One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment

This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilit...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 141; pp. 1 - 8
Main Authors Liang, Peng, Duan, Rui, Jiang, Yong, Zhang, Xiaoyuan, Qiu, Yong, Huang, Xia
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L−1) and high initial COD concentration (average 250 mg L−1). The COD concentration in the effluent from the MFC system remained below 50 mg L−1 with a removal rate of 70–90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m−3 (7.58 W m−2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7–60 W m−3 (0.42–3.64 W m−2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h. [Display omitted] •Scaled-up (1000 L) MFC consisted of 50 modules was operated for a year.•The MFC was applied to treat artificial and real municipal wastewater.•Concentration of COD released was below 50 mg L−1 with a removal rate of 70–90%.•The maximum power density harvested from municipal wastewater was 7–60 W m−3.
AbstractList This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L ) and high initial COD concentration (average 250 mg L ). The COD concentration in the effluent from the MFC system remained below 50 mg L with a removal rate of 70-90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m (7.58 W m ) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7-60 W m (0.42-3.64 W m ) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h.
This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L⁻¹) and high initial COD concentration (average 250 mg L⁻¹). The COD concentration in the effluent from the MFC system remained below 50 mg L⁻¹ with a removal rate of 70–90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m⁻³ (7.58 W m⁻²) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7–60 W m⁻³ (0.42–3.64 W m⁻²) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m³ of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h.
This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L-1) and high initial COD concentration (average 250 mg L-1). The COD concentration in the effluent from the MFC system remained below 50 mg L-1 with a removal rate of 70-90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m-3 (7.58 W m-2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7-60 W m-3 (0.42-3.64 W m-2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h.This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L-1) and high initial COD concentration (average 250 mg L-1). The COD concentration in the effluent from the MFC system remained below 50 mg L-1 with a removal rate of 70-90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m-3 (7.58 W m-2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7-60 W m-3 (0.42-3.64 W m-2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h.
This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L−1) and high initial COD concentration (average 250 mg L−1). The COD concentration in the effluent from the MFC system remained below 50 mg L−1 with a removal rate of 70–90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m−3 (7.58 W m−2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7–60 W m−3 (0.42–3.64 W m−2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h. [Display omitted] •Scaled-up (1000 L) MFC consisted of 50 modules was operated for a year.•The MFC was applied to treat artificial and real municipal wastewater.•Concentration of COD released was below 50 mg L−1 with a removal rate of 70–90%.•The maximum power density harvested from municipal wastewater was 7–60 W m−3.
Author Duan, Rui
Jiang, Yong
Zhang, Xiaoyuan
Huang, Xia
Liang, Peng
Qiu, Yong
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-7345-0844
  surname: Liang
  fullname: Liang, Peng
– sequence: 2
  givenname: Rui
  surname: Duan
  fullname: Duan, Rui
– sequence: 3
  givenname: Yong
  surname: Jiang
  fullname: Jiang, Yong
  email: jiangyongchange@163.com
– sequence: 4
  givenname: Xiaoyuan
  orcidid: 0000-0003-3196-3443
  surname: Zhang
  fullname: Zhang, Xiaoyuan
– sequence: 5
  givenname: Yong
  surname: Qiu
  fullname: Qiu, Yong
  email: qiuyong@tsinghua.edu.cn
– sequence: 6
  givenname: Xia
  surname: Huang
  fullname: Huang, Xia
  email: xhuang@tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29753171$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEUhUVxaJy0_6AULbOZqV4jjboohJBHwZBNuhay5g7IzIwcSVPj_vrKdZJFF_Hq6orvXA7nXKDFFCZA6AslNSVUftvUO5sjpJoR2tZE1ETKD2hJW6UrJkS7QEtCBK8ob8Q5ukhpQwhhjOuP6Jxp1XCq6BKZxwmqPdiIwxaizT5MOPSYFrZa4TF082Cj_wMdHr2LYe3tgPsZBuxgKK8Q8ThP3vlt-d_ZlKGYgoiLMZtHmPIndNbbIcHnl3mJft3dPt08VKvH-58316vKCUlzpRRrrONNQxSjuiwNVSC5tI467YTqOSeaSL1WVDZrLcA6EIIx1mvHmWL8El0d725jeJ4hZTP6dPBoJwhzMqxRglMtmTiNEt4yJYRsC_r1BZ3XI3RmG_1o49685lcAcQRKNilF6N8QSsyhJrMxx5rMoSZDhCk1Fdn3_2TO53_h52j9cEr84yiGkudvD9Ek52Fy0PkILpsu-PcP_AX9RK5_
CitedBy_id crossref_primary_10_1016_j_psep_2025_01_018
crossref_primary_10_1016_j_watres_2022_119179
crossref_primary_10_1016_j_chemosphere_2021_131856
crossref_primary_10_1016_j_heliyon_2024_e31170
crossref_primary_10_3389_fceng_2022_814987
crossref_primary_10_35414_akufemubid_1027565
crossref_primary_10_1016_j_biortech_2021_125604
crossref_primary_10_1016_j_biotechadv_2020_107675
crossref_primary_10_1039_C8GC02909A
crossref_primary_10_1007_s13399_024_06289_4
crossref_primary_10_1016_j_watres_2019_114955
crossref_primary_10_1016_j_biortech_2021_126274
crossref_primary_10_1016_j_cej_2023_142546
crossref_primary_10_1002_anie_202312147
crossref_primary_10_1016_j_scitotenv_2020_142429
crossref_primary_10_1016_j_eti_2022_102773
crossref_primary_10_57634_RCR5073
crossref_primary_10_1021_acsestengg_4c00050
crossref_primary_10_2323_jgam_2021_05_001
crossref_primary_10_1016_j_energ_2024_100001
crossref_primary_10_1088_1755_1315_435_1_012012
crossref_primary_10_1016_j_scitotenv_2024_172418
crossref_primary_10_1016_j_scitotenv_2023_169186
crossref_primary_10_2166_wst_2021_618
crossref_primary_10_1016_j_egyr_2019_08_007
crossref_primary_10_1016_j_envres_2024_119503
crossref_primary_10_1016_j_seta_2024_103913
crossref_primary_10_1016_j_biortech_2021_125950
crossref_primary_10_1021_acs_est_4c03169
crossref_primary_10_1080_09593330_2022_2130106
crossref_primary_10_1016_j_jclepro_2022_130657
crossref_primary_10_5772_geet_20240082
crossref_primary_10_1016_j_micres_2022_127216
crossref_primary_10_1016_j_chemosphere_2022_136454
crossref_primary_10_1016_j_crbiot_2025_100272
crossref_primary_10_1016_j_envint_2020_105550
crossref_primary_10_1051_e3sconf_202233408007
crossref_primary_10_62063_rev_1
crossref_primary_10_1016_j_jpowsour_2024_236010
crossref_primary_10_1016_j_biortech_2020_123478
crossref_primary_10_1016_j_seta_2021_101226
crossref_primary_10_3390_pr9081318
crossref_primary_10_1080_07388551_2019_1662367
crossref_primary_10_1016_j_biortech_2023_128906
crossref_primary_10_1016_j_jece_2020_105011
crossref_primary_10_3389_fenrg_2018_00084
crossref_primary_10_1002_cplu_202000544
crossref_primary_10_1016_j_rser_2021_111926
crossref_primary_10_1007_s11244_021_01503_3
crossref_primary_10_1007_s40726_023_00267_6
crossref_primary_10_1007_s13762_023_04850_8
crossref_primary_10_1016_j_biortech_2019_121395
crossref_primary_10_1016_j_jpowsour_2021_229706
crossref_primary_10_1002_bit_27653
crossref_primary_10_1016_j_fuel_2019_05_109
crossref_primary_10_1016_j_biortech_2021_126462
crossref_primary_10_1016_j_chemosphere_2021_132502
crossref_primary_10_1016_j_cej_2021_130245
crossref_primary_10_1016_j_biortech_2021_126218
crossref_primary_10_1016_j_eng_2024_07_018
crossref_primary_10_1002_elsc_201800160
crossref_primary_10_3389_fenrg_2019_00103
crossref_primary_10_1016_j_jwpe_2022_102966
crossref_primary_10_1016_j_chemosphere_2021_130455
crossref_primary_10_1016_j_biortech_2018_09_133
crossref_primary_10_1016_j_watres_2022_118208
crossref_primary_10_1016_j_matpr_2022_08_243
crossref_primary_10_1016_j_ces_2019_07_051
crossref_primary_10_1016_j_ijhydene_2025_01_226
crossref_primary_10_1021_acs_est_2c05976
crossref_primary_10_1016_j_bej_2023_109155
crossref_primary_10_1016_j_cej_2019_04_090
crossref_primary_10_1016_j_scitotenv_2022_153123
crossref_primary_10_3390_pr9081330
crossref_primary_10_1016_j_jece_2023_110643
crossref_primary_10_1039_D3EW00522D
crossref_primary_10_1016_j_jece_2024_113733
crossref_primary_10_1016_j_watres_2019_04_053
crossref_primary_10_1007_s13399_024_05597_z
crossref_primary_10_1016_j_jclepro_2019_04_308
crossref_primary_10_3390_molecules27072245
crossref_primary_10_1016_j_jenvman_2022_114525
crossref_primary_10_1016_j_jwpe_2020_101768
crossref_primary_10_1016_j_coelec_2018_09_006
crossref_primary_10_1016_j_watres_2023_119823
crossref_primary_10_3390_pr11020373
crossref_primary_10_1016_j_jpowsour_2019_227124
crossref_primary_10_1016_j_fuel_2020_119104
crossref_primary_10_3390_fermentation7030169
crossref_primary_10_1007_s11270_022_05755_x
crossref_primary_10_1016_j_watres_2019_01_062
crossref_primary_10_1016_j_biortech_2019_122266
crossref_primary_10_1016_j_biteb_2021_100632
crossref_primary_10_1128_aem_00795_24
crossref_primary_10_1016_j_seta_2021_101653
crossref_primary_10_1016_j_bioelechem_2021_107749
crossref_primary_10_1016_j_biortech_2025_132297
crossref_primary_10_1016_j_watres_2022_118429
crossref_primary_10_1016_j_watres_2018_10_092
crossref_primary_10_1016_j_apenergy_2019_114475
crossref_primary_10_1016_j_procbio_2021_03_032
crossref_primary_10_1016_j_cej_2019_03_141
crossref_primary_10_1016_j_biortech_2022_128371
crossref_primary_10_1016_j_fuel_2024_131150
crossref_primary_10_1016_j_copbio_2019_03_007
crossref_primary_10_1016_j_bios_2019_111922
crossref_primary_10_1016_j_biteb_2021_100644
crossref_primary_10_3390_bios14060302
crossref_primary_10_1016_j_ijhydene_2020_07_252
crossref_primary_10_1016_j_envres_2024_118285
crossref_primary_10_1061__ASCE_EE_1943_7870_0001552
crossref_primary_10_1002_cben_201900023
crossref_primary_10_1016_j_jenvman_2019_01_092
crossref_primary_10_1016_j_chemosphere_2021_132285
crossref_primary_10_3390_en17236084
crossref_primary_10_1007_s11356_020_07745_0
crossref_primary_10_1016_j_rser_2024_115017
crossref_primary_10_1016_j_envres_2021_112416
crossref_primary_10_1016_j_biotechadv_2022_107950
crossref_primary_10_1016_j_jece_2022_107146
crossref_primary_10_1016_j_scitotenv_2023_165201
crossref_primary_10_1089_ees_2019_0465
crossref_primary_10_1007_s11157_019_09508_x
crossref_primary_10_1016_j_scitotenv_2020_142281
crossref_primary_10_1021_acsestengg_4c00586
crossref_primary_10_1016_j_ijhydene_2023_08_134
crossref_primary_10_1007_s40726_022_00218_7
crossref_primary_10_1016_j_ese_2020_100050
crossref_primary_10_1016_j_biortech_2022_127581
crossref_primary_10_1016_j_jwpe_2025_107416
crossref_primary_10_3390_su17020466
crossref_primary_10_1007_s10311_021_01199_7
crossref_primary_10_1016_j_cej_2023_144325
crossref_primary_10_1016_j_biortech_2020_123418
crossref_primary_10_1016_j_bioelechem_2019_02_008
crossref_primary_10_1016_j_heliyon_2024_e25439
crossref_primary_10_4014_jmb_2212_12024
crossref_primary_10_1080_17597269_2023_2215625
crossref_primary_10_1002_cite_201800081
crossref_primary_10_1016_j_rser_2020_110367
crossref_primary_10_3390_microorganisms11051255
crossref_primary_10_3389_fenrg_2019_00091
crossref_primary_10_1016_j_chemosphere_2022_134340
crossref_primary_10_1016_j_psep_2024_06_077
crossref_primary_10_1002_ente_202301346
crossref_primary_10_1016_j_apenergy_2022_119704
crossref_primary_10_1016_j_coelec_2019_09_001
crossref_primary_10_21603_2074_9414_2022_3_2384
crossref_primary_10_1038_s41522_021_00218_3
crossref_primary_10_1016_j_jenvman_2024_120465
crossref_primary_10_3389_frsus_2021_792028
crossref_primary_10_3390_su14020955
crossref_primary_10_1007_s11356_020_11691_2
crossref_primary_10_1016_j_biortech_2019_122227
crossref_primary_10_1016_j_scitotenv_2021_145978
crossref_primary_10_1016_j_apenergy_2022_120370
crossref_primary_10_1016_j_coelec_2022_101187
crossref_primary_10_1038_s41598_019_45620_2
crossref_primary_10_1016_j_rser_2020_110134
crossref_primary_10_1039_C8EW00666K
crossref_primary_10_1016_j_jclepro_2022_131227
crossref_primary_10_1016_j_cej_2020_127053
crossref_primary_10_1016_j_heliyon_2022_e12353
crossref_primary_10_1016_j_ijhydene_2020_08_070
crossref_primary_10_1016_j_jhazmat_2020_122184
crossref_primary_10_1016_j_ijhydene_2024_05_467
crossref_primary_10_1016_j_biortech_2019_122236
crossref_primary_10_1016_j_apenergy_2021_118328
crossref_primary_10_1016_j_bej_2020_107909
crossref_primary_10_1021_acssuschemeng_8b00948
crossref_primary_10_1016_j_biortech_2018_08_101
crossref_primary_10_1016_j_jwpe_2022_103135
crossref_primary_10_1016_j_tibtech_2022_09_001
crossref_primary_10_1016_j_jwpe_2024_104783
crossref_primary_10_1016_j_chemosphere_2021_133295
crossref_primary_10_1016_j_jenvman_2021_113831
crossref_primary_10_1016_j_seta_2021_101618
crossref_primary_10_4491_KSEE_2021_43_10_623
crossref_primary_10_1016_j_jpowsour_2024_235555
crossref_primary_10_1016_j_scitotenv_2020_143142
crossref_primary_10_1016_j_jclepro_2019_02_172
crossref_primary_10_1016_j_jes_2023_08_039
crossref_primary_10_1016_j_scitotenv_2022_160183
crossref_primary_10_1016_j_wri_2022_100178
crossref_primary_10_3390_w11020217
crossref_primary_10_1016_j_ijhydene_2024_02_144
crossref_primary_10_1016_j_rineng_2023_101619
crossref_primary_10_3390_en12214071
crossref_primary_10_1021_acs_chemrev_0c00472
crossref_primary_10_2139_ssrn_4060136
crossref_primary_10_1016_j_bej_2020_107816
crossref_primary_10_3389_fenrg_2022_843768
crossref_primary_10_1080_09593330_2023_2234676
crossref_primary_10_1016_j_scitotenv_2021_145904
crossref_primary_10_3390_ijerph18189466
crossref_primary_10_1016_j_jclepro_2019_06_041
crossref_primary_10_3390_pr9060985
crossref_primary_10_1039_D1RA08487A
crossref_primary_10_1016_j_cej_2020_127072
crossref_primary_10_1016_j_ese_2023_100251
crossref_primary_10_1016_j_watres_2020_115737
crossref_primary_10_1039_D1RA03061B
crossref_primary_10_1016_j_seta_2023_103340
crossref_primary_10_1016_j_chemosphere_2020_126058
crossref_primary_10_1016_j_enconman_2019_112285
crossref_primary_10_1111_gcbb_70004
crossref_primary_10_1016_j_bioelechem_2020_107623
crossref_primary_10_3390_en15155616
crossref_primary_10_1016_j_biortech_2024_130618
crossref_primary_10_1016_j_jclepro_2020_125257
crossref_primary_10_1016_j_seppur_2019_05_071
crossref_primary_10_1016_j_bioflm_2021_100057
crossref_primary_10_1016_j_jece_2023_109930
crossref_primary_10_1016_j_watres_2018_10_022
crossref_primary_10_3390_su12218792
crossref_primary_10_1016_j_molliq_2021_117795
crossref_primary_10_3390_life14050591
crossref_primary_10_1007_s11356_021_14944_w
crossref_primary_10_1016_j_seta_2023_103475
crossref_primary_10_2139_ssrn_4104213
crossref_primary_10_1016_j_biortech_2021_125077
crossref_primary_10_1016_j_crgsc_2021_100111
crossref_primary_10_3390_ijerph20043437
crossref_primary_10_2139_ssrn_4193366
crossref_primary_10_1007_s40899_022_00747_5
crossref_primary_10_1016_j_biortech_2022_127455
crossref_primary_10_1002_ange_202312147
crossref_primary_10_1016_j_jwpe_2020_101699
crossref_primary_10_1016_j_jpowsour_2020_229130
crossref_primary_10_1016_j_chemosphere_2021_131243
crossref_primary_10_1016_j_scitotenv_2022_155926
crossref_primary_10_2166_wst_2022_196
crossref_primary_10_1007_s11431_018_9380_0
crossref_primary_10_1016_j_eng_2021_09_015
crossref_primary_10_1007_s11274_020_2801_z
crossref_primary_10_1016_j_energy_2022_124163
crossref_primary_10_1016_j_chemosphere_2024_143430
crossref_primary_10_1016_j_biortech_2020_122992
crossref_primary_10_1016_j_cep_2024_109707
crossref_primary_10_1016_j_scitotenv_2020_140198
crossref_primary_10_1016_j_chemosphere_2021_132446
crossref_primary_10_1016_j_jpowsour_2021_229785
crossref_primary_10_1016_j_biotechadv_2024_108474
crossref_primary_10_1177_1178622120960086
Cites_doi 10.1016/j.biortech.2017.05.137
10.1021/es0605016
10.1016/j.rser.2017.03.096
10.1016/j.ijhydene.2015.01.117
10.1016/j.biortech.2012.07.038
10.1021/ez4000324
10.1016/j.rser.2015.10.011
10.1016/j.bioelechem.2017.08.002
10.1016/j.jpowsour.2017.03.132
10.1016/j.rser.2017.06.099
10.1021/es300313d
10.1016/j.biotechadv.2013.10.001
10.1039/C6MH00093B
10.1016/j.jpowsour.2017.02.088
10.1021/acs.estlett.5b00180
10.1016/j.watres.2017.10.028
10.1007/s11783-013-0583-3
10.1016/j.biortech.2016.04.136
10.1016/j.bios.2016.02.051
10.1016/j.ijhydene.2016.12.050
10.1016/j.apenergy.2016.01.001
10.1016/j.jpowsour.2017.03.109
10.1016/j.jpowsour.2017.03.033
10.1016/j.apenergy.2016.09.043
10.1021/es901939r
10.1007/s00253-007-1327-8
10.1016/j.biortech.2011.02.098
10.1016/j.electacta.2015.02.028
10.1038/s41570-017-0024
10.1021/es5047765
10.1021/es800970w
10.1016/j.apenergy.2016.01.056
10.1016/j.bios.2016.10.014
10.1016/j.bios.2016.05.033
10.1016/j.rser.2017.05.098
10.1016/j.biortech.2015.06.026
10.1016/j.jpowsour.2017.03.067
10.1016/j.ijhydene.2010.08.074
10.1039/c2cp44548d
10.1016/j.bios.2015.08.035
10.1016/j.watres.2016.04.043
10.1016/j.biortech.2013.12.104
10.1007/s00253-009-2378-9
10.1016/j.rser.2016.06.050
10.1016/j.biortech.2016.06.105
10.1016/j.rser.2016.10.044
10.1016/j.bios.2017.02.052
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2018.04.066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 8
ExternalDocumentID 29753171
10_1016_j_watres_2018_04_066
S0043135418303609
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-7725ac35507219725517e636ac1c9c47f3309069b7165b94eace44222f9c32723
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Jul 11 05:48:39 EDT 2025
Fri Jul 11 01:49:27 EDT 2025
Wed Feb 19 02:34:51 EST 2025
Tue Jul 01 01:20:52 EDT 2025
Thu Apr 24 23:13:07 EDT 2025
Tue Dec 03 03:45:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microbial fuel cell
Stacked modules
Power generation
Municipal wastewater
Long-term operation
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-7725ac35507219725517e636ac1c9c47f3309069b7165b94eace44222f9c32723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3196-3443
0000-0001-7345-0844
PMID 29753171
PQID 2038274468
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2574319624
proquest_miscellaneous_2038274468
pubmed_primary_29753171
crossref_primary_10_1016_j_watres_2018_04_066
crossref_citationtrail_10_1016_j_watres_2018_04_066
elsevier_sciencedirect_doi_10_1016_j_watres_2018_04_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-15
PublicationDateYYYYMMDD 2018-09-15
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ledezma, Stinchcombe, Greenman, Ieropoulos (bib20) 2013; 15
Dhar, Sim, Ryu, Ren, Santo Domingo, Chae, Lee (bib4) 2017; 127
Lu, Chen, Babanova, Phadke, Salvacion, Mirhosseini, Chan, Carpenter, Cortese, Bretschger (bib28) 2017; 356
Oliot, Galier, Roux de Balmann, Bergel (bib30) 2016; 183
Sonawane, Yadav, Ghosh, Adeloju (bib37) 2017; 90
Kumar, Hsu, Kavanagh, Barrière, Lens, Lapinsonnière, Lienhard, Schröder, Jiang, Leech (bib19) 2017; 1
Vilajeliu-Pons, Puig, Salcedo-Dávila, Balaguer, Colprim (bib41) 2017; 3
Santoro, Arbizzani, Erable, Ieropoulos (bib36) 2017; 356
Pandey, Shinde, Deopurkar, Kale, Patil, Pant (bib31) 2016; 168
Ge, He (bib9) 2016; 2
Jiang, Liang, Zhang, Bian, Sun, Zhang, Yang, Zhao, Huang (bib14) 2016; 165
Papaharalabos, Greenman, Melhuish, Ieropoulos (bib32) 2015; 40
Logan, Wallack, Kim, He, Feng, Saikaly (bib27) 2015; 2
Torres, Marcus, Parameswaran, Rittmann (bib40) 2008; 42
Wu, Liang, Zhang, Li, Zuo, Huang (bib46) 2015; 161
Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib26) 2006; 40
Pous, Carmona-Martínez, Vilajeliu-Pons, Fiset, Bañeras, Trably, Balaguer, Colprim, Bernet, Puig (bib34) 2016; 75
Wu, Li, Zhou, Liang, Zhang, Jiang, Huang (bib45) 2016; 98
Lobo, Wang, Ren (bib24) 2017; 356
Ge, Li, Xiao, Tong, He (bib10) 2014; 1
Wang, Park, Ren (bib42) 2012; 46
ElMekawy, Hegab, Losic, Saint, Pant (bib6) 2017; 72
Zhang, Liang, Yang, Jiang, Bian, Chen, Zhang, Huang (bib49) 2016; 81
Ferreira Mercuri, Jakubiak Kumata, Amaral, Simões Vitule (bib8) 2016; 65
Popat, Torres (bib33) 2016; 215
Wang, Ren (bib44) 2013; 31
Yazdi, D'Angelo, Omer, Windiasti, Lu, Xu (bib47) 2016; 85
Madjarov, Popat, Erben, Götze, Zengerle, Kerzenmacher (bib29) 2017; 356
Wang, Park, Ren (bib43) 2015; 49
Choudhury, Uday, Mahata, Nath Tiwari, Narayan Ray, Kanti Bandyopadhyay, Bhunia (bib2) 2017; 79
Lefebvre, Shen, Tan, Uzabiaga, Chang, Ng (bib21) 2011; 102
Jiang, Yang, Liang, Liu, Huang (bib18) 2018; 81
Jiang, Liang, Liu, Miao, Bian, Zhang, Huang (bib15) 2017; 3
Tee, Abdullah, Tan, Rashid, Amin, Nolasco-Hipolito, Bujang (bib39) 2016; 54
Aelterman, Freguia, Keller, Verstraete, Rabaey (bib1) 2008; 78
Feng, He, Liu, Wang, Qu, Ren (bib7) 2014; 156
Logan (bib25) 2010; 85
Houghton, Santoro, Soavi, Serov, Ieropoulos, Arbizzani, Atanassov (bib11) 2016; 218
Jadhav, Ghosh Ray, Ghangrekar (bib12) 2017; 76
Yuan, Hou, Abu-Reesh, Chen, He (bib48) 2016; 3
Jiang, Liang, Liu, Wang, Miao, Huang (bib16) 2017; 94
Stager, Zhang, Logan (bib38) 2017; 118
Dekker, Heijne, Saakes, Hamelers, Buisman (bib3) 2009; 43
Liang, Wei, Li, Huang (bib23) 2013; 7
Dong, Qu, He, Du, Liu, Han, Feng (bib5) 2015; 195
Santini, Marzorati, Fest-Santini, Trasatti, Cristiani (bib35) 2017; 356
Zhuang, Yuan, Wang, Zhou (bib50) 2012; 123
Jiang, Curtis, Troop, Scheible, McGrath, Hu, Suib, Raymond, Li (bib13) 2011; 36
Li, Lu, Luo, Liu, Zhang (bib22) 2017; 241
Jiang, Liang, Liu, Yan, Bian, Huang (bib17) 2017; 42
Dong (10.1016/j.watres.2018.04.066_bib5) 2015; 195
Zhang (10.1016/j.watres.2018.04.066_bib49) 2016; 81
Logan (10.1016/j.watres.2018.04.066_bib25) 2010; 85
Papaharalabos (10.1016/j.watres.2018.04.066_bib32) 2015; 40
Santoro (10.1016/j.watres.2018.04.066_bib36) 2017; 356
Wang (10.1016/j.watres.2018.04.066_bib42) 2012; 46
Wang (10.1016/j.watres.2018.04.066_bib44) 2013; 31
Jiang (10.1016/j.watres.2018.04.066_bib13) 2011; 36
Jiang (10.1016/j.watres.2018.04.066_bib16) 2017; 94
Houghton (10.1016/j.watres.2018.04.066_bib11) 2016; 218
Dhar (10.1016/j.watres.2018.04.066_bib4) 2017; 127
Logan (10.1016/j.watres.2018.04.066_bib27) 2015; 2
Oliot (10.1016/j.watres.2018.04.066_bib30) 2016; 183
Torres (10.1016/j.watres.2018.04.066_bib40) 2008; 42
Vilajeliu-Pons (10.1016/j.watres.2018.04.066_bib41) 2017; 3
Tee (10.1016/j.watres.2018.04.066_bib39) 2016; 54
Pous (10.1016/j.watres.2018.04.066_bib34) 2016; 75
Ferreira Mercuri (10.1016/j.watres.2018.04.066_bib8) 2016; 65
Liang (10.1016/j.watres.2018.04.066_bib23) 2013; 7
Jadhav (10.1016/j.watres.2018.04.066_bib12) 2017; 76
ElMekawy (10.1016/j.watres.2018.04.066_bib6) 2017; 72
Zhuang (10.1016/j.watres.2018.04.066_bib50) 2012; 123
Lu (10.1016/j.watres.2018.04.066_bib28) 2017; 356
Popat (10.1016/j.watres.2018.04.066_bib33) 2016; 215
Ge (10.1016/j.watres.2018.04.066_bib10) 2014; 1
Sonawane (10.1016/j.watres.2018.04.066_bib37) 2017; 90
Jiang (10.1016/j.watres.2018.04.066_bib14) 2016; 165
Jiang (10.1016/j.watres.2018.04.066_bib15) 2017; 3
Yuan (10.1016/j.watres.2018.04.066_bib48) 2016; 3
Lobo (10.1016/j.watres.2018.04.066_bib24) 2017; 356
Ledezma (10.1016/j.watres.2018.04.066_bib20) 2013; 15
Feng (10.1016/j.watres.2018.04.066_bib7) 2014; 156
Aelterman (10.1016/j.watres.2018.04.066_bib1) 2008; 78
Wang (10.1016/j.watres.2018.04.066_bib43) 2015; 49
Santini (10.1016/j.watres.2018.04.066_bib35) 2017; 356
Madjarov (10.1016/j.watres.2018.04.066_bib29) 2017; 356
Jiang (10.1016/j.watres.2018.04.066_bib17) 2017; 42
Yazdi (10.1016/j.watres.2018.04.066_bib47) 2016; 85
Pandey (10.1016/j.watres.2018.04.066_bib31) 2016; 168
Logan (10.1016/j.watres.2018.04.066_bib26) 2006; 40
Kumar (10.1016/j.watres.2018.04.066_bib19) 2017; 1
Li (10.1016/j.watres.2018.04.066_bib22) 2017; 241
Jiang (10.1016/j.watres.2018.04.066_bib18) 2018; 81
Choudhury (10.1016/j.watres.2018.04.066_bib2) 2017; 79
Wu (10.1016/j.watres.2018.04.066_bib45) 2016; 98
Dekker (10.1016/j.watres.2018.04.066_bib3) 2009; 43
Wu (10.1016/j.watres.2018.04.066_bib46) 2015; 161
Stager (10.1016/j.watres.2018.04.066_bib38) 2017; 118
Lefebvre (10.1016/j.watres.2018.04.066_bib21) 2011; 102
Ge (10.1016/j.watres.2018.04.066_bib9) 2016; 2
31337502 - Water Res. 2019 Jul 20;:114878
References_xml – volume: 195
  start-page: 66
  year: 2015
  end-page: 72
  ident: bib5
  article-title: A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode
  publication-title: Bioresour. Technol.
– volume: 161
  start-page: 245
  year: 2015
  end-page: 251
  ident: bib46
  article-title: Enhanced performance of microbial fuel cell at low substrate concentrations by adsorptive anode
  publication-title: Electrochim. Acta
– volume: 94
  start-page: 344
  year: 2017
  end-page: 350
  ident: bib16
  article-title: A novel microbial fuel cell sensor with biocathode sensing element
  publication-title: Biosens. Bioelectron.
– volume: 3
  start-page: 382
  year: 2016
  end-page: 401
  ident: bib48
  article-title: Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review
  publication-title: Mater. Horizons
– volume: 49
  start-page: 3267
  year: 2015
  end-page: 3277
  ident: bib43
  article-title: Practical energy harvesting for microbial fuel cells: a review
  publication-title: Environ. Sci. Technol.
– volume: 165
  start-page: 670
  year: 2016
  end-page: 675
  ident: bib14
  article-title: Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells
  publication-title: Appl. Energy
– volume: 3
  start-page: 947
  year: 2017
  end-page: 959
  ident: bib41
  article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials
  publication-title: Environ. Sci.: Water Res. Technol
– volume: 81
  start-page: 292
  year: 2018
  end-page: 305
  ident: bib18
  article-title: Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges
  publication-title: Renew. Sust. Energ. Rev.
– volume: 356
  start-page: 400
  year: 2017
  end-page: 407
  ident: bib35
  article-title: Carbonate scale deactivating the biocathode in a microbial fuel cell
  publication-title: J. Power Sources
– volume: 1
  start-page: 0024
  year: 2017
  ident: bib19
  article-title: The ins and outs of microorganism–electrode electron transfer reactions
  publication-title: Nat. Rev. Chem.
– volume: 78
  start-page: 409
  year: 2008
  end-page: 418
  ident: bib1
  article-title: The anode potential regulates bacterial activity in microbial fuel cells
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 102
  start-page: 5841
  year: 2011
  end-page: 5848
  ident: bib21
  article-title: Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater
  publication-title: Bioresour. Technol.
– volume: 85
  start-page: 536
  year: 2016
  end-page: 552
  ident: bib47
  article-title: Carbon nanotube modification of microbial fuel cell electrodes
  publication-title: Biosens. Bioelectron.
– volume: 168
  start-page: 706
  year: 2016
  end-page: 723
  ident: bib31
  article-title: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery
  publication-title: Appl. Energy
– volume: 2
  start-page: 274
  year: 2016
  end-page: 281
  ident: bib9
  article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost
  publication-title: Environ. Sci.: Water Res. Technol
– volume: 118
  start-page: 154
  year: 2017
  end-page: 160
  ident: bib38
  article-title: Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater
  publication-title: Bioelectrochemistry
– volume: 356
  start-page: 274
  year: 2017
  end-page: 287
  ident: bib28
  article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater
  publication-title: J. Power Sources
– volume: 81
  start-page: 32
  year: 2016
  end-page: 38
  ident: bib49
  article-title: Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell
  publication-title: Biosens. Bioelectron.
– volume: 72
  start-page: 1389
  year: 2017
  end-page: 1403
  ident: bib6
  article-title: Applications of graphene in microbial fuel cells: the gap between promise and reality
  publication-title: Renew. Sust. Energ. Rev.
– volume: 123
  start-page: 406
  year: 2012
  end-page: 412
  ident: bib50
  article-title: Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater
  publication-title: Bioresour. Technol.
– volume: 356
  start-page: 225
  year: 2017
  end-page: 244
  ident: bib36
  article-title: Microbial fuel cells: from fundamentals to applications. A review. J
  publication-title: Power Sources
– volume: 3
  start-page: 472
  year: 2017
  end-page: 479
  ident: bib15
  article-title: Enhancement of the sensitivity of a microbial fuel cell sensor by transient-state operation
  publication-title: Environ. Sci.: Water Res. Technol
– volume: 2
  start-page: 206
  year: 2015
  end-page: 214
  ident: bib27
  article-title: Assessment of microbial fuel cell configurations and power densities
  publication-title: Environ. Sci. Technol. Lett.
– volume: 90
  start-page: 558
  year: 2017
  end-page: 576
  ident: bib37
  article-title: Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells
  publication-title: Biosens. Bioelectron.
– volume: 1
  start-page: 137
  year: 2014
  end-page: 141
  ident: bib10
  article-title: Recovery of electrical energy in microbial fuel cells
  publication-title: Environ. Sci. Technol. Lett.
– volume: 40
  start-page: 4263
  year: 2015
  end-page: 4268
  ident: bib32
  article-title: A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment
  publication-title: Int. J. Hydrog. Energy
– volume: 85
  start-page: 1665
  year: 2010
  end-page: 1671
  ident: bib25
  article-title: Scaling up microbial fuel cells and other bioelectrochemical systems
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 46
  start-page: 5247
  year: 2012
  end-page: 5252
  ident: bib42
  article-title: Active energy harvesting from microbial fuel cells at the maximum power point without using resistors
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 235
  year: 2016
  end-page: 246
  ident: bib39
  article-title: Review on hybrid energy systems for wastewater treatment and bio-energy production
  publication-title: Renew. Sust. Energ. Rev.
– volume: 127
  start-page: 230
  year: 2017
  end-page: 238
  ident: bib4
  article-title: Microbial activity influences electrical conductivity of biofilm anode
  publication-title: Water Res.
– volume: 356
  start-page: 408
  year: 2017
  end-page: 418
  ident: bib29
  article-title: Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance ( iR u -drop), double layer capacitance, and junction potential
  publication-title: J. Power Sources
– volume: 356
  start-page: 356
  year: 2017
  end-page: 364
  ident: bib24
  article-title: Energy harvesting influences electrochemical performance of microbial fuel cells
  publication-title: J. Power Sources
– volume: 76
  start-page: 1022
  year: 2017
  end-page: 1031
  ident: bib12
  article-title: Third generation in bio-electrochemical system research – a systematic review on mechanisms for recovery of valuable by-products from wastewater
  publication-title: Renew. Sust. Energ. Rev.
– volume: 42
  start-page: 4342
  year: 2017
  end-page: 4348
  ident: bib17
  article-title: A cathode-shared microbial fuel cell sensor array for water alert system
  publication-title: Int. J. Hydrog. Energy
– volume: 241
  start-page: 384
  year: 2017
  end-page: 390
  ident: bib22
  article-title: Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method
  publication-title: Bioresour. Technol.
– volume: 79
  start-page: 372
  year: 2017
  end-page: 389
  ident: bib2
  article-title: Performance improvement of microbial fuel cells for waste water treatment along with value addition: a review on past achievements and recent perspectives
  publication-title: Renew. Sust. Energ. Rev.
– volume: 218
  start-page: 552
  year: 2016
  end-page: 560
  ident: bib11
  article-title: Supercapacitive microbial fuel cell: characterization and analysis for improved charge storage/delivery performance
  publication-title: Bioresour. Technol.
– volume: 215
  start-page: 265
  year: 2016
  end-page: 273
  ident: bib33
  article-title: Critical transport rates that limit the performance of microbial electrochemistry technologies
  publication-title: Bioresour. Technol.
– volume: 15
  start-page: 2278
  year: 2013
  end-page: 2281
  ident: bib20
  article-title: The first self-sustainable microbial fuel cell stack
  publication-title: Phys. Chem. Chem. Phys.
– volume: 98
  start-page: 396
  year: 2016
  end-page: 403
  ident: bib45
  article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment
  publication-title: Water Res.
– volume: 156
  start-page: 132
  year: 2014
  end-page: 138
  ident: bib7
  article-title: A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment
  publication-title: Bioresour. Technol.
– volume: 31
  start-page: 1796
  year: 2013
  end-page: 1807
  ident: bib44
  article-title: A comprehensive review of microbial electrochemical systems as a platform technology
  publication-title: Biotechnol. Adv.
– volume: 65
  start-page: 832
  year: 2016
  end-page: 840
  ident: bib8
  article-title: Energy by microbial fuel cells: scientometric global synthesis and challenges
  publication-title: Renew. Sust. Energ. Rev.
– volume: 183
  start-page: 1682
  year: 2016
  end-page: 1704
  ident: bib30
  article-title: Ion transport in microbial fuel cells: key roles, theory and critical review
  publication-title: Appl. Energy
– volume: 43
  start-page: 9038
  year: 2009
  end-page: 9042
  ident: bib3
  article-title: Analysis and improvement of a scaled-up and stacked microbial fuel cell
  publication-title: Environ. Sci. Technol.
– volume: 75
  start-page: 352
  year: 2016
  end-page: 358
  ident: bib34
  article-title: Bidirectional microbial electron transfer: switching an acetate oxidizing biofilm to nitrate reducing conditions
  publication-title: Biosens. Bioelectron.
– volume: 42
  start-page: 6593
  year: 2008
  end-page: 6597
  ident: bib40
  article-title: Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 913
  year: 2013
  end-page: 919
  ident: bib23
  article-title: Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode
  publication-title: Front. Env. Sci. Eng
– volume: 36
  start-page: 876
  year: 2011
  end-page: 884
  ident: bib13
  article-title: A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment
  publication-title: Int. J. Hydrog. Energy
– volume: 40
  start-page: 5181
  year: 2006
  end-page: 5192
  ident: bib26
  article-title: Microbial fuel cells: methodology and technology
  publication-title: Environ. Sci. Technol.
– volume: 241
  start-page: 384
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib22
  article-title: Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.137
– volume: 40
  start-page: 5181
  issue: 17
  year: 2006
  ident: 10.1016/j.watres.2018.04.066_bib26
  article-title: Microbial fuel cells: methodology and technology
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0605016
– volume: 76
  start-page: 1022
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib12
  article-title: Third generation in bio-electrochemical system research – a systematic review on mechanisms for recovery of valuable by-products from wastewater
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.03.096
– volume: 40
  start-page: 4263
  issue: 11
  year: 2015
  ident: 10.1016/j.watres.2018.04.066_bib32
  article-title: A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.01.117
– volume: 123
  start-page: 406
  year: 2012
  ident: 10.1016/j.watres.2018.04.066_bib50
  article-title: Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.07.038
– volume: 1
  start-page: 137
  issue: 2
  year: 2014
  ident: 10.1016/j.watres.2018.04.066_bib10
  article-title: Recovery of electrical energy in microbial fuel cells
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez4000324
– volume: 54
  start-page: 235
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib39
  article-title: Review on hybrid energy systems for wastewater treatment and bio-energy production
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.10.011
– volume: 118
  start-page: 154
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib38
  article-title: Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2017.08.002
– volume: 356
  start-page: 274
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib28
  article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.132
– volume: 81
  start-page: 292
  year: 2018
  ident: 10.1016/j.watres.2018.04.066_bib18
  article-title: Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.06.099
– volume: 46
  start-page: 5247
  issue: 9
  year: 2012
  ident: 10.1016/j.watres.2018.04.066_bib42
  article-title: Active energy harvesting from microbial fuel cells at the maximum power point without using resistors
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300313d
– volume: 31
  start-page: 1796
  issue: 8
  year: 2013
  ident: 10.1016/j.watres.2018.04.066_bib44
  article-title: A comprehensive review of microbial electrochemical systems as a platform technology
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.10.001
– volume: 3
  start-page: 382
  issue: 5
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib48
  article-title: Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review
  publication-title: Mater. Horizons
  doi: 10.1039/C6MH00093B
– volume: 356
  start-page: 400
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib35
  article-title: Carbonate scale deactivating the biocathode in a microbial fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.088
– volume: 2
  start-page: 206
  issue: 8
  year: 2015
  ident: 10.1016/j.watres.2018.04.066_bib27
  article-title: Assessment of microbial fuel cell configurations and power densities
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.5b00180
– volume: 127
  start-page: 230
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib4
  article-title: Microbial activity influences electrical conductivity of biofilm anode
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.10.028
– volume: 7
  start-page: 913
  issue: 6
  year: 2013
  ident: 10.1016/j.watres.2018.04.066_bib23
  article-title: Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode
  publication-title: Front. Env. Sci. Eng
  doi: 10.1007/s11783-013-0583-3
– volume: 215
  start-page: 265
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib33
  article-title: Critical transport rates that limit the performance of microbial electrochemistry technologies
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.136
– volume: 81
  start-page: 32
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib49
  article-title: Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.02.051
– volume: 2
  start-page: 274
  issue: 2
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib9
  article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost
  publication-title: Environ. Sci.: Water Res. Technol
– volume: 42
  start-page: 4342
  issue: 7
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib17
  article-title: A cathode-shared microbial fuel cell sensor array for water alert system
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.12.050
– volume: 165
  start-page: 670
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib14
  article-title: Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.001
– volume: 3
  start-page: 947
  issue: 5
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib41
  article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials
  publication-title: Environ. Sci.: Water Res. Technol
– volume: 356
  start-page: 225
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib36
  article-title: Microbial fuel cells: from fundamentals to applications. A review. J
  publication-title: Power Sources
  doi: 10.1016/j.jpowsour.2017.03.109
– volume: 356
  start-page: 408
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib29
  article-title: Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance ( iR u -drop), double layer capacitance, and junction potential
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.033
– volume: 183
  start-page: 1682
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib30
  article-title: Ion transport in microbial fuel cells: key roles, theory and critical review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.043
– volume: 43
  start-page: 9038
  issue: 23
  year: 2009
  ident: 10.1016/j.watres.2018.04.066_bib3
  article-title: Analysis and improvement of a scaled-up and stacked microbial fuel cell
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901939r
– volume: 78
  start-page: 409
  issue: 3
  year: 2008
  ident: 10.1016/j.watres.2018.04.066_bib1
  article-title: The anode potential regulates bacterial activity in microbial fuel cells
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-1327-8
– volume: 102
  start-page: 5841
  issue: 10
  year: 2011
  ident: 10.1016/j.watres.2018.04.066_bib21
  article-title: Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.02.098
– volume: 3
  start-page: 472
  issue: 3
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib15
  article-title: Enhancement of the sensitivity of a microbial fuel cell sensor by transient-state operation
  publication-title: Environ. Sci.: Water Res. Technol
– volume: 161
  start-page: 245
  year: 2015
  ident: 10.1016/j.watres.2018.04.066_bib46
  article-title: Enhanced performance of microbial fuel cell at low substrate concentrations by adsorptive anode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.028
– volume: 1
  start-page: 0024
  issue: 3
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib19
  article-title: The ins and outs of microorganism–electrode electron transfer reactions
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0024
– volume: 49
  start-page: 3267
  issue: 6
  year: 2015
  ident: 10.1016/j.watres.2018.04.066_bib43
  article-title: Practical energy harvesting for microbial fuel cells: a review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5047765
– volume: 42
  start-page: 6593
  issue: 17
  year: 2008
  ident: 10.1016/j.watres.2018.04.066_bib40
  article-title: Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800970w
– volume: 168
  start-page: 706
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib31
  article-title: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.056
– volume: 90
  start-page: 558
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib37
  article-title: Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.10.014
– volume: 85
  start-page: 536
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib47
  article-title: Carbon nanotube modification of microbial fuel cell electrodes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.05.033
– volume: 79
  start-page: 372
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib2
  article-title: Performance improvement of microbial fuel cells for waste water treatment along with value addition: a review on past achievements and recent perspectives
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.05.098
– volume: 195
  start-page: 66
  year: 2015
  ident: 10.1016/j.watres.2018.04.066_bib5
  article-title: A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.06.026
– volume: 356
  start-page: 356
  issue: Suppl. C
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib24
  article-title: Energy harvesting influences electrochemical performance of microbial fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.067
– volume: 36
  start-page: 876
  issue: 1
  year: 2011
  ident: 10.1016/j.watres.2018.04.066_bib13
  article-title: A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.08.074
– volume: 15
  start-page: 2278
  issue: 7
  year: 2013
  ident: 10.1016/j.watres.2018.04.066_bib20
  article-title: The first self-sustainable microbial fuel cell stack
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp44548d
– volume: 75
  start-page: 352
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib34
  article-title: Bidirectional microbial electron transfer: switching an acetate oxidizing biofilm to nitrate reducing conditions
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.08.035
– volume: 98
  start-page: 396
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib45
  article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.043
– volume: 156
  start-page: 132
  year: 2014
  ident: 10.1016/j.watres.2018.04.066_bib7
  article-title: A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.12.104
– volume: 85
  start-page: 1665
  issue: 6
  year: 2010
  ident: 10.1016/j.watres.2018.04.066_bib25
  article-title: Scaling up microbial fuel cells and other bioelectrochemical systems
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2378-9
– volume: 65
  start-page: 832
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib8
  article-title: Energy by microbial fuel cells: scientometric global synthesis and challenges
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2016.06.050
– volume: 218
  start-page: 552
  issue: Suppl. C
  year: 2016
  ident: 10.1016/j.watres.2018.04.066_bib11
  article-title: Supercapacitive microbial fuel cell: characterization and analysis for improved charge storage/delivery performance
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.06.105
– volume: 72
  start-page: 1389
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib6
  article-title: Applications of graphene in microbial fuel cells: the gap between promise and reality
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2016.10.044
– volume: 94
  start-page: 344
  year: 2017
  ident: 10.1016/j.watres.2018.04.066_bib16
  article-title: A novel microbial fuel cell sensor with biocathode sensing element
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.02.052
– reference: 31337502 - Water Res. 2019 Jul 20;:114878
SSID ssj0002239
Score 2.6590185
Snippet This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Bioelectric Energy Sources
Biological Oxygen Demand Analysis
China
Conservation of Energy Resources
Electricity
energy recovery
Long-term operation
Microbial fuel cell
microbial fuel cells
Municipal wastewater
Power generation
Stacked modules
Waste Disposal, Fluid - instrumentation
Waste Disposal, Fluid - methods
Waste Water
wastewater treatment
water
water flow
Title One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment
URI https://dx.doi.org/10.1016/j.watres.2018.04.066
https://www.ncbi.nlm.nih.gov/pubmed/29753171
https://www.proquest.com/docview/2038274468
https://www.proquest.com/docview/2574319624
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgvl0fSwSv0bZJk_a4LC7ra70oeAttNoWKtovusujB3-5M2q4KPsBjy6SEyWRmMv2-CSFHEFQSyBIkg30UMTwhsNgaywy4ySAzEPQtEoWvhnJwK87vwrsW6TVcGIRV1r6_8unOW9dvTmptnozzHDm-EPx4KMAowQ07Ep8QCq38-O0D5gHhL27-MqN0Q59zGK9ZgoQMBHhFruGp65X4bXj6Kf10Yai_Slbq_JF2qymukZYt1snyp66CG0RfF5a9gAXTcmyrBaZlRrHEzi7pYzlC5Gn-akf0MXdtmOB72dQ-UCziU0hiqaOM5GN4P0uesboGyqdzSPomue2f3vQGrL5HgRkh_Qkm0GFiOHYuC_CWMUiSlJVcJsY3sREq49yLPRmncHYK01iAL7YCS0NZbHigAr5FFoqysDuEBkjJC22gIukJy8M0EcqoEZyjvSzlPGsT3qhPm7rJON518aAbNNm9rpSuUenaExqU3iZsPmpcNdn4Q141K6O_GIuGOPDHyMNmITXsI9RrUthyikI8wm6JMvpFJsR8K5aBaJPtygrm83UMZV_5u_-e2x5ZwicEo_jhPlmYPE3tAWQ8k7TjTLpDFrtnF4PhO6Ja_bg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LelAP4tv1GcFr3LZJm_Yooqy6qxeFvYU2m0JF26K7iB787c6k7aqgLnhtJyVMJvPqfDOEHIFRicFLCBjco5BhhMAiow3ToCa9VIPRNwgUHlwHvTtxOfSHLXLaYGGwrLLW_ZVOt9q6ftKtudktswwxvmD8uC9AKEENI4hvTsD1xTEGx--fdR5g_6LmNzOSN_g5W-T1EiMiAyu8Qtvx1DZL_NE-_eZ_Wjt0vkyWageSnlR7XCEtk6-SxS9tBdeIuskNewURpkVpqhOmRUoxx8769LEYYelp9mZG9DGzfZjge-nEPFDM4lPwYqnFjGQlPH-JnzG9Btyn05r0dXJ3fnZ72mP1IAWmReCO0YP2Y82xdZmHY8bAS5Im4EGsXR1pIVPOncgJogSCJz-JBChjIzA3lEaae9LjG6SdF7nZItRDTJ5vPBkGjjDcT2IhtRxBIO2kCedph_CGfUrXXcZx2MWDasrJ7lXFdIVMV45QwPQOYdNVZdVlYwa9bE5GfZMWBYZgxsrD5iAVXCTka5ybYoJEIDsSouPwDxofHa4o8ESHbFZSMN2vhSi70t3-994OyHzvdtBX_Yvrqx2ygG-wMsX1d0l7_DQxe-D-jJN9K94fYrX_Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-year+operation+of+1000-L+modularized+microbial+fuel+cell+for+municipal+wastewater+treatment&rft.jtitle=Water+research+%28Oxford%29&rft.au=Liang%2C+Peng&rft.au=Duan%2C+Rui&rft.au=Jiang%2C+Yong&rft.au=Zhang%2C+Xiaoyuan&rft.date=2018-09-15&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.volume=141&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.watres.2018.04.066&rft.externalDocID=S0043135418303609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon