One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment
This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilit...
Saved in:
Published in | Water research (Oxford) Vol. 141; pp. 1 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L−1) and high initial COD concentration (average 250 mg L−1). The COD concentration in the effluent from the MFC system remained below 50 mg L−1 with a removal rate of 70–90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m−3 (7.58 W m−2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7–60 W m−3 (0.42–3.64 W m−2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h.
[Display omitted]
•Scaled-up (1000 L) MFC consisted of 50 modules was operated for a year.•The MFC was applied to treat artificial and real municipal wastewater.•Concentration of COD released was below 50 mg L−1 with a removal rate of 70–90%.•The maximum power density harvested from municipal wastewater was 7–60 W m−3. |
---|---|
AbstractList | This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L
) and high initial COD concentration (average 250 mg L
). The COD concentration in the effluent from the MFC system remained below 50 mg L
with a removal rate of 70-90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m
(7.58 W m
) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7-60 W m
(0.42-3.64 W m
) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m
of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h. This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L⁻¹) and high initial COD concentration (average 250 mg L⁻¹). The COD concentration in the effluent from the MFC system remained below 50 mg L⁻¹ with a removal rate of 70–90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m⁻³ (7.58 W m⁻²) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7–60 W m⁻³ (0.42–3.64 W m⁻²) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m³ of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h. This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L-1) and high initial COD concentration (average 250 mg L-1). The COD concentration in the effluent from the MFC system remained below 50 mg L-1 with a removal rate of 70-90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m-3 (7.58 W m-2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7-60 W m-3 (0.42-3.64 W m-2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h.This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L-1) and high initial COD concentration (average 250 mg L-1). The COD concentration in the effluent from the MFC system remained below 50 mg L-1 with a removal rate of 70-90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m-3 (7.58 W m-2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7-60 W m-3 (0.42-3.64 W m-2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h. This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L−1) and high initial COD concentration (average 250 mg L−1). The COD concentration in the effluent from the MFC system remained below 50 mg L−1 with a removal rate of 70–90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m−3 (7.58 W m−2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7–60 W m−3 (0.42–3.64 W m−2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h. [Display omitted] •Scaled-up (1000 L) MFC consisted of 50 modules was operated for a year.•The MFC was applied to treat artificial and real municipal wastewater.•Concentration of COD released was below 50 mg L−1 with a removal rate of 70–90%.•The maximum power density harvested from municipal wastewater was 7–60 W m−3. |
Author | Duan, Rui Jiang, Yong Zhang, Xiaoyuan Huang, Xia Liang, Peng Qiu, Yong |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0001-7345-0844 surname: Liang fullname: Liang, Peng – sequence: 2 givenname: Rui surname: Duan fullname: Duan, Rui – sequence: 3 givenname: Yong surname: Jiang fullname: Jiang, Yong email: jiangyongchange@163.com – sequence: 4 givenname: Xiaoyuan orcidid: 0000-0003-3196-3443 surname: Zhang fullname: Zhang, Xiaoyuan – sequence: 5 givenname: Yong surname: Qiu fullname: Qiu, Yong email: qiuyong@tsinghua.edu.cn – sequence: 6 givenname: Xia surname: Huang fullname: Huang, Xia email: xhuang@tsinghua.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29753171$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEUhUVxaJy0_6AULbOZqV4jjboohJBHwZBNuhay5g7IzIwcSVPj_vrKdZJFF_Hq6orvXA7nXKDFFCZA6AslNSVUftvUO5sjpJoR2tZE1ETKD2hJW6UrJkS7QEtCBK8ob8Q5ukhpQwhhjOuP6Jxp1XCq6BKZxwmqPdiIwxaizT5MOPSYFrZa4TF082Cj_wMdHr2LYe3tgPsZBuxgKK8Q8ThP3vlt-d_ZlKGYgoiLMZtHmPIndNbbIcHnl3mJft3dPt08VKvH-58316vKCUlzpRRrrONNQxSjuiwNVSC5tI467YTqOSeaSL1WVDZrLcA6EIIx1mvHmWL8El0d725jeJ4hZTP6dPBoJwhzMqxRglMtmTiNEt4yJYRsC_r1BZ3XI3RmG_1o49685lcAcQRKNilF6N8QSsyhJrMxx5rMoSZDhCk1Fdn3_2TO53_h52j9cEr84yiGkudvD9Ek52Fy0PkILpsu-PcP_AX9RK5_ |
CitedBy_id | crossref_primary_10_1016_j_psep_2025_01_018 crossref_primary_10_1016_j_watres_2022_119179 crossref_primary_10_1016_j_chemosphere_2021_131856 crossref_primary_10_1016_j_heliyon_2024_e31170 crossref_primary_10_3389_fceng_2022_814987 crossref_primary_10_35414_akufemubid_1027565 crossref_primary_10_1016_j_biortech_2021_125604 crossref_primary_10_1016_j_biotechadv_2020_107675 crossref_primary_10_1039_C8GC02909A crossref_primary_10_1007_s13399_024_06289_4 crossref_primary_10_1016_j_watres_2019_114955 crossref_primary_10_1016_j_biortech_2021_126274 crossref_primary_10_1016_j_cej_2023_142546 crossref_primary_10_1002_anie_202312147 crossref_primary_10_1016_j_scitotenv_2020_142429 crossref_primary_10_1016_j_eti_2022_102773 crossref_primary_10_57634_RCR5073 crossref_primary_10_1021_acsestengg_4c00050 crossref_primary_10_2323_jgam_2021_05_001 crossref_primary_10_1016_j_energ_2024_100001 crossref_primary_10_1088_1755_1315_435_1_012012 crossref_primary_10_1016_j_scitotenv_2024_172418 crossref_primary_10_1016_j_scitotenv_2023_169186 crossref_primary_10_2166_wst_2021_618 crossref_primary_10_1016_j_egyr_2019_08_007 crossref_primary_10_1016_j_envres_2024_119503 crossref_primary_10_1016_j_seta_2024_103913 crossref_primary_10_1016_j_biortech_2021_125950 crossref_primary_10_1021_acs_est_4c03169 crossref_primary_10_1080_09593330_2022_2130106 crossref_primary_10_1016_j_jclepro_2022_130657 crossref_primary_10_5772_geet_20240082 crossref_primary_10_1016_j_micres_2022_127216 crossref_primary_10_1016_j_chemosphere_2022_136454 crossref_primary_10_1016_j_crbiot_2025_100272 crossref_primary_10_1016_j_envint_2020_105550 crossref_primary_10_1051_e3sconf_202233408007 crossref_primary_10_62063_rev_1 crossref_primary_10_1016_j_jpowsour_2024_236010 crossref_primary_10_1016_j_biortech_2020_123478 crossref_primary_10_1016_j_seta_2021_101226 crossref_primary_10_3390_pr9081318 crossref_primary_10_1080_07388551_2019_1662367 crossref_primary_10_1016_j_biortech_2023_128906 crossref_primary_10_1016_j_jece_2020_105011 crossref_primary_10_3389_fenrg_2018_00084 crossref_primary_10_1002_cplu_202000544 crossref_primary_10_1016_j_rser_2021_111926 crossref_primary_10_1007_s11244_021_01503_3 crossref_primary_10_1007_s40726_023_00267_6 crossref_primary_10_1007_s13762_023_04850_8 crossref_primary_10_1016_j_biortech_2019_121395 crossref_primary_10_1016_j_jpowsour_2021_229706 crossref_primary_10_1002_bit_27653 crossref_primary_10_1016_j_fuel_2019_05_109 crossref_primary_10_1016_j_biortech_2021_126462 crossref_primary_10_1016_j_chemosphere_2021_132502 crossref_primary_10_1016_j_cej_2021_130245 crossref_primary_10_1016_j_biortech_2021_126218 crossref_primary_10_1016_j_eng_2024_07_018 crossref_primary_10_1002_elsc_201800160 crossref_primary_10_3389_fenrg_2019_00103 crossref_primary_10_1016_j_jwpe_2022_102966 crossref_primary_10_1016_j_chemosphere_2021_130455 crossref_primary_10_1016_j_biortech_2018_09_133 crossref_primary_10_1016_j_watres_2022_118208 crossref_primary_10_1016_j_matpr_2022_08_243 crossref_primary_10_1016_j_ces_2019_07_051 crossref_primary_10_1016_j_ijhydene_2025_01_226 crossref_primary_10_1021_acs_est_2c05976 crossref_primary_10_1016_j_bej_2023_109155 crossref_primary_10_1016_j_cej_2019_04_090 crossref_primary_10_1016_j_scitotenv_2022_153123 crossref_primary_10_3390_pr9081330 crossref_primary_10_1016_j_jece_2023_110643 crossref_primary_10_1039_D3EW00522D crossref_primary_10_1016_j_jece_2024_113733 crossref_primary_10_1016_j_watres_2019_04_053 crossref_primary_10_1007_s13399_024_05597_z crossref_primary_10_1016_j_jclepro_2019_04_308 crossref_primary_10_3390_molecules27072245 crossref_primary_10_1016_j_jenvman_2022_114525 crossref_primary_10_1016_j_jwpe_2020_101768 crossref_primary_10_1016_j_coelec_2018_09_006 crossref_primary_10_1016_j_watres_2023_119823 crossref_primary_10_3390_pr11020373 crossref_primary_10_1016_j_jpowsour_2019_227124 crossref_primary_10_1016_j_fuel_2020_119104 crossref_primary_10_3390_fermentation7030169 crossref_primary_10_1007_s11270_022_05755_x crossref_primary_10_1016_j_watres_2019_01_062 crossref_primary_10_1016_j_biortech_2019_122266 crossref_primary_10_1016_j_biteb_2021_100632 crossref_primary_10_1128_aem_00795_24 crossref_primary_10_1016_j_seta_2021_101653 crossref_primary_10_1016_j_bioelechem_2021_107749 crossref_primary_10_1016_j_biortech_2025_132297 crossref_primary_10_1016_j_watres_2022_118429 crossref_primary_10_1016_j_watres_2018_10_092 crossref_primary_10_1016_j_apenergy_2019_114475 crossref_primary_10_1016_j_procbio_2021_03_032 crossref_primary_10_1016_j_cej_2019_03_141 crossref_primary_10_1016_j_biortech_2022_128371 crossref_primary_10_1016_j_fuel_2024_131150 crossref_primary_10_1016_j_copbio_2019_03_007 crossref_primary_10_1016_j_bios_2019_111922 crossref_primary_10_1016_j_biteb_2021_100644 crossref_primary_10_3390_bios14060302 crossref_primary_10_1016_j_ijhydene_2020_07_252 crossref_primary_10_1016_j_envres_2024_118285 crossref_primary_10_1061__ASCE_EE_1943_7870_0001552 crossref_primary_10_1002_cben_201900023 crossref_primary_10_1016_j_jenvman_2019_01_092 crossref_primary_10_1016_j_chemosphere_2021_132285 crossref_primary_10_3390_en17236084 crossref_primary_10_1007_s11356_020_07745_0 crossref_primary_10_1016_j_rser_2024_115017 crossref_primary_10_1016_j_envres_2021_112416 crossref_primary_10_1016_j_biotechadv_2022_107950 crossref_primary_10_1016_j_jece_2022_107146 crossref_primary_10_1016_j_scitotenv_2023_165201 crossref_primary_10_1089_ees_2019_0465 crossref_primary_10_1007_s11157_019_09508_x crossref_primary_10_1016_j_scitotenv_2020_142281 crossref_primary_10_1021_acsestengg_4c00586 crossref_primary_10_1016_j_ijhydene_2023_08_134 crossref_primary_10_1007_s40726_022_00218_7 crossref_primary_10_1016_j_ese_2020_100050 crossref_primary_10_1016_j_biortech_2022_127581 crossref_primary_10_1016_j_jwpe_2025_107416 crossref_primary_10_3390_su17020466 crossref_primary_10_1007_s10311_021_01199_7 crossref_primary_10_1016_j_cej_2023_144325 crossref_primary_10_1016_j_biortech_2020_123418 crossref_primary_10_1016_j_bioelechem_2019_02_008 crossref_primary_10_1016_j_heliyon_2024_e25439 crossref_primary_10_4014_jmb_2212_12024 crossref_primary_10_1080_17597269_2023_2215625 crossref_primary_10_1002_cite_201800081 crossref_primary_10_1016_j_rser_2020_110367 crossref_primary_10_3390_microorganisms11051255 crossref_primary_10_3389_fenrg_2019_00091 crossref_primary_10_1016_j_chemosphere_2022_134340 crossref_primary_10_1016_j_psep_2024_06_077 crossref_primary_10_1002_ente_202301346 crossref_primary_10_1016_j_apenergy_2022_119704 crossref_primary_10_1016_j_coelec_2019_09_001 crossref_primary_10_21603_2074_9414_2022_3_2384 crossref_primary_10_1038_s41522_021_00218_3 crossref_primary_10_1016_j_jenvman_2024_120465 crossref_primary_10_3389_frsus_2021_792028 crossref_primary_10_3390_su14020955 crossref_primary_10_1007_s11356_020_11691_2 crossref_primary_10_1016_j_biortech_2019_122227 crossref_primary_10_1016_j_scitotenv_2021_145978 crossref_primary_10_1016_j_apenergy_2022_120370 crossref_primary_10_1016_j_coelec_2022_101187 crossref_primary_10_1038_s41598_019_45620_2 crossref_primary_10_1016_j_rser_2020_110134 crossref_primary_10_1039_C8EW00666K crossref_primary_10_1016_j_jclepro_2022_131227 crossref_primary_10_1016_j_cej_2020_127053 crossref_primary_10_1016_j_heliyon_2022_e12353 crossref_primary_10_1016_j_ijhydene_2020_08_070 crossref_primary_10_1016_j_jhazmat_2020_122184 crossref_primary_10_1016_j_ijhydene_2024_05_467 crossref_primary_10_1016_j_biortech_2019_122236 crossref_primary_10_1016_j_apenergy_2021_118328 crossref_primary_10_1016_j_bej_2020_107909 crossref_primary_10_1021_acssuschemeng_8b00948 crossref_primary_10_1016_j_biortech_2018_08_101 crossref_primary_10_1016_j_jwpe_2022_103135 crossref_primary_10_1016_j_tibtech_2022_09_001 crossref_primary_10_1016_j_jwpe_2024_104783 crossref_primary_10_1016_j_chemosphere_2021_133295 crossref_primary_10_1016_j_jenvman_2021_113831 crossref_primary_10_1016_j_seta_2021_101618 crossref_primary_10_4491_KSEE_2021_43_10_623 crossref_primary_10_1016_j_jpowsour_2024_235555 crossref_primary_10_1016_j_scitotenv_2020_143142 crossref_primary_10_1016_j_jclepro_2019_02_172 crossref_primary_10_1016_j_jes_2023_08_039 crossref_primary_10_1016_j_scitotenv_2022_160183 crossref_primary_10_1016_j_wri_2022_100178 crossref_primary_10_3390_w11020217 crossref_primary_10_1016_j_ijhydene_2024_02_144 crossref_primary_10_1016_j_rineng_2023_101619 crossref_primary_10_3390_en12214071 crossref_primary_10_1021_acs_chemrev_0c00472 crossref_primary_10_2139_ssrn_4060136 crossref_primary_10_1016_j_bej_2020_107816 crossref_primary_10_3389_fenrg_2022_843768 crossref_primary_10_1080_09593330_2023_2234676 crossref_primary_10_1016_j_scitotenv_2021_145904 crossref_primary_10_3390_ijerph18189466 crossref_primary_10_1016_j_jclepro_2019_06_041 crossref_primary_10_3390_pr9060985 crossref_primary_10_1039_D1RA08487A crossref_primary_10_1016_j_cej_2020_127072 crossref_primary_10_1016_j_ese_2023_100251 crossref_primary_10_1016_j_watres_2020_115737 crossref_primary_10_1039_D1RA03061B crossref_primary_10_1016_j_seta_2023_103340 crossref_primary_10_1016_j_chemosphere_2020_126058 crossref_primary_10_1016_j_enconman_2019_112285 crossref_primary_10_1111_gcbb_70004 crossref_primary_10_1016_j_bioelechem_2020_107623 crossref_primary_10_3390_en15155616 crossref_primary_10_1016_j_biortech_2024_130618 crossref_primary_10_1016_j_jclepro_2020_125257 crossref_primary_10_1016_j_seppur_2019_05_071 crossref_primary_10_1016_j_bioflm_2021_100057 crossref_primary_10_1016_j_jece_2023_109930 crossref_primary_10_1016_j_watres_2018_10_022 crossref_primary_10_3390_su12218792 crossref_primary_10_1016_j_molliq_2021_117795 crossref_primary_10_3390_life14050591 crossref_primary_10_1007_s11356_021_14944_w crossref_primary_10_1016_j_seta_2023_103475 crossref_primary_10_2139_ssrn_4104213 crossref_primary_10_1016_j_biortech_2021_125077 crossref_primary_10_1016_j_crgsc_2021_100111 crossref_primary_10_3390_ijerph20043437 crossref_primary_10_2139_ssrn_4193366 crossref_primary_10_1007_s40899_022_00747_5 crossref_primary_10_1016_j_biortech_2022_127455 crossref_primary_10_1002_ange_202312147 crossref_primary_10_1016_j_jwpe_2020_101699 crossref_primary_10_1016_j_jpowsour_2020_229130 crossref_primary_10_1016_j_chemosphere_2021_131243 crossref_primary_10_1016_j_scitotenv_2022_155926 crossref_primary_10_2166_wst_2022_196 crossref_primary_10_1007_s11431_018_9380_0 crossref_primary_10_1016_j_eng_2021_09_015 crossref_primary_10_1007_s11274_020_2801_z crossref_primary_10_1016_j_energy_2022_124163 crossref_primary_10_1016_j_chemosphere_2024_143430 crossref_primary_10_1016_j_biortech_2020_122992 crossref_primary_10_1016_j_cep_2024_109707 crossref_primary_10_1016_j_scitotenv_2020_140198 crossref_primary_10_1016_j_chemosphere_2021_132446 crossref_primary_10_1016_j_jpowsour_2021_229785 crossref_primary_10_1016_j_biotechadv_2024_108474 crossref_primary_10_1177_1178622120960086 |
Cites_doi | 10.1016/j.biortech.2017.05.137 10.1021/es0605016 10.1016/j.rser.2017.03.096 10.1016/j.ijhydene.2015.01.117 10.1016/j.biortech.2012.07.038 10.1021/ez4000324 10.1016/j.rser.2015.10.011 10.1016/j.bioelechem.2017.08.002 10.1016/j.jpowsour.2017.03.132 10.1016/j.rser.2017.06.099 10.1021/es300313d 10.1016/j.biotechadv.2013.10.001 10.1039/C6MH00093B 10.1016/j.jpowsour.2017.02.088 10.1021/acs.estlett.5b00180 10.1016/j.watres.2017.10.028 10.1007/s11783-013-0583-3 10.1016/j.biortech.2016.04.136 10.1016/j.bios.2016.02.051 10.1016/j.ijhydene.2016.12.050 10.1016/j.apenergy.2016.01.001 10.1016/j.jpowsour.2017.03.109 10.1016/j.jpowsour.2017.03.033 10.1016/j.apenergy.2016.09.043 10.1021/es901939r 10.1007/s00253-007-1327-8 10.1016/j.biortech.2011.02.098 10.1016/j.electacta.2015.02.028 10.1038/s41570-017-0024 10.1021/es5047765 10.1021/es800970w 10.1016/j.apenergy.2016.01.056 10.1016/j.bios.2016.10.014 10.1016/j.bios.2016.05.033 10.1016/j.rser.2017.05.098 10.1016/j.biortech.2015.06.026 10.1016/j.jpowsour.2017.03.067 10.1016/j.ijhydene.2010.08.074 10.1039/c2cp44548d 10.1016/j.bios.2015.08.035 10.1016/j.watres.2016.04.043 10.1016/j.biortech.2013.12.104 10.1007/s00253-009-2378-9 10.1016/j.rser.2016.06.050 10.1016/j.biortech.2016.06.105 10.1016/j.rser.2016.10.044 10.1016/j.bios.2017.02.052 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2018.04.066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 8 |
ExternalDocumentID | 29753171 10_1016_j_watres_2018_04_066 S0043135418303609 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-7725ac35507219725517e636ac1c9c47f3309069b7165b94eace44222f9c32723 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 05:48:39 EDT 2025 Fri Jul 11 01:49:27 EDT 2025 Wed Feb 19 02:34:51 EST 2025 Tue Jul 01 01:20:52 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 Tue Dec 03 03:45:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial fuel cell Stacked modules Power generation Municipal wastewater Long-term operation |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-7725ac35507219725517e636ac1c9c47f3309069b7165b94eace44222f9c32723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3196-3443 0000-0001-7345-0844 |
PMID | 29753171 |
PQID | 2038274468 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2574319624 proquest_miscellaneous_2038274468 pubmed_primary_29753171 crossref_primary_10_1016_j_watres_2018_04_066 crossref_citationtrail_10_1016_j_watres_2018_04_066 elsevier_sciencedirect_doi_10_1016_j_watres_2018_04_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-15 |
PublicationDateYYYYMMDD | 2018-09-15 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ledezma, Stinchcombe, Greenman, Ieropoulos (bib20) 2013; 15 Dhar, Sim, Ryu, Ren, Santo Domingo, Chae, Lee (bib4) 2017; 127 Lu, Chen, Babanova, Phadke, Salvacion, Mirhosseini, Chan, Carpenter, Cortese, Bretschger (bib28) 2017; 356 Oliot, Galier, Roux de Balmann, Bergel (bib30) 2016; 183 Sonawane, Yadav, Ghosh, Adeloju (bib37) 2017; 90 Kumar, Hsu, Kavanagh, Barrière, Lens, Lapinsonnière, Lienhard, Schröder, Jiang, Leech (bib19) 2017; 1 Vilajeliu-Pons, Puig, Salcedo-Dávila, Balaguer, Colprim (bib41) 2017; 3 Santoro, Arbizzani, Erable, Ieropoulos (bib36) 2017; 356 Pandey, Shinde, Deopurkar, Kale, Patil, Pant (bib31) 2016; 168 Ge, He (bib9) 2016; 2 Jiang, Liang, Zhang, Bian, Sun, Zhang, Yang, Zhao, Huang (bib14) 2016; 165 Papaharalabos, Greenman, Melhuish, Ieropoulos (bib32) 2015; 40 Logan, Wallack, Kim, He, Feng, Saikaly (bib27) 2015; 2 Torres, Marcus, Parameswaran, Rittmann (bib40) 2008; 42 Wu, Liang, Zhang, Li, Zuo, Huang (bib46) 2015; 161 Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (bib26) 2006; 40 Pous, Carmona-Martínez, Vilajeliu-Pons, Fiset, Bañeras, Trably, Balaguer, Colprim, Bernet, Puig (bib34) 2016; 75 Wu, Li, Zhou, Liang, Zhang, Jiang, Huang (bib45) 2016; 98 Lobo, Wang, Ren (bib24) 2017; 356 Ge, Li, Xiao, Tong, He (bib10) 2014; 1 Wang, Park, Ren (bib42) 2012; 46 ElMekawy, Hegab, Losic, Saint, Pant (bib6) 2017; 72 Zhang, Liang, Yang, Jiang, Bian, Chen, Zhang, Huang (bib49) 2016; 81 Ferreira Mercuri, Jakubiak Kumata, Amaral, Simões Vitule (bib8) 2016; 65 Popat, Torres (bib33) 2016; 215 Wang, Ren (bib44) 2013; 31 Yazdi, D'Angelo, Omer, Windiasti, Lu, Xu (bib47) 2016; 85 Madjarov, Popat, Erben, Götze, Zengerle, Kerzenmacher (bib29) 2017; 356 Wang, Park, Ren (bib43) 2015; 49 Choudhury, Uday, Mahata, Nath Tiwari, Narayan Ray, Kanti Bandyopadhyay, Bhunia (bib2) 2017; 79 Lefebvre, Shen, Tan, Uzabiaga, Chang, Ng (bib21) 2011; 102 Jiang, Yang, Liang, Liu, Huang (bib18) 2018; 81 Jiang, Liang, Liu, Miao, Bian, Zhang, Huang (bib15) 2017; 3 Tee, Abdullah, Tan, Rashid, Amin, Nolasco-Hipolito, Bujang (bib39) 2016; 54 Aelterman, Freguia, Keller, Verstraete, Rabaey (bib1) 2008; 78 Feng, He, Liu, Wang, Qu, Ren (bib7) 2014; 156 Logan (bib25) 2010; 85 Houghton, Santoro, Soavi, Serov, Ieropoulos, Arbizzani, Atanassov (bib11) 2016; 218 Jadhav, Ghosh Ray, Ghangrekar (bib12) 2017; 76 Yuan, Hou, Abu-Reesh, Chen, He (bib48) 2016; 3 Jiang, Liang, Liu, Wang, Miao, Huang (bib16) 2017; 94 Stager, Zhang, Logan (bib38) 2017; 118 Dekker, Heijne, Saakes, Hamelers, Buisman (bib3) 2009; 43 Liang, Wei, Li, Huang (bib23) 2013; 7 Dong, Qu, He, Du, Liu, Han, Feng (bib5) 2015; 195 Santini, Marzorati, Fest-Santini, Trasatti, Cristiani (bib35) 2017; 356 Zhuang, Yuan, Wang, Zhou (bib50) 2012; 123 Jiang, Curtis, Troop, Scheible, McGrath, Hu, Suib, Raymond, Li (bib13) 2011; 36 Li, Lu, Luo, Liu, Zhang (bib22) 2017; 241 Jiang, Liang, Liu, Yan, Bian, Huang (bib17) 2017; 42 Dong (10.1016/j.watres.2018.04.066_bib5) 2015; 195 Zhang (10.1016/j.watres.2018.04.066_bib49) 2016; 81 Logan (10.1016/j.watres.2018.04.066_bib25) 2010; 85 Papaharalabos (10.1016/j.watres.2018.04.066_bib32) 2015; 40 Santoro (10.1016/j.watres.2018.04.066_bib36) 2017; 356 Wang (10.1016/j.watres.2018.04.066_bib42) 2012; 46 Wang (10.1016/j.watres.2018.04.066_bib44) 2013; 31 Jiang (10.1016/j.watres.2018.04.066_bib13) 2011; 36 Jiang (10.1016/j.watres.2018.04.066_bib16) 2017; 94 Houghton (10.1016/j.watres.2018.04.066_bib11) 2016; 218 Dhar (10.1016/j.watres.2018.04.066_bib4) 2017; 127 Logan (10.1016/j.watres.2018.04.066_bib27) 2015; 2 Oliot (10.1016/j.watres.2018.04.066_bib30) 2016; 183 Torres (10.1016/j.watres.2018.04.066_bib40) 2008; 42 Vilajeliu-Pons (10.1016/j.watres.2018.04.066_bib41) 2017; 3 Tee (10.1016/j.watres.2018.04.066_bib39) 2016; 54 Pous (10.1016/j.watres.2018.04.066_bib34) 2016; 75 Ferreira Mercuri (10.1016/j.watres.2018.04.066_bib8) 2016; 65 Liang (10.1016/j.watres.2018.04.066_bib23) 2013; 7 Jadhav (10.1016/j.watres.2018.04.066_bib12) 2017; 76 ElMekawy (10.1016/j.watres.2018.04.066_bib6) 2017; 72 Zhuang (10.1016/j.watres.2018.04.066_bib50) 2012; 123 Lu (10.1016/j.watres.2018.04.066_bib28) 2017; 356 Popat (10.1016/j.watres.2018.04.066_bib33) 2016; 215 Ge (10.1016/j.watres.2018.04.066_bib10) 2014; 1 Sonawane (10.1016/j.watres.2018.04.066_bib37) 2017; 90 Jiang (10.1016/j.watres.2018.04.066_bib14) 2016; 165 Jiang (10.1016/j.watres.2018.04.066_bib15) 2017; 3 Yuan (10.1016/j.watres.2018.04.066_bib48) 2016; 3 Lobo (10.1016/j.watres.2018.04.066_bib24) 2017; 356 Ledezma (10.1016/j.watres.2018.04.066_bib20) 2013; 15 Feng (10.1016/j.watres.2018.04.066_bib7) 2014; 156 Aelterman (10.1016/j.watres.2018.04.066_bib1) 2008; 78 Wang (10.1016/j.watres.2018.04.066_bib43) 2015; 49 Santini (10.1016/j.watres.2018.04.066_bib35) 2017; 356 Madjarov (10.1016/j.watres.2018.04.066_bib29) 2017; 356 Jiang (10.1016/j.watres.2018.04.066_bib17) 2017; 42 Yazdi (10.1016/j.watres.2018.04.066_bib47) 2016; 85 Pandey (10.1016/j.watres.2018.04.066_bib31) 2016; 168 Logan (10.1016/j.watres.2018.04.066_bib26) 2006; 40 Kumar (10.1016/j.watres.2018.04.066_bib19) 2017; 1 Li (10.1016/j.watres.2018.04.066_bib22) 2017; 241 Jiang (10.1016/j.watres.2018.04.066_bib18) 2018; 81 Choudhury (10.1016/j.watres.2018.04.066_bib2) 2017; 79 Wu (10.1016/j.watres.2018.04.066_bib45) 2016; 98 Dekker (10.1016/j.watres.2018.04.066_bib3) 2009; 43 Wu (10.1016/j.watres.2018.04.066_bib46) 2015; 161 Stager (10.1016/j.watres.2018.04.066_bib38) 2017; 118 Lefebvre (10.1016/j.watres.2018.04.066_bib21) 2011; 102 Ge (10.1016/j.watres.2018.04.066_bib9) 2016; 2 31337502 - Water Res. 2019 Jul 20;:114878 |
References_xml | – volume: 195 start-page: 66 year: 2015 end-page: 72 ident: bib5 article-title: A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode publication-title: Bioresour. Technol. – volume: 161 start-page: 245 year: 2015 end-page: 251 ident: bib46 article-title: Enhanced performance of microbial fuel cell at low substrate concentrations by adsorptive anode publication-title: Electrochim. Acta – volume: 94 start-page: 344 year: 2017 end-page: 350 ident: bib16 article-title: A novel microbial fuel cell sensor with biocathode sensing element publication-title: Biosens. Bioelectron. – volume: 3 start-page: 382 year: 2016 end-page: 401 ident: bib48 article-title: Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review publication-title: Mater. Horizons – volume: 49 start-page: 3267 year: 2015 end-page: 3277 ident: bib43 article-title: Practical energy harvesting for microbial fuel cells: a review publication-title: Environ. Sci. Technol. – volume: 165 start-page: 670 year: 2016 end-page: 675 ident: bib14 article-title: Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells publication-title: Appl. Energy – volume: 3 start-page: 947 year: 2017 end-page: 959 ident: bib41 article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials publication-title: Environ. Sci.: Water Res. Technol – volume: 81 start-page: 292 year: 2018 end-page: 305 ident: bib18 article-title: Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges publication-title: Renew. Sust. Energ. Rev. – volume: 356 start-page: 400 year: 2017 end-page: 407 ident: bib35 article-title: Carbonate scale deactivating the biocathode in a microbial fuel cell publication-title: J. Power Sources – volume: 1 start-page: 0024 year: 2017 ident: bib19 article-title: The ins and outs of microorganism–electrode electron transfer reactions publication-title: Nat. Rev. Chem. – volume: 78 start-page: 409 year: 2008 end-page: 418 ident: bib1 article-title: The anode potential regulates bacterial activity in microbial fuel cells publication-title: Appl. Microbiol. Biotechnol. – volume: 102 start-page: 5841 year: 2011 end-page: 5848 ident: bib21 article-title: Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater publication-title: Bioresour. Technol. – volume: 85 start-page: 536 year: 2016 end-page: 552 ident: bib47 article-title: Carbon nanotube modification of microbial fuel cell electrodes publication-title: Biosens. Bioelectron. – volume: 168 start-page: 706 year: 2016 end-page: 723 ident: bib31 article-title: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery publication-title: Appl. Energy – volume: 2 start-page: 274 year: 2016 end-page: 281 ident: bib9 article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost publication-title: Environ. Sci.: Water Res. Technol – volume: 118 start-page: 154 year: 2017 end-page: 160 ident: bib38 article-title: Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater publication-title: Bioelectrochemistry – volume: 356 start-page: 274 year: 2017 end-page: 287 ident: bib28 article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater publication-title: J. Power Sources – volume: 81 start-page: 32 year: 2016 end-page: 38 ident: bib49 article-title: Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell publication-title: Biosens. Bioelectron. – volume: 72 start-page: 1389 year: 2017 end-page: 1403 ident: bib6 article-title: Applications of graphene in microbial fuel cells: the gap between promise and reality publication-title: Renew. Sust. Energ. Rev. – volume: 123 start-page: 406 year: 2012 end-page: 412 ident: bib50 article-title: Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater publication-title: Bioresour. Technol. – volume: 356 start-page: 225 year: 2017 end-page: 244 ident: bib36 article-title: Microbial fuel cells: from fundamentals to applications. A review. J publication-title: Power Sources – volume: 3 start-page: 472 year: 2017 end-page: 479 ident: bib15 article-title: Enhancement of the sensitivity of a microbial fuel cell sensor by transient-state operation publication-title: Environ. Sci.: Water Res. Technol – volume: 2 start-page: 206 year: 2015 end-page: 214 ident: bib27 article-title: Assessment of microbial fuel cell configurations and power densities publication-title: Environ. Sci. Technol. Lett. – volume: 90 start-page: 558 year: 2017 end-page: 576 ident: bib37 article-title: Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells publication-title: Biosens. Bioelectron. – volume: 1 start-page: 137 year: 2014 end-page: 141 ident: bib10 article-title: Recovery of electrical energy in microbial fuel cells publication-title: Environ. Sci. Technol. Lett. – volume: 40 start-page: 4263 year: 2015 end-page: 4268 ident: bib32 article-title: A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment publication-title: Int. J. Hydrog. Energy – volume: 85 start-page: 1665 year: 2010 end-page: 1671 ident: bib25 article-title: Scaling up microbial fuel cells and other bioelectrochemical systems publication-title: Appl. Microbiol. Biotechnol. – volume: 46 start-page: 5247 year: 2012 end-page: 5252 ident: bib42 article-title: Active energy harvesting from microbial fuel cells at the maximum power point without using resistors publication-title: Environ. Sci. Technol. – volume: 54 start-page: 235 year: 2016 end-page: 246 ident: bib39 article-title: Review on hybrid energy systems for wastewater treatment and bio-energy production publication-title: Renew. Sust. Energ. Rev. – volume: 127 start-page: 230 year: 2017 end-page: 238 ident: bib4 article-title: Microbial activity influences electrical conductivity of biofilm anode publication-title: Water Res. – volume: 356 start-page: 408 year: 2017 end-page: 418 ident: bib29 article-title: Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance ( iR u -drop), double layer capacitance, and junction potential publication-title: J. Power Sources – volume: 356 start-page: 356 year: 2017 end-page: 364 ident: bib24 article-title: Energy harvesting influences electrochemical performance of microbial fuel cells publication-title: J. Power Sources – volume: 76 start-page: 1022 year: 2017 end-page: 1031 ident: bib12 article-title: Third generation in bio-electrochemical system research – a systematic review on mechanisms for recovery of valuable by-products from wastewater publication-title: Renew. Sust. Energ. Rev. – volume: 42 start-page: 4342 year: 2017 end-page: 4348 ident: bib17 article-title: A cathode-shared microbial fuel cell sensor array for water alert system publication-title: Int. J. Hydrog. Energy – volume: 241 start-page: 384 year: 2017 end-page: 390 ident: bib22 article-title: Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method publication-title: Bioresour. Technol. – volume: 79 start-page: 372 year: 2017 end-page: 389 ident: bib2 article-title: Performance improvement of microbial fuel cells for waste water treatment along with value addition: a review on past achievements and recent perspectives publication-title: Renew. Sust. Energ. Rev. – volume: 218 start-page: 552 year: 2016 end-page: 560 ident: bib11 article-title: Supercapacitive microbial fuel cell: characterization and analysis for improved charge storage/delivery performance publication-title: Bioresour. Technol. – volume: 215 start-page: 265 year: 2016 end-page: 273 ident: bib33 article-title: Critical transport rates that limit the performance of microbial electrochemistry technologies publication-title: Bioresour. Technol. – volume: 15 start-page: 2278 year: 2013 end-page: 2281 ident: bib20 article-title: The first self-sustainable microbial fuel cell stack publication-title: Phys. Chem. Chem. Phys. – volume: 98 start-page: 396 year: 2016 end-page: 403 ident: bib45 article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment publication-title: Water Res. – volume: 156 start-page: 132 year: 2014 end-page: 138 ident: bib7 article-title: A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment publication-title: Bioresour. Technol. – volume: 31 start-page: 1796 year: 2013 end-page: 1807 ident: bib44 article-title: A comprehensive review of microbial electrochemical systems as a platform technology publication-title: Biotechnol. Adv. – volume: 65 start-page: 832 year: 2016 end-page: 840 ident: bib8 article-title: Energy by microbial fuel cells: scientometric global synthesis and challenges publication-title: Renew. Sust. Energ. Rev. – volume: 183 start-page: 1682 year: 2016 end-page: 1704 ident: bib30 article-title: Ion transport in microbial fuel cells: key roles, theory and critical review publication-title: Appl. Energy – volume: 43 start-page: 9038 year: 2009 end-page: 9042 ident: bib3 article-title: Analysis and improvement of a scaled-up and stacked microbial fuel cell publication-title: Environ. Sci. Technol. – volume: 75 start-page: 352 year: 2016 end-page: 358 ident: bib34 article-title: Bidirectional microbial electron transfer: switching an acetate oxidizing biofilm to nitrate reducing conditions publication-title: Biosens. Bioelectron. – volume: 42 start-page: 6593 year: 2008 end-page: 6597 ident: bib40 article-title: Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode publication-title: Environ. Sci. Technol. – volume: 7 start-page: 913 year: 2013 end-page: 919 ident: bib23 article-title: Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode publication-title: Front. Env. Sci. Eng – volume: 36 start-page: 876 year: 2011 end-page: 884 ident: bib13 article-title: A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment publication-title: Int. J. Hydrog. Energy – volume: 40 start-page: 5181 year: 2006 end-page: 5192 ident: bib26 article-title: Microbial fuel cells: methodology and technology publication-title: Environ. Sci. Technol. – volume: 241 start-page: 384 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib22 article-title: Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.137 – volume: 40 start-page: 5181 issue: 17 year: 2006 ident: 10.1016/j.watres.2018.04.066_bib26 article-title: Microbial fuel cells: methodology and technology publication-title: Environ. Sci. Technol. doi: 10.1021/es0605016 – volume: 76 start-page: 1022 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib12 article-title: Third generation in bio-electrochemical system research – a systematic review on mechanisms for recovery of valuable by-products from wastewater publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.03.096 – volume: 40 start-page: 4263 issue: 11 year: 2015 ident: 10.1016/j.watres.2018.04.066_bib32 article-title: A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.01.117 – volume: 123 start-page: 406 year: 2012 ident: 10.1016/j.watres.2018.04.066_bib50 article-title: Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.07.038 – volume: 1 start-page: 137 issue: 2 year: 2014 ident: 10.1016/j.watres.2018.04.066_bib10 article-title: Recovery of electrical energy in microbial fuel cells publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez4000324 – volume: 54 start-page: 235 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib39 article-title: Review on hybrid energy systems for wastewater treatment and bio-energy production publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.10.011 – volume: 118 start-page: 154 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib38 article-title: Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2017.08.002 – volume: 356 start-page: 274 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib28 article-title: Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.132 – volume: 81 start-page: 292 year: 2018 ident: 10.1016/j.watres.2018.04.066_bib18 article-title: Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.06.099 – volume: 46 start-page: 5247 issue: 9 year: 2012 ident: 10.1016/j.watres.2018.04.066_bib42 article-title: Active energy harvesting from microbial fuel cells at the maximum power point without using resistors publication-title: Environ. Sci. Technol. doi: 10.1021/es300313d – volume: 31 start-page: 1796 issue: 8 year: 2013 ident: 10.1016/j.watres.2018.04.066_bib44 article-title: A comprehensive review of microbial electrochemical systems as a platform technology publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.10.001 – volume: 3 start-page: 382 issue: 5 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib48 article-title: Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review publication-title: Mater. Horizons doi: 10.1039/C6MH00093B – volume: 356 start-page: 400 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib35 article-title: Carbonate scale deactivating the biocathode in a microbial fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.088 – volume: 2 start-page: 206 issue: 8 year: 2015 ident: 10.1016/j.watres.2018.04.066_bib27 article-title: Assessment of microbial fuel cell configurations and power densities publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.5b00180 – volume: 127 start-page: 230 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib4 article-title: Microbial activity influences electrical conductivity of biofilm anode publication-title: Water Res. doi: 10.1016/j.watres.2017.10.028 – volume: 7 start-page: 913 issue: 6 year: 2013 ident: 10.1016/j.watres.2018.04.066_bib23 article-title: Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode publication-title: Front. Env. Sci. Eng doi: 10.1007/s11783-013-0583-3 – volume: 215 start-page: 265 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib33 article-title: Critical transport rates that limit the performance of microbial electrochemistry technologies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.136 – volume: 81 start-page: 32 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib49 article-title: Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.02.051 – volume: 2 start-page: 274 issue: 2 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib9 article-title: Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost publication-title: Environ. Sci.: Water Res. Technol – volume: 42 start-page: 4342 issue: 7 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib17 article-title: A cathode-shared microbial fuel cell sensor array for water alert system publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.12.050 – volume: 165 start-page: 670 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib14 article-title: Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.001 – volume: 3 start-page: 947 issue: 5 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib41 article-title: Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials publication-title: Environ. Sci.: Water Res. Technol – volume: 356 start-page: 225 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib36 article-title: Microbial fuel cells: from fundamentals to applications. A review. J publication-title: Power Sources doi: 10.1016/j.jpowsour.2017.03.109 – volume: 356 start-page: 408 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib29 article-title: Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance ( iR u -drop), double layer capacitance, and junction potential publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.033 – volume: 183 start-page: 1682 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib30 article-title: Ion transport in microbial fuel cells: key roles, theory and critical review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.09.043 – volume: 43 start-page: 9038 issue: 23 year: 2009 ident: 10.1016/j.watres.2018.04.066_bib3 article-title: Analysis and improvement of a scaled-up and stacked microbial fuel cell publication-title: Environ. Sci. Technol. doi: 10.1021/es901939r – volume: 78 start-page: 409 issue: 3 year: 2008 ident: 10.1016/j.watres.2018.04.066_bib1 article-title: The anode potential regulates bacterial activity in microbial fuel cells publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-007-1327-8 – volume: 102 start-page: 5841 issue: 10 year: 2011 ident: 10.1016/j.watres.2018.04.066_bib21 article-title: Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.02.098 – volume: 3 start-page: 472 issue: 3 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib15 article-title: Enhancement of the sensitivity of a microbial fuel cell sensor by transient-state operation publication-title: Environ. Sci.: Water Res. Technol – volume: 161 start-page: 245 year: 2015 ident: 10.1016/j.watres.2018.04.066_bib46 article-title: Enhanced performance of microbial fuel cell at low substrate concentrations by adsorptive anode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.028 – volume: 1 start-page: 0024 issue: 3 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib19 article-title: The ins and outs of microorganism–electrode electron transfer reactions publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0024 – volume: 49 start-page: 3267 issue: 6 year: 2015 ident: 10.1016/j.watres.2018.04.066_bib43 article-title: Practical energy harvesting for microbial fuel cells: a review publication-title: Environ. Sci. Technol. doi: 10.1021/es5047765 – volume: 42 start-page: 6593 issue: 17 year: 2008 ident: 10.1016/j.watres.2018.04.066_bib40 article-title: Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode publication-title: Environ. Sci. Technol. doi: 10.1021/es800970w – volume: 168 start-page: 706 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib31 article-title: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.056 – volume: 90 start-page: 558 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib37 article-title: Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.10.014 – volume: 85 start-page: 536 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib47 article-title: Carbon nanotube modification of microbial fuel cell electrodes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.05.033 – volume: 79 start-page: 372 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib2 article-title: Performance improvement of microbial fuel cells for waste water treatment along with value addition: a review on past achievements and recent perspectives publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.05.098 – volume: 195 start-page: 66 year: 2015 ident: 10.1016/j.watres.2018.04.066_bib5 article-title: A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.026 – volume: 356 start-page: 356 issue: Suppl. C year: 2017 ident: 10.1016/j.watres.2018.04.066_bib24 article-title: Energy harvesting influences electrochemical performance of microbial fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.067 – volume: 36 start-page: 876 issue: 1 year: 2011 ident: 10.1016/j.watres.2018.04.066_bib13 article-title: A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.08.074 – volume: 15 start-page: 2278 issue: 7 year: 2013 ident: 10.1016/j.watres.2018.04.066_bib20 article-title: The first self-sustainable microbial fuel cell stack publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp44548d – volume: 75 start-page: 352 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib34 article-title: Bidirectional microbial electron transfer: switching an acetate oxidizing biofilm to nitrate reducing conditions publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.08.035 – volume: 98 start-page: 396 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib45 article-title: A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment publication-title: Water Res. doi: 10.1016/j.watres.2016.04.043 – volume: 156 start-page: 132 year: 2014 ident: 10.1016/j.watres.2018.04.066_bib7 article-title: A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.104 – volume: 85 start-page: 1665 issue: 6 year: 2010 ident: 10.1016/j.watres.2018.04.066_bib25 article-title: Scaling up microbial fuel cells and other bioelectrochemical systems publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2378-9 – volume: 65 start-page: 832 year: 2016 ident: 10.1016/j.watres.2018.04.066_bib8 article-title: Energy by microbial fuel cells: scientometric global synthesis and challenges publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2016.06.050 – volume: 218 start-page: 552 issue: Suppl. C year: 2016 ident: 10.1016/j.watres.2018.04.066_bib11 article-title: Supercapacitive microbial fuel cell: characterization and analysis for improved charge storage/delivery performance publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.06.105 – volume: 72 start-page: 1389 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib6 article-title: Applications of graphene in microbial fuel cells: the gap between promise and reality publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2016.10.044 – volume: 94 start-page: 344 year: 2017 ident: 10.1016/j.watres.2018.04.066_bib16 article-title: A novel microbial fuel cell sensor with biocathode sensing element publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.02.052 – reference: 31337502 - Water Res. 2019 Jul 20;:114878 |
SSID | ssj0002239 |
Score | 2.6590185 |
Snippet | This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Bioelectric Energy Sources Biological Oxygen Demand Analysis China Conservation of Energy Resources Electricity energy recovery Long-term operation Microbial fuel cell microbial fuel cells Municipal wastewater Power generation Stacked modules Waste Disposal, Fluid - instrumentation Waste Disposal, Fluid - methods Waste Water wastewater treatment water water flow |
Title | One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment |
URI | https://dx.doi.org/10.1016/j.watres.2018.04.066 https://www.ncbi.nlm.nih.gov/pubmed/29753171 https://www.proquest.com/docview/2038274468 https://www.proquest.com/docview/2574319624 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgvl0fSwSv0bZJk_a4LC7ra70oeAttNoWKtovusujB3-5M2q4KPsBjy6SEyWRmMv2-CSFHEFQSyBIkg30UMTwhsNgaywy4ySAzEPQtEoWvhnJwK87vwrsW6TVcGIRV1r6_8unOW9dvTmptnozzHDm-EPx4KMAowQ07Ep8QCq38-O0D5gHhL27-MqN0Q59zGK9ZgoQMBHhFruGp65X4bXj6Kf10Yai_Slbq_JF2qymukZYt1snyp66CG0RfF5a9gAXTcmyrBaZlRrHEzi7pYzlC5Gn-akf0MXdtmOB72dQ-UCziU0hiqaOM5GN4P0uesboGyqdzSPomue2f3vQGrL5HgRkh_Qkm0GFiOHYuC_CWMUiSlJVcJsY3sREq49yLPRmncHYK01iAL7YCS0NZbHigAr5FFoqysDuEBkjJC22gIukJy8M0EcqoEZyjvSzlPGsT3qhPm7rJON518aAbNNm9rpSuUenaExqU3iZsPmpcNdn4Q141K6O_GIuGOPDHyMNmITXsI9RrUthyikI8wm6JMvpFJsR8K5aBaJPtygrm83UMZV_5u_-e2x5ZwicEo_jhPlmYPE3tAWQ8k7TjTLpDFrtnF4PhO6Ja_bg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LelAP4tv1GcFr3LZJm_Yooqy6qxeFvYU2m0JF26K7iB787c6k7aqgLnhtJyVMJvPqfDOEHIFRicFLCBjco5BhhMAiow3ToCa9VIPRNwgUHlwHvTtxOfSHLXLaYGGwrLLW_ZVOt9q6ftKtudktswwxvmD8uC9AKEENI4hvTsD1xTEGx--fdR5g_6LmNzOSN_g5W-T1EiMiAyu8Qtvx1DZL_NE-_eZ_Wjt0vkyWageSnlR7XCEtk6-SxS9tBdeIuskNewURpkVpqhOmRUoxx8769LEYYelp9mZG9DGzfZjge-nEPFDM4lPwYqnFjGQlPH-JnzG9Btyn05r0dXJ3fnZ72mP1IAWmReCO0YP2Y82xdZmHY8bAS5Im4EGsXR1pIVPOncgJogSCJz-JBChjIzA3lEaae9LjG6SdF7nZItRDTJ5vPBkGjjDcT2IhtRxBIO2kCedph_CGfUrXXcZx2MWDasrJ7lXFdIVMV45QwPQOYdNVZdVlYwa9bE5GfZMWBYZgxsrD5iAVXCTka5ybYoJEIDsSouPwDxofHa4o8ESHbFZSMN2vhSi70t3-994OyHzvdtBX_Yvrqx2ygG-wMsX1d0l7_DQxe-D-jJN9K94fYrX_Rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-year+operation+of+1000-L+modularized+microbial+fuel+cell+for+municipal+wastewater+treatment&rft.jtitle=Water+research+%28Oxford%29&rft.au=Liang%2C+Peng&rft.au=Duan%2C+Rui&rft.au=Jiang%2C+Yong&rft.au=Zhang%2C+Xiaoyuan&rft.date=2018-09-15&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.volume=141&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.watres.2018.04.066&rft.externalDocID=S0043135418303609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |