiong, Tu, Chen, Li, Xie (bb0345) 2013; 95 Zhang, Abdel-Ghany, Freeman, Ackley, Schiavon, Pilon-Smits (bb0015) 2006; 128 Turner, James, Poole, Gilbert, Meyer, Jansson, Gordon, Pace, Tiedje, Ley, Fierer, Field, Kyrpides, Glöckner, Klenk, Wommack, Glass, Docherty, Gallery, Stevens, Knight, Turnbaugh, Ley, Hamady, Fraser-Liggett, Knight, Gordon, Berendsen, Pieterse, Bakker, Lebeis, Rott, Dangl, Schulze-Lefert, Bulgarelli, Schlaeppi, Spaepen, van Themaat, Schulze-Lefert, Heckman, Geiser, Eidell, Stauffer, Kardos, Hedges, Bonfante, Philippot, Hallin, Borjesson, Baggs, Galbally, Kirstine, Wang, Shallcross, Wrage, Velthof, van Beusichem, Oenema, Conrad, Erkel, Liesack, Bloemberg, Lugtenberg, Andrews, Bakker, Manter, Sheflin, Weir, Vivanco, Adesemoye, Torbert, Kloepper, Singh, Bardgett, Smith, Reay, Kent, Triplett, Vorholt, Oldroyd, Murray, Poole, Downie, Bentley, Balasubramanian, Swerdlow, Smith, Milton, Brown, Hall, Evers, Barnes, Bignell, Boutell, Bryant, Carter, Cheetham, Cox, Ellis, Flatbush, Gormley, Humphray, Irving, Karbelashvili, Kirk, Li, Liu, Maisinger, Murray, Obradovic, Ost, Parkinson, Pratt, Margulies, Egholm, Altman, Attiya, Bader, Bemben, Berka, Braverman, Chen, Chen, Dewell, Du, Fierro, Gomes, Godwin, He, Helgesen, Ho, Irzyk, Jando, Alenquer, Jarvie, Jirage, Kim, Knight, Lanza, Leamon, Lefkowitz, Lei, Li, Hong, Bunge, Leslin, Jeon, Epstein, Pinto, Raskin, Leininger, Urich, Schloter, Schwark, Qi, Nicol, Prosser, Schuster, Schleper, Williams, Barea, Pozo, Azcon, Azcon-Aguilar, Turner, Ramakrishnan, Walshaw, Heavens, Alston, Swarbreck, Osbourn, Grant, Poole, Radajewski, Ineson, Parekh, Murrell, Haichar, Marol, Berge, Rangel-Castro, Prosser, Balesdent, Heulin, Achouak, Lu, Rosencrantz, Liesack, Conrad, Bertin, Yang, Weston, Shi, Richardson, Bais, Weir, Perry, Gilroy, Vivanco, Broeckling, Broz, Bergelson, Manter, Vivanco, Badri, Chaparro, Zhang, Shen, Vivanco, Micallef, Shiaris, Colon-Carmona, Mark, Dow, Kiely, Higgins, Haynes, Baysse, Abbas, Foley, Franks, Morrissey, DeAngelis, Brodie, DeSantis, Andersen, Lindow, Firestone, Chaparro, Badri, Bakker, Sugiyama, Manter, Vivanco, Cavaglieri, Orlando, Etcheverry, Lundberg, Lebeis, Paredes, Yourstone, Gehring, Malfatti, Tremblay, Engelbrektson, Kunin, del Rio, Edgar, Eickhorst, Ley, Hugenholtz, Tringe, Dangl, Bulgarelli, Rott, Schlaeppi, van Themaat, Ahmadinejad, Assenza, Rauf, Huettel, Reinhardt, Schmelzer, Peplies, Gloeckner, Amann, Eickhorst, Schulze-Lefert, Dennis, Miller, Hirsch, Stursova, Zifcakova, Leigh, Burgess, Baldrian, Haichar, Achouak, Christen, Heulin, Marol, Marais, Mougel, Ranjard, Balesdent, Berge, Knief, Delmotte, Chaffron, Stark, Innerebner, Wassmann, von Mering, Vorholt, Inceoglu, Al-Soud, Salles, Semenov, van Elsas, Teixeira, Peixoto, Cury, Sul, Pellizari, Tiedje, Rosado, Rezzonico, Binder, Defago, Moenne-Loccoz, Combes-Meynet, Pothier, Moenne-Loccoz, Prigent-Combaret, Meyer, Halbrendt, Carta, Skantar, Liu, Abdelnabby, Vinyard, Raaijmakers, Weller, Mendes, Kruijt, de Bruijn, Dekkers, van der Voort, Schneider, Piceno, DeSantis, Andersen, Bakker, Raaijmakers, Klein, Ofek, Katan, Minz, Gamliel, Rosenzweig, Tiedje, Quensen, Meng, Hao, Lindow, Brandl, Lindow, Badri, Zolla, Bakker, Manter, Vivanco, Bodenhausen, Horton, Bergelson, Vokou, Vareli, Zarali, Karamanoli, Constantinidou, Monokrousos, Halley, Sainis, Delmotte, Knief, Chaffron, Innerebner, Roschitzki, Schlapbach, von Mering, Vorholt, Atamna-Ismaeel, Finkel, Glaser, Sharon, Schneider, Post, Spudich, von Mering, Vorholt, Iluz, Béjà, Belkin, Hallmann, QuadtHallmann, Mahaffee, Kloepper, Compant, Clement, Sessitsch, Monteiro, Balsanelli, Wassem, Marin, Brusamarello-Santos, Schmidt, Tadra-Sfeir, Pankievicz, Cruz, Chubatsu, Pedrosa, Souza, Sessitsch, Hardoim, Doring, Weilharter, Krause, Woyke, Mitter, Hauberg-Lotte, Friedrich, Rahalkar, Hurek, Sarkar, Bodrossy, van Overbeek, Brar, van Elsas, Reinhold-Hurek, James, Olivares, Ferrara, Oliveira, Gonzales, Floh, Barbosa, James, James, Gyaneshwar, Mathan, Barraquio, Reddy, Iannetta, Olivares, Ladha, Reinhold-Hurek, Hurek, Muller, Wiemken, Boller, Suarez-Moreno, Caballero-Mellado, Coutinho, Mendonca-Previato, James, Venturi, Fischer, Pfitzner, Schmid, Simões-Araújo, Reis, Pereira, Ormeño-Orrillo, Hai, Hofmann, Schloter, Martinez-Romero, Baldani, Hartmann, Brusamarello-Santos, Pacheco, Aljanabi, Monteiro, Cruz, Baura, Pedrosa, Souza, Wassem, Cavalcante, Vargas, Nogueira, Vinagre, Schwarcz, Baldani, Ferreira, Hemerly, Vargas, de Carvalho, Ferreira, Baldani, Baldani, Hemerly, Vinagre, Vargas, Schwarcz, Cavalcante, Nogueira, Baldani, Ferreira, Hemerly, Hein, Wolfe, Blee, Doornbos, Geraats, Kuramae, Van Loon, Bakker, Kniskern, Traw, Bergelson, Ghosh, Ghosh, Maiti, Gutierrez-Manero, Ramos-Solano, Probanza, Mehouachi, Tadeo, Talon, Melotto, Underwood, Koczan, Nomura, He, Glick, Hassan, Mathesius, Akiyama, Hayashi, Stracke, Kistner, Yoshida, Mulder, Sato, Kaneko, Tabata, Sandal, Stougaard, Szczyglowski, Parniske, Wang, Schornack, Marsh, Gobbato, Schwessinger, Eastmond, Schultze, Kamoun, Oldroyd, Damiani, Baldacci-Cresp, Hopkins, Andrio, Balzergue, Lecomte, Puppo, Abad, Favery, Herouart, Darvill, Albersheim, Bednarek, Osbourn, Bressan, Roncato, Bellvert, Comte, Haichar, Achouak, Berge, Maizel, Mitchell, Burkhardt, Carter, Spink, Cannon, Daniels, Osbourn, Osbourn, Clarke, Lunness, Scott, Daniels, Papadopoulou, Melton, Leggett, Daniels, Osbourn, Dohrmann, Kuting, Junemann, Jaenicke, Schluter, Tebbe, Cotta, Dias, Marriel, Gomes, van Elsas, Seldin, Meyer, Song-Wilson, Foetzki, Luginbuhl, Winzeler, Kneubühler, Matasci, Mascher-Frutschi, Kalinina, Boller, Keel, Maurhofer, Bittel, Robatzek, Dou, Zhou, Spoel, Dong, Bari, Jones (bb0360) 2013; 14 Katayama, Amano, Naoe, Yamakita, Komatsu, Takagawa, Sato, Ueta, Miyashita (bb0090) 2014; 9 Pilon-smits, Winkel, Lin (bb0055) 2017 Wilson, Agnew (bb0300) 1992; 23 El Mehdawi, Quinn, Pilon-Smits (bb0350) 2011; 21 Zayed, Lytle, Terry (bb0220) 1998; 206 Freeman, Marcus, Fakra, Devonshire, McGrath, Quinn, Pilon-Smits (bb0480) 2012; 7 Schiavon, Pilon, Malagoli, Pilon-Smits (bb0240) 2015; 6 Boyd, Martens (bb0295) 1998; 8 de Souza, Huang, Chee, Terry (bb0425) 1999; 209 Durán, Acuña, Gianfreda, Azcón, Funes-collado, Mora (bb0410) 2015; 96 Terry, Zayed, de Souza (bb0190) 2000; 51 Fordyce (bb0165) 2007; 36 Neuhierl, Böck (bb0210) 1996; 239 Beath, Gilbert (bb0035) 1936; 84 Morris, Grossl, Call (bb0305) 2009; 202 Dhillon, Dhillon (bb0120) 2003; 79 Trelease, Martin (bb0135) 1936; 2 Fernández-Martínez, Charlet (bb0095) 2009; 8 Sura-de Jong, Reynolds, Richterova, Musilova, Staicu, Chocholata, Cappa, Taghavi, van der Lelie, Frantik, Dolinova, Strejcek, Cochran, Lovecka, Pilon-Smits (bb0395) 2015; 6 Freeman, Lindblom, Quinn, Fakra, Marcus, Pilon-Smits (bb0460) 2007; 175 Matamoros-Veloza Adriana, Newton, Benning (bb0155) 2011; 26 Hasanuzzaman, Fujita (bb0340) 2011; 143 Beath, Gilbert, Eppson, Beath (bb0030) 1937; 24 El Mehdawi, Reynolds, Prins, Lindblom, Cappa, Fakra, Pilon-Smits (bb0385) 2014 Beath, Eppson, Gilbert (bb0130) 1935 Hasanuzzaman, Hossain, Fujita (bb0320) 2011; 143 Nawaz, Ashraf, Ahmad, Waraich, Shabbir, Bukhari (bb0335) 2015; 175 Yasin, El-Mehdawi, Pilon-Smits, Faisal (bb0430) 2015; 17 White (bb0050) 2016; 117 Lindblom, Fakra, Landon, Schulz, Tracy, Pilon-Smits (bb0420) 2013; 237 Beath, Gilbert, Eppson (bb0150) 1939; 26 El Mehdawi, Quinn, Pilon-Smits (bb0290) 2011; 191 Quinn, Wyant, Wangeline, Shulman, Galeas, Valdez, Self, Paschke, Pilon-Smits (bb0310) 2011; 341 Freeman, Quinn, Marcus, Fakra, Pilon-Smits (bb0455) 2006; 16 Feist, Parker (bb0010) 2001; 149 Hamilton, Beath (bb0045) 1964; 12 Yao, Chu, Wang (bb0325) 2009; 130 Lindblom, Fakra, Landon, Schulz, Tracy, Pilon-Smits (bb0415) 2014; 150 Sto Hasanuzzaman (10.1016/j.bbagen.2018.04.018_bb0340) 2011; 143 Katayama (10.1016/j.bbagen.2018.04.018_bb0090) 2014; 9 Hasanuzzaman (10.1016/j.bbagen.2018.04.018_bb0320) 2011; 143 Mast (10.1016/j.bbagen.2018.04.018_bb0170) 2014; 48 Lindblom (10.1016/j.bbagen.2018.04.018_bb0415) 2014; 150 Salt (10.1016/j.bbagen.2018.04.018_bb0065) 1998; 49 Sharma (10.1016/j.bbagen.2018.04.018_bb0100) 2014; 13 Hamilton (10.1016/j.bbagen.2018.04.018_bb0045) 1964; 12 Li (10.1016/j.bbagen.2018.04.018_bb0180) 2017; 295 Turner (10.1016/j.bbagen.2018.04.018_bb0360) 2013; 14 Zayed (10.1016/j.bbagen.2018.04.018_bb0220) 1998; 206 Schiavon (10.1016/j.bbagen.2018.04.018_bb0175) 2017; 213 Nawaz (10.1016/j.bbagen.2018.04.018_bb0335) 2015; 175 Freeman (10.1016/j.bbagen.2018.04.018_bb0270) 2010; 153 El Mehdawi (10.1016/j.bbagen.2018.04.018_bb0350) 2011; 21 Van Hoewyk (10.1016/j.bbagen.2018.04.018_bb0205) 2013; 112 Sura-de Jong (10.1016/j.bbagen.2018.04.018_bb0395) 2015; 6 Beath (10.1016/j.bbagen.2018.04.018_bb0150) 1939; 26 Yao (10.1016/j.bbagen.2018.04.018_bb0325) 2009; 130 Bañuelos (10.1016/j.bbagen.2018.04.018_bb0275) 2015; 166 Alford (10.1016/j.bbagen.2018.04.018_bb0285) 2012; 99 Wilson (10.1016/j.bbagen.2018.04.018_bb0300) 1992; 23 Harris (10.1016/j.bbagen.2018.04.018_bb0255) 2014; 239 Prins (10.1016/j.bbagen.2018.04.018_bb0225) 2011; 62 Freeman (10.1016/j.bbagen.2018.04.018_bb0475) 2009; 96 Hanson (10.1016/j.bbagen.2018.04.018_bb0450) 2004; 162 Quinn (10.1016/j.bbagen.2018.04.018_bb0310) 2011; 341 El Mehdawi (10.1016/j.bbagen.2018.04.018_bb0245) 2018; 217 El Mehdawi (10.1016/j.bbagen.2018.04.018_bb0280) 2012; 194 Morris (10.1016/j.bbagen.2018.04.018_bb0305) 2009; 202 Hartikainen (10.1016/j.bbagen.2018.04.018_bb0230) 2005; 18 Cappa (10.1016/j.bbagen.2018.04.018_bb0355) 2015; 205 El Mehdawi (10.1016/j.bbagen.2018.04.018_bb0385) 2014 Sors (10.1016/j.bbagen.2018.04.018_bb0195) 2005; 0 Zhang (10.1016/j.bbagen.2018.04.018_bb0015) 2006; 128 Durán (10.1016/j.bbagen.2018.04.018_bb0410) 2015; 96 Winkel (10.1016/j.bbagen.2018.04.018_bb0105) 2015; 7 El Mehdawi (10.1016/j.bbagen.2018.04.018_bb0020) 2015; 206 Galeas (10.1016/j.bbagen.2018.04.018_bb0080) 2007; 173 Byers (10.1016/j.bbagen.2018.04.018_bb0145) 1936; 28 El Mehdawi (10.1016/j.bbagen.2018.04.018_bb0290) 2011; 191 W. Agricultural, E. Station (10.1016/j.bbagen.2018.04.018_bb0040) 1921 Matamoros-Veloza Adriana (10.1016/j.bbagen.2018.04.018_bb0155) 2011; 26 Boyd (10.1016/j.bbagen.2018.04.018_bb0070) 1992 Boyd (10.1016/j.bbagen.2018.04.018_bb0075) 2007; 293 Schiavon (10.1016/j.bbagen.2018.04.018_bb0235) 2017 Shahabivand (10.1016/j.bbagen.2018.04.018_bb0405) 2012; 60 Lindblom (10.1016/j.bbagen.2018.04.018_bb0390) 2013; 88 Zilber-Rosenberg (10.1016/j.bbagen.2018.04.018_bb0440) 2008; 32 Beath (10.1016/j.bbagen.2018.04.018_bb0030) 1937; 24 Quinn (10.1016/j.bbagen.2018.04.018_bb0470) 2008; 155 Pilon-smits (10.1016/j.bbagen.2018.04.018_bb0055) 2017 Freeman (10.1016/j.bbagen.2018.04.018_bb0460) 2007; 175 Pilon-Smits (10.1016/j.bbagen.2018.04.018_bb0200) 1999; 119 Dhillon (10.1016/j.bbagen.2018.04.018_bb0120) 2003; 79 Plant (10.1016/j.bbagen.2018.04.018_bb0110) 2013 Wangeline (10.1016/j.bbagen.2018.04.018_bb0375) 2011; 98 Staicu (10.1016/j.bbagen.2018.04.018_bb0435) 2015; 119 Freeman (10.1016/j.bbagen.2018.04.018_bb0480) 2012; 7 Valdez Barillas (10.1016/j.bbagen.2018.04.018_bb0380) 2012; 159 Freeman (10.1016/j.bbagen.2018.04.018_bb0265) 2006; 142 Freeman (10.1016/j.bbagen.2018.04.018_bb0455) 2006; 16 Fordyce (10.1016/j.bbagen.2018.04.018_bb0165) 2007; 36 Stolz (10.1016/j.bbagen.2018.04.018_bb0185) 2006; 60 Terry (10.1016/j.bbagen.2018.04.018_bb0190) 2000; 51 Hladun (10.1016/j.bbagen.2018.04.018_bb0490) 2016; 35 Fernández-Martínez (10.1016/j.bbagen.2018.04.018_bb0095) 2009; 8 Boyd (10.1016/j.bbagen.2018.04.018_bb0295) 1998; 8 Edger (10.1016/j.bbagen.2018.04.018_bb0140) 2015; 112 Ahmad (10.1016/j.bbagen.2018.04.018_bb0330) 2016; 96 Tuttle (10.1016/j.bbagen.2018.04.018_bb0160) 2014; 46 Durán (10.1016/j.bbagen.2018.04.018_bb0400) 2013; 57 Rani (10.1016/j.bbagen.2018.04.018_bb0315) 2005; 277 Feist (10.1016/j.bbagen.2018.04.018_bb0010) 2001; 149 Hooper (10.1016/j.bbagen.2018.04.018_bb0085) 2005; 75 Schiavon (10.1016/j.bbagen.2018.04.018_bb0240) 2015; 6 Lakin (10.1016/j.bbagen.2018.04.018_bb0125) 1972; 83 White (10.1016/j.bbagen.2018.04.018_bb0050) 2016; 117 Beath (10.1016/j.bbagen.2018.04.018_bb0035) 1936; 84 Talekar (10.1016/j.bbagen.2018.04.018_bb0485) 1993 Quinn (10.1016/j.bbagen.2018.04.018_bb0260) 2011; 192 Lindblom (10.1016/j.bbagen.2018.04.018_bb0420) 2013; 237 Cappa (10.1016/j.bbagen.2018.04.018_bb0025) 2014; 101 Trelease (10.1016/j.bbagen.2018.04.018_bb0135) 1936; 2 Hanson (10.1016/j.bbagen.2018.04.018_bb0370) 2003; 159 Knight (10.1016/j.bbagen.2018.04.018_bb0005) 1937; 221 El Mehdawi (10.1016/j.bbagen.2018.04.018_bb0445) 2012; 14 de Souza (10.1016/j.bbagen.2018.04.018_bb0425) 1999; 209 Lyi (10.1016/j.bbagen.2018.04.018_bb0215) 2005; 138 Han (10.1016/j.bbagen.2018.04.018_bb0345) 2013; 95 Wen (10.1016/j.bbagen.2018.04.018_bb0115) 2007; 41 Galeas (10.1016/j.bbagen.2018.04.018_bb0465) 2008; 177 White (10.1016/j.bbagen.2018.04.018_bb0250) 2007; 100 Heckman (10.1016/j.bbagen.2018.04.018_bb0365) 2001 Neuhierl (10.1016/j.bbagen.2018.04.018_bb0210) 1996; 239 Yasin (10.1016/j.bbagen.2018.04.018_bb0430) 2015; 17 Cappa (10.1016/j.bbagen.2018.04.018_bb0060) 2014; 239 Beath (10.1016/j.bbagen.2018.04.018_bb0130) |
References_xml | – volume: 13 start-page: 49 year: 2014 end-page: 58 ident: bb0100 article-title: Biogeochemistry of selenium. A review publication-title: Environ. Chem. Lett. – volume: 175 start-page: 490 year: 2007 end-page: 500 ident: bb0460 article-title: Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence publication-title: New Phytol. – volume: 112 start-page: 965 year: 2013 end-page: 972 ident: bb0205 article-title: A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants publication-title: Ann. Bot. – volume: 166 start-page: 603 year: 2015 end-page: 608 ident: bb0275 article-title: Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata publication-title: Food Chem. – volume: 14 start-page: 1 year: 2012 end-page: 10 ident: bb0445 article-title: Ecological aspects of plant selenium hyperaccumulation publication-title: Plant Biol. – volume: 206 start-page: 231 year: 2015 end-page: 242 ident: bb0020 article-title: Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation publication-title: New Phytol. – volume: 88 start-page: 33 year: 2013 end-page: 42 ident: bb0390 article-title: Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators publication-title: Environ. Exp. Bot. – volume: 130 start-page: 283 year: 2009 end-page: 290 ident: bb0325 article-title: Effects of selenium on wheat seedlings under drought stress publication-title: Biol. Trace Elem. Res. – volume: 8 start-page: 1 year: 1998 end-page: 7 ident: bb0295 article-title: The significance of metal hyperaccumulation for biotic interactions publication-title: Chemoecology – volume: 237 start-page: 717 year: 2013 end-page: 729 ident: bb0420 article-title: Inoculation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi affects growth and selenium accumulation publication-title: Planta – year: 2001 ident: bb0365 article-title: Molecular Evidence for the Early Colonization of Land Plants by Fungi and Plants – volume: 12 start-page: 371 year: 1964 end-page: 374 ident: bb0045 article-title: Selenium in vegetables: amount and chemical form of selenium in vegetable plants publication-title: J. Agric. Food Chem. – start-page: 279 year: 1992 end-page: 289 ident: bb0070 article-title: The raison d'être for metal hyperaccumulation by plants publication-title: Veg. Ultramafic Soils – volume: 0 start-page: 373 year: 2005 end-page: 389 ident: bb0195 article-title: Selenium uptake, translocation, assimilation and metabolic fate in plants publication-title: Photosynth. Res. – volume: 96 start-page: 372 year: 2016 end-page: 380 ident: bb0330 article-title: Selenium (Se) improves drought tolerance in crop plants - a myth or fact? publication-title: J. Sci. Food Agric. – volume: 202 start-page: 1 year: 2009 end-page: 11 ident: bb0305 article-title: Elemental allelopathy: processes, progress, and pitfalls publication-title: Plant Ecol. – volume: 239 start-page: 235 year: 1996 end-page: 238 ident: bb0210 article-title: On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus publication-title: Eur. J. Biochem. – volume: 49 start-page: 643 year: 1998 end-page: 668 ident: bb0065 article-title: Phytoremediation publication-title: Annu. Rev. Plant Physiol. – volume: 119 start-page: 123 year: 1999 end-page: 132 ident: bb0200 article-title: Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance publication-title: Plant Physiol. – volume: 159 start-page: 1834 year: 2012 end-page: 1844 ident: bb0380 article-title: Selenium distribution and speciation in the hyperaccumulator publication-title: Plant Physiol. – volume: 32 start-page: 723 year: 2008 end-page: 735 ident: bb0440 article-title: Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution publication-title: FEMS Microbiol. Rev. – volume: 206 start-page: 284 year: 1998 end-page: 292 ident: bb0220 article-title: Accumulation and volatilization of different chemical species of selenium by plants publication-title: Planta – volume: 62 start-page: 5633 year: 2011 end-page: 5640 ident: bb0225 article-title: Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata publication-title: J. Exp. Bot. – volume: 98 start-page: 1139 year: 2011 end-page: 1147 ident: bb0375 article-title: Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range1 publication-title: Am. J. Bot. – volume: 295 start-page: 69 year: 2017 end-page: 79 ident: bb0180 article-title: Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review publication-title: Geoderma – year: 1935 ident: bb0130 article-title: Selenium and Other Toxic Minerals in Soils and Vegetation – volume: 191 start-page: 120 year: 2011 end-page: 131 ident: bb0290 article-title: Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? publication-title: New Phytol. – volume: 2 start-page: 373 year: 1936 end-page: 396 ident: bb0135 article-title: Plants Made Poisonous by Selenium Absorbed from the Soil – volume: 7 start-page: 4199 year: 2015 end-page: 4239 ident: bb0105 article-title: Selenium cycling across soil-plant-atmosphere interfaces: a critical review publication-title: Nutrients – volume: 205 start-page: 583 year: 2015 end-page: 595 ident: bb0355 article-title: Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis publication-title: New Phytol. – volume: 35 start-page: 322 year: 2016 end-page: 329 ident: bb0490 article-title: Metal contaminant accumulation in the hive: consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.) publication-title: Environ. Toxicol. Chem. – volume: 79 start-page: 119 year: 2003 end-page: 184 ident: bb0120 article-title: Distribution and management of seleniferous soils publication-title: Adv. Agron. – volume: 149 start-page: 61 year: 2001 end-page: 69 ident: bb0010 article-title: Ecotypic variation in selenium accumulation among populations of Stanleya pinnata publication-title: New Phytol. – volume: 83 start-page: 181 year: 1972 end-page: 190 ident: bb0125 article-title: Selenium accumulation in soils and its absorption by plants and animals publication-title: Bull. Geol. Soc. Am. – volume: 138 start-page: 409 year: 2005 end-page: 420 ident: bb0215 article-title: Molecular and biochemical characterization of the selenocysteine Se -methyltransferase gene and Se -methylselenocysteine synthesis in broccoli publication-title: Plant Physiol. – volume: 60 start-page: 107 year: 2006 end-page: 130 ident: bb0185 article-title: Arsenic and selenium in microbial metabolism publication-title: Annu. Rev. Microbiol. – volume: 18 start-page: 309 year: 2005 end-page: 318 ident: bb0230 article-title: Biogeochemistry of selenium and its impact on food chain quality and human health publication-title: J. Trace Elem. Med. Biol. – volume: 9 start-page: 1 year: 2014 end-page: 8 ident: bb0090 article-title: Landscape heterogeneity-biodiversity relationship: effect of range size publication-title: PLoS One – volume: 101 start-page: 830 year: 2014 end-page: 839 ident: bb0025 article-title: Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): a field survey and common-garden experiment publication-title: Am. J. Bot. – volume: 95 start-page: 6 year: 2013 end-page: 14 ident: bb0345 article-title: Selenium uptake, speciation and stressed response of Nicotiana tabacum L publication-title: Environ. Exp. Bot. – volume: 100 start-page: 111 year: 2007 end-page: 118 ident: bb0250 article-title: Extraordinarily high leaf selenium to sulfur ratios define “Se-accumulator” plants publication-title: Ann. Bot. – volume: 28 start-page: 821 year: 1936 end-page: 823 ident: bb0145 article-title: Selenium in Hawaii: and its probable source in the United States publication-title: Ind. Eng. Chem. – volume: 46 start-page: 57 year: 2014 end-page: 71 ident: bb0160 article-title: Contaminants from Cretaceous black shale: I. Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium publication-title: Appl. Geochem. – volume: 17 start-page: 777 year: 2015 end-page: 786 ident: bb0430 article-title: Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients publication-title: Int. J. Phytoremediation – volume: 119 start-page: 400 year: 2015 end-page: 410 ident: bb0435 article-title: Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions publication-title: J. Appl. Microbiol. – volume: 26 start-page: 257 year: 1939 end-page: 269 ident: bb0150 article-title: The use of indicator plants in locating seleniferous areas in Western United States. I publication-title: Am. J. Bot. – volume: 36 start-page: 94 year: 2007 end-page: 97 ident: bb0165 article-title: Selenium geochemistry and health publication-title: Ambio – volume: 143 start-page: 1704 year: 2011 end-page: 1721 ident: bb0320 article-title: Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings publication-title: Biol. Trace Elem. Res. – volume: 41 start-page: 7151 year: 2007 end-page: 7165 ident: bb0115 article-title: Reviews on atmospheric selenium: emissions, speciation and fate publication-title: Atmos. Environ. – volume: 16 start-page: 2181 year: 2006 end-page: 2192 ident: bb0455 article-title: Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense publication-title: Curr. Biol. – volume: 341 start-page: 51 year: 2011 end-page: 61 ident: bb0310 article-title: Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat-evidence for specialist decomposers? publication-title: Plant Soil – volume: 75 start-page: 3 year: 2005 end-page: 35 ident: bb0085 article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge publication-title: Ecol. Monogr. – start-page: 1 year: 1921 end-page: 35 ident: bb0040 article-title: Bulletin No. 126 - Poisonous Plants of Wyoming – volume: 57 start-page: 275 year: 2013 end-page: 280 ident: bb0400 article-title: Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy publication-title: J. Cereal Sci. – volume: 8 start-page: 81 year: 2009 end-page: 110 ident: bb0095 article-title: Selenium environmental cycling and bioavailability: a structural chemist point of view publication-title: Rev. Environ. Sci. Biotechnol. – volume: 239 start-page: 267 year: 2014 end-page: 275 ident: bb0060 article-title: Evolutionary aspects of elemental hyperaccumulation publication-title: Planta – volume: 150 start-page: 107 year: 2014 end-page: 118 ident: bb0415 article-title: Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi-investigation of effects on Se accumulation and speciation publication-title: Physiol. Plant. – volume: 173 start-page: 517 year: 2007 end-page: 525 ident: bb0080 article-title: Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators publication-title: New Phytol. – volume: 23 start-page: 263 year: 1992 end-page: 336 ident: bb0300 article-title: Positive-feedback switches in plant-communities publication-title: Adv. Ecol. Res. – volume: 142 start-page: 124 year: 2006 end-page: 134 ident: bb0265 article-title: Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata publication-title: Plant Physiol. – volume: 99 start-page: 1930 year: 2012 end-page: 1941 ident: bb0285 article-title: Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis publication-title: Am. J. Bot. – volume: 128 start-page: 212 year: 2006 end-page: 223 ident: bb0015 article-title: Investigation of selenium tolerance mechanisms in Arabidopsis thaliana publication-title: Physiol. Plant. – volume: 51 start-page: 401 year: 2000 end-page: 432 ident: bb0190 article-title: Selenium in higher plants publication-title: Annu. Rev. Plant Physiol. – volume: 239 start-page: 479 year: 2014 end-page: 491 ident: bb0255 article-title: Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae) publication-title: Planta – start-page: 257 year: 2017 end-page: 275 ident: bb0235 article-title: Effects of selenium on plant metabolism and implications for crops and consumers publication-title: Selenium Plants Mol. Physiol. Ecol. Evol. Asp – volume: 293 start-page: 153 year: 2007 end-page: 176 ident: bb0075 article-title: The Defense Hypothesis of Elemental Hyperaccumulation: Status, Challenges and New Directions – volume: 48 start-page: 16 year: 2014 end-page: 27 ident: bb0170 article-title: Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River basin, Colorado publication-title: Appl. Geochem. – volume: 162 start-page: 655 year: 2004 end-page: 662 ident: bb0450 article-title: Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity publication-title: New Phytol. – volume: 221 start-page: 1 year: 1937 end-page: 64 ident: bb0005 article-title: The occurrence of selenium and seleniferous vegetation in Wyoming publication-title: Wyo. Agric. Exp. Station. Bull. – year: 2014 ident: bb0385 article-title: Analysis of selenium accumulation, speciation and tolerance of potential selenium hyperaccumulator Symphyotrichum ericoides publication-title: Physiol. Plant. – volume: 175 start-page: 350 year: 2015 end-page: 357 ident: bb0335 article-title: Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions publication-title: Food Chem. – volume: 153 start-page: 1630 year: 2010 end-page: 1652 ident: bb0270 article-title: Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata publication-title: Plant Physiol. – volume: 117 start-page: 217 year: 2016 end-page: 235 ident: bb0050 article-title: Selenium accumulation by plants publication-title: Ann. Bot. – year: 2013 ident: bb0110 article-title: Arsenic and Selenium – volume: 155 start-page: 267 year: 2008 end-page: 275 ident: bb0470 article-title: The role of selenium in protecting plants against prairie dog herbivory: implications for the evolution of selenium hyperaccumulation publication-title: Oecologia – volume: 7 start-page: 1 year: 2012 end-page: 12 ident: bb0480 article-title: Selenium Hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle seed herbivores publication-title: PLoS One – year: 2017 ident: bb0055 article-title: Selenium in Plants – volume: 6 start-page: 1 year: 2015 end-page: 17 ident: bb0395 article-title: Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties publication-title: Front. Plant Sci. – volume: 96 start-page: 1075 year: 2009 end-page: 1085 ident: bb0475 article-title: Selenium protects the hyperaccumulator stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats publication-title: Am. J. Bot. – volume: 112 start-page: 8362 year: 2015 end-page: 8366 ident: bb0140 article-title: The butterfly plant arms-race escalated by gene and genome duplications publication-title: Proc. Natl. Acad. Sci. – volume: 96 start-page: 319 year: 2015 end-page: 326 ident: bb0410 article-title: Endophytic selenobacteria as new inocula for selenium biofortification publication-title: Appl. Soil Ecol. – volume: 14 start-page: 209 year: 2013 ident: bb0360 article-title: The plant microbiome publication-title: Genome Biol. – volume: 24 start-page: 96 year: 1937 end-page: 101 ident: bb0030 publication-title: Selenium in Soils and Vegetation Associated with Rocks of Permian and Triassic Age – volume: 143 start-page: 1758 year: 2011 end-page: 1776 ident: bb0340 article-title: Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings publication-title: Biol. Trace Elem. Res. – volume: 194 start-page: 264 year: 2012 end-page: 277 ident: bb0280 article-title: Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil - the importance of having good neighbors publication-title: New Phytol. – volume: 21 start-page: 1440 year: 2011 end-page: 1449 ident: bb0350 article-title: Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory publication-title: Curr. Biol. – volume: 84 start-page: 484 year: 1936 end-page: 485 ident: bb0035 article-title: Selenium bearing vegetation during the late cretaceous publication-title: Science – volume: 192 start-page: 727 year: 2011 end-page: 737 ident: bb0260 article-title: Selenium accumulation in flowers and its effects on pollination publication-title: New Phytol. – volume: 209 start-page: 259 year: 1999 end-page: 263 ident: bb0425 article-title: Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants publication-title: Planta – volume: 213 start-page: 1582 year: 2017 end-page: 1596 ident: bb0175 article-title: The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology publication-title: New Phytol. – volume: 177 start-page: 715 year: 2008 end-page: 724 ident: bb0465 article-title: Selenium hyperaccumulation reduces plant arthropod loads in the field publication-title: New Phytol. – volume: 26 start-page: S222 year: 2011 end-page: S226 ident: bb0155 article-title: What controls selenium release during shale weathering? publication-title: Appl. Geochem. – volume: 6 start-page: 2 year: 2015 ident: bb0240 article-title: Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of publication-title: Front. Plant Sci. – volume: 277 start-page: 367 year: 2005 end-page: 374 ident: bb0315 article-title: Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se publication-title: Plant Soil – volume: 60 start-page: 53 year: 2012 end-page: 58 ident: bb0405 article-title: The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity publication-title: Plant Physiol. Biochem. – start-page: 275 year: 1993 end-page: 301 ident: bb0485 article-title: Management of the – volume: 217 start-page: 194 year: 2018 end-page: 205 ident: bb0245 article-title: Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae publication-title: New Phytol. – volume: 159 start-page: 461 year: 2003 end-page: 469 ident: bb0370 article-title: Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection publication-title: New Phytol. – volume: 128 start-page: 212 year: 2006 ident: 10.1016/j.bbagen.2018.04.018_bb0015 article-title: Investigation of selenium tolerance mechanisms in Arabidopsis thaliana publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2006.00739.x – volume: 138 start-page: 409 year: 2005 ident: 10.1016/j.bbagen.2018.04.018_bb0215 article-title: Molecular and biochemical characterization of the selenocysteine Se -methyltransferase gene and Se -methylselenocysteine synthesis in broccoli publication-title: Plant Physiol. doi: 10.1104/pp.104.056549 – ident: 10.1016/j.bbagen.2018.04.018_bb0130 – volume: 117 start-page: 217 year: 2016 ident: 10.1016/j.bbagen.2018.04.018_bb0050 article-title: Selenium accumulation by plants publication-title: Ann. Bot. – volume: 175 start-page: 350 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0335 article-title: Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.11.147 – volume: 24 start-page: 96 year: 1937 ident: 10.1016/j.bbagen.2018.04.018_bb0030 publication-title: Selenium in Soils and Vegetation Associated with Rocks of Permian and Triassic Age – volume: 2 start-page: 373 year: 1936 ident: 10.1016/j.bbagen.2018.04.018_bb0135 – volume: 142 start-page: 124 year: 2006 ident: 10.1016/j.bbagen.2018.04.018_bb0265 article-title: Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata publication-title: Plant Physiol. doi: 10.1104/pp.106.081158 – volume: 12 start-page: 371 year: 1964 ident: 10.1016/j.bbagen.2018.04.018_bb0045 article-title: Selenium in vegetables: amount and chemical form of selenium in vegetable plants publication-title: J. Agric. Food Chem. doi: 10.1021/jf60134a018 – year: 2013 ident: 10.1016/j.bbagen.2018.04.018_bb0110 – volume: 159 start-page: 461 year: 2003 ident: 10.1016/j.bbagen.2018.04.018_bb0370 article-title: Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00786.x – volume: 206 start-page: 284 year: 1998 ident: 10.1016/j.bbagen.2018.04.018_bb0220 article-title: Accumulation and volatilization of different chemical species of selenium by plants publication-title: Planta doi: 10.1007/s004250050402 – volume: 175 start-page: 490 year: 2007 ident: 10.1016/j.bbagen.2018.04.018_bb0460 article-title: Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02119.x – volume: 84 start-page: 484 year: 1936 ident: 10.1016/j.bbagen.2018.04.018_bb0035 article-title: Selenium bearing vegetation during the late cretaceous publication-title: Science doi: 10.1126/science.84.2187.484 – volume: 150 start-page: 107 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0415 article-title: Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi-investigation of effects on Se accumulation and speciation publication-title: Physiol. Plant. doi: 10.1111/ppl.12094 – start-page: 275 year: 1993 ident: 10.1016/j.bbagen.2018.04.018_bb0485 – volume: 209 start-page: 259 year: 1999 ident: 10.1016/j.bbagen.2018.04.018_bb0425 article-title: Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants publication-title: Planta doi: 10.1007/s004250050630 – volume: 96 start-page: 372 year: 2016 ident: 10.1016/j.bbagen.2018.04.018_bb0330 article-title: Selenium (Se) improves drought tolerance in crop plants - a myth or fact? publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.7231 – volume: 8 start-page: 81 year: 2009 ident: 10.1016/j.bbagen.2018.04.018_bb0095 article-title: Selenium environmental cycling and bioavailability: a structural chemist point of view publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-009-9145-3 – volume: 96 start-page: 1075 year: 2009 ident: 10.1016/j.bbagen.2018.04.018_bb0475 article-title: Selenium protects the hyperaccumulator stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats publication-title: Am. J. Bot. doi: 10.3732/ajb.0800287 – volume: 277 start-page: 367 year: 2005 ident: 10.1016/j.bbagen.2018.04.018_bb0315 article-title: Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se publication-title: Plant Soil doi: 10.1007/s11104-005-8161-5 – volume: 155 start-page: 267 year: 2008 ident: 10.1016/j.bbagen.2018.04.018_bb0470 article-title: The role of selenium in protecting plants against prairie dog herbivory: implications for the evolution of selenium hyperaccumulation publication-title: Oecologia doi: 10.1007/s00442-007-0907-8 – volume: 173 start-page: 517 year: 2007 ident: 10.1016/j.bbagen.2018.04.018_bb0080 article-title: Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01943.x – volume: 18 start-page: 309 year: 2005 ident: 10.1016/j.bbagen.2018.04.018_bb0230 article-title: Biogeochemistry of selenium and its impact on food chain quality and human health publication-title: J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2005.02.009 – volume: 166 start-page: 603 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0275 article-title: Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.06.071 – volume: 46 start-page: 57 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0160 article-title: Contaminants from Cretaceous black shale: I. Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2013.12.010 – year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0385 article-title: Analysis of selenium accumulation, speciation and tolerance of potential selenium hyperaccumulator Symphyotrichum ericoides publication-title: Physiol. Plant. doi: 10.1111/ppl.12149 – volume: 62 start-page: 5633 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0225 article-title: Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata publication-title: J. Exp. Bot. doi: 10.1093/jxb/err247 – volume: 6 start-page: 2 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0240 article-title: Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00002 – volume: 202 start-page: 1 year: 2009 ident: 10.1016/j.bbagen.2018.04.018_bb0305 article-title: Elemental allelopathy: processes, progress, and pitfalls publication-title: Plant Ecol. doi: 10.1007/s11258-008-9470-6 – volume: 57 start-page: 275 year: 2013 ident: 10.1016/j.bbagen.2018.04.018_bb0400 article-title: Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2012.11.012 – volume: 239 start-page: 235 year: 1996 ident: 10.1016/j.bbagen.2018.04.018_bb0210 article-title: On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.0235u.x – start-page: 1 year: 1921 ident: 10.1016/j.bbagen.2018.04.018_bb0040 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0090 article-title: Landscape heterogeneity-biodiversity relationship: effect of range size publication-title: PLoS One doi: 10.1371/journal.pone.0093359 – volume: 130 start-page: 283 year: 2009 ident: 10.1016/j.bbagen.2018.04.018_bb0325 article-title: Effects of selenium on wheat seedlings under drought stress publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-009-8328-7 – volume: 100 start-page: 111 year: 2007 ident: 10.1016/j.bbagen.2018.04.018_bb0250 article-title: Extraordinarily high leaf selenium to sulfur ratios define “Se-accumulator” plants publication-title: Ann. Bot. doi: 10.1093/aob/mcm084 – volume: 98 start-page: 1139 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0375 article-title: Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range1 publication-title: Am. J. Bot. doi: 10.3732/ajb.1000369 – volume: 237 start-page: 717 year: 2013 ident: 10.1016/j.bbagen.2018.04.018_bb0420 article-title: Inoculation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi affects growth and selenium accumulation publication-title: Planta doi: 10.1007/s00425-012-1789-5 – volume: 0 start-page: 373 year: 2005 ident: 10.1016/j.bbagen.2018.04.018_bb0195 article-title: Selenium uptake, translocation, assimilation and metabolic fate in plants publication-title: Photosynth. Res. doi: 10.1007/s11120-005-5222-9 – volume: 49 start-page: 643 year: 1998 ident: 10.1016/j.bbagen.2018.04.018_bb0065 article-title: Phytoremediation publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.arplant.49.1.643 – volume: 7 start-page: 4199 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0105 article-title: Selenium cycling across soil-plant-atmosphere interfaces: a critical review publication-title: Nutrients doi: 10.3390/nu7064199 – volume: 149 start-page: 61 year: 2001 ident: 10.1016/j.bbagen.2018.04.018_bb0010 article-title: Ecotypic variation in selenium accumulation among populations of Stanleya pinnata publication-title: New Phytol. doi: 10.1046/j.1469-8137.2001.00004.x – volume: 153 start-page: 1630 year: 2010 ident: 10.1016/j.bbagen.2018.04.018_bb0270 article-title: Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata publication-title: Plant Physiol. doi: 10.1104/pp.110.156570 – volume: 7 start-page: 1 year: 2012 ident: 10.1016/j.bbagen.2018.04.018_bb0480 article-title: Selenium Hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle seed herbivores publication-title: PLoS One doi: 10.1371/journal.pone.0050516 – volume: 143 start-page: 1758 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0340 article-title: Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-011-8998-9 – volume: 28 start-page: 821 year: 1936 ident: 10.1016/j.bbagen.2018.04.018_bb0145 article-title: Selenium in Hawaii: and its probable source in the United States publication-title: Ind. Eng. Chem. doi: 10.1021/ie50319a018 – volume: 41 start-page: 7151 year: 2007 ident: 10.1016/j.bbagen.2018.04.018_bb0115 article-title: Reviews on atmospheric selenium: emissions, speciation and fate publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.07.035 – volume: 21 start-page: 1440 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0350 article-title: Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.07.033 – volume: 213 start-page: 1582 year: 2017 ident: 10.1016/j.bbagen.2018.04.018_bb0175 article-title: The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology publication-title: New Phytol. doi: 10.1111/nph.14378 – volume: 23 start-page: 263 year: 1992 ident: 10.1016/j.bbagen.2018.04.018_bb0300 article-title: Positive-feedback switches in plant-communities publication-title: Adv. Ecol. Res. doi: 10.1016/S0065-2504(08)60149-X – volume: 8 start-page: 1 year: 1998 ident: 10.1016/j.bbagen.2018.04.018_bb0295 article-title: The significance of metal hyperaccumulation for biotic interactions publication-title: Chemoecology doi: 10.1007/s000490050002 – volume: 83 start-page: 181 year: 1972 ident: 10.1016/j.bbagen.2018.04.018_bb0125 article-title: Selenium accumulation in soils and its absorption by plants and animals publication-title: Bull. Geol. Soc. Am. doi: 10.1130/0016-7606(1972)83[181:SAISAI]2.0.CO;2 – volume: 119 start-page: 400 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0435 article-title: Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12842 – volume: 221 start-page: 1 year: 1937 ident: 10.1016/j.bbagen.2018.04.018_bb0005 article-title: The occurrence of selenium and seleniferous vegetation in Wyoming publication-title: Wyo. Agric. Exp. Station. Bull. – volume: 32 start-page: 723 year: 2008 ident: 10.1016/j.bbagen.2018.04.018_bb0440 article-title: Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2008.00123.x – volume: 26 start-page: 257 year: 1939 ident: 10.1016/j.bbagen.2018.04.018_bb0150 article-title: The use of indicator plants in locating seleniferous areas in Western United States. I publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1939.tb12900.x – volume: 35 start-page: 322 year: 2016 ident: 10.1016/j.bbagen.2018.04.018_bb0490 article-title: Metal contaminant accumulation in the hive: consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.) publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3273 – volume: 99 start-page: 1930 year: 2012 ident: 10.1016/j.bbagen.2018.04.018_bb0285 article-title: Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis publication-title: Am. J. Bot. doi: 10.3732/ajb.1200124 – volume: 26 start-page: S222 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0155 article-title: What controls selenium release during shale weathering? publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2011.03.109 – volume: 293 start-page: 153 year: 2007 ident: 10.1016/j.bbagen.2018.04.018_bb0075 – volume: 95 start-page: 6 year: 2013 ident: 10.1016/j.bbagen.2018.04.018_bb0345 article-title: Selenium uptake, speciation and stressed response of Nicotiana tabacum L publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2013.07.001 – volume: 51 start-page: 401 year: 2000 ident: 10.1016/j.bbagen.2018.04.018_bb0190 article-title: Selenium in higher plants publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.arplant.51.1.401 – volume: 14 start-page: 1 year: 2012 ident: 10.1016/j.bbagen.2018.04.018_bb0445 article-title: Ecological aspects of plant selenium hyperaccumulation publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2011.00535.x – volume: 60 start-page: 53 year: 2012 ident: 10.1016/j.bbagen.2018.04.018_bb0405 article-title: The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.07.018 – volume: 17 start-page: 777 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0430 article-title: Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients publication-title: Int. J. Phytoremediation doi: 10.1080/15226514.2014.987372 – volume: 239 start-page: 479 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0255 article-title: Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae) publication-title: Planta doi: 10.1007/s00425-013-1996-8 – volume: 96 start-page: 319 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0410 article-title: Endophytic selenobacteria as new inocula for selenium biofortification publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.08.016 – volume: 239 start-page: 267 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0060 article-title: Evolutionary aspects of elemental hyperaccumulation publication-title: Planta doi: 10.1007/s00425-013-1983-0 – volume: 48 start-page: 16 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0170 article-title: Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River basin, Colorado publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.06.024 – volume: 194 start-page: 264 year: 2012 ident: 10.1016/j.bbagen.2018.04.018_bb0280 article-title: Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil - the importance of having good neighbors publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.04043.x – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0395 article-title: Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00113 – volume: 205 start-page: 583 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0355 article-title: Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis publication-title: New Phytol. doi: 10.1111/nph.13071 – volume: 192 start-page: 727 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0260 article-title: Selenium accumulation in flowers and its effects on pollination publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03832.x – volume: 206 start-page: 231 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0020 article-title: Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation publication-title: New Phytol. doi: 10.1111/nph.13164 – volume: 75 start-page: 3 year: 2005 ident: 10.1016/j.bbagen.2018.04.018_bb0085 article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge publication-title: Ecol. Monogr. doi: 10.1890/04-0922 – volume: 159 start-page: 1834 year: 2012 ident: 10.1016/j.bbagen.2018.04.018_bb0380 article-title: Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners publication-title: Plant Physiol. doi: 10.1104/pp.112.199307 – volume: 112 start-page: 965 year: 2013 ident: 10.1016/j.bbagen.2018.04.018_bb0205 article-title: A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants publication-title: Ann. Bot. doi: 10.1093/aob/mct163 – year: 2017 ident: 10.1016/j.bbagen.2018.04.018_bb0055 – volume: 177 start-page: 715 year: 2008 ident: 10.1016/j.bbagen.2018.04.018_bb0465 article-title: Selenium hyperaccumulation reduces plant arthropod loads in the field publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02285.x – volume: 217 start-page: 194 year: 2018 ident: 10.1016/j.bbagen.2018.04.018_bb0245 article-title: Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae publication-title: New Phytol. doi: 10.1111/nph.14838 – volume: 88 start-page: 33 year: 2013 ident: 10.1016/j.bbagen.2018.04.018_bb0390 article-title: Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2011.12.011 – volume: 16 start-page: 2181 year: 2006 ident: 10.1016/j.bbagen.2018.04.018_bb0455 article-title: Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.09.015 – volume: 13 start-page: 49 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0100 article-title: Biogeochemistry of selenium. A review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-014-0487-x – volume: 101 start-page: 830 year: 2014 ident: 10.1016/j.bbagen.2018.04.018_bb0025 article-title: Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): a field survey and common-garden experiment publication-title: Am. J. Bot. doi: 10.3732/ajb.1400041 – volume: 36 start-page: 94 year: 2007 ident: 10.1016/j.bbagen.2018.04.018_bb0165 article-title: Selenium geochemistry and health publication-title: Ambio doi: 10.1579/0044-7447(2007)36[94:SGAH]2.0.CO;2 – volume: 60 start-page: 107 year: 2006 ident: 10.1016/j.bbagen.2018.04.018_bb0185 article-title: Arsenic and selenium in microbial metabolism publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.60.080805.142053 – volume: 341 start-page: 51 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0310 article-title: Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat-evidence for specialist decomposers? publication-title: Plant Soil doi: 10.1007/s11104-010-0446-7 – volume: 14 start-page: 209 year: 2013 ident: 10.1016/j.bbagen.2018.04.018_bb0360 article-title: The plant microbiome publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-209 – volume: 79 start-page: 119 year: 2003 ident: 10.1016/j.bbagen.2018.04.018_bb0120 article-title: Distribution and management of seleniferous soils publication-title: Adv. Agron. doi: 10.1016/S0065-2113(02)79003-2 – volume: 191 start-page: 120 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0290 article-title: Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03670.x – volume: 112 start-page: 8362 year: 2015 ident: 10.1016/j.bbagen.2018.04.018_bb0140 article-title: The butterfly plant arms-race escalated by gene and genome duplications publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1503926112 – start-page: 279 year: 1992 ident: 10.1016/j.bbagen.2018.04.018_bb0070 article-title: The raison d'être for metal hyperaccumulation by plants publication-title: Veg. Ultramafic Soils – volume: 295 start-page: 69 year: 2017 ident: 10.1016/j.bbagen.2018.04.018_bb0180 article-title: Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2017.02.019 – volume: 119 start-page: 123 year: 1999 ident: 10.1016/j.bbagen.2018.04.018_bb0200 article-title: Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance publication-title: Plant Physiol. doi: 10.1104/pp.119.1.123 – volume: 143 start-page: 1704 year: 2011 ident: 10.1016/j.bbagen.2018.04.018_bb0320 article-title: Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-011-8958-4 – start-page: 257 year: 2017 ident: 10.1016/j.bbagen.2018.04.018_bb0235 article-title: Effects of selenium on plant metabolism and implications for crops and consumers – year: 2001 ident: 10.1016/j.bbagen.2018.04.018_bb0365 – volume: 162 start-page: 655 year: 2004 ident: 10.1016/j.bbagen.2018.04.018_bb0450 article-title: Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01067.x |
SSID | ssj0000595 |
Score | 2.3772454 |
SecondaryResourceType | review_article |
Snippet | Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000–15,000 mg/kg dry... Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2372 |
SubjectTerms | bioavailability biofortification biotic factors case studies community structure Cycling Defense ecological competition Ecology environmental impact herbivores Hyperaccumulation hyperaccumulators nutrient deficiencies pathogens phytoremediation Plants Selenium soil species diversity toxicity vegetation Western United States |
Title | Plant selenium hyperaccumulation- Ecological effects and potential implications for selenium cycling and community structure |
URI | https://dx.doi.org/10.1016/j.bbagen.2018.04.018 https://www.ncbi.nlm.nih.gov/pubmed/29704528 https://www.proquest.com/docview/2032459816 https://www.proquest.com/docview/2131875015 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA2iiL6Izq_5MSL4Gre0Sdc9ylCmoi8q-BaSNNWJ68bsHgbib_fepp0K6sDHhZsSetLcM3LvOYQcaxcKKbhjALBlwMAdM1zGDHIbJCiDAuDY73x9E_XuxeWDfFgg3aoXBssqy7Pfn-nFaV2ONMu32Rz1-81bvNQDOiFhU6JhOjbxCdHGXX7y_lnmAfRB-psEwTC6ap8raryMgY8WVVB5XAieovXHz-npN_pZpKHzdbJW8kd66pe4QRZcViPL3lFyWiMr3crADUbPCkXq6SZ5Q2uinKKxUtafDOgT_Pkca2sng9K8i1Efi4jRssSD6iyho2GO5UQw2v9Sek6B6X4-zU6xvfKxiLe-3ySfUi9MOxm7LXJ_fnbX7bHSdoFZEfGcxYYLK1tacu2iwoWaW7xeA0RFkhptgEMAkqlO2sLZIDBaRI5HgUkDYwOehNtkMRtmbpdQyI86FB1uUJUutWEcc2uTkKdSy8TyuE7C6m0rW2qSozXGi6qKz56Vx0ghRqolVAtnsdmskdfkmBPfroBU3_aWgrQxZ-ZRhbsC8PAuRWduOHlVaDwvZCfm0R8xHA5MYGRc1smO3zSz9QadNorZx3v_Xts-WcVfvi_ygCwCqu4QCFJuGsUX0CBLpxdXvZsPT5gQLg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqi9oFIeLS1gJDiaXSd2NnvggEqrLX1caKXejO04ZRHNrtqsUCTUP8UfZCZ2-pAolZB6dexo5M-Zmcgz3wfw1vhUKik8R4AdxwzccytUzjG2YYCyRABO_c77B9noSH4-Vsdz8LvrhaGyyuj7g09vvXUc6cXd7E3H494XutTDdELhoSTB9GGsrNz1zU_8bzv_sPMJQX6XJNtbh5sjHqUFuJOZqHluhXSqb5QwPmuVloWjKyS0WhalNRbjJFpbmmIgvUsSa2TmRZbYMrEuEUWK730ACxLdBckmvL-4qivBfEWFqwvJybyuX68tKrMWvQTRroq8ZVglrZG_x8Pb8t027m0vw6OYsLKPYU8ew5yvVuBhkLBsVmBxs1OMw9GtlgK7eQK_SAupZqTkVI1np-wb_u2eGedmp1EtjLMwl44IizUlzFQFm05qql_C0fG1WneGqfXV21xD_Zwn7XwXGlzqhgUm3NmZfwpH9wLGM5ivJpVfBYYB2aRyKCzR4JUuzXPhXJGKUhlVOJGvQdrttnaRBJ20OH7ortrtuw4YacJI96Xu0yp-uWoaSEDumD_ogNQ3DrPGOHXHyjcd7hrBo8sbU_nJ7FyT0r1Uw1xk_5gj0ENjCijUGjwPh-bS3mQ4IPb8_MV_2_YaFkeH-3t6b-dgdx2W6EloytyAeUTYv8TsrLav2q-Bwdf7_vz-AK6_S4o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+selenium+hyperaccumulation-+Ecological+effects+and+potential+implications+for+selenium+cycling+and+community+structure&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Reynolds%2C+R+Jason+B&rft.au=Pilon-Smits%2C+Elizabeth+A+H&rft.date=2018-11-01&rft.issn=0304-4165&rft_id=info:doi/10.1016%2Fj.bbagen.2018.04.018&rft_id=info%3Apmid%2F29704528&rft.externalDocID=29704528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |