High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies
mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) ana...
Saved in:
Published in | Molecular cell Vol. 69; no. 3; pp. 517 - 532.e11 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.
[Display omitted]
•We performed BioID on 119 human proteins involved in various facets of mRNA biology•Proximal relationships reveal the spatial organization of RNA regulatory structures•Prey-based analysis identifies 144 protein components of cytosolic RNA granules•UBAP2L, CSDE1, and PRRC2C are required for efficient formation of stress granules
Youn et al. performed proximity-based proteomics on 119 human proteins involved in the mRNA life cycle, focusing on cytosolic RNA granule components that are important for mRNA regulation. Systematic analysis of the proximal interactome revealed 144 core components of cytosolic RNA granules and illuminated the spatial organization of RNA regulatory structures. |
---|---|
AbstractList | mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. [Display omitted] •We performed BioID on 119 human proteins involved in various facets of mRNA biology•Proximal relationships reveal the spatial organization of RNA regulatory structures•Prey-based analysis identifies 144 protein components of cytosolic RNA granules•UBAP2L, CSDE1, and PRRC2C are required for efficient formation of stress granules Youn et al. performed proximity-based proteomics on 119 human proteins involved in the mRNA life cycle, focusing on cytosolic RNA granule components that are important for mRNA regulation. Systematic analysis of the proximal interactome revealed 144 core components of cytosolic RNA granules and illuminated the spatial organization of RNA regulatory structures. mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. |
Author | Gingras, Anne-Claude Hong, Seo Jung Rathod, Bhavisha Fabian, Marc Knight, James D.R. Eng, Simon W.M. Côté, Jean-François Bagci, Halil Angers, Stéphane Morris, Quaid Dunham, Wade H. MacLeod, Graham Youn, Ji-Young Chen, Ginny I. Bashkurov, Mikhail |
Author_xml | – sequence: 1 givenname: Ji-Young surname: Youn fullname: Youn, Ji-Young organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada – sequence: 2 givenname: Wade H. surname: Dunham fullname: Dunham, Wade H. organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada – sequence: 3 givenname: Seo Jung surname: Hong fullname: Hong, Seo Jung organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada – sequence: 4 givenname: James D.R. surname: Knight fullname: Knight, James D.R. organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada – sequence: 5 givenname: Mikhail surname: Bashkurov fullname: Bashkurov, Mikhail organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada – sequence: 6 givenname: Ginny I. surname: Chen fullname: Chen, Ginny I. organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada – sequence: 7 givenname: Halil surname: Bagci fullname: Bagci, Halil organization: Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada – sequence: 8 givenname: Bhavisha surname: Rathod fullname: Rathod, Bhavisha organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada – sequence: 9 givenname: Graham surname: MacLeod fullname: MacLeod, Graham organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada – sequence: 10 givenname: Simon W.M. surname: Eng fullname: Eng, Simon W.M. organization: Department of Immunology, University of Toronto, Toronto, ON, Canada – sequence: 11 givenname: Stéphane surname: Angers fullname: Angers, Stéphane organization: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada – sequence: 12 givenname: Quaid surname: Morris fullname: Morris, Quaid organization: Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada – sequence: 13 givenname: Marc surname: Fabian fullname: Fabian, Marc organization: Department of Oncology, McGill University, Montréal, QC, Canada – sequence: 14 givenname: Jean-François surname: Côté fullname: Côté, Jean-François organization: Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada – sequence: 15 givenname: Anne-Claude surname: Gingras fullname: Gingras, Anne-Claude email: gingras@lunenfeld.ca organization: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29395067$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB_wDxDykk1S27GdmAXSUPpAKhQVWFuOfTP1KLGndlK1_fXNMAMLFnR17-I7516dc4j2QgyA0FtKSkqoPF6VQ-wt9CUjtC4pKwkjL9ABJaouOJV8b7ezWop9dJjzihDKRaNeoX2mKiWIrA_Q6sIvb4rPELIfH_D3FO_9sNm-mvXahyW-hjswfcbjDeAfUzvf66feJHyVlib4RzP6GHDs8HD9bVEsco7WmxEcPk8mTD1kbILDn6LzkF-jl91sBW928wj9Ojv9eXJRXF6dfzlZXBaWSzoWjTSuaSplaAdt1zBR0boVtLWCmYZSJ0HITjaK1zXhikLlbCWkIy1zwhnGqiP0fuu7TvF2gjzqwefN4yZAnLJmsyXjXMnqWZSqOSglKOEz-m6HTu0ATq-TH0x60H-inAG-BWyKOSfo_iKU6E1jeqW3jelNY5oyPTc2yz78I7N-_B3rmIzvnxN_3IphzvPOQ9LZeggWnE9gR-2i_7_BE44es14 |
CitedBy_id | crossref_primary_10_1038_s41418_019_0350_5 crossref_primary_10_1016_j_trecan_2021_05_006 crossref_primary_10_3389_fcell_2020_618733 crossref_primary_10_1093_nar_gkac704 crossref_primary_10_3390_genes14061293 crossref_primary_10_1021_acs_jproteome_9b00825 crossref_primary_10_1016_j_semcdb_2024_01_002 crossref_primary_10_1007_s12035_019_01667_w crossref_primary_10_1016_j_mib_2021_03_005 crossref_primary_10_1073_pnas_1905455116 crossref_primary_10_2139_ssrn_3188424 crossref_primary_10_3389_fcell_2021_708702 crossref_primary_10_1038_s41583_024_00859_1 crossref_primary_10_1038_s41598_019_50102_6 crossref_primary_10_3390_biom10101367 crossref_primary_10_1016_j_jmb_2022_167636 crossref_primary_10_1111_febs_17217 crossref_primary_10_1073_pnas_2007670117 crossref_primary_10_1093_nar_gkae1106 crossref_primary_10_1016_j_gendis_2023_01_016 crossref_primary_10_3389_fmolb_2023_1155521 crossref_primary_10_1074_mcp_RA120_002316 crossref_primary_10_1371_journal_ppat_1008250 crossref_primary_10_1038_s41598_021_83395_7 crossref_primary_10_1007_s12035_024_04555_0 crossref_primary_10_1016_j_jmb_2022_167523 crossref_primary_10_26508_lsa_202101260 crossref_primary_10_1093_bib_bbaa187 crossref_primary_10_1126_science_abf6548 crossref_primary_10_1016_j_jmb_2018_07_006 crossref_primary_10_1021_acs_analchem_8b02667 crossref_primary_10_1038_s41589_024_01721_2 crossref_primary_10_1038_s41580_020_00303_z crossref_primary_10_1021_jacs_4c06530 crossref_primary_10_1042_EBC20210024 crossref_primary_10_1038_s41556_024_01363_5 crossref_primary_10_1016_j_cell_2023_09_006 crossref_primary_10_1111_acel_13136 crossref_primary_10_1038_s41420_021_00420_4 crossref_primary_10_1084_jem_20210360 crossref_primary_10_1128_spectrum_01363_22 crossref_primary_10_1016_j_tibs_2021_01_002 crossref_primary_10_1016_j_molcel_2025_01_001 crossref_primary_10_1007_s12250_019_00122_3 crossref_primary_10_1038_s43586_021_00029_y crossref_primary_10_1093_plcell_koad131 crossref_primary_10_3390_ijms222313021 crossref_primary_10_3390_genes12030345 crossref_primary_10_1021_acs_jpcb_4c05185 crossref_primary_10_1038_s41380_022_01937_5 crossref_primary_10_7554_eLife_95028 crossref_primary_10_1021_acschembio_2c00500 crossref_primary_10_1021_acs_jproteome_3c00908 crossref_primary_10_1016_j_molcel_2018_10_036 crossref_primary_10_1038_s41467_022_31358_5 crossref_primary_10_1016_j_bbagrm_2019_06_009 crossref_primary_10_1111_febs_17390 crossref_primary_10_1038_s41467_024_54000_y crossref_primary_10_1186_s13041_024_01099_1 crossref_primary_10_1016_j_molcel_2022_05_029 crossref_primary_10_1016_j_molcel_2020_01_006 crossref_primary_10_1021_jacs_9b12208 crossref_primary_10_1016_j_bbagrm_2023_194989 crossref_primary_10_3390_ijms22179428 crossref_primary_10_1016_j_molcel_2018_10_044 crossref_primary_10_12688_f1000research_16903_1 crossref_primary_10_3390_plants9091122 crossref_primary_10_3724_abbs_2023117 crossref_primary_10_1016_j_trecan_2023_08_005 crossref_primary_10_1146_annurev_biochem_032620_105429 crossref_primary_10_3390_ijms21186796 crossref_primary_10_1186_s13059_023_02862_8 crossref_primary_10_1093_femsyr_foac025 crossref_primary_10_1242_jcs_214692 crossref_primary_10_1016_j_celrep_2022_111548 crossref_primary_10_1080_15476286_2020_1868165 crossref_primary_10_1038_s41467_021_25078_5 crossref_primary_10_1111_jnc_15902 crossref_primary_10_1126_sciadv_adl5638 crossref_primary_10_1038_s41580_018_0094_y crossref_primary_10_1093_plcell_koad288 crossref_primary_10_3390_ijms24021273 crossref_primary_10_1091_mbc_E24_02_0062 crossref_primary_10_1371_journal_ppat_1008683 crossref_primary_10_15252_embj_2023113933 crossref_primary_10_1016_j_devcel_2019_03_009 crossref_primary_10_1038_s44319_023_00043_z crossref_primary_10_1038_s41467_020_20768_y crossref_primary_10_1051_medsci_2019035 crossref_primary_10_3389_fcell_2021_671780 crossref_primary_10_1016_j_molcel_2020_01_021 crossref_primary_10_1101_sqb_2019_84_039404 crossref_primary_10_15252_embj_2019101704 crossref_primary_10_1016_j_celrep_2020_02_066 crossref_primary_10_7554_eLife_69377 crossref_primary_10_1016_j_celrep_2022_111678 crossref_primary_10_1038_s41598_020_64623_y crossref_primary_10_1016_j_bbagrm_2018_10_006 crossref_primary_10_1016_j_isci_2024_110359 crossref_primary_10_1038_s41467_024_46731_9 crossref_primary_10_1016_j_isci_2024_109251 crossref_primary_10_1016_j_celrep_2023_112955 crossref_primary_10_1002_bies_202000097 crossref_primary_10_1038_s41467_024_47449_4 crossref_primary_10_1016_j_molcel_2024_08_030 crossref_primary_10_1016_j_jmb_2021_167159 crossref_primary_10_1016_j_tibs_2020_05_002 crossref_primary_10_3389_fcell_2022_931115 crossref_primary_10_1016_j_tibtech_2023_05_004 crossref_primary_10_1631_jzus_B2000356 crossref_primary_10_15252_embr_202154041 crossref_primary_10_1038_s41586_019_1374_1 crossref_primary_10_1038_s41598_021_00465_6 crossref_primary_10_1126_scisignal_aav7934 crossref_primary_10_1016_j_bbamcr_2020_118831 crossref_primary_10_3389_fmolb_2024_1395220 crossref_primary_10_1083_jcb_202306022 crossref_primary_10_1016_j_coemr_2022_100361 crossref_primary_10_1021_acs_chemrev_2c00608 crossref_primary_10_1021_acs_chemrev_0c00306 crossref_primary_10_1515_hsz_2023_0203 crossref_primary_10_1016_j_molcel_2018_01_020 crossref_primary_10_1038_s41467_022_30322_7 crossref_primary_10_1093_nar_gkaa376 crossref_primary_10_1261_rna_079000_121 crossref_primary_10_1038_s41598_018_27500_3 crossref_primary_10_1093_nar_gkac797 crossref_primary_10_1093_nar_gkac557 crossref_primary_10_1016_j_semcdb_2022_11_008 crossref_primary_10_2139_ssrn_4194127 crossref_primary_10_1021_acs_biochem_8b00001 crossref_primary_10_1080_15548627_2022_2164427 crossref_primary_10_1097_MOH_0000000000000636 crossref_primary_10_3390_cells11040695 crossref_primary_10_3390_cells11061052 crossref_primary_10_1016_j_molcel_2021_04_012 crossref_primary_10_1261_rna_078858_121 crossref_primary_10_1007_s00018_022_04544_3 crossref_primary_10_1186_s40543_023_00389_y crossref_primary_10_1371_journal_ppat_1010724 crossref_primary_10_1126_science_aax4240 crossref_primary_10_3389_fgene_2020_00450 crossref_primary_10_1093_nar_gkaa145 crossref_primary_10_1016_j_cell_2024_11_028 crossref_primary_10_1038_s41580_021_00356_8 crossref_primary_10_1242_jcs_259618 crossref_primary_10_1038_s41594_020_0477_6 crossref_primary_10_1016_j_celrep_2022_111070 crossref_primary_10_1038_s41592_023_02101_9 crossref_primary_10_1016_j_devcel_2020_09_005 crossref_primary_10_1038_s42003_023_04754_w crossref_primary_10_1016_j_bbamcr_2022_119380 crossref_primary_10_1016_j_cell_2019_12_031 crossref_primary_10_1126_scisignal_aav1012 crossref_primary_10_1016_j_xplc_2020_100137 crossref_primary_10_1016_j_molcel_2020_11_036 crossref_primary_10_3389_frnar_2023_1226610 crossref_primary_10_1016_j_molcel_2022_05_014 crossref_primary_10_1083_jcb_202005102 crossref_primary_10_3389_fpls_2021_722643 crossref_primary_10_1021_acs_analchem_0c04332 crossref_primary_10_1042_BST20221074 crossref_primary_10_1021_acs_biochem_8b00025 crossref_primary_10_1111_tra_12704 crossref_primary_10_1016_j_xpro_2021_100677 crossref_primary_10_1016_j_molcel_2019_03_027 crossref_primary_10_1038_s41573_022_00409_3 crossref_primary_10_1093_nar_gkz168 crossref_primary_10_3389_fmolb_2021_744707 crossref_primary_10_1038_s41557_024_01663_1 crossref_primary_10_1093_nar_gkae767 crossref_primary_10_1038_s41467_024_48852_7 crossref_primary_10_1139_bcb_2019_0285 crossref_primary_10_1242_jcs_243451 crossref_primary_10_1146_annurev_arplant_070522_052132 crossref_primary_10_3389_fgene_2019_00006 crossref_primary_10_1016_j_isci_2022_103878 crossref_primary_10_1134_S0006297924140116 crossref_primary_10_1002_alz_14555 crossref_primary_10_1242_jcs_242487 crossref_primary_10_1021_acs_jpclett_0c00747 crossref_primary_10_1074_jbc_RA119_007996 crossref_primary_10_1038_s41467_023_43470_1 crossref_primary_10_1007_s11033_019_04606_z crossref_primary_10_1074_mcp_RA120_002228 crossref_primary_10_1002_cpcb_113 crossref_primary_10_1093_nar_gkad322 crossref_primary_10_1074_mcp_RA118_000822 crossref_primary_10_1083_jcb_202307146 crossref_primary_10_1242_jcs_258834 crossref_primary_10_1126_science_abi6983 crossref_primary_10_1016_j_exer_2021_108889 crossref_primary_10_1016_j_bbamcr_2021_119058 crossref_primary_10_1093_gigascience_giae064 crossref_primary_10_1126_sciadv_adg8771 crossref_primary_10_3390_biom9110680 crossref_primary_10_1111_ggi_14663 crossref_primary_10_1038_s41467_023_38863_1 crossref_primary_10_1016_j_celrep_2023_112211 crossref_primary_10_3390_biom13030527 crossref_primary_10_1016_j_cmet_2020_07_017 crossref_primary_10_1016_j_molp_2024_02_016 crossref_primary_10_1002_pmic_201900392 crossref_primary_10_1074_mcp_R120_001941 crossref_primary_10_1016_j_celrep_2024_113937 crossref_primary_10_3390_v14020291 crossref_primary_10_3390_genes10050333 crossref_primary_10_1016_j_celrep_2024_113935 crossref_primary_10_1038_s41467_019_11550_w crossref_primary_10_1016_j_molcel_2020_10_032 crossref_primary_10_1016_j_tig_2018_05_005 crossref_primary_10_1152_ajpendo_00225_2023 crossref_primary_10_1096_fba_2022_00115 crossref_primary_10_1007_s00018_020_03565_0 crossref_primary_10_3390_ijms222111767 crossref_primary_10_1261_rna_079988_124 crossref_primary_10_1093_g3journal_jkae221 crossref_primary_10_1038_s41556_019_0438_7 crossref_primary_10_3724_abbs_2023096 crossref_primary_10_1261_rna_079008_121 crossref_primary_10_3389_fgene_2022_832547 crossref_primary_10_3390_ijms20061455 crossref_primary_10_1016_j_jbc_2022_102788 crossref_primary_10_1093_nar_gkab490 crossref_primary_10_3390_cells11233932 crossref_primary_10_1016_j_isci_2021_103321 crossref_primary_10_1038_s41422_024_00967_8 crossref_primary_10_1093_nar_gkad1122 crossref_primary_10_1016_j_jbior_2022_100926 crossref_primary_10_1111_boc_202300049 crossref_primary_10_3389_fcell_2021_683254 crossref_primary_10_3389_fmolb_2022_878646 crossref_primary_10_1016_j_cell_2020_05_012 crossref_primary_10_3390_ijms23073624 crossref_primary_10_1021_acs_jproteome_9b00143 crossref_primary_10_1007_s00018_024_05456_0 crossref_primary_10_1016_j_celrep_2023_113358 crossref_primary_10_1083_jcb_202310006 crossref_primary_10_1021_acschemneuro_2c00262 crossref_primary_10_1016_j_cell_2023_06_007 crossref_primary_10_1038_s41577_021_00500_7 crossref_primary_10_1002_psc_3536 crossref_primary_10_1038_s41569_022_00828_0 crossref_primary_10_1080_15476286_2021_1976986 crossref_primary_10_7554_eLife_46767 crossref_primary_10_1016_j_cellin_2022_100068 crossref_primary_10_1016_j_molcel_2019_08_029 crossref_primary_10_1038_s42003_024_06112_w crossref_primary_10_1016_j_cub_2019_12_020 crossref_primary_10_1016_j_celrep_2019_03_047 crossref_primary_10_1016_j_molcel_2018_06_016 crossref_primary_10_1073_pnas_1811997115 crossref_primary_10_1186_s12915_022_01437_6 crossref_primary_10_1016_j_molcel_2023_02_018 crossref_primary_10_1093_nar_gkac279 crossref_primary_10_3748_wjg_v26_i35_5223 crossref_primary_10_3390_ijms242316862 crossref_primary_10_1093_nar_gkac033 crossref_primary_10_26599_SAB_2023_9060002 crossref_primary_10_1016_j_celrep_2023_113229 crossref_primary_10_1038_s41592_020_0826_8 crossref_primary_10_1016_j_celrep_2024_114617 crossref_primary_10_1016_j_jbc_2021_100959 crossref_primary_10_1186_s13578_022_00937_w crossref_primary_10_1242_dev_183053 crossref_primary_10_1038_s41467_018_05647_x crossref_primary_10_1093_plphys_kiab529 crossref_primary_10_3390_biomedicines10092108 crossref_primary_10_1038_s41467_023_43326_8 crossref_primary_10_1111_1348_0421_12841 crossref_primary_10_1038_s41467_023_37252_y crossref_primary_10_1093_nar_gkad135 crossref_primary_10_1134_S000629792311010X crossref_primary_10_1038_s41467_023_43194_2 crossref_primary_10_1101_sqb_2019_84_039396 crossref_primary_10_1038_s41467_019_13973_x crossref_primary_10_1016_j_bcp_2018_10_009 crossref_primary_10_1093_bioinformatics_btz274 crossref_primary_10_3390_v15020466 crossref_primary_10_1073_pnas_2122523119 crossref_primary_10_1016_j_coisb_2019_03_006 crossref_primary_10_1101_cshperspect_a032813 crossref_primary_10_26508_lsa_201800280 crossref_primary_10_1002_wrna_1741 crossref_primary_10_1111_febs_15821 crossref_primary_10_3390_antiox10091483 crossref_primary_10_1016_j_sbi_2019_10_006 crossref_primary_10_1093_nar_gkad585 crossref_primary_10_1016_j_celrep_2023_112242 crossref_primary_10_31857_S0320972523110118 crossref_primary_10_1093_nar_gkac495 crossref_primary_10_7554_eLife_95718 crossref_primary_10_1371_journal_ppat_1012179 crossref_primary_10_7554_eLife_77058 crossref_primary_10_1186_s12967_021_02948_6 crossref_primary_10_1371_journal_ppat_1011080 crossref_primary_10_1016_j_bbrep_2019_100626 crossref_primary_10_1016_j_jmb_2024_168703 crossref_primary_10_1016_j_bpj_2021_03_028 crossref_primary_10_1093_procel_pwae057 crossref_primary_10_3389_fpls_2020_595792 crossref_primary_10_1016_j_mcpro_2021_100186 crossref_primary_10_1242_jcs_244657 crossref_primary_10_1080_14789450_2019_1638769 crossref_primary_10_1021_acs_jproteome_1c00016 crossref_primary_10_1016_j_celrep_2023_112230 crossref_primary_10_3389_fmolb_2022_852911 crossref_primary_10_3390_ijms23052501 crossref_primary_10_1126_sciadv_abo7112 crossref_primary_10_3389_fcell_2020_00195 crossref_primary_10_1021_acs_jproteome_0c00941 crossref_primary_10_7554_eLife_56525 crossref_primary_10_1080_19490976_2022_2107289 crossref_primary_10_1016_j_bbamcr_2020_118876 crossref_primary_10_1038_s41375_022_01513_4 crossref_primary_10_3892_ijo_2019_4691 crossref_primary_10_1016_j_chembiol_2023_06_008 crossref_primary_10_1080_15476286_2024_2388911 crossref_primary_10_1261_rna_078204_120 crossref_primary_10_1042_ETLS20190187 crossref_primary_10_1016_j_molcel_2019_09_014 crossref_primary_10_3390_v12090984 crossref_primary_10_1242_jcs_229252 crossref_primary_10_3389_fcimb_2023_1151069 crossref_primary_10_3390_ijms241411457 crossref_primary_10_1002_bies_202100296 crossref_primary_10_1128_JVI_00205_20 crossref_primary_10_3390_biochem3010003 crossref_primary_10_1016_j_devcel_2024_12_016 crossref_primary_10_1021_acs_jproteome_8b00537 crossref_primary_10_1016_j_cub_2023_04_012 crossref_primary_10_1016_j_chembiol_2024_08_008 crossref_primary_10_1038_s41589_018_0180_7 crossref_primary_10_1002_bies_201900171 crossref_primary_10_3390_ijms241411463 crossref_primary_10_3389_fimmu_2022_995645 crossref_primary_10_3390_microorganisms12112152 crossref_primary_10_1016_j_tranon_2022_101474 crossref_primary_10_3390_cells12020259 crossref_primary_10_1016_j_tibs_2024_03_004 crossref_primary_10_1038_s41580_019_0168_5 crossref_primary_10_3390_ijms24098290 crossref_primary_10_1016_j_cell_2021_04_011 crossref_primary_10_1016_j_chom_2024_09_002 crossref_primary_10_1093_jb_mvab123 crossref_primary_10_1038_s41467_021_26498_z crossref_primary_10_1016_j_tcb_2020_12_012 crossref_primary_10_1016_j_plantsci_2019_04_014 crossref_primary_10_1371_journal_pgen_1009599 crossref_primary_10_7554_eLife_42695 crossref_primary_10_1016_j_antiviral_2022_105451 crossref_primary_10_1038_s41598_022_13309_8 crossref_primary_10_1016_j_jbc_2022_102277 crossref_primary_10_1146_annurev_arplant_081720_015238 crossref_primary_10_1093_narcan_zcae014 crossref_primary_10_1038_s41596_020_0399_0 crossref_primary_10_1016_j_molcel_2020_05_017 crossref_primary_10_1101_gad_350518_123 crossref_primary_10_1515_hsz_2022_0302 crossref_primary_10_15698_mic2024_07_829 crossref_primary_10_1093_brain_awz070 crossref_primary_10_1139_bcb_2024_0176 crossref_primary_10_3390_cells9051070 crossref_primary_10_15252_embr_201948375 crossref_primary_10_1016_j_devcel_2023_09_010 crossref_primary_10_1016_j_tips_2023_03_004 crossref_primary_10_3390_ijms23137380 crossref_primary_10_1002_advs_202103817 crossref_primary_10_15252_embj_2022111885 crossref_primary_10_1016_j_bioorg_2023_107041 crossref_primary_10_1016_j_molcel_2022_10_018 crossref_primary_10_1111_febs_15685 crossref_primary_10_1186_s12929_024_00993_z crossref_primary_10_3389_frnar_2024_1448194 crossref_primary_10_1016_j_ceca_2023_102769 crossref_primary_10_1016_j_cell_2023_05_044 crossref_primary_10_1021_acs_jproteome_8b00320 crossref_primary_10_1038_s42003_020_0758_y crossref_primary_10_1126_science_abc3593 crossref_primary_10_1186_s12964_023_01310_1 crossref_primary_10_3389_fmolb_2022_991641 crossref_primary_10_1002_ajmg_a_62494 crossref_primary_10_1074_jbc_RA119_011638 crossref_primary_10_15252_embr_202050128 crossref_primary_10_1074_mcp_TIR118_000902 crossref_primary_10_1038_s41467_020_16271_z crossref_primary_10_1038_s44321_024_00032_2 crossref_primary_10_1016_j_cell_2020_03_049 crossref_primary_10_1021_acs_jproteome_3c00724 crossref_primary_10_1074_jbc_RA118_004973 crossref_primary_10_1016_j_cell_2020_03_046 crossref_primary_10_1038_s41467_022_32151_0 crossref_primary_10_1038_s41598_021_01554_2 crossref_primary_10_1016_j_jmb_2018_08_003 crossref_primary_10_1073_pnas_2002437117 crossref_primary_10_15252_embj_2022110698 crossref_primary_10_1016_j_cell_2020_03_050 crossref_primary_10_1016_j_ymeth_2019_11_003 crossref_primary_10_1126_scisignal_adl6164 crossref_primary_10_1074_mcp_R120_002034 crossref_primary_10_3390_ijms22052598 crossref_primary_10_1016_j_xpro_2021_101075 crossref_primary_10_1096_fj_202101811RR crossref_primary_10_15302_J_QB_021_0264 crossref_primary_10_1007_s43538_022_00087_0 crossref_primary_10_1038_s41592_020_01010_5 crossref_primary_10_1007_s00439_020_02193_9 crossref_primary_10_1007_s00294_019_01044_z crossref_primary_10_15252_embr_202256241 crossref_primary_10_1038_s41598_019_40046_2 crossref_primary_10_1111_febs_15426 crossref_primary_10_1016_j_xplc_2024_101225 crossref_primary_10_1101_sqb_2019_84_040329 crossref_primary_10_1016_j_celrep_2024_114781 crossref_primary_10_1016_j_cels_2025_101204 crossref_primary_10_1038_s41586_021_03592_2 crossref_primary_10_1101_cshperspect_a033068 crossref_primary_10_1242_jcs_262119 crossref_primary_10_1186_s12964_018_0274_6 crossref_primary_10_7554_eLife_54995 crossref_primary_10_1016_j_xcrm_2021_100360 crossref_primary_10_1128_JB_00685_20 crossref_primary_10_1038_s41594_020_0427_3 crossref_primary_10_1093_nar_gkz848 crossref_primary_10_3389_fgene_2022_931220 crossref_primary_10_26508_lsa_202000927 crossref_primary_10_3390_ijms252312950 crossref_primary_10_1186_s13023_024_03307_6 crossref_primary_10_1002_pro_4859 crossref_primary_10_1016_j_jprot_2021_104218 crossref_primary_10_3390_proteomes8040037 crossref_primary_10_1093_plcell_koad101 crossref_primary_10_1021_acs_jproteome_2c00706 crossref_primary_10_3390_cells11121877 crossref_primary_10_1002_wrna_1524 crossref_primary_10_1038_s41576_022_00550_0 crossref_primary_10_1105_tpc_20_00235 crossref_primary_10_1021_acs_jproteome_2c00825 crossref_primary_10_1128_mbio_03336_24 crossref_primary_10_1098_rsob_200313 crossref_primary_10_15252_embj_2018101109 crossref_primary_10_1242_jcs_260593 crossref_primary_10_1038_s41598_019_39368_y crossref_primary_10_1080_15548627_2021_1965711 crossref_primary_10_1016_j_jmb_2020_02_020 crossref_primary_10_3389_fnsyn_2020_615059 crossref_primary_10_1242_jcs_259594 crossref_primary_10_1038_s41467_023_41000_7 crossref_primary_10_1016_j_mib_2024_102467 crossref_primary_10_1073_pnas_1814385116 crossref_primary_10_1038_s41467_024_52215_7 crossref_primary_10_15252_msb_202010016 crossref_primary_10_1016_j_cbpa_2018_10_017 crossref_primary_10_7554_eLife_72588 crossref_primary_10_7554_eLife_95028_3 crossref_primary_10_1016_j_sbi_2020_06_012 crossref_primary_10_3389_fimmu_2018_01094 crossref_primary_10_1016_j_molcel_2018_11_006 crossref_primary_10_1063_5_0050059 crossref_primary_10_1371_journal_ppat_1012666 crossref_primary_10_1093_biolre_ioab168 crossref_primary_10_3390_ijms22031251 crossref_primary_10_1083_jcb_202207091 crossref_primary_10_1016_j_isci_2023_106855 crossref_primary_10_3389_fimmu_2020_605024 crossref_primary_10_1038_s41583_019_0222_5 crossref_primary_10_1242_dmm_049294 crossref_primary_10_1038_s41467_021_27471_6 crossref_primary_10_1016_j_molcel_2020_07_017 crossref_primary_10_1002_wdev_392 crossref_primary_10_1016_j_molcel_2019_07_030 crossref_primary_10_1111_nph_15690 crossref_primary_10_1371_journal_ppat_1010235 crossref_primary_10_1371_journal_ppat_1010598 crossref_primary_10_1002_wrna_1557 crossref_primary_10_1146_annurev_virology_091919_104213 crossref_primary_10_3389_fcell_2021_751892 crossref_primary_10_1016_j_tig_2018_09_006 crossref_primary_10_15252_embj_2022112446 crossref_primary_10_1016_j_semcdb_2022_09_013 crossref_primary_10_1038_s41559_019_0813_6 crossref_primary_10_1016_j_tibs_2021_09_003 crossref_primary_10_7554_eLife_39578 crossref_primary_10_1016_j_molcel_2020_07_001 crossref_primary_10_1016_j_molcel_2022_02_025 crossref_primary_10_1016_j_cbpa_2020_06_013 crossref_primary_10_3389_fphys_2022_910759 crossref_primary_10_1016_j_cels_2025_101234 |
Cites_doi | 10.1074/jbc.M803443200 10.1038/nmeth.3655 10.1021/ac025747h 10.1083/jcb.200309008 10.1093/nar/gkt1223 10.1016/j.molcel.2016.06.029 10.1186/1471-2105-7-135 10.1073/pnas.1322545111 10.1038/nrg3965 10.1074/mcp.M500231-MCP200 10.1074/mcp.M111.007690 10.1007/978-1-4939-6747-6_23 10.1126/science.1260419 10.1093/nar/gkw199 10.1016/j.celrep.2015.09.033 10.1016/j.jprot.2014.09.011 10.1186/1471-2105-14-284 10.1016/j.cell.2012.04.031 10.1016/j.jprot.2016.04.042 10.1016/j.celrep.2016.10.078 10.1016/j.cell.2015.12.038 10.1016/j.dnarep.2015.04.014 10.1371/journal.pgen.1003598 10.1016/S0888-7543(03)00235-0 10.1016/j.jprot.2013.10.023 10.1016/j.cell.2012.04.017 10.1016/j.celrep.2015.04.065 10.1074/mcp.M110.003731 10.1126/scisignal.2004712 10.1186/1471-2121-12-37 10.1021/ac0341261 10.1016/j.cell.2013.07.038 10.1016/j.cels.2016.04.014 10.1080/01621459.1951.10500769 10.1074/jbc.M606149200 10.1016/j.cell.2015.09.053 10.1016/j.molcel.2017.09.003 10.1016/j.cell.2012.04.016 10.1016/j.molcel.2012.05.021 10.1073/pnas.0608845103 10.1242/jcs.01477 10.1083/jcb.200502088 10.1016/j.ceb.2015.04.003 10.1038/nmeth.2557 10.1016/j.bbamcr.2009.12.004 10.1038/nmeth.4330 10.1038/387523a0 10.1083/jcb.147.7.1431 10.1091/mbc.e08-05-0513 10.15252/msb.20167490 10.1038/nature22366 10.1093/nar/gkw1102 10.1073/pnas.1406459111 10.1073/pnas.0504249102 10.1038/44565 10.1016/j.molcel.2007.02.011 10.1101/gr.1239303 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molcel.2017.12.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 532.e11 |
ExternalDocumentID | 29395067 10_1016_j_molcel_2017_12_020 S1097276517309772 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: FDN 143301 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-86ad8839a1febf825317b51bc52a811d6e56f6894770491e3dc356d0b2d5da223 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Tue Aug 05 09:27:45 EDT 2025 Fri Jul 11 05:17:08 EDT 2025 Mon Jul 21 06:06:35 EDT 2025 Tue Jul 01 03:40:51 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Fri Feb 23 02:30:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | BioID membraneless organelle ribonucleoprotein complex proximity-based labeling stress granule processing body mass spectrometry PRRC2C PP4 complex UBAP2L |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-86ad8839a1febf825317b51bc52a811d6e56f6894770491e3dc356d0b2d5da223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276517309772 |
PMID | 29395067 |
PQID | 1993995104 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2253244963 proquest_miscellaneous_1993995104 pubmed_primary_29395067 crossref_primary_10_1016_j_molcel_2017_12_020 crossref_citationtrail_10_1016_j_molcel_2017_12_020 elsevier_sciencedirect_doi_10_1016_j_molcel_2017_12_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Adusumilli, Mallick (bib1) 2017; 1550 Chatr-Aryamontri, Oughtred, Boucher, Rust, Chang, Kolas, O’Donnell, Oster, Theesfeld, Sellam (bib10) 2017; 45 Leung, Calabrese, Sharp (bib34) 2006; 103 Baltz, Munschauer, Schwanhäusser, Vasile, Murakawa, Schueler, Youngs, Penfold-Brown, Drew, Milek (bib3) 2012; 46 Jonas, Izaurralde (bib23) 2015; 16 Lee, Seung (bib32) 1999; 401 Lambert, Tucholska, Go, Knight, Gingras (bib31) 2015; 118 Nesvizhskii, Keller, Kolker, Aebersold (bib43) 2003; 75 Nishimura, Padamsi, Fakim, Milette, Dunham, Gingras, Fabian (bib44) 2015; 11 Castello, Fischer, Frese, Horos, Alleaume, Foehr, Curk, Krijgsveld, Hentze (bib8) 2016; 63 Finn, Bateman, Clements, Coggill, Eberhardt, Eddy, Heger, Hetherington, Holm, Mistry (bib16) 2014; 42 Jain, Wheeler, Walters, Agrawal, Barsic, Parker (bib22) 2016; 164 Couzens, Knight, Kean, Teo, Weiss, Dunham, Lin, Bagshaw, Sicheri, Pawson (bib13) 2013; 6 Keller, Nesvizhskii, Kolker, Aebersold (bib27) 2002; 74 Chen, Tisayakorn, Jorgensen, D’Ambrosio, Goudreault, Gingras (bib11) 2008; 283 Hubstenberger, Courel, Benard, Souquere, Ernoult-Lange, Chouaib, Yi, Morlot, Munier, Fradet (bib20) 2017; 68 Mazandu, Mulder (bib38) 2013; 14 Castello, Fischer, Eichelbaum, Horos, Beckmann, Strein, Davey, Humphreys, Preiss, Steinmetz (bib7) 2012; 149 Dang, Kedersha, Low, Romo, Gorospe, Kaufman, Anderson, Liu (bib14) 2006; 281 Knight, Choi, Gupta, Pelletier, Raught, Nesvizhskii, Gingras (bib30) 2017; 14 Shteynberg, Deutsch, Lam, Eng, Sun, Tasman, Mendoza, Moritz, Aebersold, Nesvizhskii (bib51) 2011; 10 Kedersha, Stoecklin, Ayodele, Yacono, Lykke-Andersen, Fritzler, Scheuner, Kaufman, Golan, Anderson (bib26) 2005; 169 Aizer, Brody, Ler, Sonenberg, Singer, Shav-Tal (bib2) 2008; 19 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib47) 2011; 12 Ramaswami, Taylor, Parker (bib48) 2013; 154 Bordeleau, Matthews, Wojnar, Lindqvist, Novac, Jankowsky, Sonenberg, Northcote, Teesdale-Spittle, Pelletier (bib6) 2005; 102 Teo, Liu, Zhang, Nesvizhskii, Gingras, Choi (bib53) 2014; 100 Kim, Birendra, Zhu, Motamedchaboki, Doye, Roux (bib29) 2014; 111 Uhlén, Fagerberg, Hallström, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjöstedt, Asplund (bib54) 2015; 347 Ozgur, Basquin, Kamenska, Filipowicz, Standart, Conti (bib45) 2015; 13 Massey (bib37) 2012; 46 Mellacheruvu, Wright, Couzens, Lambert, St-Denis, Li, Miteva, Hauri, Sardiu, Low (bib39) 2013; 10 Kedersha, Gupta, Li, Miller, Anderson (bib25) 1999; 147 Wang, Tucholska, Knight, Lambert, Tate, Larsen, Gingras, Bandeira (bib55) 2015; 12 Cencic, Pelletier (bib9) 2016; 4 Zheng, Kalev, Chowdhury (bib58) 2015; 32 Kim, Mischerikow, Bandeira, Navarro, Wich, Mohammed, Heck, Pevzner (bib28) 2010; 9 Nadezhdina, Lomakin, Shpilman, Chudinova, Ivanov (bib42) 2010; 1803 Reimand, Arak, Adler, Kolberg, Reisberg, Peterson, Vilo (bib49) 2016; 44 Zhu, Brangwynne (bib59) 2015; 34 Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (bib50) 2003; 13 Huttlin, Bruckner, Paulo, Cannon, Ting, Baltier, Colby, Gebreab, Gygi, Parzen (bib21) 2017; 545 Lehner, Semple, Brown, Counsell, Campbell, Sanderson (bib33) 2004; 83 Drew, Lee, Huizar, Tu, Borgeson, McWhite, Ma, Wallingford, Marcotte (bib15) 2017; 13 Li, Wang, Fu, Berman, Diallo, Dorf (bib35) 2014; 111 St-Denis, Gupta, Lin, Gonzalez-Badillo, Veri, Knight, Rajendran, Couzens, Currie, Tkach (bib52) 2016; 17 Zhang, Zhang, Sheng, Russo, Osborne, Buetow (bib57) 2006; 7 Hein, Hubner, Poser, Cox, Nagaraj, Toyoda, Gak, Weisswange, Mansfeld, Buchholz (bib19) 2015; 163 Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei (bib24) 2012; 149 Yang, Jakymiw, Wood, Eystathioy, Rubin, Fritzler, Chan (bib56) 2004; 117 Liu, Knight, Zhang, Tsou, Wang, Lambert, Larsen, Tyers, Raught, Bandeira (bib36) 2016; 149 Moser, Fritzler, Rattner (bib41) 2011; 12 Parker, Sheth (bib46) 2007; 25 Han, Kato, Xie, Wu, Mirzaei, Pei, Chen, Xie, Allen, Xiao, McKnight (bib18) 2012; 149 Misteli, Cáceres, Spector (bib40) 1997; 387 Gingras, Caballero, Zarske, Sanchez, Hazbun, Fields, Sonenberg, Hafen, Raught, Aebersold (bib17) 2005; 4 Baryshnikova (bib4) 2016; 2 Cougot, Babajko, Séraphin (bib12) 2004; 165 Baumgartner, Stocker, Hafen (bib5) 2013; 9 Kedersha (10.1016/j.molcel.2017.12.020_bib25) 1999; 147 Cencic (10.1016/j.molcel.2017.12.020_bib9) 2016; 4 Shannon (10.1016/j.molcel.2017.12.020_bib50) 2003; 13 Nadezhdina (10.1016/j.molcel.2017.12.020_bib42) 2010; 1803 Aizer (10.1016/j.molcel.2017.12.020_bib2) 2008; 19 Huttlin (10.1016/j.molcel.2017.12.020_bib21) 2017; 545 Mazandu (10.1016/j.molcel.2017.12.020_bib38) 2013; 14 Nishimura (10.1016/j.molcel.2017.12.020_bib44) 2015; 11 Shteynberg (10.1016/j.molcel.2017.12.020_bib51) 2011; 10 Jain (10.1016/j.molcel.2017.12.020_bib22) 2016; 164 Dang (10.1016/j.molcel.2017.12.020_bib14) 2006; 281 Zhang (10.1016/j.molcel.2017.12.020_bib57) 2006; 7 Baryshnikova (10.1016/j.molcel.2017.12.020_bib4) 2016; 2 Kato (10.1016/j.molcel.2017.12.020_bib24) 2012; 149 Lehner (10.1016/j.molcel.2017.12.020_bib33) 2004; 83 Massey (10.1016/j.molcel.2017.12.020_bib37) 2012; 46 Ozgur (10.1016/j.molcel.2017.12.020_bib45) 2015; 13 Jonas (10.1016/j.molcel.2017.12.020_bib23) 2015; 16 Kim (10.1016/j.molcel.2017.12.020_bib28) 2010; 9 Kim (10.1016/j.molcel.2017.12.020_bib29) 2014; 111 Zheng (10.1016/j.molcel.2017.12.020_bib58) 2015; 32 Cougot (10.1016/j.molcel.2017.12.020_bib12) 2004; 165 Castello (10.1016/j.molcel.2017.12.020_bib7) 2012; 149 Finn (10.1016/j.molcel.2017.12.020_bib16) 2014; 42 Liu (10.1016/j.molcel.2017.12.020_bib36) 2016; 149 Kedersha (10.1016/j.molcel.2017.12.020_bib26) 2005; 169 Lee (10.1016/j.molcel.2017.12.020_bib32) 1999; 401 Drew (10.1016/j.molcel.2017.12.020_bib15) 2017; 13 Hein (10.1016/j.molcel.2017.12.020_bib19) 2015; 163 Pedregosa (10.1016/j.molcel.2017.12.020_bib47) 2011; 12 Misteli (10.1016/j.molcel.2017.12.020_bib40) 1997; 387 Couzens (10.1016/j.molcel.2017.12.020_bib13) 2013; 6 Baltz (10.1016/j.molcel.2017.12.020_bib3) 2012; 46 Chen (10.1016/j.molcel.2017.12.020_bib11) 2008; 283 Chatr-Aryamontri (10.1016/j.molcel.2017.12.020_bib10) 2017; 45 Parker (10.1016/j.molcel.2017.12.020_bib46) 2007; 25 Adusumilli (10.1016/j.molcel.2017.12.020_bib1) 2017; 1550 Bordeleau (10.1016/j.molcel.2017.12.020_bib6) 2005; 102 Reimand (10.1016/j.molcel.2017.12.020_bib49) 2016; 44 Wang (10.1016/j.molcel.2017.12.020_bib55) 2015; 12 Castello (10.1016/j.molcel.2017.12.020_bib8) 2016; 63 Teo (10.1016/j.molcel.2017.12.020_bib53) 2014; 100 Lambert (10.1016/j.molcel.2017.12.020_bib31) 2015; 118 Leung (10.1016/j.molcel.2017.12.020_bib34) 2006; 103 Hubstenberger (10.1016/j.molcel.2017.12.020_bib20) 2017; 68 Zhu (10.1016/j.molcel.2017.12.020_bib59) 2015; 34 Knight (10.1016/j.molcel.2017.12.020_bib30) 2017; 14 Nesvizhskii (10.1016/j.molcel.2017.12.020_bib43) 2003; 75 Ramaswami (10.1016/j.molcel.2017.12.020_bib48) 2013; 154 St-Denis (10.1016/j.molcel.2017.12.020_bib52) 2016; 17 Baumgartner (10.1016/j.molcel.2017.12.020_bib5) 2013; 9 Uhlén (10.1016/j.molcel.2017.12.020_bib54) 2015; 347 Li (10.1016/j.molcel.2017.12.020_bib35) 2014; 111 Keller (10.1016/j.molcel.2017.12.020_bib27) 2002; 74 Moser (10.1016/j.molcel.2017.12.020_bib41) 2011; 12 Gingras (10.1016/j.molcel.2017.12.020_bib17) 2005; 4 Mellacheruvu (10.1016/j.molcel.2017.12.020_bib39) 2013; 10 Yang (10.1016/j.molcel.2017.12.020_bib56) 2004; 117 Han (10.1016/j.molcel.2017.12.020_bib18) 2012; 149 29395058 - Mol Cell. 2018 Feb 1;69(3):349-351 |
References_xml | – volume: 10 start-page: 730 year: 2013 end-page: 736 ident: bib39 article-title: The CRAPome: a contaminant repository for affinity purification-mass spectrometry data publication-title: Nat. Methods – volume: 63 start-page: 696 year: 2016 end-page: 710 ident: bib8 article-title: Comprehensive identification of RNA-binding domains in human cells publication-title: Mol. Cell – volume: 100 start-page: 37 year: 2014 end-page: 43 ident: bib53 article-title: SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software publication-title: J. Proteomics – volume: 165 start-page: 31 year: 2004 end-page: 40 ident: bib12 article-title: Cytoplasmic foci are sites of mRNA decay in human cells publication-title: J. Cell Biol. – volume: 75 start-page: 4646 year: 2003 end-page: 4658 ident: bib43 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Anal. Chem. – volume: 102 start-page: 10460 year: 2005 end-page: 10465 ident: bib6 article-title: Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation publication-title: Proc. Natl. Acad. Sci. USA – volume: 387 start-page: 523 year: 1997 end-page: 527 ident: bib40 article-title: The dynamics of a pre-mRNA splicing factor in living cells publication-title: Nature – volume: 163 start-page: 712 year: 2015 end-page: 723 ident: bib19 article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances publication-title: Cell – volume: 111 start-page: E2453 year: 2014 end-page: E2461 ident: bib29 article-title: Probing nuclear pore complex architecture with proximity-dependent biotinylation publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 2488 year: 2016 end-page: 2501 ident: bib52 article-title: Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators publication-title: Cell Rep. – volume: 42 start-page: D222 year: 2014 end-page: D230 ident: bib16 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res. – volume: 13 start-page: 932 year: 2017 ident: bib15 article-title: Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes publication-title: Mol. Syst. Biol. – volume: 347 start-page: 1260419 year: 2015 ident: bib54 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science – volume: 9 start-page: 2840 year: 2010 end-page: 2852 ident: bib28 article-title: The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search publication-title: Mol. Cell. Proteomics – volume: 117 start-page: 5567 year: 2004 end-page: 5578 ident: bib56 article-title: GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation publication-title: J. Cell Sci. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib47 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 6 start-page: rs15 year: 2013 ident: bib13 article-title: Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions publication-title: Sci. Signal. – volume: 74 start-page: 5383 year: 2002 end-page: 5392 ident: bib27 article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search publication-title: Anal. Chem. – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: bib50 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. – volume: 4 start-page: e1137381 year: 2016 ident: bib9 article-title: Hippuristanol—a potent steroid inhibitor of eukaryotic initiation factor 4A publication-title: Translation (Austin) – volume: 149 start-page: 768 year: 2012 end-page: 779 ident: bib18 article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies publication-title: Cell – volume: 46 start-page: 674 year: 2012 end-page: 690 ident: bib3 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell – volume: 32 start-page: 58 year: 2015 end-page: 65 ident: bib58 article-title: Emerging role of protein phosphatases changes the landscape of phospho-signaling in DNA damage response publication-title: DNA Repair (Amst.) – volume: 19 start-page: 4154 year: 2008 end-page: 4166 ident: bib2 article-title: The dynamics of mammalian P body transport, assembly, and disassembly in vivo publication-title: Mol. Biol. Cell – volume: 11 start-page: 1425 year: 2015 end-page: 1436 ident: bib44 article-title: The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5′ and 3′ termini of target mRNAs publication-title: Cell Rep. – volume: 12 start-page: 1106 year: 2015 end-page: 1108 ident: bib55 article-title: MSPLIT-DIA: sensitive peptide identification for data-independent acquisition publication-title: Nat. Methods – volume: 4 start-page: 1725 year: 2005 end-page: 1740 ident: bib17 article-title: A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity publication-title: Mol. Cell. Proteomics – volume: 1803 start-page: 361 year: 2010 end-page: 371 ident: bib42 article-title: Microtubules govern stress granule mobility and dynamics publication-title: Biochim. Biophys. Acta – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib32 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 83 start-page: 153 year: 2004 end-page: 167 ident: bib33 article-title: Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region publication-title: Genomics – volume: 34 start-page: 23 year: 2015 end-page: 30 ident: bib59 article-title: Nuclear bodies: the emerging biophysics of nucleoplasmic phases publication-title: Curr. Opin. Cell Biol. – volume: 2 start-page: 412 year: 2016 end-page: 421 ident: bib4 article-title: Systematic functional annotation and visualization of biological networks publication-title: Cell Syst. – volume: 25 start-page: 635 year: 2007 end-page: 646 ident: bib46 article-title: P bodies and the control of mRNA translation and degradation publication-title: Mol. Cell – volume: 7 start-page: 135 year: 2006 ident: bib57 article-title: Gene functional similarity search tool (GFSST) publication-title: BMC Bioinformatics – volume: 147 start-page: 1431 year: 1999 end-page: 1442 ident: bib25 article-title: RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules publication-title: J. Cell Biol. – volume: 154 start-page: 727 year: 2013 end-page: 736 ident: bib48 article-title: Altered ribostasis: RNA-protein granules in degenerative disorders publication-title: Cell – volume: 14 start-page: 645 year: 2017 end-page: 646 ident: bib30 article-title: ProHits-viz: a suite of web tools for visualizing interaction proteomics data publication-title: Nat. Methods – volume: 13 start-page: 703 year: 2015 end-page: 711 ident: bib45 article-title: Structure of a human 4E-T/DDX6/CNOT1 complex reveals the different interplay of DDX6-binding proteins with the CCR4-NOT complex publication-title: Cell Rep. – volume: 118 start-page: 81 year: 2015 end-page: 94 ident: bib31 article-title: Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes publication-title: J. Proteomics – volume: 149 start-page: 1393 year: 2012 end-page: 1406 ident: bib7 article-title: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins publication-title: Cell – volume: 12 start-page: 37 year: 2011 ident: bib41 article-title: Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes publication-title: BMC Cell Biol. – volume: 46 start-page: 68 year: 2012 end-page: 78 ident: bib37 article-title: The Kolmogorov-Smirnov test for goodness of fit publication-title: J. Am. Stat. Assoc. – volume: 169 start-page: 871 year: 2005 end-page: 884 ident: bib26 article-title: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling publication-title: J. Cell Biol. – volume: 1550 start-page: 339 year: 2017 end-page: 368 ident: bib1 article-title: Data conversion with ProteoWizard msConvert publication-title: Methods Mol. Biol. – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: bib24 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell – volume: 10 year: 2011 ident: bib51 article-title: iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates publication-title: Mol. Cell Proteomics – volume: 111 start-page: 6970 year: 2014 end-page: 6975 ident: bib35 article-title: TRIM65 regulates microRNA activity by ubiquitination of TNRC6 publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: W83 year: 2016 end-page: W89 ident: bib49 article-title: g:Profiler-a web server for functional interpretation of gene lists (2016 update) publication-title: Nucleic Acids Res. – volume: 164 start-page: 487 year: 2016 end-page: 498 ident: bib22 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell – volume: 9 start-page: e1003598 year: 2013 ident: bib5 article-title: The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster publication-title: PLoS Genet. – volume: 149 start-page: 64 year: 2016 end-page: 68 ident: bib36 article-title: Data independent acquisition analysis in ProHits 4.0 publication-title: J. Proteomics – volume: 283 start-page: 29273 year: 2008 end-page: 29284 ident: bib11 article-title: PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4 publication-title: J. Biol. Chem. – volume: 103 start-page: 18125 year: 2006 end-page: 18130 ident: bib34 article-title: Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules publication-title: Proc. Natl. Acad. Sci. USA – volume: 45 start-page: D369 year: 2017 end-page: D379 ident: bib10 article-title: The BioGRID interaction database: 2017 update publication-title: Nucleic Acids Res. – volume: 545 start-page: 505 year: 2017 end-page: 509 ident: bib21 article-title: Architecture of the human interactome defines protein communities and disease networks publication-title: Nature – volume: 68 start-page: 144 year: 2017 end-page: 157 ident: bib20 article-title: P-body purification reveals the condensation of repressed mRNA regulons publication-title: Mol. Cell – volume: 14 start-page: 284 year: 2013 ident: bib38 article-title: DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures publication-title: BMC Bioinformatics – volume: 281 start-page: 32870 year: 2006 end-page: 32878 ident: bib14 article-title: Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A publication-title: J. Biol. Chem. – volume: 16 start-page: 421 year: 2015 end-page: 433 ident: bib23 article-title: Towards a molecular understanding of microRNA-mediated gene silencing publication-title: Nat. Rev. Genet. – volume: 283 start-page: 29273 year: 2008 ident: 10.1016/j.molcel.2017.12.020_bib11 article-title: PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803443200 – volume: 12 start-page: 1106 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib55 article-title: MSPLIT-DIA: sensitive peptide identification for data-independent acquisition publication-title: Nat. Methods doi: 10.1038/nmeth.3655 – volume: 74 start-page: 5383 year: 2002 ident: 10.1016/j.molcel.2017.12.020_bib27 article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search publication-title: Anal. Chem. doi: 10.1021/ac025747h – volume: 165 start-page: 31 year: 2004 ident: 10.1016/j.molcel.2017.12.020_bib12 article-title: Cytoplasmic foci are sites of mRNA decay in human cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200309008 – volume: 42 start-page: D222 year: 2014 ident: 10.1016/j.molcel.2017.12.020_bib16 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1223 – volume: 63 start-page: 696 year: 2016 ident: 10.1016/j.molcel.2017.12.020_bib8 article-title: Comprehensive identification of RNA-binding domains in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.029 – volume: 7 start-page: 135 year: 2006 ident: 10.1016/j.molcel.2017.12.020_bib57 article-title: Gene functional similarity search tool (GFSST) publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-135 – volume: 111 start-page: 6970 year: 2014 ident: 10.1016/j.molcel.2017.12.020_bib35 article-title: TRIM65 regulates microRNA activity by ubiquitination of TNRC6 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1322545111 – volume: 16 start-page: 421 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib23 article-title: Towards a molecular understanding of microRNA-mediated gene silencing publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3965 – volume: 4 start-page: 1725 year: 2005 ident: 10.1016/j.molcel.2017.12.020_bib17 article-title: A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M500231-MCP200 – volume: 10 year: 2011 ident: 10.1016/j.molcel.2017.12.020_bib51 article-title: iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M111.007690 – volume: 1550 start-page: 339 year: 2017 ident: 10.1016/j.molcel.2017.12.020_bib1 article-title: Data conversion with ProteoWizard msConvert publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6747-6_23 – volume: 347 start-page: 1260419 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib54 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 44 start-page: W83 issue: W1 year: 2016 ident: 10.1016/j.molcel.2017.12.020_bib49 article-title: g:Profiler-a web server for functional interpretation of gene lists (2016 update) publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw199 – volume: 13 start-page: 703 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib45 article-title: Structure of a human 4E-T/DDX6/CNOT1 complex reveals the different interplay of DDX6-binding proteins with the CCR4-NOT complex publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.09.033 – volume: 118 start-page: 81 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib31 article-title: Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes publication-title: J. Proteomics doi: 10.1016/j.jprot.2014.09.011 – volume: 14 start-page: 284 year: 2013 ident: 10.1016/j.molcel.2017.12.020_bib38 article-title: DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-284 – volume: 149 start-page: 1393 year: 2012 ident: 10.1016/j.molcel.2017.12.020_bib7 article-title: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins publication-title: Cell doi: 10.1016/j.cell.2012.04.031 – volume: 149 start-page: 64 year: 2016 ident: 10.1016/j.molcel.2017.12.020_bib36 article-title: Data independent acquisition analysis in ProHits 4.0 publication-title: J. Proteomics doi: 10.1016/j.jprot.2016.04.042 – volume: 17 start-page: 2488 year: 2016 ident: 10.1016/j.molcel.2017.12.020_bib52 article-title: Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.10.078 – volume: 164 start-page: 487 year: 2016 ident: 10.1016/j.molcel.2017.12.020_bib22 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 32 start-page: 58 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib58 article-title: Emerging role of protein phosphatases changes the landscape of phospho-signaling in DNA damage response publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2015.04.014 – volume: 9 start-page: e1003598 year: 2013 ident: 10.1016/j.molcel.2017.12.020_bib5 article-title: The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003598 – volume: 83 start-page: 153 year: 2004 ident: 10.1016/j.molcel.2017.12.020_bib33 article-title: Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region publication-title: Genomics doi: 10.1016/S0888-7543(03)00235-0 – volume: 100 start-page: 37 year: 2014 ident: 10.1016/j.molcel.2017.12.020_bib53 article-title: SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software publication-title: J. Proteomics doi: 10.1016/j.jprot.2013.10.023 – volume: 4 start-page: e1137381 year: 2016 ident: 10.1016/j.molcel.2017.12.020_bib9 article-title: Hippuristanol—a potent steroid inhibitor of eukaryotic initiation factor 4A publication-title: Translation (Austin) – volume: 149 start-page: 753 year: 2012 ident: 10.1016/j.molcel.2017.12.020_bib24 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 11 start-page: 1425 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib44 article-title: The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5′ and 3′ termini of target mRNAs publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.065 – volume: 9 start-page: 2840 year: 2010 ident: 10.1016/j.molcel.2017.12.020_bib28 article-title: The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M110.003731 – volume: 6 start-page: rs15 year: 2013 ident: 10.1016/j.molcel.2017.12.020_bib13 article-title: Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions publication-title: Sci. Signal. doi: 10.1126/scisignal.2004712 – volume: 12 start-page: 37 year: 2011 ident: 10.1016/j.molcel.2017.12.020_bib41 article-title: Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes publication-title: BMC Cell Biol. doi: 10.1186/1471-2121-12-37 – volume: 75 start-page: 4646 year: 2003 ident: 10.1016/j.molcel.2017.12.020_bib43 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac0341261 – volume: 154 start-page: 727 year: 2013 ident: 10.1016/j.molcel.2017.12.020_bib48 article-title: Altered ribostasis: RNA-protein granules in degenerative disorders publication-title: Cell doi: 10.1016/j.cell.2013.07.038 – volume: 2 start-page: 412 year: 2016 ident: 10.1016/j.molcel.2017.12.020_bib4 article-title: Systematic functional annotation and visualization of biological networks publication-title: Cell Syst. doi: 10.1016/j.cels.2016.04.014 – volume: 46 start-page: 68 year: 2012 ident: 10.1016/j.molcel.2017.12.020_bib37 article-title: The Kolmogorov-Smirnov test for goodness of fit publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1951.10500769 – volume: 281 start-page: 32870 year: 2006 ident: 10.1016/j.molcel.2017.12.020_bib14 article-title: Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606149200 – volume: 163 start-page: 712 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib19 article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances publication-title: Cell doi: 10.1016/j.cell.2015.09.053 – volume: 68 start-page: 144 year: 2017 ident: 10.1016/j.molcel.2017.12.020_bib20 article-title: P-body purification reveals the condensation of repressed mRNA regulons publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.09.003 – volume: 149 start-page: 768 year: 2012 ident: 10.1016/j.molcel.2017.12.020_bib18 article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies publication-title: Cell doi: 10.1016/j.cell.2012.04.016 – volume: 46 start-page: 674 year: 2012 ident: 10.1016/j.molcel.2017.12.020_bib3 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.021 – volume: 103 start-page: 18125 year: 2006 ident: 10.1016/j.molcel.2017.12.020_bib34 article-title: Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0608845103 – volume: 117 start-page: 5567 year: 2004 ident: 10.1016/j.molcel.2017.12.020_bib56 article-title: GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation publication-title: J. Cell Sci. doi: 10.1242/jcs.01477 – volume: 169 start-page: 871 year: 2005 ident: 10.1016/j.molcel.2017.12.020_bib26 article-title: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling publication-title: J. Cell Biol. doi: 10.1083/jcb.200502088 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.molcel.2017.12.020_bib47 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 23 year: 2015 ident: 10.1016/j.molcel.2017.12.020_bib59 article-title: Nuclear bodies: the emerging biophysics of nucleoplasmic phases publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2015.04.003 – volume: 10 start-page: 730 year: 2013 ident: 10.1016/j.molcel.2017.12.020_bib39 article-title: The CRAPome: a contaminant repository for affinity purification-mass spectrometry data publication-title: Nat. Methods doi: 10.1038/nmeth.2557 – volume: 1803 start-page: 361 year: 2010 ident: 10.1016/j.molcel.2017.12.020_bib42 article-title: Microtubules govern stress granule mobility and dynamics publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2009.12.004 – volume: 14 start-page: 645 year: 2017 ident: 10.1016/j.molcel.2017.12.020_bib30 article-title: ProHits-viz: a suite of web tools for visualizing interaction proteomics data publication-title: Nat. Methods doi: 10.1038/nmeth.4330 – volume: 387 start-page: 523 year: 1997 ident: 10.1016/j.molcel.2017.12.020_bib40 article-title: The dynamics of a pre-mRNA splicing factor in living cells publication-title: Nature doi: 10.1038/387523a0 – volume: 147 start-page: 1431 year: 1999 ident: 10.1016/j.molcel.2017.12.020_bib25 article-title: RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules publication-title: J. Cell Biol. doi: 10.1083/jcb.147.7.1431 – volume: 19 start-page: 4154 year: 2008 ident: 10.1016/j.molcel.2017.12.020_bib2 article-title: The dynamics of mammalian P body transport, assembly, and disassembly in vivo publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-05-0513 – volume: 13 start-page: 932 year: 2017 ident: 10.1016/j.molcel.2017.12.020_bib15 article-title: Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20167490 – volume: 545 start-page: 505 year: 2017 ident: 10.1016/j.molcel.2017.12.020_bib21 article-title: Architecture of the human interactome defines protein communities and disease networks publication-title: Nature doi: 10.1038/nature22366 – volume: 45 start-page: D369 issue: D1 year: 2017 ident: 10.1016/j.molcel.2017.12.020_bib10 article-title: The BioGRID interaction database: 2017 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1102 – volume: 111 start-page: E2453 year: 2014 ident: 10.1016/j.molcel.2017.12.020_bib29 article-title: Probing nuclear pore complex architecture with proximity-dependent biotinylation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1406459111 – volume: 102 start-page: 10460 year: 2005 ident: 10.1016/j.molcel.2017.12.020_bib6 article-title: Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504249102 – volume: 401 start-page: 788 year: 1999 ident: 10.1016/j.molcel.2017.12.020_bib32 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 25 start-page: 635 year: 2007 ident: 10.1016/j.molcel.2017.12.020_bib46 article-title: P bodies and the control of mRNA translation and degradation publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.02.011 – volume: 13 start-page: 2498 year: 2003 ident: 10.1016/j.molcel.2017.12.020_bib50 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – reference: 29395058 - Mol Cell. 2018 Feb 1;69(3):349-351 |
SSID | ssj0014589 |
Score | 2.6788852 |
Snippet | mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 517 |
SubjectTerms | BioID biotinylation cytoplasmic granules granules humans mass spectrometry membraneless organelle messenger RNA PP4 complex processing body proteins proximity-based labeling PRRC2C ribonucleases ribonucleoprotein complex stress granule transcription (genetics) translation (genetics) UBAP2L |
Title | High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies |
URI | https://dx.doi.org/10.1016/j.molcel.2017.12.020 https://www.ncbi.nlm.nih.gov/pubmed/29395067 https://www.proquest.com/docview/1993995104 https://www.proquest.com/docview/2253244963 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSyMxEA6iCL4cp553PT2JcK-hJrvJ7j5WPS2KRXqKfQvJJjks7a7YVq7__c3sj3KCIrhvu0wgzMxOvkm-yRDyExKTEAWXMRHSjEHAO2bGe8FsyIQXWQzZGO53XA9U_y6-HMnRGjlta2GQVtnE_jqmV9G6-dJttNl9fHjo_sazU5EoycFJAcVgHI7itCriG52sThJiWbXBQ2GG0m35XMXxmpaT3OMBBE-qTUHs-v368vQW_KyWofPP5FODH2mvnuI2WfPFDtmsO0oud8kYeRvsDFnp8yW9eSr_YgHTkl4bvIfhDx36Z0CGMwqwj0LMwG175KHS_0syaRnodDjosdZ03tELWNIWEz-jpnD0pETq4Rdyd_7r9rTPmnYKLI8Vn7NUGZcCHjI8eBsgMwToYCW3uRQm5dwpL1VQKdgngbSB-8jlkVTu2AonnQEYsUfWi7Lw3wi1VkUigcdgDQMPmbHGJDEmSyESue2QqNWizpu7xrHlxUS3pLKxrnWvUfeaCw267xC2GvVY37XxjnzSGki_8BkNy8E7I49ae2r4nVDZpvDlYqaRz5gh6ozfloEQCDA0htDVIV9rZ1jNF9BTJgEBfP_w3PbJFrylNTP8gKzPnxb-BwCfuT0kG72r4f3VYeXh_wAr6QGz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA9iKfWlaG3tVa0RfA1nspvs7qOfPT_uEKtwbyHZJEU5d8W7E--_78x-HAqK4D7uTiDMzE5-k_wmQ8gOJCYhCi5jIqQZg4C3y4z3gtmQCS-yGLIx3O_oD1TvOj4dyuECOWhrYZBW2cT-OqZX0bp502202b2_uen-xbNTkSjJwUkBxUAc_gRoIMH-DSfD_flRQiyrPngozVC8rZ-rSF535Sj3eALBk2pXENt-v74-vYU_q3XoeJl8bQAk3avnuEIWfPGNfK5bSs5WyS0SN9gh0tInM3rxUD5hBdOM9g1exPCPXvpHgIZjCriPQtDAfXskotLnNZm0DPTucrDHWtt5R__AmjYd-TE1haP7JXIPv5Pr46Orgx5r-imwPFZ8wlJlXAqAyPDgbYDUELCDldzmUpiUc6e8VEGlYKAE8gbuI5dHUrldK5x0BnDED7JYlIX_Sai1KhIJPAaLGHjIjDUmiTFbCpHIbYdErRZ13lw2jj0vRrplld3qWvcada-50KD7DmHzUff1ZRvvyCetgfQLp9GwHrwzcru1p4b_CZVtCl9OxxoJjRnCzvhtGYiBgENjiF0dslY7w3y-AJ8yCRDg14fntkW-9K765_r8ZHC2TpbgS1rTxDfI4uRh6jcBBU3s78rL_wMEmgMv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Density+Proximity+Mapping+Reveals+the+Subcellular+Organization+of+mRNA-Associated+Granules+and+Bodies&rft.jtitle=Molecular+cell&rft.au=Youn%2C+Ji-Young&rft.au=Dunham%2C+Wade+H&rft.au=Hong%2C+Seo+Jung&rft.au=Knight%2C+James+D+R&rft.date=2018-02-01&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=69&rft.issue=3&rft.spage=517&rft_id=info:doi/10.1016%2Fj.molcel.2017.12.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |