Dual-stream Multiple Instance Learning for Depression Detection with Facial Expression Videos

Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1
Main Authors Shangguan, Zixuan, Liu, Zhenyu, Li, Gang, Chen, Qiongqiong, Ding, ZhiJie, Hu, Bin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods.
AbstractList Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods.
Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods.Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods.
Author Ding, ZhiJie
Shangguan, Zixuan
Liu, Zhenyu
Li, Gang
Chen, Qiongqiong
Hu, Bin
Author_xml – sequence: 1
  givenname: Zixuan
  surname: Shangguan
  fullname: Shangguan, Zixuan
  organization: Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu, China
– sequence: 2
  givenname: Zhenyu
  surname: Liu
  fullname: Liu, Zhenyu
  organization: Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu, China
– sequence: 3
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  organization: Tianshui Third People's Hospital, Tianshui, China
– sequence: 4
  givenname: Qiongqiong
  surname: Chen
  fullname: Chen, Qiongqiong
  organization: Second Provincial People's Hospital of Gansu, Northwest Minzu University, Lanzhou, China
– sequence: 5
  givenname: ZhiJie
  surname: Ding
  fullname: Ding, ZhiJie
  organization: Tianshui Third People's Hospital, Tianshui, China
– sequence: 6
  givenname: Bin
  orcidid: 0000-0003-3514-5413
  surname: Hu
  fullname: Hu, Bin
  organization: Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36067098$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1URNvAFwAJrcSFywb_27VzRG3aRgogQeGGLNs7Lo4269T2Cvj2eJs0hx44eWT_3hvPvHN0MoQBEHpN8JwQvPhw-_nb1-WcYkrnjGIuGvEMnZGmkTWmBJ9MNeM1L2-n6DylDcZEtI14gU5Zi1uBF_IM_bwcdV-nHEFvq09jn_2uh2o1pKwHC9UadBz8cFe5EKtL2EVIyYehlBlsnqrfPv-qrrT1uq-Wf47AD99BSC_Rc6f7BK8O5wx9v1reXtzU6y_Xq4uP69ryluRaUiptR4wVjDKrqead6aRr-YJozJgDY6w0LWXYLVzLLLSta7VlHJg0BhybodXetwt6o3bRb3X8q4L26uEixDulY_a2BwWNdEYyaR1lHHMuu6brGlwag2CG6eL1fu-1i-F-hJTV1icLfa8HCGNSVJTdC4yFLOi7J-gmjHEokxZKlO1TUZxn6O2BGs0WuuP3HkMogNwDNoaUIjhlfdbTdnPUvlcEqylv9ZC3mvJWh7yLlD6RPrr_V_RmL_IAcBQsZJmoIewfuCC1yg
CODEN ITNSB3
CitedBy_id crossref_primary_10_1038_s44184_023_00040_z
crossref_primary_10_1016_j_bspc_2023_105248
crossref_primary_10_1109_TCSVT_2024_3491098
crossref_primary_10_1109_TCSS_2023_3235649
crossref_primary_10_1109_TNSRE_2023_3260301
crossref_primary_10_3390_app132111695
Cites_doi 10.1109/taffc.2022.3158234
10.1109/CVPR42600.2020.00391
10.1093/nsr/nwx106
10.1016/j.media.2021.102105
10.1109/WACV48630.2021.00176
10.1007/978-3-030-32239-7_55
10.1109/TAFFC.2020.3021755
10.1109/TIFS.2015.2414392
10.1109/TAFFC.2017.2650899
10.1109/TNNLS.2018.2869891
10.1016/j.patrec.2021.07.005
10.1109/ACII.2013.65
10.1109/ICIP.2019.8803467
10.1145/3382507.3417959
10.1109/CVPR.2015.7298780
10.1016/j.patrec.2009.03.003
10.1109/TMI.2020.2996256
10.1145/2512530.2512532
10.1109/TAFFC.2014.2386334
10.1145/3357729.3357743
10.1145/2956556
10.1109/taffc.2021.3072579
10.1145/2661806.2661812
10.1016/j.neucom.2020.10.015
10.1109/CVPR.2019.00230
10.1145/2512530.2512535
10.1016/j.patcog.2017.08.026
10.1109/TBME.2020.3010472
10.1109/CVPR.2008.4587756
10.1109/CVPR.2016.266
10.1145/1282280.1282340
10.1109/ISBI45749.2020.9098396
10.1109/CVPR46437.2021.01409
10.1016/S0140-6736(11)60602-8
10.1017/S0033291717003336
10.1609/aaai.v35i7.16743
10.1609/aaai.v31i1.10890
10.1145/2661806.2661807
10.1145/2661806.2661814
10.1145/2512530.2512533
10.1007/978-3-030-58526-6_43
10.1145/3382507.3417973
10.1109/FG.2015.7163116
10.1007/978-3-319-14445-0_20
10.1109/TAFFC.2018.2870884
10.1109/TAFFC.2017.2740923
10.1145/3214284
10.1001/jamanetworkopen.2020.19686
10.1016/j.pmip.2016.11.002
10.1145/2818346.2830596
10.1109/TPAMI.2002.1017623
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2022.3204757
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1
ExternalDocumentID oai_doaj_org_article_e58fb838cf2340448d5dd50323e73b3a
36067098
10_1109_TNSRE_2022_3204757
9878351
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the National Key Research and Development Program of China
  grantid: No. 2019YFA0706200
– fundername: Fundamental Research Funds for Central Universities
  grantid: lzujbky-2019-26; lzujbky-2021-kb26
– fundername: National Natural Science Foundation of China
  grantid: No. 61802158; No. 61802159; No.61627808; No.61632014
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-8228cd1bc7323ca2a4dbd8f6491a033febbc8b6230f9f63ce66f6ac34e38bbef3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 00:51:59 EDT 2025
Thu Jul 10 23:14:00 EDT 2025
Mon Jul 14 08:09:59 EDT 2025
Thu Apr 03 07:03:17 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Jul 01 00:43:26 EDT 2025
Wed Aug 27 02:18:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-8228cd1bc7323ca2a4dbd8f6491a033febbc8b6230f9f63ce66f6ac34e38bbef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3514-5413
0000-0001-8401-9056
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9878351
PMID 36067098
PQID 2771532750
PQPubID 85423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e58fb838cf2340448d5dd50323e73b3a
proquest_miscellaneous_2710970078
pubmed_primary_36067098
ieee_primary_9878351
proquest_journals_2771532750
crossref_citationtrail_10_1109_TNSRE_2022_3204757
crossref_primary_10_1109_TNSRE_2022_3204757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
ref55
ref10
King (ref52) 2009; 10
ref17
ref16
ref19
Zhang (ref51)
ref18
Krizhevsky (ref54); 25
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
Loshchilov (ref56) 2016
ref37
ref36
ref31
Tran (ref22) 2014
ref33
ref32
ref2
ref1
ref39
ref38
Ilse (ref30)
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
Ellgring (ref3) 2007
Drucker (ref11); 9
References_xml – ident: ref58
  doi: 10.1109/taffc.2022.3158234
– volume-title: Non-Verbal Communication in Depression
  year: 2007
  ident: ref3
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00391
– ident: ref27
  doi: 10.1093/nsr/nwx106
– ident: ref36
  doi: 10.1016/j.media.2021.102105
– volume: 9
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: Support vector regression machines
– ident: ref47
  doi: 10.1109/WACV48630.2021.00176
– ident: ref35
  doi: 10.1007/978-3-030-32239-7_55
– ident: ref7
  doi: 10.1109/TAFFC.2020.3021755
– ident: ref17
  doi: 10.1109/TIFS.2015.2414392
– volume-title: arXiv:1412.0767
  year: 2014
  ident: ref22
  article-title: C3D: Generic features for video analysis
– start-page: 7354
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref51
  article-title: Self-attention generative adversarial networks
– ident: ref5
  doi: 10.1109/TAFFC.2017.2650899
– ident: ref41
  doi: 10.1109/TNNLS.2018.2869891
– ident: ref26
  doi: 10.1016/j.patrec.2021.07.005
– ident: ref18
  doi: 10.1109/ACII.2013.65
– ident: ref25
  doi: 10.1109/ICIP.2019.8803467
– ident: ref42
  doi: 10.1145/3382507.3417959
– ident: ref49
  doi: 10.1109/CVPR.2015.7298780
– ident: ref13
  doi: 10.1016/j.patrec.2009.03.003
– ident: ref31
  doi: 10.1109/TMI.2020.2996256
– ident: ref12
  doi: 10.1145/2512530.2512532
– ident: ref38
  doi: 10.1109/TAFFC.2014.2386334
– ident: ref45
  doi: 10.1145/3357729.3357743
– ident: ref37
  doi: 10.1145/2956556
– ident: ref24
  doi: 10.1109/taffc.2021.3072579
– volume: 25
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref54
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 10
  start-page: 1755
  year: 2009
  ident: ref52
  article-title: Dlib-Ml: A machine learning toolkit
  publication-title: J. Mach. Learn. Res.
– ident: ref19
  doi: 10.1145/2661806.2661812
– ident: ref57
  doi: 10.1016/j.neucom.2020.10.015
– ident: ref33
  doi: 10.1109/CVPR.2019.00230
– ident: ref16
  doi: 10.1145/2512530.2512535
– ident: ref50
  doi: 10.1016/j.patcog.2017.08.026
– ident: ref6
  doi: 10.1109/TBME.2020.3010472
– ident: ref14
  doi: 10.1109/CVPR.2008.4587756
– ident: ref28
  doi: 10.1109/CVPR.2016.266
– ident: ref15
  doi: 10.1145/1282280.1282340
– ident: ref46
  doi: 10.1109/ISBI45749.2020.9098396
– ident: ref32
  doi: 10.1109/CVPR46437.2021.01409
– ident: ref4
  doi: 10.1016/S0140-6736(11)60602-8
– ident: ref2
  doi: 10.1017/S0033291717003336
– ident: ref53
  doi: 10.1609/aaai.v35i7.16743
– ident: ref48
  doi: 10.1609/aaai.v31i1.10890
– ident: ref9
  doi: 10.1145/2661806.2661807
– ident: ref20
  doi: 10.1145/2661806.2661814
– ident: ref8
  doi: 10.1145/2512530.2512533
– start-page: 2127
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Attention-based deep multiple instance learning
– ident: ref34
  doi: 10.1007/978-3-030-58526-6_43
– ident: ref43
  doi: 10.1145/3382507.3417973
– ident: ref39
  doi: 10.1109/FG.2015.7163116
– ident: ref40
  doi: 10.1007/978-3-319-14445-0_20
– ident: ref21
  doi: 10.1109/TAFFC.2018.2870884
– ident: ref55
  doi: 10.1109/TAFFC.2017.2740923
– ident: ref44
  doi: 10.1145/3214284
– ident: ref59
  doi: 10.1001/jamanetworkopen.2020.19686
– ident: ref1
  doi: 10.1016/j.pmip.2016.11.002
– ident: ref23
  doi: 10.1145/2818346.2830596
– volume-title: arXiv:1608.03983
  year: 2016
  ident: ref56
  article-title: SGDR: Stochastic gradient descent with warm restarts
– ident: ref10
  doi: 10.1109/TPAMI.2002.1017623
SSID ssj0017657
Score 2.4760222
Snippet Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Classification
Deep learning
Depression
Depression - diagnosis
Depression detection
Facial Expression
Feature extraction
Humans
Illnesses
Image Interpretation, Computer-Assisted - methods
Learning
Mental depression
Mental disorders
Mental Recall
multiple instance learning
Recall
Rehabilitation
Signs and symptoms
Supervised learning
Task analysis
Three-dimensional displays
Video
Videos
weakly supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BgowEXFCoEzt-HIHuqiC1h7KFXpDlZ6lUslWblfj5eBwnWg7AhVuUTCzHM5P5bI-_Qegl7xqTfo5dHSMxNQtB1UpCsoOjXCgRpKFwdvjomB-esk9n3dlWqS_ICRvpgceB2w-djFZS6WJLGUmTCd953xHa0iCopRkapZg3TabK_oHgnZiOyBC1vzr-fLJIk8G2fUtbwgQEo60wlNn6S3mVPyPNHHGWd9GdAhXxu7GL99Ct0N9Hr7ZpgfFq5ATAr_HJb4zbu-jbwcZc1rDnbH7go5I1iD9mMOgCLrSq5zhhVnwwZcP26XLIuVk9_noxfMdLAyvqePFzFvhy4cP65gE6XS5WHw7rUkqhdow3Q51ggHS-sU6kgXOmNcxbLyNnqjGE0hisddImKESiipy6wHnkxlEWqLQ2RPoQ7fTrPjxGWDXeECU8Ddwx6qVyJB_3ka3rkrPLCjXTyGpXvhrKXVzqPN8gSmdtaNCGLtqo0Jv5nauRZeOv0u9BYbMkMGTnG8ludLEb_S-7qdAuqHtuRElYA2sqtDepXxdvvtGtECkwABN-hV7Mj5MfwuaK6cN6AzKwlw-Iq0KPRrOZ26YcTkMp-eR_dPwpug0l78dloD20M1xvwrMEjAb7PPvAL59jB6E
  priority: 102
  providerName: Directory of Open Access Journals
Title Dual-stream Multiple Instance Learning for Depression Detection with Facial Expression Videos
URI https://ieeexplore.ieee.org/document/9878351
https://www.ncbi.nlm.nih.gov/pubmed/36067098
https://www.proquest.com/docview/2771532750
https://www.proquest.com/docview/2710970078
https://doaj.org/article/e58fb838cf2340448d5dd50323e73b3a
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1x4lUdoqYwEXCBbJ3Yc-wh0VwVpeyhb1AuK_BhXiJJFbVZC_HrGzkMUAeJmxY4Ta8b2N-OZz4Q8k1VhcHGs8hCYyQWAzrWKwQ6Oy1rXoAyPucPLY3l0Kt6fVWdb5NWUCwMAKfgMZrGYzvL92m2iq-wA7WMEDGjr3EDDrc_Vmk4MaplYPXECi1zwko0JMkwfrI4_nMzRFCzLGVaIuoo373EZM1S0urYfJdr-4Z6Vv0POtPUsbpPl-NN9xMmX2aazM_fjNz7H_x3VHXJrwKD0da80d8kWtPfI81_5humqJxugL-jJNSrvHfLpcGMu8phiYr7S5RCOSN8llOmADnyt5xTBMD0cw2xbLHYp6Kul0fNLFya66un8-9Tg42cP66v75HQxX709yoc7GnInZNHliC-U84V1NS-5M6UR3noVpNCFYZwHsNYpixiLBR0kdyBlkMZxAVxZC4E_INvtuoVHhOrCG6Zrz0E6wb3SjqU8IlW6ClcRlZFilFTjhlHHezQummTIMN0kQTdR0M0g6Iy8nN751tN3_LP1m6gAU8tIvZ0eoLyaYSY3UKlgFVculFwwtG595X3FcPhQc8tNRnaijKdOBvFmZG9Up2ZYJq6asq5RYSPFfkaeTtU4weOpjWlhvYltYpBAhHIZedir4dT3qMSP__zNXXITh8d7j9Ee2e4uN_AEMVRn95PvYT9NoZ92BRZD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXXuURKGAk4ALZOrHj2Eegu9pCdw9li3pBlp8Itc0iupEQvx7beYgiQNyseOLEmrH9jT3zGeAZqwoVJscq9x6rnDoncsFjsIMhrBa144rE3OHFks2P6buT6mQLXo25MM65FHzmJrGYzvLt2rRxq2wv-McBMARf50pY96uyy9Yazwxqlng9wxCmOSUlHlJksNhbLT8cTYMzWJaTUEHrKt69R1jMURH80oqUiPv7m1b-DjrT4jO7AYvht7uYk9NJu9ET8-M3Rsf_7ddNuN6jUPS6M5tbsOWa2_D8V8ZhtOroBtALdHSJzHsHPu236iyPSSbqHC36gER0kHCmcahnbP2MAhxG-0OgbROKmxT21aC494tmKm7Wo-n3UeDjF-vWF3fgeDZdvZ3n_S0NuaGs2OQBYXBjC21qUhKjSkWtttwzKgqFCfFOa8N1QFnYC8-IcYx5pgyhjnCtnSd3YbtZN-4-IFFYhUVtiWOGEsuFwSmTiJemCvMIz6AYNCVN3-t4k8aZTK4MFjIpWkZFy17RGbwc3_naEXj8U_pNNIBRMpJvpwdBX7Ify9JV3GtOuPEloTj4t7aytsKh-64mmqgMdqKOx0Z69WawO5iT7CeKC1nWdTDYSLKfwdOxOgzxeG6jGrduo0wME4hgLoN7nRmObQ9G_ODP33wCV-erxaE8PFi-fwjXQldJt3-0C9ubb617FBDVRj9OA-kni70YmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Stream+Multiple+Instance+Learning+for+Depression+Detection+With+Facial+Expression+Videos&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shangguan%2C+Zixuan&rft.au=Liu%2C+Zhenyu&rft.au=Li%2C+Gang&rft.au=Chen%2C+Qiongqiong&rft.date=2023-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=31&rft.spage=554&rft_id=info:doi/10.1109%2FTNSRE.2022.3204757&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon