Dual-stream Multiple Instance Learning for Depression Detection with Facial Expression Videos
Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate th...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods. |
---|---|
AbstractList | Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods. Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods.Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are associated with depression, automated detection of depression is urgent and important for the growing concern of mental illness. We investigate the problem of classifying depression by facial expressions, which may aid in online diagnosis and rehabilitation engineering of depression. In this work, We propose a weakly supervised learning approach employing multiple instance learning (MIL) on 150 videos data from 75 depressed and 75 healthy subjects. In addition, we present a novel MIL dual-stream aggregator that considers both the instance-level and the bag-level in order to emphasize the information with symptoms. Specifically, our method named ADDMIL uses max-pooling at the instance level to capture symptom information and further integrates the contribution of each instance at the bag level using attention weights. Our method achieves 74.7% accuracy and 74.5% recall on the collected dataset, which not only improves 10.1% accuracy and 9.8% recall over the baseline but also exceeds the best accuracy result of MIL-based method by 2.1%. Our work achieves results that are comparable to the state-of-the-art methods and demonstrates that multiple instance learning has great potential for depression classification. We present for the first time a weakly supervised learning approach in the detection of depression through raw facial expressions, which may provide a new framework for other psychiatric disorders detection methods. |
Author | Ding, ZhiJie Shangguan, Zixuan Liu, Zhenyu Li, Gang Chen, Qiongqiong Hu, Bin |
Author_xml | – sequence: 1 givenname: Zixuan surname: Shangguan fullname: Shangguan, Zixuan organization: Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu, China – sequence: 2 givenname: Zhenyu surname: Liu fullname: Liu, Zhenyu organization: Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu, China – sequence: 3 givenname: Gang surname: Li fullname: Li, Gang organization: Tianshui Third People's Hospital, Tianshui, China – sequence: 4 givenname: Qiongqiong surname: Chen fullname: Chen, Qiongqiong organization: Second Provincial People's Hospital of Gansu, Northwest Minzu University, Lanzhou, China – sequence: 5 givenname: ZhiJie surname: Ding fullname: Ding, ZhiJie organization: Tianshui Third People's Hospital, Tianshui, China – sequence: 6 givenname: Bin orcidid: 0000-0003-3514-5413 surname: Hu fullname: Hu, Bin organization: Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou, Gansu, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36067098$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vEzEQxS1URNvAFwAJrcSFywb_27VzRG3aRgogQeGGLNs7Lo4269T2Cvj2eJs0hx44eWT_3hvPvHN0MoQBEHpN8JwQvPhw-_nb1-WcYkrnjGIuGvEMnZGmkTWmBJ9MNeM1L2-n6DylDcZEtI14gU5Zi1uBF_IM_bwcdV-nHEFvq09jn_2uh2o1pKwHC9UadBz8cFe5EKtL2EVIyYehlBlsnqrfPv-qrrT1uq-Wf47AD99BSC_Rc6f7BK8O5wx9v1reXtzU6y_Xq4uP69ryluRaUiptR4wVjDKrqead6aRr-YJozJgDY6w0LWXYLVzLLLSta7VlHJg0BhybodXetwt6o3bRb3X8q4L26uEixDulY_a2BwWNdEYyaR1lHHMuu6brGlwag2CG6eL1fu-1i-F-hJTV1icLfa8HCGNSVJTdC4yFLOi7J-gmjHEokxZKlO1TUZxn6O2BGs0WuuP3HkMogNwDNoaUIjhlfdbTdnPUvlcEqylv9ZC3mvJWh7yLlD6RPrr_V_RmL_IAcBQsZJmoIewfuCC1yg |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1038_s44184_023_00040_z crossref_primary_10_1016_j_bspc_2023_105248 crossref_primary_10_1109_TCSVT_2024_3491098 crossref_primary_10_1109_TCSS_2023_3235649 crossref_primary_10_1109_TNSRE_2023_3260301 crossref_primary_10_3390_app132111695 |
Cites_doi | 10.1109/taffc.2022.3158234 10.1109/CVPR42600.2020.00391 10.1093/nsr/nwx106 10.1016/j.media.2021.102105 10.1109/WACV48630.2021.00176 10.1007/978-3-030-32239-7_55 10.1109/TAFFC.2020.3021755 10.1109/TIFS.2015.2414392 10.1109/TAFFC.2017.2650899 10.1109/TNNLS.2018.2869891 10.1016/j.patrec.2021.07.005 10.1109/ACII.2013.65 10.1109/ICIP.2019.8803467 10.1145/3382507.3417959 10.1109/CVPR.2015.7298780 10.1016/j.patrec.2009.03.003 10.1109/TMI.2020.2996256 10.1145/2512530.2512532 10.1109/TAFFC.2014.2386334 10.1145/3357729.3357743 10.1145/2956556 10.1109/taffc.2021.3072579 10.1145/2661806.2661812 10.1016/j.neucom.2020.10.015 10.1109/CVPR.2019.00230 10.1145/2512530.2512535 10.1016/j.patcog.2017.08.026 10.1109/TBME.2020.3010472 10.1109/CVPR.2008.4587756 10.1109/CVPR.2016.266 10.1145/1282280.1282340 10.1109/ISBI45749.2020.9098396 10.1109/CVPR46437.2021.01409 10.1016/S0140-6736(11)60602-8 10.1017/S0033291717003336 10.1609/aaai.v35i7.16743 10.1609/aaai.v31i1.10890 10.1145/2661806.2661807 10.1145/2661806.2661814 10.1145/2512530.2512533 10.1007/978-3-030-58526-6_43 10.1145/3382507.3417973 10.1109/FG.2015.7163116 10.1007/978-3-319-14445-0_20 10.1109/TAFFC.2018.2870884 10.1109/TAFFC.2017.2740923 10.1145/3214284 10.1001/jamanetworkopen.2020.19686 10.1016/j.pmip.2016.11.002 10.1145/2818346.2830596 10.1109/TPAMI.2002.1017623 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2022.3204757 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_e58fb838cf2340448d5dd50323e73b3a 36067098 10_1109_TNSRE_2022_3204757 9878351 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the National Key Research and Development Program of China grantid: No. 2019YFA0706200 – fundername: Fundamental Research Funds for Central Universities grantid: lzujbky-2019-26; lzujbky-2021-kb26 – fundername: National Natural Science Foundation of China grantid: No. 61802158; No. 61802159; No.61627808; No.61632014 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c461t-8228cd1bc7323ca2a4dbd8f6491a033febbc8b6230f9f63ce66f6ac34e38bbef3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 00:51:59 EDT 2025 Thu Jul 10 23:14:00 EDT 2025 Mon Jul 14 08:09:59 EDT 2025 Thu Apr 03 07:03:17 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Jul 01 00:43:26 EDT 2025 Wed Aug 27 02:18:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-8228cd1bc7323ca2a4dbd8f6491a033febbc8b6230f9f63ce66f6ac34e38bbef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3514-5413 0000-0001-8401-9056 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9878351 |
PMID | 36067098 |
PQID | 2771532750 |
PQPubID | 85423 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e58fb838cf2340448d5dd50323e73b3a proquest_miscellaneous_2710970078 pubmed_primary_36067098 ieee_primary_9878351 proquest_journals_2771532750 crossref_citationtrail_10_1109_TNSRE_2022_3204757 crossref_primary_10_1109_TNSRE_2022_3204757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref53 ref55 ref10 King (ref52) 2009; 10 ref17 ref16 ref19 Zhang (ref51) ref18 Krizhevsky (ref54); 25 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 Loshchilov (ref56) 2016 ref37 ref36 ref31 Tran (ref22) 2014 ref33 ref32 ref2 ref1 ref39 ref38 Ilse (ref30) ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 Ellgring (ref3) 2007 Drucker (ref11); 9 |
References_xml | – ident: ref58 doi: 10.1109/taffc.2022.3158234 – volume-title: Non-Verbal Communication in Depression year: 2007 ident: ref3 – ident: ref29 doi: 10.1109/CVPR42600.2020.00391 – ident: ref27 doi: 10.1093/nsr/nwx106 – ident: ref36 doi: 10.1016/j.media.2021.102105 – volume: 9 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref11 article-title: Support vector regression machines – ident: ref47 doi: 10.1109/WACV48630.2021.00176 – ident: ref35 doi: 10.1007/978-3-030-32239-7_55 – ident: ref7 doi: 10.1109/TAFFC.2020.3021755 – ident: ref17 doi: 10.1109/TIFS.2015.2414392 – volume-title: arXiv:1412.0767 year: 2014 ident: ref22 article-title: C3D: Generic features for video analysis – start-page: 7354 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref51 article-title: Self-attention generative adversarial networks – ident: ref5 doi: 10.1109/TAFFC.2017.2650899 – ident: ref41 doi: 10.1109/TNNLS.2018.2869891 – ident: ref26 doi: 10.1016/j.patrec.2021.07.005 – ident: ref18 doi: 10.1109/ACII.2013.65 – ident: ref25 doi: 10.1109/ICIP.2019.8803467 – ident: ref42 doi: 10.1145/3382507.3417959 – ident: ref49 doi: 10.1109/CVPR.2015.7298780 – ident: ref13 doi: 10.1016/j.patrec.2009.03.003 – ident: ref31 doi: 10.1109/TMI.2020.2996256 – ident: ref12 doi: 10.1145/2512530.2512532 – ident: ref38 doi: 10.1109/TAFFC.2014.2386334 – ident: ref45 doi: 10.1145/3357729.3357743 – ident: ref37 doi: 10.1145/2956556 – ident: ref24 doi: 10.1109/taffc.2021.3072579 – volume: 25 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref54 article-title: Imagenet classification with deep convolutional neural networks – volume: 10 start-page: 1755 year: 2009 ident: ref52 article-title: Dlib-Ml: A machine learning toolkit publication-title: J. Mach. Learn. Res. – ident: ref19 doi: 10.1145/2661806.2661812 – ident: ref57 doi: 10.1016/j.neucom.2020.10.015 – ident: ref33 doi: 10.1109/CVPR.2019.00230 – ident: ref16 doi: 10.1145/2512530.2512535 – ident: ref50 doi: 10.1016/j.patcog.2017.08.026 – ident: ref6 doi: 10.1109/TBME.2020.3010472 – ident: ref14 doi: 10.1109/CVPR.2008.4587756 – ident: ref28 doi: 10.1109/CVPR.2016.266 – ident: ref15 doi: 10.1145/1282280.1282340 – ident: ref46 doi: 10.1109/ISBI45749.2020.9098396 – ident: ref32 doi: 10.1109/CVPR46437.2021.01409 – ident: ref4 doi: 10.1016/S0140-6736(11)60602-8 – ident: ref2 doi: 10.1017/S0033291717003336 – ident: ref53 doi: 10.1609/aaai.v35i7.16743 – ident: ref48 doi: 10.1609/aaai.v31i1.10890 – ident: ref9 doi: 10.1145/2661806.2661807 – ident: ref20 doi: 10.1145/2661806.2661814 – ident: ref8 doi: 10.1145/2512530.2512533 – start-page: 2127 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Attention-based deep multiple instance learning – ident: ref34 doi: 10.1007/978-3-030-58526-6_43 – ident: ref43 doi: 10.1145/3382507.3417973 – ident: ref39 doi: 10.1109/FG.2015.7163116 – ident: ref40 doi: 10.1007/978-3-319-14445-0_20 – ident: ref21 doi: 10.1109/TAFFC.2018.2870884 – ident: ref55 doi: 10.1109/TAFFC.2017.2740923 – ident: ref44 doi: 10.1145/3214284 – ident: ref59 doi: 10.1001/jamanetworkopen.2020.19686 – ident: ref1 doi: 10.1016/j.pmip.2016.11.002 – ident: ref23 doi: 10.1145/2818346.2830596 – volume-title: arXiv:1608.03983 year: 2016 ident: ref56 article-title: SGDR: Stochastic gradient descent with warm restarts – ident: ref10 doi: 10.1109/TPAMI.2002.1017623 |
SSID | ssj0017657 |
Score | 2.4760222 |
Snippet | Depression is a common mental illness which has brought great harm to the individuals. With recent evidence that many objective physiological signals are... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Classification Deep learning Depression Depression - diagnosis Depression detection Facial Expression Feature extraction Humans Illnesses Image Interpretation, Computer-Assisted - methods Learning Mental depression Mental disorders Mental Recall multiple instance learning Recall Rehabilitation Signs and symptoms Supervised learning Task analysis Three-dimensional displays Video Videos weakly supervised learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BgowEXFCoEzt-HIHuqiC1h7KFXpDlZ6lUslWblfj5eBwnWg7AhVuUTCzHM5P5bI-_Qegl7xqTfo5dHSMxNQtB1UpCsoOjXCgRpKFwdvjomB-esk9n3dlWqS_ICRvpgceB2w-djFZS6WJLGUmTCd953xHa0iCopRkapZg3TabK_oHgnZiOyBC1vzr-fLJIk8G2fUtbwgQEo60wlNn6S3mVPyPNHHGWd9GdAhXxu7GL99Ct0N9Hr7ZpgfFq5ATAr_HJb4zbu-jbwcZc1rDnbH7go5I1iD9mMOgCLrSq5zhhVnwwZcP26XLIuVk9_noxfMdLAyvqePFzFvhy4cP65gE6XS5WHw7rUkqhdow3Q51ggHS-sU6kgXOmNcxbLyNnqjGE0hisddImKESiipy6wHnkxlEWqLQ2RPoQ7fTrPjxGWDXeECU8Ddwx6qVyJB_3ka3rkrPLCjXTyGpXvhrKXVzqPN8gSmdtaNCGLtqo0Jv5nauRZeOv0u9BYbMkMGTnG8ludLEb_S-7qdAuqHtuRElYA2sqtDepXxdvvtGtECkwABN-hV7Mj5MfwuaK6cN6AzKwlw-Iq0KPRrOZ26YcTkMp-eR_dPwpug0l78dloD20M1xvwrMEjAb7PPvAL59jB6E priority: 102 providerName: Directory of Open Access Journals |
Title | Dual-stream Multiple Instance Learning for Depression Detection with Facial Expression Videos |
URI | https://ieeexplore.ieee.org/document/9878351 https://www.ncbi.nlm.nih.gov/pubmed/36067098 https://www.proquest.com/docview/2771532750 https://www.proquest.com/docview/2710970078 https://doaj.org/article/e58fb838cf2340448d5dd50323e73b3a |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1x4lUdoqYwEXCBbJ3Yc-wh0VwVpeyhb1AuK_BhXiJJFbVZC_HrGzkMUAeJmxY4Ta8b2N-OZz4Q8k1VhcHGs8hCYyQWAzrWKwQ6Oy1rXoAyPucPLY3l0Kt6fVWdb5NWUCwMAKfgMZrGYzvL92m2iq-wA7WMEDGjr3EDDrc_Vmk4MaplYPXECi1zwko0JMkwfrI4_nMzRFCzLGVaIuoo373EZM1S0urYfJdr-4Z6Vv0POtPUsbpPl-NN9xMmX2aazM_fjNz7H_x3VHXJrwKD0da80d8kWtPfI81_5humqJxugL-jJNSrvHfLpcGMu8phiYr7S5RCOSN8llOmADnyt5xTBMD0cw2xbLHYp6Kul0fNLFya66un8-9Tg42cP66v75HQxX709yoc7GnInZNHliC-U84V1NS-5M6UR3noVpNCFYZwHsNYpixiLBR0kdyBlkMZxAVxZC4E_INvtuoVHhOrCG6Zrz0E6wb3SjqU8IlW6ClcRlZFilFTjhlHHezQummTIMN0kQTdR0M0g6Iy8nN751tN3_LP1m6gAU8tIvZ0eoLyaYSY3UKlgFVculFwwtG595X3FcPhQc8tNRnaijKdOBvFmZG9Up2ZYJq6asq5RYSPFfkaeTtU4weOpjWlhvYltYpBAhHIZedir4dT3qMSP__zNXXITh8d7j9Ee2e4uN_AEMVRn95PvYT9NoZ92BRZD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXXuURKGAk4ALZOrHj2Eegu9pCdw9li3pBlp8Itc0iupEQvx7beYgiQNyseOLEmrH9jT3zGeAZqwoVJscq9x6rnDoncsFjsIMhrBa144rE3OHFks2P6buT6mQLXo25MM65FHzmJrGYzvLt2rRxq2wv-McBMARf50pY96uyy9Yazwxqlng9wxCmOSUlHlJksNhbLT8cTYMzWJaTUEHrKt69R1jMURH80oqUiPv7m1b-DjrT4jO7AYvht7uYk9NJu9ET8-M3Rsf_7ddNuN6jUPS6M5tbsOWa2_D8V8ZhtOroBtALdHSJzHsHPu236iyPSSbqHC36gER0kHCmcahnbP2MAhxG-0OgbROKmxT21aC494tmKm7Wo-n3UeDjF-vWF3fgeDZdvZ3n_S0NuaGs2OQBYXBjC21qUhKjSkWtttwzKgqFCfFOa8N1QFnYC8-IcYx5pgyhjnCtnSd3YbtZN-4-IFFYhUVtiWOGEsuFwSmTiJemCvMIz6AYNCVN3-t4k8aZTK4MFjIpWkZFy17RGbwc3_naEXj8U_pNNIBRMpJvpwdBX7Ify9JV3GtOuPEloTj4t7aytsKh-64mmqgMdqKOx0Z69WawO5iT7CeKC1nWdTDYSLKfwdOxOgzxeG6jGrduo0wME4hgLoN7nRmObQ9G_ODP33wCV-erxaE8PFi-fwjXQldJt3-0C9ubb617FBDVRj9OA-kni70YmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Stream+Multiple+Instance+Learning+for+Depression+Detection+With+Facial+Expression+Videos&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Shangguan%2C+Zixuan&rft.au=Liu%2C+Zhenyu&rft.au=Li%2C+Gang&rft.au=Chen%2C+Qiongqiong&rft.date=2023-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=31&rft.spage=554&rft_id=info:doi/10.1109%2FTNSRE.2022.3204757&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |