High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies

mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) ana...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 69; no. 3; pp. 517 - 532.e11
Main Authors Youn, Ji-Young, Dunham, Wade H., Hong, Seo Jung, Knight, James D.R., Bashkurov, Mikhail, Chen, Ginny I., Bagci, Halil, Rathod, Bhavisha, MacLeod, Graham, Eng, Simon W.M., Angers, Stéphane, Morris, Quaid, Fabian, Marc, Côté, Jean-François, Gingras, Anne-Claude
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. [Display omitted] •We performed BioID on 119 human proteins involved in various facets of mRNA biology•Proximal relationships reveal the spatial organization of RNA regulatory structures•Prey-based analysis identifies 144 protein components of cytosolic RNA granules•UBAP2L, CSDE1, and PRRC2C are required for efficient formation of stress granules Youn et al. performed proximity-based proteomics on 119 human proteins involved in the mRNA life cycle, focusing on cytosolic RNA granule components that are important for mRNA regulation. Systematic analysis of the proximal interactome revealed 144 core components of cytosolic RNA granules and illuminated the spatial organization of RNA regulatory structures.
AbstractList mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.
mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. [Display omitted] •We performed BioID on 119 human proteins involved in various facets of mRNA biology•Proximal relationships reveal the spatial organization of RNA regulatory structures•Prey-based analysis identifies 144 protein components of cytosolic RNA granules•UBAP2L, CSDE1, and PRRC2C are required for efficient formation of stress granules Youn et al. performed proximity-based proteomics on 119 human proteins involved in the mRNA life cycle, focusing on cytosolic RNA granule components that are important for mRNA regulation. Systematic analysis of the proximal interactome revealed 144 core components of cytosolic RNA granules and illuminated the spatial organization of RNA regulatory structures.
mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.
mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.
Author Gingras, Anne-Claude
Hong, Seo Jung
Rathod, Bhavisha
Fabian, Marc
Knight, James D.R.
Eng, Simon W.M.
Côté, Jean-François
Bagci, Halil
Angers, Stéphane
Morris, Quaid
Dunham, Wade H.
MacLeod, Graham
Youn, Ji-Young
Chen, Ginny I.
Bashkurov, Mikhail
Author_xml – sequence: 1
  givenname: Ji-Young
  surname: Youn
  fullname: Youn, Ji-Young
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
– sequence: 2
  givenname: Wade H.
  surname: Dunham
  fullname: Dunham, Wade H.
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
– sequence: 3
  givenname: Seo Jung
  surname: Hong
  fullname: Hong, Seo Jung
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
– sequence: 4
  givenname: James D.R.
  surname: Knight
  fullname: Knight, James D.R.
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
– sequence: 5
  givenname: Mikhail
  surname: Bashkurov
  fullname: Bashkurov, Mikhail
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
– sequence: 6
  givenname: Ginny I.
  surname: Chen
  fullname: Chen, Ginny I.
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
– sequence: 7
  givenname: Halil
  surname: Bagci
  fullname: Bagci, Halil
  organization: Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
– sequence: 8
  givenname: Bhavisha
  surname: Rathod
  fullname: Rathod, Bhavisha
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
– sequence: 9
  givenname: Graham
  surname: MacLeod
  fullname: MacLeod, Graham
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
– sequence: 10
  givenname: Simon W.M.
  surname: Eng
  fullname: Eng, Simon W.M.
  organization: Department of Immunology, University of Toronto, Toronto, ON, Canada
– sequence: 11
  givenname: Stéphane
  surname: Angers
  fullname: Angers, Stéphane
  organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
– sequence: 12
  givenname: Quaid
  surname: Morris
  fullname: Morris, Quaid
  organization: Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
– sequence: 13
  givenname: Marc
  surname: Fabian
  fullname: Fabian, Marc
  organization: Department of Oncology, McGill University, Montréal, QC, Canada
– sequence: 14
  givenname: Jean-François
  surname: Côté
  fullname: Côté, Jean-François
  organization: Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
– sequence: 15
  givenname: Anne-Claude
  surname: Gingras
  fullname: Gingras, Anne-Claude
  email: gingras@lunenfeld.ca
  organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29395067$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wDxDykk1S27GdmAXSUPpAKhQVWFuOfTP1KLGndlK1_fXNMAMLFnR17-I7516dc4j2QgyA0FtKSkqoPF6VQ-wt9CUjtC4pKwkjL9ABJaouOJV8b7ezWop9dJjzihDKRaNeoX2mKiWIrA_Q6sIvb4rPELIfH_D3FO_9sNm-mvXahyW-hjswfcbjDeAfUzvf66feJHyVlib4RzP6GHDs8HD9bVEsco7WmxEcPk8mTD1kbILDn6LzkF-jl91sBW928wj9Ojv9eXJRXF6dfzlZXBaWSzoWjTSuaSplaAdt1zBR0boVtLWCmYZSJ0HITjaK1zXhikLlbCWkIy1zwhnGqiP0fuu7TvF2gjzqwefN4yZAnLJmsyXjXMnqWZSqOSglKOEz-m6HTu0ATq-TH0x60H-inAG-BWyKOSfo_iKU6E1jeqW3jelNY5oyPTc2yz78I7N-_B3rmIzvnxN_3IphzvPOQ9LZeggWnE9gR-2i_7_BE44es14
CitedBy_id crossref_primary_10_1038_s41418_019_0350_5
crossref_primary_10_1016_j_trecan_2021_05_006
crossref_primary_10_3389_fcell_2020_618733
crossref_primary_10_1093_nar_gkac704
crossref_primary_10_3390_genes14061293
crossref_primary_10_1021_acs_jproteome_9b00825
crossref_primary_10_1016_j_semcdb_2024_01_002
crossref_primary_10_1007_s12035_019_01667_w
crossref_primary_10_1016_j_mib_2021_03_005
crossref_primary_10_1073_pnas_1905455116
crossref_primary_10_2139_ssrn_3188424
crossref_primary_10_3389_fcell_2021_708702
crossref_primary_10_1038_s41583_024_00859_1
crossref_primary_10_1038_s41598_019_50102_6
crossref_primary_10_3390_biom10101367
crossref_primary_10_1016_j_jmb_2022_167636
crossref_primary_10_1111_febs_17217
crossref_primary_10_1073_pnas_2007670117
crossref_primary_10_1093_nar_gkae1106
crossref_primary_10_1016_j_gendis_2023_01_016
crossref_primary_10_3389_fmolb_2023_1155521
crossref_primary_10_1074_mcp_RA120_002316
crossref_primary_10_1371_journal_ppat_1008250
crossref_primary_10_1038_s41598_021_83395_7
crossref_primary_10_1007_s12035_024_04555_0
crossref_primary_10_1016_j_jmb_2022_167523
crossref_primary_10_26508_lsa_202101260
crossref_primary_10_1093_bib_bbaa187
crossref_primary_10_1126_science_abf6548
crossref_primary_10_1016_j_jmb_2018_07_006
crossref_primary_10_1021_acs_analchem_8b02667
crossref_primary_10_1038_s41589_024_01721_2
crossref_primary_10_1038_s41580_020_00303_z
crossref_primary_10_1021_jacs_4c06530
crossref_primary_10_1042_EBC20210024
crossref_primary_10_1038_s41556_024_01363_5
crossref_primary_10_1016_j_cell_2023_09_006
crossref_primary_10_1111_acel_13136
crossref_primary_10_1038_s41420_021_00420_4
crossref_primary_10_1084_jem_20210360
crossref_primary_10_1128_spectrum_01363_22
crossref_primary_10_1016_j_tibs_2021_01_002
crossref_primary_10_1016_j_molcel_2025_01_001
crossref_primary_10_1007_s12250_019_00122_3
crossref_primary_10_1038_s43586_021_00029_y
crossref_primary_10_1093_plcell_koad131
crossref_primary_10_3390_ijms222313021
crossref_primary_10_3390_genes12030345
crossref_primary_10_1021_acs_jpcb_4c05185
crossref_primary_10_1038_s41380_022_01937_5
crossref_primary_10_7554_eLife_95028
crossref_primary_10_1021_acschembio_2c00500
crossref_primary_10_1021_acs_jproteome_3c00908
crossref_primary_10_1016_j_molcel_2018_10_036
crossref_primary_10_1038_s41467_022_31358_5
crossref_primary_10_1016_j_bbagrm_2019_06_009
crossref_primary_10_1111_febs_17390
crossref_primary_10_1038_s41467_024_54000_y
crossref_primary_10_1186_s13041_024_01099_1
crossref_primary_10_1016_j_molcel_2022_05_029
crossref_primary_10_1016_j_molcel_2020_01_006
crossref_primary_10_1021_jacs_9b12208
crossref_primary_10_1016_j_bbagrm_2023_194989
crossref_primary_10_3390_ijms22179428
crossref_primary_10_1016_j_molcel_2018_10_044
crossref_primary_10_12688_f1000research_16903_1
crossref_primary_10_3390_plants9091122
crossref_primary_10_3724_abbs_2023117
crossref_primary_10_1016_j_trecan_2023_08_005
crossref_primary_10_1146_annurev_biochem_032620_105429
crossref_primary_10_3390_ijms21186796
crossref_primary_10_1186_s13059_023_02862_8
crossref_primary_10_1093_femsyr_foac025
crossref_primary_10_1242_jcs_214692
crossref_primary_10_1016_j_celrep_2022_111548
crossref_primary_10_1080_15476286_2020_1868165
crossref_primary_10_1038_s41467_021_25078_5
crossref_primary_10_1111_jnc_15902
crossref_primary_10_1126_sciadv_adl5638
crossref_primary_10_1038_s41580_018_0094_y
crossref_primary_10_1093_plcell_koad288
crossref_primary_10_3390_ijms24021273
crossref_primary_10_1091_mbc_E24_02_0062
crossref_primary_10_1371_journal_ppat_1008683
crossref_primary_10_15252_embj_2023113933
crossref_primary_10_1016_j_devcel_2019_03_009
crossref_primary_10_1038_s44319_023_00043_z
crossref_primary_10_1038_s41467_020_20768_y
crossref_primary_10_1051_medsci_2019035
crossref_primary_10_3389_fcell_2021_671780
crossref_primary_10_1016_j_molcel_2020_01_021
crossref_primary_10_1101_sqb_2019_84_039404
crossref_primary_10_15252_embj_2019101704
crossref_primary_10_1016_j_celrep_2020_02_066
crossref_primary_10_7554_eLife_69377
crossref_primary_10_1016_j_celrep_2022_111678
crossref_primary_10_1038_s41598_020_64623_y
crossref_primary_10_1016_j_bbagrm_2018_10_006
crossref_primary_10_1016_j_isci_2024_110359
crossref_primary_10_1038_s41467_024_46731_9
crossref_primary_10_1016_j_isci_2024_109251
crossref_primary_10_1016_j_celrep_2023_112955
crossref_primary_10_1002_bies_202000097
crossref_primary_10_1038_s41467_024_47449_4
crossref_primary_10_1016_j_molcel_2024_08_030
crossref_primary_10_1016_j_jmb_2021_167159
crossref_primary_10_1016_j_tibs_2020_05_002
crossref_primary_10_3389_fcell_2022_931115
crossref_primary_10_1016_j_tibtech_2023_05_004
crossref_primary_10_1631_jzus_B2000356
crossref_primary_10_15252_embr_202154041
crossref_primary_10_1038_s41586_019_1374_1
crossref_primary_10_1038_s41598_021_00465_6
crossref_primary_10_1126_scisignal_aav7934
crossref_primary_10_1016_j_bbamcr_2020_118831
crossref_primary_10_3389_fmolb_2024_1395220
crossref_primary_10_1083_jcb_202306022
crossref_primary_10_1016_j_coemr_2022_100361
crossref_primary_10_1021_acs_chemrev_2c00608
crossref_primary_10_1021_acs_chemrev_0c00306
crossref_primary_10_1515_hsz_2023_0203
crossref_primary_10_1016_j_molcel_2018_01_020
crossref_primary_10_1038_s41467_022_30322_7
crossref_primary_10_1093_nar_gkaa376
crossref_primary_10_1261_rna_079000_121
crossref_primary_10_1038_s41598_018_27500_3
crossref_primary_10_1093_nar_gkac797
crossref_primary_10_1093_nar_gkac557
crossref_primary_10_1016_j_semcdb_2022_11_008
crossref_primary_10_2139_ssrn_4194127
crossref_primary_10_1021_acs_biochem_8b00001
crossref_primary_10_1080_15548627_2022_2164427
crossref_primary_10_1097_MOH_0000000000000636
crossref_primary_10_3390_cells11040695
crossref_primary_10_3390_cells11061052
crossref_primary_10_1016_j_molcel_2021_04_012
crossref_primary_10_1261_rna_078858_121
crossref_primary_10_1007_s00018_022_04544_3
crossref_primary_10_1186_s40543_023_00389_y
crossref_primary_10_1371_journal_ppat_1010724
crossref_primary_10_1126_science_aax4240
crossref_primary_10_3389_fgene_2020_00450
crossref_primary_10_1093_nar_gkaa145
crossref_primary_10_1016_j_cell_2024_11_028
crossref_primary_10_1038_s41580_021_00356_8
crossref_primary_10_1242_jcs_259618
crossref_primary_10_1038_s41594_020_0477_6
crossref_primary_10_1016_j_celrep_2022_111070
crossref_primary_10_1038_s41592_023_02101_9
crossref_primary_10_1016_j_devcel_2020_09_005
crossref_primary_10_1038_s42003_023_04754_w
crossref_primary_10_1016_j_bbamcr_2022_119380
crossref_primary_10_1016_j_cell_2019_12_031
crossref_primary_10_1126_scisignal_aav1012
crossref_primary_10_1016_j_xplc_2020_100137
crossref_primary_10_1016_j_molcel_2020_11_036
crossref_primary_10_3389_frnar_2023_1226610
crossref_primary_10_1016_j_molcel_2022_05_014
crossref_primary_10_1083_jcb_202005102
crossref_primary_10_3389_fpls_2021_722643
crossref_primary_10_1021_acs_analchem_0c04332
crossref_primary_10_1042_BST20221074
crossref_primary_10_1021_acs_biochem_8b00025
crossref_primary_10_1111_tra_12704
crossref_primary_10_1016_j_xpro_2021_100677
crossref_primary_10_1016_j_molcel_2019_03_027
crossref_primary_10_1038_s41573_022_00409_3
crossref_primary_10_1093_nar_gkz168
crossref_primary_10_3389_fmolb_2021_744707
crossref_primary_10_1038_s41557_024_01663_1
crossref_primary_10_1093_nar_gkae767
crossref_primary_10_1038_s41467_024_48852_7
crossref_primary_10_1139_bcb_2019_0285
crossref_primary_10_1242_jcs_243451
crossref_primary_10_1146_annurev_arplant_070522_052132
crossref_primary_10_3389_fgene_2019_00006
crossref_primary_10_1016_j_isci_2022_103878
crossref_primary_10_1134_S0006297924140116
crossref_primary_10_1002_alz_14555
crossref_primary_10_1242_jcs_242487
crossref_primary_10_1021_acs_jpclett_0c00747
crossref_primary_10_1074_jbc_RA119_007996
crossref_primary_10_1038_s41467_023_43470_1
crossref_primary_10_1007_s11033_019_04606_z
crossref_primary_10_1074_mcp_RA120_002228
crossref_primary_10_1002_cpcb_113
crossref_primary_10_1093_nar_gkad322
crossref_primary_10_1074_mcp_RA118_000822
crossref_primary_10_1083_jcb_202307146
crossref_primary_10_1242_jcs_258834
crossref_primary_10_1126_science_abi6983
crossref_primary_10_1016_j_exer_2021_108889
crossref_primary_10_1016_j_bbamcr_2021_119058
crossref_primary_10_1093_gigascience_giae064
crossref_primary_10_1126_sciadv_adg8771
crossref_primary_10_3390_biom9110680
crossref_primary_10_1111_ggi_14663
crossref_primary_10_1038_s41467_023_38863_1
crossref_primary_10_1016_j_celrep_2023_112211
crossref_primary_10_3390_biom13030527
crossref_primary_10_1016_j_cmet_2020_07_017
crossref_primary_10_1016_j_molp_2024_02_016
crossref_primary_10_1002_pmic_201900392
crossref_primary_10_1074_mcp_R120_001941
crossref_primary_10_1016_j_celrep_2024_113937
crossref_primary_10_3390_v14020291
crossref_primary_10_3390_genes10050333
crossref_primary_10_1016_j_celrep_2024_113935
crossref_primary_10_1038_s41467_019_11550_w
crossref_primary_10_1016_j_molcel_2020_10_032
crossref_primary_10_1016_j_tig_2018_05_005
crossref_primary_10_1152_ajpendo_00225_2023
crossref_primary_10_1096_fba_2022_00115
crossref_primary_10_1007_s00018_020_03565_0
crossref_primary_10_3390_ijms222111767
crossref_primary_10_1261_rna_079988_124
crossref_primary_10_1093_g3journal_jkae221
crossref_primary_10_1038_s41556_019_0438_7
crossref_primary_10_3724_abbs_2023096
crossref_primary_10_1261_rna_079008_121
crossref_primary_10_3389_fgene_2022_832547
crossref_primary_10_3390_ijms20061455
crossref_primary_10_1016_j_jbc_2022_102788
crossref_primary_10_1093_nar_gkab490
crossref_primary_10_3390_cells11233932
crossref_primary_10_1016_j_isci_2021_103321
crossref_primary_10_1038_s41422_024_00967_8
crossref_primary_10_1093_nar_gkad1122
crossref_primary_10_1016_j_jbior_2022_100926
crossref_primary_10_1111_boc_202300049
crossref_primary_10_3389_fcell_2021_683254
crossref_primary_10_3389_fmolb_2022_878646
crossref_primary_10_1016_j_cell_2020_05_012
crossref_primary_10_3390_ijms23073624
crossref_primary_10_1021_acs_jproteome_9b00143
crossref_primary_10_1007_s00018_024_05456_0
crossref_primary_10_1016_j_celrep_2023_113358
crossref_primary_10_1083_jcb_202310006
crossref_primary_10_1021_acschemneuro_2c00262
crossref_primary_10_1016_j_cell_2023_06_007
crossref_primary_10_1038_s41577_021_00500_7
crossref_primary_10_1002_psc_3536
crossref_primary_10_1038_s41569_022_00828_0
crossref_primary_10_1080_15476286_2021_1976986
crossref_primary_10_7554_eLife_46767
crossref_primary_10_1016_j_cellin_2022_100068
crossref_primary_10_1016_j_molcel_2019_08_029
crossref_primary_10_1038_s42003_024_06112_w
crossref_primary_10_1016_j_cub_2019_12_020
crossref_primary_10_1016_j_celrep_2019_03_047
crossref_primary_10_1016_j_molcel_2018_06_016
crossref_primary_10_1073_pnas_1811997115
crossref_primary_10_1186_s12915_022_01437_6
crossref_primary_10_1016_j_molcel_2023_02_018
crossref_primary_10_1093_nar_gkac279
crossref_primary_10_3748_wjg_v26_i35_5223
crossref_primary_10_3390_ijms242316862
crossref_primary_10_1093_nar_gkac033
crossref_primary_10_26599_SAB_2023_9060002
crossref_primary_10_1016_j_celrep_2023_113229
crossref_primary_10_1038_s41592_020_0826_8
crossref_primary_10_1016_j_celrep_2024_114617
crossref_primary_10_1016_j_jbc_2021_100959
crossref_primary_10_1186_s13578_022_00937_w
crossref_primary_10_1242_dev_183053
crossref_primary_10_1038_s41467_018_05647_x
crossref_primary_10_1093_plphys_kiab529
crossref_primary_10_3390_biomedicines10092108
crossref_primary_10_1038_s41467_023_43326_8
crossref_primary_10_1111_1348_0421_12841
crossref_primary_10_1038_s41467_023_37252_y
crossref_primary_10_1093_nar_gkad135
crossref_primary_10_1134_S000629792311010X
crossref_primary_10_1038_s41467_023_43194_2
crossref_primary_10_1101_sqb_2019_84_039396
crossref_primary_10_1038_s41467_019_13973_x
crossref_primary_10_1016_j_bcp_2018_10_009
crossref_primary_10_1093_bioinformatics_btz274
crossref_primary_10_3390_v15020466
crossref_primary_10_1073_pnas_2122523119
crossref_primary_10_1016_j_coisb_2019_03_006
crossref_primary_10_1101_cshperspect_a032813
crossref_primary_10_26508_lsa_201800280
crossref_primary_10_1002_wrna_1741
crossref_primary_10_1111_febs_15821
crossref_primary_10_3390_antiox10091483
crossref_primary_10_1016_j_sbi_2019_10_006
crossref_primary_10_1093_nar_gkad585
crossref_primary_10_1016_j_celrep_2023_112242
crossref_primary_10_31857_S0320972523110118
crossref_primary_10_1093_nar_gkac495
crossref_primary_10_7554_eLife_95718
crossref_primary_10_1371_journal_ppat_1012179
crossref_primary_10_7554_eLife_77058
crossref_primary_10_1186_s12967_021_02948_6
crossref_primary_10_1371_journal_ppat_1011080
crossref_primary_10_1016_j_bbrep_2019_100626
crossref_primary_10_1016_j_jmb_2024_168703
crossref_primary_10_1016_j_bpj_2021_03_028
crossref_primary_10_1093_procel_pwae057
crossref_primary_10_3389_fpls_2020_595792
crossref_primary_10_1016_j_mcpro_2021_100186
crossref_primary_10_1242_jcs_244657
crossref_primary_10_1080_14789450_2019_1638769
crossref_primary_10_1021_acs_jproteome_1c00016
crossref_primary_10_1016_j_celrep_2023_112230
crossref_primary_10_3389_fmolb_2022_852911
crossref_primary_10_3390_ijms23052501
crossref_primary_10_1126_sciadv_abo7112
crossref_primary_10_3389_fcell_2020_00195
crossref_primary_10_1021_acs_jproteome_0c00941
crossref_primary_10_7554_eLife_56525
crossref_primary_10_1080_19490976_2022_2107289
crossref_primary_10_1016_j_bbamcr_2020_118876
crossref_primary_10_1038_s41375_022_01513_4
crossref_primary_10_3892_ijo_2019_4691
crossref_primary_10_1016_j_chembiol_2023_06_008
crossref_primary_10_1080_15476286_2024_2388911
crossref_primary_10_1261_rna_078204_120
crossref_primary_10_1042_ETLS20190187
crossref_primary_10_1016_j_molcel_2019_09_014
crossref_primary_10_3390_v12090984
crossref_primary_10_1242_jcs_229252
crossref_primary_10_3389_fcimb_2023_1151069
crossref_primary_10_3390_ijms241411457
crossref_primary_10_1002_bies_202100296
crossref_primary_10_1128_JVI_00205_20
crossref_primary_10_3390_biochem3010003
crossref_primary_10_1016_j_devcel_2024_12_016
crossref_primary_10_1021_acs_jproteome_8b00537
crossref_primary_10_1016_j_cub_2023_04_012
crossref_primary_10_1016_j_chembiol_2024_08_008
crossref_primary_10_1038_s41589_018_0180_7
crossref_primary_10_1002_bies_201900171
crossref_primary_10_3390_ijms241411463
crossref_primary_10_3389_fimmu_2022_995645
crossref_primary_10_3390_microorganisms12112152
crossref_primary_10_1016_j_tranon_2022_101474
crossref_primary_10_3390_cells12020259
crossref_primary_10_1016_j_tibs_2024_03_004
crossref_primary_10_1038_s41580_019_0168_5
crossref_primary_10_3390_ijms24098290
crossref_primary_10_1016_j_cell_2021_04_011
crossref_primary_10_1016_j_chom_2024_09_002
crossref_primary_10_1093_jb_mvab123
crossref_primary_10_1038_s41467_021_26498_z
crossref_primary_10_1016_j_tcb_2020_12_012
crossref_primary_10_1016_j_plantsci_2019_04_014
crossref_primary_10_1371_journal_pgen_1009599
crossref_primary_10_7554_eLife_42695
crossref_primary_10_1016_j_antiviral_2022_105451
crossref_primary_10_1038_s41598_022_13309_8
crossref_primary_10_1016_j_jbc_2022_102277
crossref_primary_10_1146_annurev_arplant_081720_015238
crossref_primary_10_1093_narcan_zcae014
crossref_primary_10_1038_s41596_020_0399_0
crossref_primary_10_1016_j_molcel_2020_05_017
crossref_primary_10_1101_gad_350518_123
crossref_primary_10_1515_hsz_2022_0302
crossref_primary_10_15698_mic2024_07_829
crossref_primary_10_1093_brain_awz070
crossref_primary_10_1139_bcb_2024_0176
crossref_primary_10_3390_cells9051070
crossref_primary_10_15252_embr_201948375
crossref_primary_10_1016_j_devcel_2023_09_010
crossref_primary_10_1016_j_tips_2023_03_004
crossref_primary_10_3390_ijms23137380
crossref_primary_10_1002_advs_202103817
crossref_primary_10_15252_embj_2022111885
crossref_primary_10_1016_j_bioorg_2023_107041
crossref_primary_10_1016_j_molcel_2022_10_018
crossref_primary_10_1111_febs_15685
crossref_primary_10_1186_s12929_024_00993_z
crossref_primary_10_3389_frnar_2024_1448194
crossref_primary_10_1016_j_ceca_2023_102769
crossref_primary_10_1016_j_cell_2023_05_044
crossref_primary_10_1021_acs_jproteome_8b00320
crossref_primary_10_1038_s42003_020_0758_y
crossref_primary_10_1126_science_abc3593
crossref_primary_10_1186_s12964_023_01310_1
crossref_primary_10_3389_fmolb_2022_991641
crossref_primary_10_1002_ajmg_a_62494
crossref_primary_10_1074_jbc_RA119_011638
crossref_primary_10_15252_embr_202050128
crossref_primary_10_1074_mcp_TIR118_000902
crossref_primary_10_1038_s41467_020_16271_z
crossref_primary_10_1038_s44321_024_00032_2
crossref_primary_10_1016_j_cell_2020_03_049
crossref_primary_10_1021_acs_jproteome_3c00724
crossref_primary_10_1074_jbc_RA118_004973
crossref_primary_10_1016_j_cell_2020_03_046
crossref_primary_10_1038_s41467_022_32151_0
crossref_primary_10_1038_s41598_021_01554_2
crossref_primary_10_1016_j_jmb_2018_08_003
crossref_primary_10_1073_pnas_2002437117
crossref_primary_10_15252_embj_2022110698
crossref_primary_10_1016_j_cell_2020_03_050
crossref_primary_10_1016_j_ymeth_2019_11_003
crossref_primary_10_1126_scisignal_adl6164
crossref_primary_10_1074_mcp_R120_002034
crossref_primary_10_3390_ijms22052598
crossref_primary_10_1016_j_xpro_2021_101075
crossref_primary_10_1096_fj_202101811RR
crossref_primary_10_15302_J_QB_021_0264
crossref_primary_10_1007_s43538_022_00087_0
crossref_primary_10_1038_s41592_020_01010_5
crossref_primary_10_1007_s00439_020_02193_9
crossref_primary_10_1007_s00294_019_01044_z
crossref_primary_10_15252_embr_202256241
crossref_primary_10_1038_s41598_019_40046_2
crossref_primary_10_1111_febs_15426
crossref_primary_10_1016_j_xplc_2024_101225
crossref_primary_10_1101_sqb_2019_84_040329
crossref_primary_10_1016_j_celrep_2024_114781
crossref_primary_10_1016_j_cels_2025_101204
crossref_primary_10_1038_s41586_021_03592_2
crossref_primary_10_1101_cshperspect_a033068
crossref_primary_10_1242_jcs_262119
crossref_primary_10_1186_s12964_018_0274_6
crossref_primary_10_7554_eLife_54995
crossref_primary_10_1016_j_xcrm_2021_100360
crossref_primary_10_1128_JB_00685_20
crossref_primary_10_1038_s41594_020_0427_3
crossref_primary_10_1093_nar_gkz848
crossref_primary_10_3389_fgene_2022_931220
crossref_primary_10_26508_lsa_202000927
crossref_primary_10_3390_ijms252312950
crossref_primary_10_1186_s13023_024_03307_6
crossref_primary_10_1002_pro_4859
crossref_primary_10_1016_j_jprot_2021_104218
crossref_primary_10_3390_proteomes8040037
crossref_primary_10_1093_plcell_koad101
crossref_primary_10_1021_acs_jproteome_2c00706
crossref_primary_10_3390_cells11121877
crossref_primary_10_1002_wrna_1524
crossref_primary_10_1038_s41576_022_00550_0
crossref_primary_10_1105_tpc_20_00235
crossref_primary_10_1021_acs_jproteome_2c00825
crossref_primary_10_1128_mbio_03336_24
crossref_primary_10_1098_rsob_200313
crossref_primary_10_15252_embj_2018101109
crossref_primary_10_1242_jcs_260593
crossref_primary_10_1038_s41598_019_39368_y
crossref_primary_10_1080_15548627_2021_1965711
crossref_primary_10_1016_j_jmb_2020_02_020
crossref_primary_10_3389_fnsyn_2020_615059
crossref_primary_10_1242_jcs_259594
crossref_primary_10_1038_s41467_023_41000_7
crossref_primary_10_1016_j_mib_2024_102467
crossref_primary_10_1073_pnas_1814385116
crossref_primary_10_1038_s41467_024_52215_7
crossref_primary_10_15252_msb_202010016
crossref_primary_10_1016_j_cbpa_2018_10_017
crossref_primary_10_7554_eLife_72588
crossref_primary_10_7554_eLife_95028_3
crossref_primary_10_1016_j_sbi_2020_06_012
crossref_primary_10_3389_fimmu_2018_01094
crossref_primary_10_1016_j_molcel_2018_11_006
crossref_primary_10_1063_5_0050059
crossref_primary_10_1371_journal_ppat_1012666
crossref_primary_10_1093_biolre_ioab168
crossref_primary_10_3390_ijms22031251
crossref_primary_10_1083_jcb_202207091
crossref_primary_10_1016_j_isci_2023_106855
crossref_primary_10_3389_fimmu_2020_605024
crossref_primary_10_1038_s41583_019_0222_5
crossref_primary_10_1242_dmm_049294
crossref_primary_10_1038_s41467_021_27471_6
crossref_primary_10_1016_j_molcel_2020_07_017
crossref_primary_10_1002_wdev_392
crossref_primary_10_1016_j_molcel_2019_07_030
crossref_primary_10_1111_nph_15690
crossref_primary_10_1371_journal_ppat_1010235
crossref_primary_10_1371_journal_ppat_1010598
crossref_primary_10_1002_wrna_1557
crossref_primary_10_1146_annurev_virology_091919_104213
crossref_primary_10_3389_fcell_2021_751892
crossref_primary_10_1016_j_tig_2018_09_006
crossref_primary_10_15252_embj_2022112446
crossref_primary_10_1016_j_semcdb_2022_09_013
crossref_primary_10_1038_s41559_019_0813_6
crossref_primary_10_1016_j_tibs_2021_09_003
crossref_primary_10_7554_eLife_39578
crossref_primary_10_1016_j_molcel_2020_07_001
crossref_primary_10_1016_j_molcel_2022_02_025
crossref_primary_10_1016_j_cbpa_2020_06_013
crossref_primary_10_3389_fphys_2022_910759
crossref_primary_10_1016_j_cels_2025_101234
Cites_doi 10.1074/jbc.M803443200
10.1038/nmeth.3655
10.1021/ac025747h
10.1083/jcb.200309008
10.1093/nar/gkt1223
10.1016/j.molcel.2016.06.029
10.1186/1471-2105-7-135
10.1073/pnas.1322545111
10.1038/nrg3965
10.1074/mcp.M500231-MCP200
10.1074/mcp.M111.007690
10.1007/978-1-4939-6747-6_23
10.1126/science.1260419
10.1093/nar/gkw199
10.1016/j.celrep.2015.09.033
10.1016/j.jprot.2014.09.011
10.1186/1471-2105-14-284
10.1016/j.cell.2012.04.031
10.1016/j.jprot.2016.04.042
10.1016/j.celrep.2016.10.078
10.1016/j.cell.2015.12.038
10.1016/j.dnarep.2015.04.014
10.1371/journal.pgen.1003598
10.1016/S0888-7543(03)00235-0
10.1016/j.jprot.2013.10.023
10.1016/j.cell.2012.04.017
10.1016/j.celrep.2015.04.065
10.1074/mcp.M110.003731
10.1126/scisignal.2004712
10.1186/1471-2121-12-37
10.1021/ac0341261
10.1016/j.cell.2013.07.038
10.1016/j.cels.2016.04.014
10.1080/01621459.1951.10500769
10.1074/jbc.M606149200
10.1016/j.cell.2015.09.053
10.1016/j.molcel.2017.09.003
10.1016/j.cell.2012.04.016
10.1016/j.molcel.2012.05.021
10.1073/pnas.0608845103
10.1242/jcs.01477
10.1083/jcb.200502088
10.1016/j.ceb.2015.04.003
10.1038/nmeth.2557
10.1016/j.bbamcr.2009.12.004
10.1038/nmeth.4330
10.1038/387523a0
10.1083/jcb.147.7.1431
10.1091/mbc.e08-05-0513
10.15252/msb.20167490
10.1038/nature22366
10.1093/nar/gkw1102
10.1073/pnas.1406459111
10.1073/pnas.0504249102
10.1038/44565
10.1016/j.molcel.2007.02.011
10.1101/gr.1239303
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.molcel.2017.12.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 532.e11
ExternalDocumentID 29395067
10_1016_j_molcel_2017_12_020
S1097276517309772
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: FDN 143301
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-86ad8839a1febf825317b51bc52a811d6e56f6894770491e3dc356d0b2d5da223
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Tue Aug 05 09:27:45 EDT 2025
Fri Jul 11 05:17:08 EDT 2025
Mon Jul 21 06:06:35 EDT 2025
Tue Jul 01 03:40:51 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Fri Feb 23 02:30:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords BioID
membraneless organelle
ribonucleoprotein complex
proximity-based labeling
stress granule
processing body
mass spectrometry
PRRC2C
PP4 complex
UBAP2L
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-86ad8839a1febf825317b51bc52a811d6e56f6894770491e3dc356d0b2d5da223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276517309772
PMID 29395067
PQID 1993995104
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2253244963
proquest_miscellaneous_1993995104
pubmed_primary_29395067
crossref_primary_10_1016_j_molcel_2017_12_020
crossref_citationtrail_10_1016_j_molcel_2017_12_020
elsevier_sciencedirect_doi_10_1016_j_molcel_2017_12_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Adusumilli, Mallick (bib1) 2017; 1550
Chatr-Aryamontri, Oughtred, Boucher, Rust, Chang, Kolas, O’Donnell, Oster, Theesfeld, Sellam (bib10) 2017; 45
Leung, Calabrese, Sharp (bib34) 2006; 103
Baltz, Munschauer, Schwanhäusser, Vasile, Murakawa, Schueler, Youngs, Penfold-Brown, Drew, Milek (bib3) 2012; 46
Jonas, Izaurralde (bib23) 2015; 16
Lee, Seung (bib32) 1999; 401
Lambert, Tucholska, Go, Knight, Gingras (bib31) 2015; 118
Nesvizhskii, Keller, Kolker, Aebersold (bib43) 2003; 75
Nishimura, Padamsi, Fakim, Milette, Dunham, Gingras, Fabian (bib44) 2015; 11
Castello, Fischer, Frese, Horos, Alleaume, Foehr, Curk, Krijgsveld, Hentze (bib8) 2016; 63
Finn, Bateman, Clements, Coggill, Eberhardt, Eddy, Heger, Hetherington, Holm, Mistry (bib16) 2014; 42
Jain, Wheeler, Walters, Agrawal, Barsic, Parker (bib22) 2016; 164
Couzens, Knight, Kean, Teo, Weiss, Dunham, Lin, Bagshaw, Sicheri, Pawson (bib13) 2013; 6
Keller, Nesvizhskii, Kolker, Aebersold (bib27) 2002; 74
Chen, Tisayakorn, Jorgensen, D’Ambrosio, Goudreault, Gingras (bib11) 2008; 283
Hubstenberger, Courel, Benard, Souquere, Ernoult-Lange, Chouaib, Yi, Morlot, Munier, Fradet (bib20) 2017; 68
Mazandu, Mulder (bib38) 2013; 14
Castello, Fischer, Eichelbaum, Horos, Beckmann, Strein, Davey, Humphreys, Preiss, Steinmetz (bib7) 2012; 149
Dang, Kedersha, Low, Romo, Gorospe, Kaufman, Anderson, Liu (bib14) 2006; 281
Knight, Choi, Gupta, Pelletier, Raught, Nesvizhskii, Gingras (bib30) 2017; 14
Shteynberg, Deutsch, Lam, Eng, Sun, Tasman, Mendoza, Moritz, Aebersold, Nesvizhskii (bib51) 2011; 10
Kedersha, Stoecklin, Ayodele, Yacono, Lykke-Andersen, Fritzler, Scheuner, Kaufman, Golan, Anderson (bib26) 2005; 169
Aizer, Brody, Ler, Sonenberg, Singer, Shav-Tal (bib2) 2008; 19
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib47) 2011; 12
Ramaswami, Taylor, Parker (bib48) 2013; 154
Bordeleau, Matthews, Wojnar, Lindqvist, Novac, Jankowsky, Sonenberg, Northcote, Teesdale-Spittle, Pelletier (bib6) 2005; 102
Teo, Liu, Zhang, Nesvizhskii, Gingras, Choi (bib53) 2014; 100
Kim, Birendra, Zhu, Motamedchaboki, Doye, Roux (bib29) 2014; 111
Uhlén, Fagerberg, Hallström, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjöstedt, Asplund (bib54) 2015; 347
Ozgur, Basquin, Kamenska, Filipowicz, Standart, Conti (bib45) 2015; 13
Massey (bib37) 2012; 46
Mellacheruvu, Wright, Couzens, Lambert, St-Denis, Li, Miteva, Hauri, Sardiu, Low (bib39) 2013; 10
Kedersha, Gupta, Li, Miller, Anderson (bib25) 1999; 147
Wang, Tucholska, Knight, Lambert, Tate, Larsen, Gingras, Bandeira (bib55) 2015; 12
Cencic, Pelletier (bib9) 2016; 4
Zheng, Kalev, Chowdhury (bib58) 2015; 32
Kim, Mischerikow, Bandeira, Navarro, Wich, Mohammed, Heck, Pevzner (bib28) 2010; 9
Nadezhdina, Lomakin, Shpilman, Chudinova, Ivanov (bib42) 2010; 1803
Reimand, Arak, Adler, Kolberg, Reisberg, Peterson, Vilo (bib49) 2016; 44
Zhu, Brangwynne (bib59) 2015; 34
Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (bib50) 2003; 13
Huttlin, Bruckner, Paulo, Cannon, Ting, Baltier, Colby, Gebreab, Gygi, Parzen (bib21) 2017; 545
Lehner, Semple, Brown, Counsell, Campbell, Sanderson (bib33) 2004; 83
Drew, Lee, Huizar, Tu, Borgeson, McWhite, Ma, Wallingford, Marcotte (bib15) 2017; 13
Li, Wang, Fu, Berman, Diallo, Dorf (bib35) 2014; 111
St-Denis, Gupta, Lin, Gonzalez-Badillo, Veri, Knight, Rajendran, Couzens, Currie, Tkach (bib52) 2016; 17
Zhang, Zhang, Sheng, Russo, Osborne, Buetow (bib57) 2006; 7
Hein, Hubner, Poser, Cox, Nagaraj, Toyoda, Gak, Weisswange, Mansfeld, Buchholz (bib19) 2015; 163
Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei (bib24) 2012; 149
Yang, Jakymiw, Wood, Eystathioy, Rubin, Fritzler, Chan (bib56) 2004; 117
Liu, Knight, Zhang, Tsou, Wang, Lambert, Larsen, Tyers, Raught, Bandeira (bib36) 2016; 149
Moser, Fritzler, Rattner (bib41) 2011; 12
Parker, Sheth (bib46) 2007; 25
Han, Kato, Xie, Wu, Mirzaei, Pei, Chen, Xie, Allen, Xiao, McKnight (bib18) 2012; 149
Misteli, Cáceres, Spector (bib40) 1997; 387
Gingras, Caballero, Zarske, Sanchez, Hazbun, Fields, Sonenberg, Hafen, Raught, Aebersold (bib17) 2005; 4
Baryshnikova (bib4) 2016; 2
Cougot, Babajko, Séraphin (bib12) 2004; 165
Baumgartner, Stocker, Hafen (bib5) 2013; 9
Kedersha (10.1016/j.molcel.2017.12.020_bib25) 1999; 147
Cencic (10.1016/j.molcel.2017.12.020_bib9) 2016; 4
Shannon (10.1016/j.molcel.2017.12.020_bib50) 2003; 13
Nadezhdina (10.1016/j.molcel.2017.12.020_bib42) 2010; 1803
Aizer (10.1016/j.molcel.2017.12.020_bib2) 2008; 19
Huttlin (10.1016/j.molcel.2017.12.020_bib21) 2017; 545
Mazandu (10.1016/j.molcel.2017.12.020_bib38) 2013; 14
Nishimura (10.1016/j.molcel.2017.12.020_bib44) 2015; 11
Shteynberg (10.1016/j.molcel.2017.12.020_bib51) 2011; 10
Jain (10.1016/j.molcel.2017.12.020_bib22) 2016; 164
Dang (10.1016/j.molcel.2017.12.020_bib14) 2006; 281
Zhang (10.1016/j.molcel.2017.12.020_bib57) 2006; 7
Baryshnikova (10.1016/j.molcel.2017.12.020_bib4) 2016; 2
Kato (10.1016/j.molcel.2017.12.020_bib24) 2012; 149
Lehner (10.1016/j.molcel.2017.12.020_bib33) 2004; 83
Massey (10.1016/j.molcel.2017.12.020_bib37) 2012; 46
Ozgur (10.1016/j.molcel.2017.12.020_bib45) 2015; 13
Jonas (10.1016/j.molcel.2017.12.020_bib23) 2015; 16
Kim (10.1016/j.molcel.2017.12.020_bib28) 2010; 9
Kim (10.1016/j.molcel.2017.12.020_bib29) 2014; 111
Zheng (10.1016/j.molcel.2017.12.020_bib58) 2015; 32
Cougot (10.1016/j.molcel.2017.12.020_bib12) 2004; 165
Castello (10.1016/j.molcel.2017.12.020_bib7) 2012; 149
Finn (10.1016/j.molcel.2017.12.020_bib16) 2014; 42
Liu (10.1016/j.molcel.2017.12.020_bib36) 2016; 149
Kedersha (10.1016/j.molcel.2017.12.020_bib26) 2005; 169
Lee (10.1016/j.molcel.2017.12.020_bib32) 1999; 401
Drew (10.1016/j.molcel.2017.12.020_bib15) 2017; 13
Hein (10.1016/j.molcel.2017.12.020_bib19) 2015; 163
Pedregosa (10.1016/j.molcel.2017.12.020_bib47) 2011; 12
Misteli (10.1016/j.molcel.2017.12.020_bib40) 1997; 387
Couzens (10.1016/j.molcel.2017.12.020_bib13) 2013; 6
Baltz (10.1016/j.molcel.2017.12.020_bib3) 2012; 46
Chen (10.1016/j.molcel.2017.12.020_bib11) 2008; 283
Chatr-Aryamontri (10.1016/j.molcel.2017.12.020_bib10) 2017; 45
Parker (10.1016/j.molcel.2017.12.020_bib46) 2007; 25
Adusumilli (10.1016/j.molcel.2017.12.020_bib1) 2017; 1550
Bordeleau (10.1016/j.molcel.2017.12.020_bib6) 2005; 102
Reimand (10.1016/j.molcel.2017.12.020_bib49) 2016; 44
Wang (10.1016/j.molcel.2017.12.020_bib55) 2015; 12
Castello (10.1016/j.molcel.2017.12.020_bib8) 2016; 63
Teo (10.1016/j.molcel.2017.12.020_bib53) 2014; 100
Lambert (10.1016/j.molcel.2017.12.020_bib31) 2015; 118
Leung (10.1016/j.molcel.2017.12.020_bib34) 2006; 103
Hubstenberger (10.1016/j.molcel.2017.12.020_bib20) 2017; 68
Zhu (10.1016/j.molcel.2017.12.020_bib59) 2015; 34
Knight (10.1016/j.molcel.2017.12.020_bib30) 2017; 14
Nesvizhskii (10.1016/j.molcel.2017.12.020_bib43) 2003; 75
Ramaswami (10.1016/j.molcel.2017.12.020_bib48) 2013; 154
St-Denis (10.1016/j.molcel.2017.12.020_bib52) 2016; 17
Baumgartner (10.1016/j.molcel.2017.12.020_bib5) 2013; 9
Uhlén (10.1016/j.molcel.2017.12.020_bib54) 2015; 347
Li (10.1016/j.molcel.2017.12.020_bib35) 2014; 111
Keller (10.1016/j.molcel.2017.12.020_bib27) 2002; 74
Moser (10.1016/j.molcel.2017.12.020_bib41) 2011; 12
Gingras (10.1016/j.molcel.2017.12.020_bib17) 2005; 4
Mellacheruvu (10.1016/j.molcel.2017.12.020_bib39) 2013; 10
Yang (10.1016/j.molcel.2017.12.020_bib56) 2004; 117
Han (10.1016/j.molcel.2017.12.020_bib18) 2012; 149
29395058 - Mol Cell. 2018 Feb 1;69(3):349-351
References_xml – volume: 10
  start-page: 730
  year: 2013
  end-page: 736
  ident: bib39
  article-title: The CRAPome: a contaminant repository for affinity purification-mass spectrometry data
  publication-title: Nat. Methods
– volume: 63
  start-page: 696
  year: 2016
  end-page: 710
  ident: bib8
  article-title: Comprehensive identification of RNA-binding domains in human cells
  publication-title: Mol. Cell
– volume: 100
  start-page: 37
  year: 2014
  end-page: 43
  ident: bib53
  article-title: SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software
  publication-title: J. Proteomics
– volume: 165
  start-page: 31
  year: 2004
  end-page: 40
  ident: bib12
  article-title: Cytoplasmic foci are sites of mRNA decay in human cells
  publication-title: J. Cell Biol.
– volume: 75
  start-page: 4646
  year: 2003
  end-page: 4658
  ident: bib43
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Anal. Chem.
– volume: 102
  start-page: 10460
  year: 2005
  end-page: 10465
  ident: bib6
  article-title: Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 387
  start-page: 523
  year: 1997
  end-page: 527
  ident: bib40
  article-title: The dynamics of a pre-mRNA splicing factor in living cells
  publication-title: Nature
– volume: 163
  start-page: 712
  year: 2015
  end-page: 723
  ident: bib19
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
– volume: 111
  start-page: E2453
  year: 2014
  end-page: E2461
  ident: bib29
  article-title: Probing nuclear pore complex architecture with proximity-dependent biotinylation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 2488
  year: 2016
  end-page: 2501
  ident: bib52
  article-title: Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators
  publication-title: Cell Rep.
– volume: 42
  start-page: D222
  year: 2014
  end-page: D230
  ident: bib16
  article-title: Pfam: the protein families database
  publication-title: Nucleic Acids Res.
– volume: 13
  start-page: 932
  year: 2017
  ident: bib15
  article-title: Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes
  publication-title: Mol. Syst. Biol.
– volume: 347
  start-page: 1260419
  year: 2015
  ident: bib54
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
– volume: 9
  start-page: 2840
  year: 2010
  end-page: 2852
  ident: bib28
  article-title: The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search
  publication-title: Mol. Cell. Proteomics
– volume: 117
  start-page: 5567
  year: 2004
  end-page: 5578
  ident: bib56
  article-title: GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation
  publication-title: J. Cell Sci.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib47
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: rs15
  year: 2013
  ident: bib13
  article-title: Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions
  publication-title: Sci. Signal.
– volume: 74
  start-page: 5383
  year: 2002
  end-page: 5392
  ident: bib27
  article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search
  publication-title: Anal. Chem.
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  ident: bib50
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
– volume: 4
  start-page: e1137381
  year: 2016
  ident: bib9
  article-title: Hippuristanol—a potent steroid inhibitor of eukaryotic initiation factor 4A
  publication-title: Translation (Austin)
– volume: 149
  start-page: 768
  year: 2012
  end-page: 779
  ident: bib18
  article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies
  publication-title: Cell
– volume: 46
  start-page: 674
  year: 2012
  end-page: 690
  ident: bib3
  article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts
  publication-title: Mol. Cell
– volume: 32
  start-page: 58
  year: 2015
  end-page: 65
  ident: bib58
  article-title: Emerging role of protein phosphatases changes the landscape of phospho-signaling in DNA damage response
  publication-title: DNA Repair (Amst.)
– volume: 19
  start-page: 4154
  year: 2008
  end-page: 4166
  ident: bib2
  article-title: The dynamics of mammalian P body transport, assembly, and disassembly in vivo
  publication-title: Mol. Biol. Cell
– volume: 11
  start-page: 1425
  year: 2015
  end-page: 1436
  ident: bib44
  article-title: The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5′ and 3′ termini of target mRNAs
  publication-title: Cell Rep.
– volume: 12
  start-page: 1106
  year: 2015
  end-page: 1108
  ident: bib55
  article-title: MSPLIT-DIA: sensitive peptide identification for data-independent acquisition
  publication-title: Nat. Methods
– volume: 4
  start-page: 1725
  year: 2005
  end-page: 1740
  ident: bib17
  article-title: A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity
  publication-title: Mol. Cell. Proteomics
– volume: 1803
  start-page: 361
  year: 2010
  end-page: 371
  ident: bib42
  article-title: Microtubules govern stress granule mobility and dynamics
  publication-title: Biochim. Biophys. Acta
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib32
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 83
  start-page: 153
  year: 2004
  end-page: 167
  ident: bib33
  article-title: Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region
  publication-title: Genomics
– volume: 34
  start-page: 23
  year: 2015
  end-page: 30
  ident: bib59
  article-title: Nuclear bodies: the emerging biophysics of nucleoplasmic phases
  publication-title: Curr. Opin. Cell Biol.
– volume: 2
  start-page: 412
  year: 2016
  end-page: 421
  ident: bib4
  article-title: Systematic functional annotation and visualization of biological networks
  publication-title: Cell Syst.
– volume: 25
  start-page: 635
  year: 2007
  end-page: 646
  ident: bib46
  article-title: P bodies and the control of mRNA translation and degradation
  publication-title: Mol. Cell
– volume: 7
  start-page: 135
  year: 2006
  ident: bib57
  article-title: Gene functional similarity search tool (GFSST)
  publication-title: BMC Bioinformatics
– volume: 147
  start-page: 1431
  year: 1999
  end-page: 1442
  ident: bib25
  article-title: RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules
  publication-title: J. Cell Biol.
– volume: 154
  start-page: 727
  year: 2013
  end-page: 736
  ident: bib48
  article-title: Altered ribostasis: RNA-protein granules in degenerative disorders
  publication-title: Cell
– volume: 14
  start-page: 645
  year: 2017
  end-page: 646
  ident: bib30
  article-title: ProHits-viz: a suite of web tools for visualizing interaction proteomics data
  publication-title: Nat. Methods
– volume: 13
  start-page: 703
  year: 2015
  end-page: 711
  ident: bib45
  article-title: Structure of a human 4E-T/DDX6/CNOT1 complex reveals the different interplay of DDX6-binding proteins with the CCR4-NOT complex
  publication-title: Cell Rep.
– volume: 118
  start-page: 81
  year: 2015
  end-page: 94
  ident: bib31
  article-title: Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes
  publication-title: J. Proteomics
– volume: 149
  start-page: 1393
  year: 2012
  end-page: 1406
  ident: bib7
  article-title: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
  publication-title: Cell
– volume: 12
  start-page: 37
  year: 2011
  ident: bib41
  article-title: Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes
  publication-title: BMC Cell Biol.
– volume: 46
  start-page: 68
  year: 2012
  end-page: 78
  ident: bib37
  article-title: The Kolmogorov-Smirnov test for goodness of fit
  publication-title: J. Am. Stat. Assoc.
– volume: 169
  start-page: 871
  year: 2005
  end-page: 884
  ident: bib26
  article-title: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling
  publication-title: J. Cell Biol.
– volume: 1550
  start-page: 339
  year: 2017
  end-page: 368
  ident: bib1
  article-title: Data conversion with ProteoWizard msConvert
  publication-title: Methods Mol. Biol.
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  ident: bib24
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
– volume: 10
  year: 2011
  ident: bib51
  article-title: iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates
  publication-title: Mol. Cell Proteomics
– volume: 111
  start-page: 6970
  year: 2014
  end-page: 6975
  ident: bib35
  article-title: TRIM65 regulates microRNA activity by ubiquitination of TNRC6
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: W83
  year: 2016
  end-page: W89
  ident: bib49
  article-title: g:Profiler-a web server for functional interpretation of gene lists (2016 update)
  publication-title: Nucleic Acids Res.
– volume: 164
  start-page: 487
  year: 2016
  end-page: 498
  ident: bib22
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
– volume: 9
  start-page: e1003598
  year: 2013
  ident: bib5
  article-title: The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster
  publication-title: PLoS Genet.
– volume: 149
  start-page: 64
  year: 2016
  end-page: 68
  ident: bib36
  article-title: Data independent acquisition analysis in ProHits 4.0
  publication-title: J. Proteomics
– volume: 283
  start-page: 29273
  year: 2008
  end-page: 29284
  ident: bib11
  article-title: PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4
  publication-title: J. Biol. Chem.
– volume: 103
  start-page: 18125
  year: 2006
  end-page: 18130
  ident: bib34
  article-title: Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 45
  start-page: D369
  year: 2017
  end-page: D379
  ident: bib10
  article-title: The BioGRID interaction database: 2017 update
  publication-title: Nucleic Acids Res.
– volume: 545
  start-page: 505
  year: 2017
  end-page: 509
  ident: bib21
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
– volume: 68
  start-page: 144
  year: 2017
  end-page: 157
  ident: bib20
  article-title: P-body purification reveals the condensation of repressed mRNA regulons
  publication-title: Mol. Cell
– volume: 14
  start-page: 284
  year: 2013
  ident: bib38
  article-title: DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures
  publication-title: BMC Bioinformatics
– volume: 281
  start-page: 32870
  year: 2006
  end-page: 32878
  ident: bib14
  article-title: Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 421
  year: 2015
  end-page: 433
  ident: bib23
  article-title: Towards a molecular understanding of microRNA-mediated gene silencing
  publication-title: Nat. Rev. Genet.
– volume: 283
  start-page: 29273
  year: 2008
  ident: 10.1016/j.molcel.2017.12.020_bib11
  article-title: PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803443200
– volume: 12
  start-page: 1106
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib55
  article-title: MSPLIT-DIA: sensitive peptide identification for data-independent acquisition
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3655
– volume: 74
  start-page: 5383
  year: 2002
  ident: 10.1016/j.molcel.2017.12.020_bib27
  article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search
  publication-title: Anal. Chem.
  doi: 10.1021/ac025747h
– volume: 165
  start-page: 31
  year: 2004
  ident: 10.1016/j.molcel.2017.12.020_bib12
  article-title: Cytoplasmic foci are sites of mRNA decay in human cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200309008
– volume: 42
  start-page: D222
  year: 2014
  ident: 10.1016/j.molcel.2017.12.020_bib16
  article-title: Pfam: the protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1223
– volume: 63
  start-page: 696
  year: 2016
  ident: 10.1016/j.molcel.2017.12.020_bib8
  article-title: Comprehensive identification of RNA-binding domains in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.06.029
– volume: 7
  start-page: 135
  year: 2006
  ident: 10.1016/j.molcel.2017.12.020_bib57
  article-title: Gene functional similarity search tool (GFSST)
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-135
– volume: 111
  start-page: 6970
  year: 2014
  ident: 10.1016/j.molcel.2017.12.020_bib35
  article-title: TRIM65 regulates microRNA activity by ubiquitination of TNRC6
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1322545111
– volume: 16
  start-page: 421
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib23
  article-title: Towards a molecular understanding of microRNA-mediated gene silencing
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3965
– volume: 4
  start-page: 1725
  year: 2005
  ident: 10.1016/j.molcel.2017.12.020_bib17
  article-title: A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M500231-MCP200
– volume: 10
  year: 2011
  ident: 10.1016/j.molcel.2017.12.020_bib51
  article-title: iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M111.007690
– volume: 1550
  start-page: 339
  year: 2017
  ident: 10.1016/j.molcel.2017.12.020_bib1
  article-title: Data conversion with ProteoWizard msConvert
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6747-6_23
– volume: 347
  start-page: 1260419
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib54
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 44
  start-page: W83
  issue: W1
  year: 2016
  ident: 10.1016/j.molcel.2017.12.020_bib49
  article-title: g:Profiler-a web server for functional interpretation of gene lists (2016 update)
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw199
– volume: 13
  start-page: 703
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib45
  article-title: Structure of a human 4E-T/DDX6/CNOT1 complex reveals the different interplay of DDX6-binding proteins with the CCR4-NOT complex
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.09.033
– volume: 118
  start-page: 81
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib31
  article-title: Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2014.09.011
– volume: 14
  start-page: 284
  year: 2013
  ident: 10.1016/j.molcel.2017.12.020_bib38
  article-title: DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-284
– volume: 149
  start-page: 1393
  year: 2012
  ident: 10.1016/j.molcel.2017.12.020_bib7
  article-title: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.031
– volume: 149
  start-page: 64
  year: 2016
  ident: 10.1016/j.molcel.2017.12.020_bib36
  article-title: Data independent acquisition analysis in ProHits 4.0
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2016.04.042
– volume: 17
  start-page: 2488
  year: 2016
  ident: 10.1016/j.molcel.2017.12.020_bib52
  article-title: Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.10.078
– volume: 164
  start-page: 487
  year: 2016
  ident: 10.1016/j.molcel.2017.12.020_bib22
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 32
  start-page: 58
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib58
  article-title: Emerging role of protein phosphatases changes the landscape of phospho-signaling in DNA damage response
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2015.04.014
– volume: 9
  start-page: e1003598
  year: 2013
  ident: 10.1016/j.molcel.2017.12.020_bib5
  article-title: The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003598
– volume: 83
  start-page: 153
  year: 2004
  ident: 10.1016/j.molcel.2017.12.020_bib33
  article-title: Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region
  publication-title: Genomics
  doi: 10.1016/S0888-7543(03)00235-0
– volume: 100
  start-page: 37
  year: 2014
  ident: 10.1016/j.molcel.2017.12.020_bib53
  article-title: SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2013.10.023
– volume: 4
  start-page: e1137381
  year: 2016
  ident: 10.1016/j.molcel.2017.12.020_bib9
  article-title: Hippuristanol—a potent steroid inhibitor of eukaryotic initiation factor 4A
  publication-title: Translation (Austin)
– volume: 149
  start-page: 753
  year: 2012
  ident: 10.1016/j.molcel.2017.12.020_bib24
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 11
  start-page: 1425
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib44
  article-title: The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5′ and 3′ termini of target mRNAs
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.04.065
– volume: 9
  start-page: 2840
  year: 2010
  ident: 10.1016/j.molcel.2017.12.020_bib28
  article-title: The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M110.003731
– volume: 6
  start-page: rs15
  year: 2013
  ident: 10.1016/j.molcel.2017.12.020_bib13
  article-title: Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2004712
– volume: 12
  start-page: 37
  year: 2011
  ident: 10.1016/j.molcel.2017.12.020_bib41
  article-title: Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes
  publication-title: BMC Cell Biol.
  doi: 10.1186/1471-2121-12-37
– volume: 75
  start-page: 4646
  year: 2003
  ident: 10.1016/j.molcel.2017.12.020_bib43
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac0341261
– volume: 154
  start-page: 727
  year: 2013
  ident: 10.1016/j.molcel.2017.12.020_bib48
  article-title: Altered ribostasis: RNA-protein granules in degenerative disorders
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.038
– volume: 2
  start-page: 412
  year: 2016
  ident: 10.1016/j.molcel.2017.12.020_bib4
  article-title: Systematic functional annotation and visualization of biological networks
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.04.014
– volume: 46
  start-page: 68
  year: 2012
  ident: 10.1016/j.molcel.2017.12.020_bib37
  article-title: The Kolmogorov-Smirnov test for goodness of fit
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1951.10500769
– volume: 281
  start-page: 32870
  year: 2006
  ident: 10.1016/j.molcel.2017.12.020_bib14
  article-title: Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606149200
– volume: 163
  start-page: 712
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib19
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.053
– volume: 68
  start-page: 144
  year: 2017
  ident: 10.1016/j.molcel.2017.12.020_bib20
  article-title: P-body purification reveals the condensation of repressed mRNA regulons
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.09.003
– volume: 149
  start-page: 768
  year: 2012
  ident: 10.1016/j.molcel.2017.12.020_bib18
  article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.016
– volume: 46
  start-page: 674
  year: 2012
  ident: 10.1016/j.molcel.2017.12.020_bib3
  article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.021
– volume: 103
  start-page: 18125
  year: 2006
  ident: 10.1016/j.molcel.2017.12.020_bib34
  article-title: Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0608845103
– volume: 117
  start-page: 5567
  year: 2004
  ident: 10.1016/j.molcel.2017.12.020_bib56
  article-title: GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01477
– volume: 169
  start-page: 871
  year: 2005
  ident: 10.1016/j.molcel.2017.12.020_bib26
  article-title: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200502088
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.molcel.2017.12.020_bib47
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 23
  year: 2015
  ident: 10.1016/j.molcel.2017.12.020_bib59
  article-title: Nuclear bodies: the emerging biophysics of nucleoplasmic phases
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.04.003
– volume: 10
  start-page: 730
  year: 2013
  ident: 10.1016/j.molcel.2017.12.020_bib39
  article-title: The CRAPome: a contaminant repository for affinity purification-mass spectrometry data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2557
– volume: 1803
  start-page: 361
  year: 2010
  ident: 10.1016/j.molcel.2017.12.020_bib42
  article-title: Microtubules govern stress granule mobility and dynamics
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2009.12.004
– volume: 14
  start-page: 645
  year: 2017
  ident: 10.1016/j.molcel.2017.12.020_bib30
  article-title: ProHits-viz: a suite of web tools for visualizing interaction proteomics data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4330
– volume: 387
  start-page: 523
  year: 1997
  ident: 10.1016/j.molcel.2017.12.020_bib40
  article-title: The dynamics of a pre-mRNA splicing factor in living cells
  publication-title: Nature
  doi: 10.1038/387523a0
– volume: 147
  start-page: 1431
  year: 1999
  ident: 10.1016/j.molcel.2017.12.020_bib25
  article-title: RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.147.7.1431
– volume: 19
  start-page: 4154
  year: 2008
  ident: 10.1016/j.molcel.2017.12.020_bib2
  article-title: The dynamics of mammalian P body transport, assembly, and disassembly in vivo
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-05-0513
– volume: 13
  start-page: 932
  year: 2017
  ident: 10.1016/j.molcel.2017.12.020_bib15
  article-title: Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20167490
– volume: 545
  start-page: 505
  year: 2017
  ident: 10.1016/j.molcel.2017.12.020_bib21
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
  doi: 10.1038/nature22366
– volume: 45
  start-page: D369
  issue: D1
  year: 2017
  ident: 10.1016/j.molcel.2017.12.020_bib10
  article-title: The BioGRID interaction database: 2017 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1102
– volume: 111
  start-page: E2453
  year: 2014
  ident: 10.1016/j.molcel.2017.12.020_bib29
  article-title: Probing nuclear pore complex architecture with proximity-dependent biotinylation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1406459111
– volume: 102
  start-page: 10460
  year: 2005
  ident: 10.1016/j.molcel.2017.12.020_bib6
  article-title: Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504249102
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.molcel.2017.12.020_bib32
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 25
  start-page: 635
  year: 2007
  ident: 10.1016/j.molcel.2017.12.020_bib46
  article-title: P bodies and the control of mRNA translation and degradation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.02.011
– volume: 13
  start-page: 2498
  year: 2003
  ident: 10.1016/j.molcel.2017.12.020_bib50
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– reference: 29395058 - Mol Cell. 2018 Feb 1;69(3):349-351
SSID ssj0014589
Score 2.6788852
Snippet mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 517
SubjectTerms BioID
biotinylation
cytoplasmic granules
granules
humans
mass spectrometry
membraneless organelle
messenger RNA
PP4 complex
processing body
proteins
proximity-based labeling
PRRC2C
ribonucleases
ribonucleoprotein complex
stress granule
transcription (genetics)
translation (genetics)
UBAP2L
Title High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies
URI https://dx.doi.org/10.1016/j.molcel.2017.12.020
https://www.ncbi.nlm.nih.gov/pubmed/29395067
https://www.proquest.com/docview/1993995104
https://www.proquest.com/docview/2253244963
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSyMxEA6iCL4cp553PT2JcK-hJrvJ7j5WPS2KRXqKfQvJJjks7a7YVq7__c3sj3KCIrhvu0wgzMxOvkm-yRDyExKTEAWXMRHSjEHAO2bGe8FsyIQXWQzZGO53XA9U_y6-HMnRGjlta2GQVtnE_jqmV9G6-dJttNl9fHjo_sazU5EoycFJAcVgHI7itCriG52sThJiWbXBQ2GG0m35XMXxmpaT3OMBBE-qTUHs-v368vQW_KyWofPP5FODH2mvnuI2WfPFDtmsO0oud8kYeRvsDFnp8yW9eSr_YgHTkl4bvIfhDx36Z0CGMwqwj0LMwG175KHS_0syaRnodDjosdZ03tELWNIWEz-jpnD0pETq4Rdyd_7r9rTPmnYKLI8Vn7NUGZcCHjI8eBsgMwToYCW3uRQm5dwpL1VQKdgngbSB-8jlkVTu2AonnQEYsUfWi7Lw3wi1VkUigcdgDQMPmbHGJDEmSyESue2QqNWizpu7xrHlxUS3pLKxrnWvUfeaCw267xC2GvVY37XxjnzSGki_8BkNy8E7I49ae2r4nVDZpvDlYqaRz5gh6ozfloEQCDA0htDVIV9rZ1jNF9BTJgEBfP_w3PbJFrylNTP8gKzPnxb-BwCfuT0kG72r4f3VYeXh_wAr6QGz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA9iKfWlaG3tVa0RfA1nspvs7qOfPT_uEKtwbyHZJEU5d8W7E--_78x-HAqK4D7uTiDMzE5-k_wmQ8gOJCYhCi5jIqQZg4C3y4z3gtmQCS-yGLIx3O_oD1TvOj4dyuECOWhrYZBW2cT-OqZX0bp502202b2_uen-xbNTkSjJwUkBxUAc_gRoIMH-DSfD_flRQiyrPngozVC8rZ-rSF535Sj3eALBk2pXENt-v74-vYU_q3XoeJl8bQAk3avnuEIWfPGNfK5bSs5WyS0SN9gh0tInM3rxUD5hBdOM9g1exPCPXvpHgIZjCriPQtDAfXskotLnNZm0DPTucrDHWtt5R__AmjYd-TE1haP7JXIPv5Pr46Orgx5r-imwPFZ8wlJlXAqAyPDgbYDUELCDldzmUpiUc6e8VEGlYKAE8gbuI5dHUrldK5x0BnDED7JYlIX_Sai1KhIJPAaLGHjIjDUmiTFbCpHIbYdErRZ13lw2jj0vRrplld3qWvcada-50KD7DmHzUff1ZRvvyCetgfQLp9GwHrwzcru1p4b_CZVtCl9OxxoJjRnCzvhtGYiBgENjiF0dslY7w3y-AJ8yCRDg14fntkW-9K765_r8ZHC2TpbgS1rTxDfI4uRh6jcBBU3s78rL_wMEmgMv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Density+Proximity+Mapping+Reveals+the+Subcellular+Organization+of+mRNA-Associated+Granules+and+Bodies&rft.jtitle=Molecular+cell&rft.au=Youn%2C+Ji-Young&rft.au=Dunham%2C+Wade+H&rft.au=Hong%2C+Seo+Jung&rft.au=Knight%2C+James+D+R&rft.date=2018-02-01&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=69&rft.issue=3&rft.spage=517&rft_id=info:doi/10.1016%2Fj.molcel.2017.12.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon