Energy Flow and Functional Behavior of Individual Muscles at Different Speeds During Human Walking

Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate compromised neuromuscular system, but also assist engineers in developing rehabilitation devices. This study aims to determine the contribution o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 294 - 303
Main Authors Hu, Zheqi, Ren, Lei, Wei, Guowu, Qian, Zhihui, Liang, Wei, Chen, Wei, Lu, Xuewei, Ren, Luquan, Wang, Kunyang
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate compromised neuromuscular system, but also assist engineers in developing rehabilitation devices. This study aims to determine the contribution of major muscle and the energy flow in the human musculoskeletal system at four sub-phases (collision, rebound, preload, push-off) during the stance of walking at different speeds. Gait experiments were performed with three self-selected speeds: slow, normal, and fast. Muscle forces and mechanical work were calculated by using a subject-specified musculoskeletal model. The functions of individual muscles were characterized as four functional behaviors (strut, spring, motor, damper), which were determined based on the mechanical energy. The results showed that during collision, hip flexors (iliacus and psoas major) and ankle dorsiflexors (anterior tibialis) were the most dominant muscles in buffering the stride with energy absorption; during rebound, the posterior muscles (gluteus maximus, gastrocnemius, posterior tibialis, soleus) contributed the most to energy generation; during preload, energy for preparing push-off was mainly absorbed by the muscles surrounding knee (vastus, semimembranosus, semitendinosus); during push-off, ankle plantar flexors (gastrocnemius, soleus, posterior tibialis, peroneus muscles, flexor digitorum, flexor hallucis) mainly behaved to generate energy for forward propulsion. With increased walking speed, additional energy (almost 400%) from harder stride was mainly absorbed by the flexor muscles. Hip extensors and adductors transferred more energy (around 150%) to the distal segments during rebound. Soleus and gastrocnemius muscles generated more energy (about 75%) to the proximal segments for propulsion. Along with our previous study of joint-level energy analysis, these findings could assist better understanding of human musculoskeletal behaviors during locomotion and provide principles for the bio-design of related assistive devices from motors performance enhancement to rehabilitation such as exoskeleton and prosthesis.
AbstractList Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate compromised neuromuscular system, but also assist engineers in developing rehabilitation devices. This study aims to determine the contribution of major muscle and the energy flow in the human musculoskeletal system at four sub-phases (collision, rebound, preload, push-off) during the stance of walking at different speeds. Gait experiments were performed with three self-selected speeds: slow, normal, and fast. Muscle forces and mechanical work were calculated by using a subject-specified musculoskeletal model. The functions of individual muscles were characterized as four functional behaviors (strut, spring, motor, damper), which were determined based on the mechanical energy. The results showed that during collision, hip flexors (iliacus and psoas major) and ankle dorsiflexors (anterior tibialis) were the most dominant muscles in buffering the stride with energy absorption; during rebound, the posterior muscles (gluteus maximus, gastrocnemius, posterior tibialis, soleus) contributed the most to energy generation; during preload, energy for preparing push-off was mainly absorbed by the muscles surrounding knee (vastus, semimembranosus, semitendinosus); during push-off, ankle plantar flexors (gastrocnemius, soleus, posterior tibialis, peroneus muscles, flexor digitorum, flexor hallucis) mainly behaved to generate energy for forward propulsion. With increased walking speed, additional energy (almost 400%) from harder stride was mainly absorbed by the flexor muscles. Hip extensors and adductors transferred more energy (around 150%) to the distal segments during rebound. Soleus and gastrocnemius muscles generated more energy (about 75%) to the proximal segments for propulsion. Along with our previous study of joint-level energy analysis, these findings could assist better understanding of human musculoskeletal behaviors during locomotion and provide principles for the bio-design of related assistive devices from motors performance enhancement to rehabilitation such as exoskeleton and prosthesis.Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate compromised neuromuscular system, but also assist engineers in developing rehabilitation devices. This study aims to determine the contribution of major muscle and the energy flow in the human musculoskeletal system at four sub-phases (collision, rebound, preload, push-off) during the stance of walking at different speeds. Gait experiments were performed with three self-selected speeds: slow, normal, and fast. Muscle forces and mechanical work were calculated by using a subject-specified musculoskeletal model. The functions of individual muscles were characterized as four functional behaviors (strut, spring, motor, damper), which were determined based on the mechanical energy. The results showed that during collision, hip flexors (iliacus and psoas major) and ankle dorsiflexors (anterior tibialis) were the most dominant muscles in buffering the stride with energy absorption; during rebound, the posterior muscles (gluteus maximus, gastrocnemius, posterior tibialis, soleus) contributed the most to energy generation; during preload, energy for preparing push-off was mainly absorbed by the muscles surrounding knee (vastus, semimembranosus, semitendinosus); during push-off, ankle plantar flexors (gastrocnemius, soleus, posterior tibialis, peroneus muscles, flexor digitorum, flexor hallucis) mainly behaved to generate energy for forward propulsion. With increased walking speed, additional energy (almost 400%) from harder stride was mainly absorbed by the flexor muscles. Hip extensors and adductors transferred more energy (around 150%) to the distal segments during rebound. Soleus and gastrocnemius muscles generated more energy (about 75%) to the proximal segments for propulsion. Along with our previous study of joint-level energy analysis, these findings could assist better understanding of human musculoskeletal behaviors during locomotion and provide principles for the bio-design of related assistive devices from motors performance enhancement to rehabilitation such as exoskeleton and prosthesis.
Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate compromised neuromuscular system, but also assist engineers in developing rehabilitation devices. This study aims to determine the contribution of major muscle and the energy flow in the human musculoskeletal system at four sub-phases (collision, rebound, preload, push-off) during the stance of walking at different speeds. Gait experiments were performed with three self-selected speeds: slow, normal, and fast. Muscle forces and mechanical work were calculated by using a subject-specified musculoskeletal model. The functions of individual muscles were characterized as four functional behaviors (strut, spring, motor, damper), which were determined based on the mechanical energy. The results showed that during collision, hip flexors (iliacus and psoas major) and ankle dorsiflexors (anterior tibialis) were the most dominant muscles in buffering the stride with energy absorption; during rebound, the posterior muscles (gluteus maximus, gastrocnemius, posterior tibialis, soleus) contributed the most to energy generation; during preload, energy for preparing push-off was mainly absorbed by the muscles surrounding knee (vastus, semimembranosus, semitendinosus); during push-off, ankle plantar flexors (gastrocnemius, soleus, posterior tibialis, peroneus muscles, flexor digitorum, flexor hallucis) mainly behaved to generate energy for forward propulsion. With increased walking speed, additional energy (almost 400%) from harder stride was mainly absorbed by the flexor muscles. Hip extensors and adductors transferred more energy (around 150%) to the distal segments during rebound. Soleus and gastrocnemius muscles generated more energy (about 75%) to the proximal segments for propulsion. Along with our previous study of joint-level energy analysis, these findings could assist better understanding of human musculoskeletal behaviors during locomotion and provide principles for the bio-design of related assistive devices from motors performance enhancement to rehabilitation such as exoskeleton and prosthesis.
Author Chen, Wei
Qian, Zhihui
Hu, Zheqi
Ren, Lei
Liang, Wei
Lu, Xuewei
Ren, Luquan
Wei, Guowu
Wang, Kunyang
Author_xml – sequence: 1
  givenname: Zheqi
  orcidid: 0000-0002-2391-2569
  surname: Hu
  fullname: Hu, Zheqi
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0003-3222-2102
  surname: Ren
  fullname: Ren, Lei
  email: lren@jlu.edu.cn
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 3
  givenname: Guowu
  orcidid: 0000-0003-2613-902X
  surname: Wei
  fullname: Wei, Guowu
  organization: School of Science, Engineering and Environment, University of Salford, Salford, U.K
– sequence: 4
  givenname: Zhihui
  surname: Qian
  fullname: Qian, Zhihui
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 5
  givenname: Wei
  surname: Liang
  fullname: Liang, Wei
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 6
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 7
  givenname: Xuewei
  orcidid: 0000-0002-0408-5764
  surname: Lu
  fullname: Lu, Xuewei
  organization: School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, U.K
– sequence: 8
  givenname: Luquan
  orcidid: 0000-0003-1102-8482
  surname: Ren
  fullname: Ren, Luquan
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 9
  givenname: Kunyang
  orcidid: 0000-0003-3807-3697
  surname: Wang
  fullname: Wang, Kunyang
  email: kywang@jlu.edu.cn
  organization: Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36374868$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhiNURD_gD4CELHHhksUfsZMcabvbrlRAokUcrUkyXrxk7cVOivrv63SXPfTAyePRM69Hfk6zI-cdZtlbRmeM0frT3dfb7_MZp5zPBOesrtSL7IRJWeWUM3o01aLIC8HpcXYa45pSVipZvsqOhRJlUanqJGvmDsPqgSx6_5eA68hidO1gvYOenOMvuLc-EG_I0nX23nZjan8ZY9tjJDCQS2sMBnQDud0idpFcjsG6FbkeN-DIT-h_p9vr7KWBPuKb_XmW_VjM7y6u85tvV8uLzzd5Wyg25FXRUIaFMWlNQzmgghpEwSrAumQNshJph0YyXkKqDcNa8hqQN7zsWqbEWbbc5XYe1nob7AbCg_Zg9VPDh5WGMNi0u25KoYyUTaeMKaARKYJSKiSTDBuu6pT1cZe1Df7PiHHQGxtb7Htw6MeoeQpQqmCiTOiHZ-jajyH930SVSYFIYhL1fk-NzQa7w3r_TCSA74A2-BgDmgPCqJ506yfdetKt97rTUPVsqLUDTPqGALb__-i73ahFxMNbdS0pr5h4BEDpth4
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e21429
crossref_primary_10_1007_s10723_023_09717_3
crossref_primary_10_1007_s00500_023_09450_9
crossref_primary_10_1007_s00500_023_09620_9
crossref_primary_10_1007_s00500_023_09587_7
crossref_primary_10_3390_jfmk8040145
crossref_primary_10_3390_s24030735
crossref_primary_10_1109_ACCESS_2023_3317893
crossref_primary_10_1109_ACCESS_2023_3340984
crossref_primary_10_1109_ACCESS_2023_3319452
crossref_primary_10_3233_JIFS_237483
crossref_primary_10_1016_j_optlastec_2023_110459
crossref_primary_10_1016_j_eurpolymj_2024_112777
crossref_primary_10_1109_JSEN_2024_3522105
crossref_primary_10_1007_s00500_024_09634_x
crossref_primary_10_1007_s11276_023_03556_6
crossref_primary_10_1016_j_inoche_2024_112285
crossref_primary_10_1007_s40998_024_00743_9
crossref_primary_10_3390_mi14122204
crossref_primary_10_1007_s00500_023_09114_8
crossref_primary_10_3389_fphys_2024_1344887
crossref_primary_10_1016_j_aej_2023_12_068
crossref_primary_10_1016_j_tice_2024_102339
crossref_primary_10_3390_s24103032
crossref_primary_10_1007_s00500_023_09091_y
crossref_primary_10_1038_s41598_023_48860_5
crossref_primary_10_1016_j_aej_2024_02_056
Cites_doi 10.1242/jeb.044297
10.1243/09544062jmes1559
10.3389/fbioe.2021.666428
10.1126/science.288.5463.100
10.1016/j.jbiomech.2005.02.010
10.1109/ROBOT.2007.364036
10.1242/jeb.005801
10.1016/j.jbiomech.2009.06.056
10.1115/1.4023390
10.1016/0021-9290(94)90195-3
10.1016/s0966-6362(01)00206-5
10.1371/journal.pcbi.1004912
10.1073/pnas.1107972109
10.1523/eneuro.0358-18.2019
10.1016/j.jbiomech.2010.06.011
10.1109/TAC.2014.2299342
10.1016/j.jbiomech.2015.11.022
10.1016/s0966-6362(02)00068-1
10.1098/rsif.2016.0391
10.1016/j.robot.2019.06.008
10.1109/TRO.2011.2162271
10.1016/0021-9290(90)90042-2
10.1242/jeb.119156
10.1249/mss.0b013e3181da8d1e
10.1016/j.jbiomech.2007.03.003
10.1016/j.gaitpost.2005.05.002
10.1016/0167-9457(84)90004-6
10.1152/japplphysiol.00128.2015
10.1249/mss.0000000000001020
10.1242/jeb.115451
10.1113/jphysiol.2003.057174
10.1146/annurev-bioeng-070909-105259
10.1016/s0021-9290(01)00160-9
10.1016/j.jbiomech.2004.04.030
10.1016/j.jbiomech.2019.04.027
10.1016/0268-0033(95)91394-t
10.1038/s41591-021-01515-2
10.1016/0021-9290(80)90172-4
10.1242/jeb.161158
10.1016/0006-8993(96)00525-2
10.1016/s0966-6362(03)00062-6
10.1016/j.jbiomech.2016.04.004
10.1371/journal.pcbi.1006223
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3221986
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 303
ExternalDocumentID oai_doaj_org_article_b736f55bd6ff4ab3b2700035151eb269
36374868
10_1109_TNSRE_2022_3221986
9950281
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFC2001300
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of Jilin Province
  grantid: 20210101053JC
  funderid: 10.13039/100007847
– fundername: National Natural Science Foundation of China
  grantid: 52005209; 91948302; 91848204; 52021003
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-84b01e4ff001f02ae6a9a3418ae971be17e0def5127a17ef1e9529ae2b27dc163
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:29:20 EDT 2025
Fri Jul 11 01:05:10 EDT 2025
Fri Jul 25 07:23:59 EDT 2025
Thu Apr 03 07:03:17 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 00:43:26 EDT 2025
Wed Aug 27 02:18:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-84b01e4ff001f02ae6a9a3418ae971be17e0def5127a17ef1e9529ae2b27dc163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3222-2102
0000-0002-0408-5764
0000-0002-2391-2569
0000-0003-2613-902X
0000-0003-3807-3697
0000-0003-1102-8482
OpenAccessLink https://doaj.org/article/b736f55bd6ff4ab3b2700035151eb269
PMID 36374868
PQID 2771533986
PQPubID 85423
PageCount 10
ParticipantIDs proquest_miscellaneous_2736664137
crossref_citationtrail_10_1109_TNSRE_2022_3221986
proquest_journals_2771533986
pubmed_primary_36374868
crossref_primary_10_1109_TNSRE_2022_3221986
ieee_primary_9950281
doaj_primary_oai_doaj_org_article_b736f55bd6ff4ab3b2700035151eb269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Al-Hayani (ref30) 2009; 68
ref24
ref23
ref45
ref26
ref25
Angeloni (ref20) 1993; 26
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref16
  doi: 10.1242/jeb.044297
– ident: ref38
  doi: 10.1243/09544062jmes1559
– ident: ref4
  doi: 10.3389/fbioe.2021.666428
– ident: ref7
  doi: 10.1126/science.288.5463.100
– ident: ref27
  doi: 10.1016/j.jbiomech.2005.02.010
– ident: ref41
  doi: 10.1109/ROBOT.2007.364036
– ident: ref14
  doi: 10.1242/jeb.005801
– ident: ref40
  doi: 10.1016/j.jbiomech.2009.06.056
– ident: ref26
  doi: 10.1115/1.4023390
– ident: ref31
  doi: 10.1016/0021-9290(94)90195-3
– ident: ref17
  doi: 10.1016/s0966-6362(01)00206-5
– ident: ref37
  doi: 10.1371/journal.pcbi.1004912
– ident: ref11
  doi: 10.1073/pnas.1107972109
– ident: ref33
  doi: 10.1523/eneuro.0358-18.2019
– ident: ref32
  doi: 10.1016/j.jbiomech.2010.06.011
– ident: ref44
  doi: 10.1109/TAC.2014.2299342
– volume: 26
  start-page: 60
  issue: 864
  year: 1993
  ident: ref20
  article-title: Quantification of relative displacement of skin- and plate-mounted markers with respect to bones
  publication-title: J. Biomech.
– ident: ref9
  doi: 10.1016/j.jbiomech.2015.11.022
– ident: ref28
  doi: 10.1016/s0966-6362(02)00068-1
– ident: ref15
  doi: 10.1098/rsif.2016.0391
– ident: ref43
  doi: 10.1016/j.robot.2019.06.008
– ident: ref42
  doi: 10.1109/TRO.2011.2162271
– ident: ref29
  doi: 10.1016/0021-9290(90)90042-2
– ident: ref3
  doi: 10.1242/jeb.119156
– ident: ref5
  doi: 10.1249/mss.0b013e3181da8d1e
– ident: ref21
  doi: 10.1016/j.jbiomech.2007.03.003
– ident: ref36
  doi: 10.1016/j.gaitpost.2005.05.002
– ident: ref23
  doi: 10.1016/0167-9457(84)90004-6
– ident: ref13
  doi: 10.1152/japplphysiol.00128.2015
– ident: ref8
  doi: 10.1249/mss.0000000000001020
– ident: ref2
  doi: 10.1242/jeb.115451
– ident: ref18
  doi: 10.1113/jphysiol.2003.057174
– ident: ref35
  doi: 10.1146/annurev-bioeng-070909-105259
– ident: ref24
  doi: 10.1016/s0021-9290(01)00160-9
– ident: ref19
  doi: 10.1016/j.jbiomech.2004.04.030
– ident: ref6
  doi: 10.1016/j.jbiomech.2019.04.027
– ident: ref22
  doi: 10.1016/0268-0033(95)91394-t
– ident: ref45
  doi: 10.1038/s41591-021-01515-2
– ident: ref1
  doi: 10.1016/0021-9290(80)90172-4
– ident: ref34
  doi: 10.1242/jeb.161158
– ident: ref39
  doi: 10.1016/0006-8993(96)00525-2
– ident: ref10
  doi: 10.1016/s0966-6362(03)00062-6
– volume: 68
  start-page: 98
  issue: 2
  year: 2009
  ident: ref30
  article-title: The functional anatomy of hip abductors
  publication-title: Folia Morpholog.
– ident: ref12
  doi: 10.1016/j.jbiomech.2016.04.004
– ident: ref25
  doi: 10.1371/journal.pcbi.1006223
SSID ssj0017657
Score 2.5347881
Snippet Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 294
SubjectTerms Ankle
Behavioral sciences
Biomechanical Phenomena
biomechanics
Energy
Energy absorption
Energy flow
Exoskeleton
Exoskeletons
Flexors
Functionals
Gait
Gait - physiology
Hip
Humans
Legged locomotion
Locomotion
Lower Extremity
Mechanical energy
muscle function
Muscle, Skeletal - physiology
Muscles
musculoskeletal model
Musculoskeletal system
Neuromuscular system
Propulsion
Prostheses
Rehabilitation
Segments
Shock absorbers
Walking
Walking - physiology
walking speed
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1x4lUegICMBF8g2cRw7PgLdVUHaHtqt6M2yk_Glq6TqJkLi1zN2nKggQNyixLFjzTgzn8fzDSFvRGmq0mQ8bawyPiXHpJUARCm8RjgCNVfhNOH6VJxc8K-X5eUe-TDnwgBAOHwGC38ZYvlNVw9-q-xIqRLNIWKdOwjcxlytOWIgRWD1xAXMcUiWTQkymTranJ6fLREKMrZA9UWU7esWFcITr3iG1Vv2KND2xzorf3c5g-lZ3Sfr6aPHEydXi6G3i_rHb3yO_zurB-Re9EHpx1FpHpI9aB-Rt7f5hulmJBug7-jZL1TeB8QuQ7YgXW2779S0DV2hZYxvRbLFG9o5-mXO9KLrYefP3lHT0-NYj6Wn59doN3f0OKRJ0hBLoN_M1u_cPyYXq-Xm80kaCzWkNRd5n1bcZjlw51AOLmMGhFEGzWNlQMncQi4ha8ChbyENXrscVMmUAWaZbGr0CJ-Q_bZr4Rmh6OtnVhbcKscRa0qDnZXGmSprEEvVLiH5JC5dx6n7YhpbHdBMpnSQtvbS1lHaCXk_v3M9cnj8s_UnrwVzS8-_HW6g0HRczho_UbiytI1wjhtbWB-_90HZMgfLhErIgRf03EmUcUIOJ53S8V-x00xK73SHoV_Pj3GV-9CNaaEbfJsCcSY6HDIhT0ddnPueNPn5n8d8Qe7i9Ipx2-iQ7Pc3A7xER6q3r8IK-gkNyRY-
  priority: 102
  providerName: IEEE
Title Energy Flow and Functional Behavior of Individual Muscles at Different Speeds During Human Walking
URI https://ieeexplore.ieee.org/document/9950281
https://www.ncbi.nlm.nih.gov/pubmed/36374868
https://www.proquest.com/docview/2771533986
https://www.proquest.com/docview/2736664137
https://doaj.org/article/b736f55bd6ff4ab3b2700035151eb269
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTlxQC6WkUDSVSi9VIMn6Iz7SsiuKBAdYVG7WOLFPqyxis-Lvd-x4Izi0vfS2yjpO4hlr3rM9bxj7IgXWAguet1ZjSMnBvJaOWApviI64hut4mvD6Rl7e86sH8fCi1Fc4EzbIAw8Dd2bVRHohbCu952gnNuyUhu0vURIplDF1j2Lehkyl_QMlhdqkyBT6bH5zdzslMlhVp-TAxLPlqzAU1fpTeZU_I80YcWZv2U6CinA-vOI79sZ1u-zkpSwwzAdNAPgKt68Ut_eYncakPpgtls-AXQszCmDprqSJ-ARLDz_HhCy4Xq_CETnAHi5S2ZQe7h4pvK3gImYzQlzyh1-4CAvs79n9bDr_cZmnegp5w2XZ5zW3Rem49zRAvqjQSdRIUaxGp1VpXalc0TpPEEAh_fal06LS6Coa87Yh4LbPtrpl5w4YECQvyDLcas-JEiqkzgR6rIuWKE_jM1Zuhtc06dNDzYuFiaSj0CaaxASTmGSSjH0b73kcpDb-2vp7sNrYMshkxwvkPCY5j_mX82RsL9h87ERrQXirzNjRxgdMmtIrUykVsHF89Ofxb5qMYYcFO7dchzYTooOEC1TGPgy-M_Y9kUHpR9Yf_8eLH7LtUPd-WAs6Ylv909p9InTU2-M4EY5jIuNvFnMJyQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcoALrwJNKWAk4AK7TRw_4iPQXW2hu4d2K3qz7MS-sEqqbqJK_HrGjhMVBIhblDh2rBln5vN4vkHoDWe6YDqlk8pI7VNy9KTgFlAKLQGO2JLKcJpwueKLC_rlkl3uoA9jLoy1Nhw-s1N_GWL5VVN2fqvsSEoG5hCwzh2w-4z02VpjzEDwwOsJS5jCoCQdUmRSebRenZ_NAAwSMgUFBpztKxfl3FOveI7VWxYpEPfHSit_dzqD8Zk_QMvhs_szJ9-nXWum5Y_fGB3_d14P0f3oheKPvdo8Qju2foze3mYcxuuebgC_w2e_kHnvITML-YJ4vmlusK4rPAfbGN-KdIvXuHH4ZMz1wstu60_fYd3i41iRpcXnV2A5t_g4JEriEE3A3_TG790_QRfz2frzYhJLNUxKyrN2UlCTZpY6B3JwKdGWa6nBQBbaSpEZmwmbVtaBdyE0XLvMSkaktsQQUZXgEz5Fu3VT232EwdtPjcipkY4C2hQaOmPa6SKtAE2VLkHZIC5Vxqn7chobFfBMKlWQtvLSVlHaCXo_vnPVs3j8s_UnrwVjS8_AHW6A0FRc0Ao-kTvGTMWdo9rkxkfwfViWZdYQLhO05wU9dhJlnKDDQadU_FtsFRHCu91h6NfjY1jnPnija9t0vk0OSBNcDpGgZ70ujn0Pmnzw5zFfobuL9fJUnZ6svj5H92Cqeb-JdIh22-vOvgC3qjUvw2r6CbJ4GYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Flow+and+Functional+Behavior+of+Individual+Muscles+at+Different+Speeds+During+Human+Walking&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Hu%2C+Zheqi&rft.au=Ren%2C+Lei&rft.au=Wei%2C+Guowu&rft.au=Qian%2C+Zhihui&rft.date=2023&rft.eissn=1558-0210&rft.volume=31&rft.spage=294&rft_id=info:doi/10.1109%2FTNSRE.2022.3221986&rft_id=info%3Apmid%2F36374868&rft.externalDocID=36374868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon