Allosteric transitions in hemoglobin revisited

Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, ther...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 2; p. 129335
Main Author Shibayama, Naoya
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes. I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination. New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin. These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins. •Despite much effort, structural basis for hemoglobin allostery has been controversial.•A unique single crystal can reveal the full allosteric pathway in hemoglobin.•Results clarify equilibria of multiple conformations including a third affinity state.•Conformational population shifts are critical to hemoglobin allostery.•Conformational population shifts are consistent with the concerted MWC model.
AbstractList Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes.BACKGROUNDHuman hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes.I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination.SCOPE OF REVIEWI review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination.New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin.MAJOR CONCLUSIONSNew crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin.These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins.GENERAL SIGNIFICANCEThese approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins.
Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes.I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination.New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O₂ affinity of hemoglobin.These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins.
Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes. I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination. New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O affinity of hemoglobin. These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins.
Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes. I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination. New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin. These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins. •Despite much effort, structural basis for hemoglobin allostery has been controversial.•A unique single crystal can reveal the full allosteric pathway in hemoglobin.•Results clarify equilibria of multiple conformations including a third affinity state.•Conformational population shifts are critical to hemoglobin allostery.•Conformational population shifts are consistent with the concerted MWC model.
ArticleNumber 129335
Author Shibayama, Naoya
Author_xml – sequence: 1
  givenname: Naoya
  surname: Shibayama
  fullname: Shibayama, Naoya
  email: shibayam@jichi.ac.jp
  organization: Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30951803$$D View this record in MEDLINE/PubMed
BookMark eNqNkM9LwzAUx4Mouk3_A5EdvbS-16Rt6kEY4i8QvOg5pOnrzOgaTbqB_70Zmx48qLkkkM_3-3ifMdvvXU-MnSKkCFhcLNK61nPq0wywSoGnkOEeG6Ess0QCFPtsBBxEIrDIj9g4hAXEk1f5ITviUOUogY9YOus6Fwby1kwHr_tgB-v6MLX99JWWbt65Oj49rW38oeaYHbS6C3Syuyfs5fbm-fo-eXy6e7iePSZGFDgkJUpeiDjA5BKkrjg3WNd5KyViJhrITFVWUkCNpcaadEkZ6ryS3BQtNrzlE3a-7X3z7n1FYVBLGwx1ne7JrYLKspzHvaOIf6AgiqpAwSN6tkNX9ZIa9ebtUvsP9aUjAmILGO9C8NR-IwhqY10t1Na62lhXwFW0HmOXP2LGDnojMiq13V_hq22Yos-1Ja-CsdQbaqwnM6jG2d8LPgGaXZy8
CitedBy_id crossref_primary_10_1021_acsnano_3c01709
crossref_primary_10_1016_j_ijbiomac_2024_131457
crossref_primary_10_1016_j_mam_2021_101050
crossref_primary_10_1016_j_scitotenv_2024_177700
crossref_primary_10_1371_journal_pone_0278417
crossref_primary_10_1107_S2052252521009386
crossref_primary_10_1016_j_abb_2019_108121
crossref_primary_10_1016_j_heliyon_2021_e08464
crossref_primary_10_1016_j_bpj_2021_05_014
crossref_primary_10_1016_j_mam_2021_101022
crossref_primary_10_1021_acs_jpclett_1c00915
crossref_primary_10_3390_biology10060453
crossref_primary_10_1021_acs_jcim_1c00315
crossref_primary_10_1089_ham_2023_0044
crossref_primary_10_1021_acs_jpcb_1c07520
crossref_primary_10_1021_acs_jcim_2c00727
crossref_primary_10_3390_oxygen2040038
crossref_primary_10_1021_acs_molpharmaceut_3c00289
crossref_primary_10_1021_acs_jpcb_3c07176
crossref_primary_10_1016_j_biochi_2021_08_006
crossref_primary_10_1038_s41598_019_55331_3
crossref_primary_10_2142_biophysico_bppb_v19_0019
crossref_primary_10_1080_07391102_2023_2245043
crossref_primary_10_2142_biophysico_bppb_v19_0035
crossref_primary_10_26508_lsa_202402925
Cites_doi 10.1021/bi9805700
10.1126/science.1553532
10.1110/ps.20501
10.1002/pro.5560060230
10.1016/S0014-5793(01)02225-6
10.1006/jmbi.1996.0257
10.1110/ps.03259908
10.1016/j.bpj.2015.04.037
10.1107/S0907444999009750
10.1021/bi00085a009
10.1002/bip.360240307
10.3390/cryst7090282
10.7554/eLife.03080
10.1107/S0907444905004622
10.1021/bi980134d
10.1073/pnas.0305836101
10.1038/ncomms10471
10.1073/pnas.91.23.11113
10.1021/bi00131a030
10.1038/nature12822
10.1113/jphysiol.1958.sp005999
10.1371/journal.pone.0077141
10.1110/ps.062272306
10.1006/jmbi.1996.0355
10.1021/ja210126j
10.1017/S0033583500001840
10.1126/science.aab1576
10.1126/science.aad7974
10.1038/s41467-019-08991-8
10.1021/bi00247a010
10.1073/pnas.0405987101
10.1021/bi00062a021
10.1073/pnas.1413566111
10.1016/0301-4622(90)88020-S
10.1074/jbc.272.51.32050
10.1021/ja503328a
10.1038/351416a0
10.1073/pnas.80.23.7055
10.1126/science.1585178
10.1006/jmbi.1999.3124
10.1006/jmbi.1993.1530
10.1038/nature14892
10.1021/bi00061a007
10.1126/science.1249410
10.1016/j.bbapap.2011.02.013
10.1016/S0022-2836(83)80313-1
10.1021/bi00160a032
10.1016/S0021-9258(17)39466-8
10.1038/228726a0
10.1016/0022-2836(72)90077-0
10.1038/nchembio.232
10.1021/bi00707a026
10.1073/pnas.1011995108
10.1038/219131a0
10.1016/S1631-0691(03)00150-1
10.1021/bi050412q
10.1016/S0006-3495(02)75665-8
10.1021/bi970009m
10.1016/0022-2836(86)90367-0
10.1016/S0021-9258(18)41919-9
10.1007/s000180050260
10.1146/annurev.biophys.27.1.1
10.1016/j.jmb.2006.05.036
10.1016/S0162-0134(00)00151-3
10.1074/jbc.M111.266056
10.1002/prot.20232
10.1002/2211-5463.12090
10.1006/jmbi.1995.0427
10.1073/pnas.88.4.1110
10.1038/nature14853
10.1021/bi9905361
10.1038/srep06384
10.1021/bi00865a047
10.1016/j.bbabio.2011.04.004
10.1002/prot.23112
10.1074/jbc.M117.781146
10.1073/pnas.71.4.1418
10.1371/journal.pone.0064176
10.1016/S0022-2836(67)80082-2
10.1111/j.1748-1716.1904.tb01382.x
10.1016/S0301-4622(02)00091-1
10.1016/S0022-2836(65)80285-6
10.1016/0022-2836(79)90277-8
10.1002/prot.340150102
10.1016/0022-2836(86)90368-2
10.1021/bi00014a035
10.1016/j.cell.2015.12.055
10.1103/PhysRevE.62.3843
10.1074/jbc.M203135200
10.1016/j.cell.2007.11.040
10.1038/nature14275
10.1016/S0968-0004(99)01444-9
10.1016/0022-2836(84)90472-8
10.1016/0022-0248(68)90071-7
10.1021/bi00144a008
10.1021/acs.jpcb.8b07414
10.1073/pnas.232715799
10.1002/prot.1074
10.1038/ncomms16099
10.1016/j.biosystems.2006.09.041
10.1006/jmbi.1999.2970
10.1021/ja500380e
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2019.03.021
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 30951803
10_1016_j_bbagen_2019_03_021
S0304416519300777
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-718364803c5808a933c1bb5f881124d02c979840b17a1bea7e21a5983c6f1d3f3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 01:52:58 EDT 2025
Fri Jul 11 04:57:41 EDT 2025
Wed Feb 19 02:30:41 EST 2025
Thu Apr 24 22:57:19 EDT 2025
Tue Jul 01 00:22:12 EDT 2025
Fri Feb 23 02:50:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords XL[α(Fe)β(Ni)]2
HL
nmax
FL
Conformational change
PDB
X-ray crystallography
IHP
R
XL[α(Ni)β(Fe)]2
T
Protein function
Hemoglobin
Pi
R2
Allostery
RMSD
P50
BZF
XL[α(Fe-CO)β(Ni)][α(Ni)β(Fe-CO)]
XL[α(Fe)β(Ni)][α(Ni)β(Fe)]
RR2
PEG
Allosteric regulation
BPG
XL[α(Fe)β(Fe)][α(Ni)β(Ni)]
TR
Ki
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-718364803c5808a933c1bb5f881124d02c979840b17a1bea7e21a5983c6f1d3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 30951803
PQID 2204696143
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2253201101
proquest_miscellaneous_2204696143
pubmed_primary_30951803
crossref_primary_10_1016_j_bbagen_2019_03_021
crossref_citationtrail_10_1016_j_bbagen_2019_03_021
elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_03_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-Feb
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Park, Yokoyama, Shibayama, Shiro, Tame (bb0375) 2006; 360
Herzik, Wu, Lander (bb0480) 2019; 10
Bohr, Hasselbalch, Krogh (bb0005) 1904; 16
Mouawad, Perahia (bb0495) 1996; 258
Shibayama, Morimoto, Kitagawa (bb0310) 1986; 192
Matthies, Dalmas, Borgnia, Dominik, Merk, Rao, Reddy, Islam, Bartesaghi, Perozo, Subramaniam (bb0460) 2016; 164
Perutz, Muirhead, Cox, Goaman (bb0035) 1968; 219
Lukin, Kontaxis, Simplaceanu, Yuan, Bax, Ho (bb0225) 2003; 100
Cho, Schotte, Stadnytskyi, DiChiara, Henning, Anfinrud (bb0230) 2018; 122
Daugherty, Shea, Johnson, LiCata, Turner, Ackers (bb0090) 1991; 88
Kiger, Marden (bb0145) 1999; 291
Mozzarelli, Rivetti, Rossi, Henry, Eaton (bb0155) 1991; 351
Yamamoto, Tsuchida, Noguchi, Ogawa, Sekiguchi, Sasaki, Yohda (bb0530) 2016; 6
Kiger, Poyart, Marden (bb0135) 1998; 37
Rivetti, Mozzarelli, Rossi, Henry, Eaton (bb0160) 1993; 32
Shibayama, Morimoto, Saigo (bb0130) 1998; 37
Szabo, Karplus (bb0080) 1972; 72
Ronda, Bruno, Viappiani, Abbruzzetti, Mozzarelli, Lowe, Bettati (bb0285) 2006; 15
Kavanaugh, Rogers, Case, Arnone (bb0350) 1992; 31
Du, Lü, Wu, Cheng, Gouaux (bb0450) 2015; 526
Shimizu, Iwamoto, Konno, Nihei, Sasaki, Oiki (bb0515) 2008; 132
Koshland, Nemethy, Filmer (bb0025) 1966; 5
Li, Nagai, Nagai (bb0295) 2000; 82
Tame (bb0065) 1999; 24
Patskovska, Patskovsky, Almo, Hirsch (bb0220) 2005; 61
Gunasekaran, Ma, Nussinov (bb0405) 2004; 57
Shibayama, Morimoto, Saigo (bb0125) 1997; 36
Cui, Karplus (bb0415) 2008
Shibayama (bb0255) 2011
Shibayama, Ohki, Tame, Park (bb0390) 2017; 292
Marden, Kiger, Poyart, Edelstein (bb0140) 1998; 54
Viappiani, Abbruzzetti, Ronda, Bettati, Henry, Mozzarelli, Eaton (bb0200) 2014; 111
Fischer, Neumann, Konevega, Bock, Ficner, Rodnina, Stark (bb0430) 2015; 520
Seixas, de Azevedo, Colombo (bb0300) 1999; 55
Perutz (bb0395) 1968; 2
Safo, Abraham (bb0070) 2005; 44
Jones, Ansari, Henry, Christoph, Hofrichter, Eaton (bb0180) 1992; 31
Amunts, Brown, Bai, Llácer, Hussain, Emsley, Long, Murshudov, Scheres, Ramakrishnan (bb0425) 2014
Liao, Cao, Julius, Cheng (bb0455) 2013; 504
Janin, Wodak (bb0205) 1993; 15
Perutz, Wilkinson, Paoli, Dodson (bb0215) 1998; 27
Adair (bb0010) 1925; 108A
Henry, Mozzarelli, Viappiani, Abbruzzetti, Bettati, Ronda, Bruno, Eaton (bb0110) 2015; 109
Biswal, Vijayan (bb0340) 2001; 81
Doyle (bb0095) 1992; 31
Shibayama, Saigo (bb0280) 1995; 251
Tame, Wilson, Weber (bb0370) 1996; 259
Fischer, Olsen, Nam, Karplus (bb0500) 2011; 108
Sasaki, Suzuki, Yagi, Adachi, Ishibashi, Suda, Toyota, Yanagihara (bb0510) 2000; 62
Sekiguchi, Nakagawa, Moriya, Makabe, Ichiyanagi, Nozawa, Sato, Adachi, Kuwajima, Yohda, Sasaki (bb0525) 2013; 8
Colombo, Rau, Parsegian (bb0270) 1992; 256
Mouawad, Perahia, Robert, Guilbert (bb0490) 2002; 82
Shibayama, Imai, Hirata, Hiraiwa, Morimoto, Saigo (bb0325) 1991; 30
Dey, Chakrabarti, Janin (bb0235) 2011; 79
Fermi, Perutz, Shaanan, Fourme (bb0345) 1984; 175
Banerjee, Bartesaghi, Merk, Rao, Bulfer, Yan, Green, Mroczkowski, Neitz, Wipf, Falconieri, Deshaies, Milne, Huryn, Arkin, Subramaniam (bb0470) 2016; 351
Shibayama, Sugiyama, Park (bb0245) 2011; 286
Kavanaugh, Moo-Penn, Arnone (bb0355) 1993; 32
Padlan, Love (bb0360) 1985; 260
Henry, Bettati, Hofrichter, Eaton (bb0105) 2002; 98
Shibayama, Morimoto, Miyazaki (bb0305) 1986; 192
Sato-Tomita, Shibayama (bb0380) 2017; 7
Bellelli, Brunori (bb0420) 2011; 1807
Wong, Bai, Brown, Fernandez, Hanssen, Condron, Tan, Baum, Scheres (bb0440) 2014; 3
Yonetani, Park, Tsuneshige, Imai, Kanaori (bb0115) 2002; 277
Colombo, Seixas (bb0260) 1999; 38
Safo, Ahmed, Ghatge, Boyiri (bb0075) 2011; 1814
Bartesaghi, Merk, Banerjee, Matthies, Wu, Milne, Subramaniam (bb0465) 2015; 348
Jones, Monza, Balakrishnan, Blouin, Mak, Zhu, Kincaid, Guallar, Spiro (bb0190) 2014; 136
Shaanan (bb0400) 1983; 171
Imai (bb0015) 1982
Baldwin, Chothia (bb0045) 1979; 129
Shibayama, Saigo (bb0275) 2001; 492
Yonetani, Tsuneshige (bb0120) 2003; 326
Shibayama, Imai, Morimoto, Saigo (bb0315) 1993; 32
Mihailescu, Fronticelli, Russu (bb0385) 2001; 44
Shimizu (bb0265) 2004; 101
Srinivasan, Rose (bb0210) 1994; 91
Perutz, Ladner, Simon, Ho (bb0290) 1974; 13
Silva, Rogers, Arnone (bb0060) 1992; 267
Viappiani, Bettati, Bruno, Ronda, Abbruzzetti, Mozzarelli, Eaton (bb0195) 2004; 101
Monod, Wyman, Changeux (bb0020) 1965; 12
Sugawa, Arai, Iwane, Ishii, Yanagida (bb0505) 2007
Boehr, Nussinov, Wright (bb0410) 2009; 5
Jomaa, Boehringer, Leibundgut, Ban (bb0435) 2016; 7
Minton, Imai (bb0055) 1974; 71
Shulman, Hopfield, Ogawa (bb0050) 1975; 8
Miyazaki, Morimoto, Yun, Park, Nakagawa, Minagawa, Shibayama (bb0250) 1999; 292
Joels, Pugh (bb0330) 1958; 142
Ackers, Doyle, Myers, Daugherty (bb0100) 1992; 255
Muirhead, Cox, Mazzarella, Perutz (bb0030) 1967; 28
Bai, Yan, Yang, Lu, Ma, Sun, Zhou, Scheres, Shi (bb0445) 2015; 525
Perrella, Colosimo, Benazzi, Ripamonti, Rossi-Bernardi (bb0150) 1990; 37
Shibayama, Imai, Morimoto, Saigo (bb0320) 1995; 34
Sekiguchi, Suzuki, Nishino, Kobayashi, Shimoyama, Cai, Nagata, Okada, Ichiyanagi, Ohta, Yagi, Miyazawa, Kubo, Sasaki (bb0520) 2015; 4
Perutz, Fermi, Poyart, Pagnier, Kister (bb0365) 1993; 233
Bruno, Bonaccio, Bettati, Rivetti, Viappiani, Abbruzzetti, Mozzarelli (bb0170) 2001; 10
Mozzarelli, Rivetti, Rossi, Eaton, Henry (bb0165) 1991; 6
Janin, Wodak (bb0485) 1985; 24
Lee, Karplus (bb0085) 1983; 80
Khoshouei, Radjainia, Baumeister, Danev (bb0475) 2017; 8
Jones, Balakrishnan, Spiro (bb0185) 2012; 134
Shibayama, Sugiyama, Tame, Park (bb0335) 2014; 136
Perutz (bb0040) 1970; 228
Ren (bb0240) 2013; 8
Bettati, Mozzarelli (bb0175) 1997; 272
Shibayama (10.1016/j.bbagen.2019.03.021_bb0130) 1998; 37
Lee (10.1016/j.bbagen.2019.03.021_bb0085) 1983; 80
Liao (10.1016/j.bbagen.2019.03.021_bb0455) 2013; 504
Kavanaugh (10.1016/j.bbagen.2019.03.021_bb0350) 1992; 31
Mouawad (10.1016/j.bbagen.2019.03.021_bb0490) 2002; 82
Bettati (10.1016/j.bbagen.2019.03.021_bb0175) 1997; 272
Mihailescu (10.1016/j.bbagen.2019.03.021_bb0385) 2001; 44
Fischer (10.1016/j.bbagen.2019.03.021_bb0430) 2015; 520
Jones (10.1016/j.bbagen.2019.03.021_bb0190) 2014; 136
Sato-Tomita (10.1016/j.bbagen.2019.03.021_bb0380) 2017; 7
Amunts (10.1016/j.bbagen.2019.03.021_bb0425) 2014
Muirhead (10.1016/j.bbagen.2019.03.021_bb0030) 1967; 28
Kiger (10.1016/j.bbagen.2019.03.021_bb0135) 1998; 37
Janin (10.1016/j.bbagen.2019.03.021_bb0205) 1993; 15
Henry (10.1016/j.bbagen.2019.03.021_bb0105) 2002; 98
Yonetani (10.1016/j.bbagen.2019.03.021_bb0115) 2002; 277
Shibayama (10.1016/j.bbagen.2019.03.021_bb0280) 1995; 251
Shimizu (10.1016/j.bbagen.2019.03.021_bb0515) 2008; 132
Shibayama (10.1016/j.bbagen.2019.03.021_bb0390) 2017; 292
Patskovska (10.1016/j.bbagen.2019.03.021_bb0220) 2005; 61
Imai (10.1016/j.bbagen.2019.03.021_bb0015) 1982
Lukin (10.1016/j.bbagen.2019.03.021_bb0225) 2003; 100
Park (10.1016/j.bbagen.2019.03.021_bb0375) 2006; 360
Colombo (10.1016/j.bbagen.2019.03.021_bb0260) 1999; 38
Bruno (10.1016/j.bbagen.2019.03.021_bb0170) 2001; 10
Ronda (10.1016/j.bbagen.2019.03.021_bb0285) 2006; 15
Shibayama (10.1016/j.bbagen.2019.03.021_bb0320) 1995; 34
Daugherty (10.1016/j.bbagen.2019.03.021_bb0090) 1991; 88
Mozzarelli (10.1016/j.bbagen.2019.03.021_bb0165) 1991; 6
Banerjee (10.1016/j.bbagen.2019.03.021_bb0470) 2016; 351
Yamamoto (10.1016/j.bbagen.2019.03.021_bb0530) 2016; 6
Kavanaugh (10.1016/j.bbagen.2019.03.021_bb0355) 1993; 32
Adair (10.1016/j.bbagen.2019.03.021_bb0010) 1925; 108A
Cho (10.1016/j.bbagen.2019.03.021_bb0230) 2018; 122
Safo (10.1016/j.bbagen.2019.03.021_bb0070) 2005; 44
Baldwin (10.1016/j.bbagen.2019.03.021_bb0045) 1979; 129
Shibayama (10.1016/j.bbagen.2019.03.021_bb0125) 1997; 36
Colombo (10.1016/j.bbagen.2019.03.021_bb0270) 1992; 256
Viappiani (10.1016/j.bbagen.2019.03.021_bb0200) 2014; 111
Koshland (10.1016/j.bbagen.2019.03.021_bb0025) 1966; 5
Perutz (10.1016/j.bbagen.2019.03.021_bb0215) 1998; 27
Shibayama (10.1016/j.bbagen.2019.03.021_bb0305) 1986; 192
Shibayama (10.1016/j.bbagen.2019.03.021_bb0335) 2014; 136
Perutz (10.1016/j.bbagen.2019.03.021_bb0040) 1970; 228
Dey (10.1016/j.bbagen.2019.03.021_bb0235) 2011; 79
Sekiguchi (10.1016/j.bbagen.2019.03.021_bb0520) 2015; 4
Boehr (10.1016/j.bbagen.2019.03.021_bb0410) 2009; 5
Minton (10.1016/j.bbagen.2019.03.021_bb0055) 1974; 71
Shibayama (10.1016/j.bbagen.2019.03.021_bb0245) 2011; 286
Tame (10.1016/j.bbagen.2019.03.021_bb0065) 1999; 24
Khoshouei (10.1016/j.bbagen.2019.03.021_bb0475) 2017; 8
Doyle (10.1016/j.bbagen.2019.03.021_bb0095) 1992; 31
Szabo (10.1016/j.bbagen.2019.03.021_bb0080) 1972; 72
Perutz (10.1016/j.bbagen.2019.03.021_bb0365) 1993; 233
Bellelli (10.1016/j.bbagen.2019.03.021_bb0420) 2011; 1807
Sasaki (10.1016/j.bbagen.2019.03.021_bb0510) 2000; 62
Ackers (10.1016/j.bbagen.2019.03.021_bb0100) 1992; 255
Perutz (10.1016/j.bbagen.2019.03.021_bb0290) 1974; 13
Safo (10.1016/j.bbagen.2019.03.021_bb0075) 2011; 1814
Mozzarelli (10.1016/j.bbagen.2019.03.021_bb0155) 1991; 351
Jones (10.1016/j.bbagen.2019.03.021_bb0180) 1992; 31
Biswal (10.1016/j.bbagen.2019.03.021_bb0340) 2001; 81
Perrella (10.1016/j.bbagen.2019.03.021_bb0150) 1990; 37
Sekiguchi (10.1016/j.bbagen.2019.03.021_bb0525) 2013; 8
Marden (10.1016/j.bbagen.2019.03.021_bb0140) 1998; 54
Gunasekaran (10.1016/j.bbagen.2019.03.021_bb0405) 2004; 57
Li (10.1016/j.bbagen.2019.03.021_bb0295) 2000; 82
Srinivasan (10.1016/j.bbagen.2019.03.021_bb0210) 1994; 91
Henry (10.1016/j.bbagen.2019.03.021_bb0110) 2015; 109
Jones (10.1016/j.bbagen.2019.03.021_bb0185) 2012; 134
Shibayama (10.1016/j.bbagen.2019.03.021_bb0315) 1993; 32
Shimizu (10.1016/j.bbagen.2019.03.021_bb0265) 2004; 101
Ren (10.1016/j.bbagen.2019.03.021_bb0240) 2013; 8
Padlan (10.1016/j.bbagen.2019.03.021_bb0360) 1985; 260
Shaanan (10.1016/j.bbagen.2019.03.021_bb0400) 1983; 171
Perutz (10.1016/j.bbagen.2019.03.021_bb0035) 1968; 219
Shibayama (10.1016/j.bbagen.2019.03.021_bb0325) 1991; 30
Matthies (10.1016/j.bbagen.2019.03.021_bb0460) 2016; 164
Miyazaki (10.1016/j.bbagen.2019.03.021_bb0250) 1999; 292
Rivetti (10.1016/j.bbagen.2019.03.021_bb0160) 1993; 32
Joels (10.1016/j.bbagen.2019.03.021_bb0330) 1958; 142
Fermi (10.1016/j.bbagen.2019.03.021_bb0345) 1984; 175
Yonetani (10.1016/j.bbagen.2019.03.021_bb0120) 2003; 326
Bohr (10.1016/j.bbagen.2019.03.021_bb0005) 1904; 16
Jomaa (10.1016/j.bbagen.2019.03.021_bb0435) 2016; 7
Kiger (10.1016/j.bbagen.2019.03.021_bb0145) 1999; 291
Du (10.1016/j.bbagen.2019.03.021_bb0450) 2015; 526
Shibayama (10.1016/j.bbagen.2019.03.021_bb0310) 1986; 192
Viappiani (10.1016/j.bbagen.2019.03.021_bb0195) 2004; 101
Cui (10.1016/j.bbagen.2019.03.021_bb0415) 2008
Mouawad (10.1016/j.bbagen.2019.03.021_bb0495) 1996; 258
Seixas (10.1016/j.bbagen.2019.03.021_bb0300) 1999; 55
Herzik (10.1016/j.bbagen.2019.03.021_bb0480) 2019; 10
Tame (10.1016/j.bbagen.2019.03.021_bb0370) 1996; 259
Shulman (10.1016/j.bbagen.2019.03.021_bb0050) 1975; 8
Janin (10.1016/j.bbagen.2019.03.021_bb0485) 1985; 24
Monod (10.1016/j.bbagen.2019.03.021_bb0020) 1965; 12
Bartesaghi (10.1016/j.bbagen.2019.03.021_bb0465) 2015; 348
Shibayama (10.1016/j.bbagen.2019.03.021_bb0275) 2001; 492
Bai (10.1016/j.bbagen.2019.03.021_bb0445) 2015; 525
Shibayama (10.1016/j.bbagen.2019.03.021_bb0255) 2011
Wong (10.1016/j.bbagen.2019.03.021_bb0440) 2014; 3
Fischer (10.1016/j.bbagen.2019.03.021_bb0500) 2011; 108
Silva (10.1016/j.bbagen.2019.03.021_bb0060) 1992; 267
Sugawa (10.1016/j.bbagen.2019.03.021_bb0505) 2007
Perutz (10.1016/j.bbagen.2019.03.021_bb0395) 1968; 2
References_xml – volume: 5
  start-page: 365
  year: 1966
  end-page: 385
  ident: bb0025
  article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits
  publication-title: Biochemistry
– volume: 28
  start-page: 117
  year: 1967
  end-page: 156
  ident: bb0030
  article-title: Structure and function of haemoglobin. 3. A three-dimensional Fourier synthesis of human deoxyhaemoglobin at 5.5 Å resolution
  publication-title: J. Mol. Biol.
– volume: 192
  start-page: 323
  year: 1986
  end-page: 329
  ident: bb0305
  article-title: Oxygen equilibrium study and light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins
  publication-title: J. Mol. Biol.
– volume: 88
  start-page: 1110
  year: 1991
  end-page: 1114
  ident: bb0090
  article-title: Identification of the intermediate allosteric species in human hemoglobin reveals a molecular code for cooperative switching
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2011
  ident: bb0255
  article-title: Functional dissection of the oxygen-binding intermediates of human hemoglobin
  publication-title: Hemoglobin: Recent Developments and Topics
– start-page: 1295
  year: 2008
  end-page: 1307
  ident: bb0415
  article-title: Allostery and cooperativity revisited
  publication-title: Protein Sci.
– volume: 492
  start-page: 50
  year: 2001
  end-page: 53
  ident: bb0275
  article-title: Direct observation of two distinct affinity conformations in the T state human deoxyhemoglobin
  publication-title: FEBS Lett.
– volume: 3
  year: 2014
  ident: bb0440
  article-title: Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine
  publication-title: eLife
– volume: 348
  start-page: 1147
  year: 2015
  end-page: 1151
  ident: bb0465
  article-title: 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor
  publication-title: Science
– volume: 108A
  start-page: 627
  year: 1925
  end-page: 637
  ident: bb0010
  article-title: A critical study of the direct method of measuring the osmotic pressure of haemoglobin
  publication-title: Proc. R. Soc. London Ser. A
– volume: 82
  start-page: 93
  year: 2000
  end-page: 101
  ident: bb0295
  article-title: Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin
  publication-title: J. Inorg. Biochem.
– volume: 1814
  start-page: 797
  year: 2011
  end-page: 809
  ident: bb0075
  article-title: Hemoglobin-ligand binding: understanding Hb function and allostery on atomic level
  publication-title: Biochim. Biophys. Acta
– volume: 36
  start-page: 4375
  year: 1997
  end-page: 4381
  ident: bb0125
  article-title: Reexamination of the hyper thermodynamic stability of asymmetric cyanomet valency hybrid hemoglobin, (α
  publication-title: Biochemistry
– volume: 37
  start-page: 14643
  year: 1998
  end-page: 14650
  ident: bb0135
  article-title: CO binding and valency exchange in asymmetric Hb hybrids
  publication-title: Biochemistry
– volume: 37
  start-page: 6221
  year: 1998
  end-page: 6228
  ident: bb0130
  article-title: Asymmetric cyanomet valency hybrid hemoglobin, (α
  publication-title: Biochemistry
– volume: 277
  start-page: 34508
  year: 2002
  end-page: 34520
  ident: bb0115
  article-title: Global allostery model of hemoglobin: modulation of O
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 401
  year: 1904
  end-page: 412
  ident: bb0005
  article-title: Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt
  publication-title: Skand. Arch. Physiol.
– volume: 34
  start-page: 4773
  year: 1995
  end-page: 4780
  ident: bb0320
  article-title: Oxygen equilibrium properties of nickel(II)-iron(II) hybrid hemoglobins cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate: determination of the first two-step microscopic Adair constants for human hemoglobin
  publication-title: Biochemistry
– volume: 233
  start-page: 536
  year: 1993
  end-page: 545
  ident: bb0365
  article-title: A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: 751
  year: 2016
  end-page: 764
  ident: bb0530
  article-title: Characterization of group II chaperonins from an acidothermophilic archaeon
  publication-title: FEBS Open Bio.
– volume: 122
  start-page: 11488
  year: 2018
  end-page: 11496
  ident: bb0230
  article-title: Dynamics of quaternary structure transitions in R-state carbonmonoxyhemoglobin unveiled in time-resolved X-ray scattering patterns following a temperature jump
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 789
  year: 2009
  end-page: 796
  ident: bb0410
  article-title: The role of dynamic conformational ensembles in biomolecular recognition
  publication-title: Nat. Chem. Biol.
– volume: 55
  start-page: 1914
  year: 1999
  end-page: 1916
  ident: bb0300
  article-title: Crystallization and x-ray diffraction data analysis of human deoxyhaemoglobin A
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 2
  start-page: 54
  year: 1968
  end-page: 56
  ident: bb0395
  article-title: Preparation of haemoglobin crystals
  publication-title: J. Crystal Growth
– volume: 24
  start-page: 509
  year: 1985
  end-page: 526
  ident: bb0485
  article-title: Reaction pathway for the quaternary structure change in hemoglobin
  publication-title: Biopolymers.
– volume: 44
  start-page: 8347
  year: 2005
  end-page: 8359
  ident: bb0070
  article-title: The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin
  publication-title: Biochemistry
– volume: 228
  start-page: 726
  year: 1970
  end-page: 739
  ident: bb0040
  article-title: Stereochemistry of cooperative effects in haemoglobin
  publication-title: Nature
– volume: 79
  start-page: 2861
  year: 2011
  end-page: 2870
  ident: bb0235
  article-title: A survey of hemoglobin quaternary structures
  publication-title: Proteins
– volume: 15
  start-page: 1
  year: 1993
  end-page: 4
  ident: bb0205
  article-title: The quaternary structure of carbonmonoxy hemoglobin Ypsilanti
  publication-title: Proteins
– volume: 31
  start-page: 11182
  year: 1992
  end-page: 11195
  ident: bb0095
  article-title: G.K. Cooperative oxygen binding, subunit assembly, and sulfhydryl reaction kinetics of the eight cyanomet intermediate ligation states of human hemoglobin
  publication-title: Biochemistry
– volume: 10
  start-page: 1032
  year: 2019
  ident: bb0480
  article-title: High-resolution structure determination of sub-100
  publication-title: Nat. Commun.
– start-page: 243
  year: 2007
  end-page: 250
  ident: bb0505
  article-title: Single molecule FRET for the study on structural dynamics of biomolecules
  publication-title: Biosystems
– volume: 136
  start-page: 10325
  year: 2014
  end-page: 10339
  ident: bb0190
  article-title: Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 11113
  year: 1994
  end-page: 11117
  ident: bb0210
  article-title: The T-to-R transformation in hemoglobin: a reevaluation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 1982
  ident: bb0015
  article-title: Allosteric Effects in Haemoglobin
– volume: 164
  start-page: 747
  year: 2016
  end-page: 756
  ident: bb0460
  article-title: Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating
  publication-title: Cell
– volume: 24
  start-page: 372
  year: 1999
  end-page: 377
  ident: bb0065
  article-title: What is the true structure of liganded haemoglobin?
  publication-title: Trends Biochem. Sci.
– volume: 13
  start-page: 2163
  year: 1974
  end-page: 2173
  ident: bb0290
  article-title: Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin
  publication-title: Biochemistry
– volume: 175
  start-page: 159
  year: 1984
  end-page: 174
  ident: bb0345
  article-title: The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution
  publication-title: J. Mol. Biol.
– volume: 10
  start-page: 2401
  year: 2001
  end-page: 2407
  ident: bb0170
  article-title: High and low oxygen affinity conformations of T state hemoglobin
  publication-title: Protein Sci.
– volume: 44
  start-page: 73
  year: 2001
  end-page: 78
  ident: bb0385
  article-title: Allosteric free energy changes at the α1β2 interface of human hemoglobin probed by proton exchange of Trpβ37
  publication-title: Proteins
– volume: 38
  start-page: 11741
  year: 1999
  end-page: 11748
  ident: bb0260
  article-title: Novel allosteric conformation of human HB revealed by the hydration and anion effects on O
  publication-title: Biochemistry
– volume: 30
  start-page: 8158
  year: 1991
  end-page: 8165
  ident: bb0325
  article-title: Oxygen equilibrium properties of highly purified human adult hemoglobin cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate
  publication-title: Biochemistry
– volume: 259
  start-page: 749
  year: 1996
  end-page: 760
  ident: bb0370
  article-title: The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms
  publication-title: J. Mol. Biol.
– volume: 4
  start-page: 6384
  year: 2015
  ident: bb0520
  article-title: Real time ligand-induced motion mappings of AChBP and nAChR using x-ray single molecule tracking
  publication-title: Sci. Rep.
– volume: 258
  start-page: 393
  year: 1996
  end-page: 410
  ident: bb0495
  article-title: Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures
  publication-title: J. Mol. Biol.
– volume: 142
  start-page: 63
  year: 1958
  end-page: 77
  ident: bb0330
  article-title: The carbon monoxide dissociation curve of human blood
  publication-title: J. Physiol.
– volume: 61
  start-page: 566
  year: 2005
  end-page: 573
  ident: bb0220
  article-title: COHbC and COHbS crystallize in the R2 quaternary state at neutral pH in the presence of PEG 4000
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 57
  start-page: 433
  year: 2004
  end-page: 443
  ident: bb0405
  article-title: Is allostery an intrinsic property of all dynamic proteins?
  publication-title: Proteins
– volume: 71
  start-page: 1418
  year: 1974
  end-page: 1421
  ident: bb0055
  article-title: The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 255
  start-page: 54
  year: 1992
  end-page: 63
  ident: bb0100
  article-title: Molecular code for cooperativity in hemoglobin
  publication-title: Science
– volume: 272
  start-page: 32050
  year: 1997
  end-page: 32055
  ident: bb0175
  article-title: T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate, and chloride
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 4111
  year: 1992
  end-page: 4121
  ident: bb0350
  article-title: High-resolution X-ray study of deoxyhemoglobin Rothschild 37β Trp → Arg: a mutation that creates an intersubunit chloride-binding site
  publication-title: Biochemistry
– volume: 54
  start-page: 1365
  year: 1998
  end-page: 1384
  ident: bb0140
  article-title: Identifying the conformational state of bi-liganded haemoglobin
  publication-title: Cell. Mol. Life Sci.
– volume: 136
  start-page: 5097
  year: 2014
  end-page: 5105
  ident: bb0335
  article-title: Capturing the hemoglobin allosteric transition in a single crystal form
  publication-title: J. Am. Chem. Soc.
– volume: 504
  start-page: 107
  year: 2013
  end-page: 112
  ident: bb0455
  article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy
  publication-title: Nature
– volume: 81
  start-page: 1100
  year: 2001
  end-page: 1105
  ident: bb0340
  article-title: Structure of human methaemoglobin: the variation of a theme
  publication-title: Curr. Sci.
– volume: 12
  start-page: 88
  year: 1965
  end-page: 118
  ident: bb0020
  article-title: On the nature of allosteric transitions: a plausible model
  publication-title: J. Mol. Biol.
– volume: 219
  start-page: 131
  year: 1968
  end-page: 139
  ident: bb0035
  article-title: Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: the atomic model
  publication-title: Nature
– volume: 62
  start-page: 3843
  year: 2000
  end-page: 3847
  ident: bb0510
  article-title: Tracking of individual nanocrystals using diffracted x rays
  publication-title: Phys. Rev. E
– volume: 32
  start-page: 8792
  year: 1993
  end-page: 8798
  ident: bb0315
  article-title: Oxygen equilibrium properties of asymmetric nickel(II)-iron(II) hybrid hemoglobin
  publication-title: Biochemistry
– volume: 171
  start-page: 31
  year: 1983
  end-page: 59
  ident: bb0400
  article-title: Structure of human oxyhaemoglobin at 2.1 Å resolution
  publication-title: J. Mol. Biol.
– volume: 351
  start-page: 871
  year: 2016
  end-page: 875
  ident: bb0470
  article-title: 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition
  publication-title: Science
– volume: 32
  start-page: 2888
  year: 1993
  end-page: 2906
  ident: bb0160
  article-title: Oxygen binding by crystals of hemoglobin
  publication-title: Biochemistry
– volume: 37
  start-page: 211
  year: 1990
  end-page: 223
  ident: bb0150
  article-title: What the intermediate compounds in ligand binding to hemoglobin tell about the mechanism of cooperativity
  publication-title: Biophys. Chem.
– volume: 108
  start-page: 5608
  year: 2011
  end-page: 5613
  ident: bb0500
  article-title: Unsuspected pathway of the allosteric transition in hemoglobin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 80
  start-page: 7055
  year: 1983
  end-page: 7059
  ident: bb0085
  article-title: Structure-specific model of hemoglobin cooperativity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 267
  start-page: 17248
  year: 1992
  end-page: 17256
  ident: bb0060
  article-title: A third quaternary structure of human hemoglobin A at 1.7-Å resolution
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 1961
  year: 2006
  end-page: 1967
  ident: bb0285
  article-title: Circular dichroism spectroscopy of tertiary and quaternary conformations of human hemoglobin entrapped in wet silica gels
  publication-title: Protein Sci.
– volume: 31
  start-page: 6692
  year: 1992
  end-page: 6702
  ident: bb0180
  article-title: The speed of intersubunit communication in proteins
  publication-title: Biochemistry
– volume: 101
  start-page: 1195
  year: 2004
  end-page: 1199
  ident: bb0265
  article-title: Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 286
  start-page: 33661
  year: 2011
  end-page: 33668
  ident: bb0245
  article-title: Structures and oxygen affinities of crystalline human hemoglobin C (β6 Glu→Lys) in the R and R2 quaternary structures
  publication-title: J. Biol. Chem.
– volume: 100
  start-page: 517
  year: 2003
  end-page: 520
  ident: bb0225
  article-title: Quaternary structure of hemoglobin in solution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 1485
  year: 2014
  end-page: 1489
  ident: bb0425
  article-title: Structure of the yeast mitochondrial large ribosomal subunit
  publication-title: Science
– volume: 72
  start-page: 163
  year: 1972
  end-page: 197
  ident: bb0080
  article-title: A mathematical model for structure function relations in hemoglobin
  publication-title: J. Mol. Biol.
– volume: 8
  year: 2013
  ident: bb0240
  article-title: Reaction trajectory revealed by a joint analysis of protein data bank
  publication-title: PLoS One
– volume: 525
  start-page: 212
  year: 2015
  end-page: 217
  ident: bb0445
  article-title: An atomic structure of human g-secretase
  publication-title: Nature
– volume: 1807
  start-page: 1262
  year: 2011
  end-page: 1272
  ident: bb0420
  article-title: Hemoglobin allostery: variations on the theme
  publication-title: Biochim. Biophys. Acta
– volume: 256
  start-page: 655
  year: 1992
  end-page: 659
  ident: bb0270
  article-title: Protein solvation in allosteric regulation: a water effect on hemoglobin
  publication-title: Science
– volume: 27
  start-page: 1
  year: 1998
  end-page: 34
  ident: bb0215
  article-title: The stereochemical mechanism of the cooperative effects in hemoglobin revisited
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 260
  start-page: 8272
  year: 1985
  end-page: 8279
  ident: bb0360
  article-title: Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-Å resolution
  publication-title: J. Biol. Chem.
– volume: 291
  start-page: 227
  year: 1999
  end-page: 236
  ident: bb0145
  article-title: Asymmetric [deoxy dimer/azido-met dimer] hemoglobin hybrids dissociate within seconds
  publication-title: J. Mol. Biol.
– volume: 134
  start-page: 3461
  year: 2012
  end-page: 3471
  ident: bb0185
  article-title: Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study
  publication-title: J. Am. Chem. Soc.
– volume: 360
  start-page: 690
  year: 2006
  end-page: 701
  ident: bb0375
  article-title: 1.25 Å resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms
  publication-title: J. Mol. Biol.
– volume: 7
  start-page: 10471
  year: 2016
  ident: bb0435
  article-title: Structures of the
  publication-title: Nat. Commun.
– volume: 7
  start-page: 282
  year: 2017
  ident: bb0380
  article-title: Size and shape controlled crystallization of hemoglobin for advanced crystallography
  publication-title: Crystals
– volume: 132
  start-page: 67
  year: 2008
  end-page: 78
  ident: bb0515
  article-title: Global twisting motion of single molecular KcsA potassium channel upon gating
  publication-title: Cell
– volume: 6
  start-page: 484
  year: 1991
  end-page: 489
  ident: bb0165
  article-title: Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals
  publication-title: Protein Sci.
– volume: 351
  start-page: 416
  year: 1991
  end-page: 419
  ident: bb0155
  article-title: Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect
  publication-title: Nature
– volume: 98
  start-page: 149
  year: 2002
  end-page: 164
  ident: bb0105
  article-title: A tertiary two-state allosteric model for hemoglobin
  publication-title: Biophys. Chem.
– volume: 192
  start-page: 331
  year: 1986
  end-page: 336
  ident: bb0310
  article-title: Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins: Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme
  publication-title: J. Mol. Biol.
– volume: 526
  start-page: 224
  year: 2015
  end-page: 229
  ident: bb0450
  article-title: Glycine receptor mechanism elucidated by electron cryo-microscopy
  publication-title: Nature
– volume: 8
  year: 2013
  ident: bb0525
  article-title: ATP dependent rotational motion of group II chaperonin observed by x-ray single molecule tracking
  publication-title: PLoS One
– volume: 8
  start-page: 16099
  year: 2017
  ident: bb0475
  article-title: Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate
  publication-title: Nat. Commun.
– volume: 520
  start-page: 567
  year: 2015
  end-page: 570
  ident: bb0430
  article-title: Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM
  publication-title: Nature
– volume: 292
  start-page: 1121
  year: 1999
  end-page: 1136
  ident: bb0250
  article-title: Magnesium(II) and Zinc(II)-protoporphyrin IX's stabilize the lowest affinity state of human hemoglobin even more strongly than deoxyheme
  publication-title: J. Mol. Biol.
– volume: 101
  start-page: 14414
  year: 2004
  end-page: 14419
  ident: bb0195
  article-title: New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 111
  start-page: 12758
  year: 2014
  end-page: 12763
  ident: bb0200
  article-title: Experimental basis for a new allosteric model for multisubunit proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 292
  start-page: 18258
  year: 2017
  end-page: 18269
  ident: bb0390
  article-title: Direct observation of conformational population shifts in crystalline human hemoglobin
  publication-title: J. Biol. Chem.
– volume: 326
  start-page: 523
  year: 2003
  end-page: 532
  ident: bb0120
  article-title: The global allostery model of hemoglobin: an allosteric mechanism involving homotropic and heterotropic interactions
  publication-title: C. R. Biol.
– volume: 129
  start-page: 175
  year: 1979
  end-page: 220
  ident: bb0045
  article-title: Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism
  publication-title: J. Mol.Biol.
– volume: 109
  start-page: 1264
  year: 2015
  end-page: 1272
  ident: bb0110
  article-title: Experiments on hemoglobin in single crystals and silica gels distinguish among allosteric models
  publication-title: Biophys. J.
– volume: 32
  start-page: 2509
  year: 1993
  end-page: 2513
  ident: bb0355
  article-title: Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37α-Glu-Thr 38α) generates a 3
  publication-title: Biochemistry
– volume: 8
  start-page: 325
  year: 1975
  end-page: 420
  ident: bb0050
  article-title: Allosteric interpretation of haemoglobin properties
  publication-title: Q. Rev. Biophys.
– volume: 251
  start-page: 203
  year: 1995
  end-page: 209
  ident: bb0280
  article-title: Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels
  publication-title: J. Mol. Biol.
– volume: 82
  start-page: 3224
  year: 2002
  end-page: 3245
  ident: bb0490
  article-title: New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations
  publication-title: Biophys. J.
– volume: 37
  start-page: 14643
  year: 1998
  ident: 10.1016/j.bbagen.2019.03.021_bb0135
  article-title: CO binding and valency exchange in asymmetric Hb hybrids
  publication-title: Biochemistry
  doi: 10.1021/bi9805700
– volume: 255
  start-page: 54
  year: 1992
  ident: 10.1016/j.bbagen.2019.03.021_bb0100
  article-title: Molecular code for cooperativity in hemoglobin
  publication-title: Science
  doi: 10.1126/science.1553532
– volume: 10
  start-page: 2401
  year: 2001
  ident: 10.1016/j.bbagen.2019.03.021_bb0170
  article-title: High and low oxygen affinity conformations of T state hemoglobin
  publication-title: Protein Sci.
  doi: 10.1110/ps.20501
– volume: 6
  start-page: 484
  year: 1991
  ident: 10.1016/j.bbagen.2019.03.021_bb0165
  article-title: Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560060230
– volume: 492
  start-page: 50
  year: 2001
  ident: 10.1016/j.bbagen.2019.03.021_bb0275
  article-title: Direct observation of two distinct affinity conformations in the T state human deoxyhemoglobin
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02225-6
– volume: 258
  start-page: 393
  year: 1996
  ident: 10.1016/j.bbagen.2019.03.021_bb0495
  article-title: Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0257
– start-page: 1295
  year: 2008
  ident: 10.1016/j.bbagen.2019.03.021_bb0415
  article-title: Allostery and cooperativity revisited
  publication-title: Protein Sci.
  doi: 10.1110/ps.03259908
– volume: 109
  start-page: 1264
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.021_bb0110
  article-title: Experiments on hemoglobin in single crystals and silica gels distinguish among allosteric models
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.04.037
– volume: 55
  start-page: 1914
  year: 1999
  ident: 10.1016/j.bbagen.2019.03.021_bb0300
  article-title: Crystallization and x-ray diffraction data analysis of human deoxyhaemoglobin A0 fully stripped of any anions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444999009750
– volume: 32
  start-page: 8792
  year: 1993
  ident: 10.1016/j.bbagen.2019.03.021_bb0315
  article-title: Oxygen equilibrium properties of asymmetric nickel(II)-iron(II) hybrid hemoglobin
  publication-title: Biochemistry
  doi: 10.1021/bi00085a009
– volume: 24
  start-page: 509
  year: 1985
  ident: 10.1016/j.bbagen.2019.03.021_bb0485
  article-title: Reaction pathway for the quaternary structure change in hemoglobin
  publication-title: Biopolymers.
  doi: 10.1002/bip.360240307
– volume: 7
  start-page: 282
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.021_bb0380
  article-title: Size and shape controlled crystallization of hemoglobin for advanced crystallography
  publication-title: Crystals
  doi: 10.3390/cryst7090282
– volume: 3
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.021_bb0440
  article-title: Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine
  publication-title: eLife
  doi: 10.7554/eLife.03080
– volume: 61
  start-page: 566
  year: 2005
  ident: 10.1016/j.bbagen.2019.03.021_bb0220
  article-title: COHbC and COHbS crystallize in the R2 quaternary state at neutral pH in the presence of PEG 4000
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444905004622
– volume: 37
  start-page: 6221
  year: 1998
  ident: 10.1016/j.bbagen.2019.03.021_bb0130
  article-title: Asymmetric cyanomet valency hybrid hemoglobin, (α+CN-β+CN-)(αβ): the issue of valency exchange
  publication-title: Biochemistry
  doi: 10.1021/bi980134d
– volume: 101
  start-page: 1195
  year: 2004
  ident: 10.1016/j.bbagen.2019.03.021_bb0265
  article-title: Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0305836101
– volume: 7
  start-page: 10471
  year: 2016
  ident: 10.1016/j.bbagen.2019.03.021_bb0435
  article-title: Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10471
– volume: 91
  start-page: 11113
  year: 1994
  ident: 10.1016/j.bbagen.2019.03.021_bb0210
  article-title: The T-to-R transformation in hemoglobin: a reevaluation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.23.11113
– volume: 31
  start-page: 4111
  year: 1992
  ident: 10.1016/j.bbagen.2019.03.021_bb0350
  article-title: High-resolution X-ray study of deoxyhemoglobin Rothschild 37β Trp → Arg: a mutation that creates an intersubunit chloride-binding site
  publication-title: Biochemistry
  doi: 10.1021/bi00131a030
– volume: 504
  start-page: 107
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.021_bb0455
  article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy
  publication-title: Nature
  doi: 10.1038/nature12822
– volume: 142
  start-page: 63
  year: 1958
  ident: 10.1016/j.bbagen.2019.03.021_bb0330
  article-title: The carbon monoxide dissociation curve of human blood
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1958.sp005999
– volume: 8
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.021_bb0240
  article-title: Reaction trajectory revealed by a joint analysis of protein data bank
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077141
– volume: 15
  start-page: 1961
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.021_bb0285
  article-title: Circular dichroism spectroscopy of tertiary and quaternary conformations of human hemoglobin entrapped in wet silica gels
  publication-title: Protein Sci.
  doi: 10.1110/ps.062272306
– volume: 259
  start-page: 749
  year: 1996
  ident: 10.1016/j.bbagen.2019.03.021_bb0370
  article-title: The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0355
– volume: 134
  start-page: 3461
  year: 2012
  ident: 10.1016/j.bbagen.2019.03.021_bb0185
  article-title: Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210126j
– volume: 8
  start-page: 325
  year: 1975
  ident: 10.1016/j.bbagen.2019.03.021_bb0050
  article-title: Allosteric interpretation of haemoglobin properties
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583500001840
– volume: 348
  start-page: 1147
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.021_bb0465
  article-title: 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor
  publication-title: Science
  doi: 10.1126/science.aab1576
– volume: 351
  start-page: 871
  year: 2016
  ident: 10.1016/j.bbagen.2019.03.021_bb0470
  article-title: 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition
  publication-title: Science
  doi: 10.1126/science.aad7974
– volume: 10
  start-page: 1032
  year: 2019
  ident: 10.1016/j.bbagen.2019.03.021_bb0480
  article-title: High-resolution structure determination of sub-100kDa complexes using conventional cryo-EM
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08991-8
– volume: 30
  start-page: 8158
  year: 1991
  ident: 10.1016/j.bbagen.2019.03.021_bb0325
  article-title: Oxygen equilibrium properties of highly purified human adult hemoglobin cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate
  publication-title: Biochemistry
  doi: 10.1021/bi00247a010
– volume: 101
  start-page: 14414
  year: 2004
  ident: 10.1016/j.bbagen.2019.03.021_bb0195
  article-title: New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0405987101
– volume: 32
  start-page: 2888
  year: 1993
  ident: 10.1016/j.bbagen.2019.03.021_bb0160
  article-title: Oxygen binding by crystals of hemoglobin
  publication-title: Biochemistry
  doi: 10.1021/bi00062a021
– volume: 111
  start-page: 12758
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.021_bb0200
  article-title: Experimental basis for a new allosteric model for multisubunit proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1413566111
– volume: 37
  start-page: 211
  year: 1990
  ident: 10.1016/j.bbagen.2019.03.021_bb0150
  article-title: What the intermediate compounds in ligand binding to hemoglobin tell about the mechanism of cooperativity
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(90)88020-S
– volume: 272
  start-page: 32050
  year: 1997
  ident: 10.1016/j.bbagen.2019.03.021_bb0175
  article-title: T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate, and chloride
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.51.32050
– volume: 81
  start-page: 1100
  year: 2001
  ident: 10.1016/j.bbagen.2019.03.021_bb0340
  article-title: Structure of human methaemoglobin: the variation of a theme
  publication-title: Curr. Sci.
– volume: 136
  start-page: 10325
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.021_bb0190
  article-title: Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503328a
– volume: 351
  start-page: 416
  year: 1991
  ident: 10.1016/j.bbagen.2019.03.021_bb0155
  article-title: Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect
  publication-title: Nature
  doi: 10.1038/351416a0
– volume: 80
  start-page: 7055
  year: 1983
  ident: 10.1016/j.bbagen.2019.03.021_bb0085
  article-title: Structure-specific model of hemoglobin cooperativity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.80.23.7055
– volume: 256
  start-page: 655
  year: 1992
  ident: 10.1016/j.bbagen.2019.03.021_bb0270
  article-title: Protein solvation in allosteric regulation: a water effect on hemoglobin
  publication-title: Science
  doi: 10.1126/science.1585178
– volume: 292
  start-page: 1121
  year: 1999
  ident: 10.1016/j.bbagen.2019.03.021_bb0250
  article-title: Magnesium(II) and Zinc(II)-protoporphyrin IX's stabilize the lowest affinity state of human hemoglobin even more strongly than deoxyheme
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3124
– volume: 233
  start-page: 536
  year: 1993
  ident: 10.1016/j.bbagen.2019.03.021_bb0365
  article-title: A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1530
– volume: 525
  start-page: 212
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.021_bb0445
  article-title: An atomic structure of human g-secretase
  publication-title: Nature
  doi: 10.1038/nature14892
– volume: 32
  start-page: 2509
  year: 1993
  ident: 10.1016/j.bbagen.2019.03.021_bb0355
  article-title: Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37α-Glu-Thr 38α) generates a 310 → α bulge
  publication-title: Biochemistry
  doi: 10.1021/bi00061a007
– start-page: 1485
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.021_bb0425
  article-title: Structure of the yeast mitochondrial large ribosomal subunit
  publication-title: Science
  doi: 10.1126/science.1249410
– volume: 1814
  start-page: 797
  year: 2011
  ident: 10.1016/j.bbagen.2019.03.021_bb0075
  article-title: Hemoglobin-ligand binding: understanding Hb function and allostery on atomic level
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2011.02.013
– volume: 171
  start-page: 31
  year: 1983
  ident: 10.1016/j.bbagen.2019.03.021_bb0400
  article-title: Structure of human oxyhaemoglobin at 2.1 Å resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(83)80313-1
– volume: 31
  start-page: 11182
  year: 1992
  ident: 10.1016/j.bbagen.2019.03.021_bb0095
  article-title: G.K. Cooperative oxygen binding, subunit assembly, and sulfhydryl reaction kinetics of the eight cyanomet intermediate ligation states of human hemoglobin
  publication-title: Biochemistry
  doi: 10.1021/bi00160a032
– volume: 260
  start-page: 8272
  year: 1985
  ident: 10.1016/j.bbagen.2019.03.021_bb0360
  article-title: Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-Å resolution
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)39466-8
– volume: 228
  start-page: 726
  year: 1970
  ident: 10.1016/j.bbagen.2019.03.021_bb0040
  article-title: Stereochemistry of cooperative effects in haemoglobin
  publication-title: Nature
  doi: 10.1038/228726a0
– volume: 72
  start-page: 163
  year: 1972
  ident: 10.1016/j.bbagen.2019.03.021_bb0080
  article-title: A mathematical model for structure function relations in hemoglobin
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(72)90077-0
– volume: 5
  start-page: 789
  year: 2009
  ident: 10.1016/j.bbagen.2019.03.021_bb0410
  article-title: The role of dynamic conformational ensembles in biomolecular recognition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.232
– volume: 13
  start-page: 2163
  year: 1974
  ident: 10.1016/j.bbagen.2019.03.021_bb0290
  article-title: Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin
  publication-title: Biochemistry
  doi: 10.1021/bi00707a026
– volume: 108
  start-page: 5608
  year: 2011
  ident: 10.1016/j.bbagen.2019.03.021_bb0500
  article-title: Unsuspected pathway of the allosteric transition in hemoglobin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1011995108
– volume: 219
  start-page: 131
  year: 1968
  ident: 10.1016/j.bbagen.2019.03.021_bb0035
  article-title: Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: the atomic model
  publication-title: Nature
  doi: 10.1038/219131a0
– volume: 108A
  start-page: 627
  year: 1925
  ident: 10.1016/j.bbagen.2019.03.021_bb0010
  article-title: A critical study of the direct method of measuring the osmotic pressure of haemoglobin
  publication-title: Proc. R. Soc. London Ser. A
– volume: 326
  start-page: 523
  year: 2003
  ident: 10.1016/j.bbagen.2019.03.021_bb0120
  article-title: The global allostery model of hemoglobin: an allosteric mechanism involving homotropic and heterotropic interactions
  publication-title: C. R. Biol.
  doi: 10.1016/S1631-0691(03)00150-1
– volume: 44
  start-page: 8347
  year: 2005
  ident: 10.1016/j.bbagen.2019.03.021_bb0070
  article-title: The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin
  publication-title: Biochemistry
  doi: 10.1021/bi050412q
– volume: 82
  start-page: 3224
  year: 2002
  ident: 10.1016/j.bbagen.2019.03.021_bb0490
  article-title: New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75665-8
– volume: 36
  start-page: 4375
  year: 1997
  ident: 10.1016/j.bbagen.2019.03.021_bb0125
  article-title: Reexamination of the hyper thermodynamic stability of asymmetric cyanomet valency hybrid hemoglobin, (α+CN-β+CN-)(αβ): no preferentially populating asymmetric hybrid at equilibrium
  publication-title: Biochemistry
  doi: 10.1021/bi970009m
– volume: 192
  start-page: 323
  year: 1986
  ident: 10.1016/j.bbagen.2019.03.021_bb0305
  article-title: Oxygen equilibrium study and light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(86)90367-0
– volume: 267
  start-page: 17248
  year: 1992
  ident: 10.1016/j.bbagen.2019.03.021_bb0060
  article-title: A third quaternary structure of human hemoglobin A at 1.7-Å resolution
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)41919-9
– volume: 54
  start-page: 1365
  year: 1998
  ident: 10.1016/j.bbagen.2019.03.021_bb0140
  article-title: Identifying the conformational state of bi-liganded haemoglobin
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s000180050260
– volume: 27
  start-page: 1
  year: 1998
  ident: 10.1016/j.bbagen.2019.03.021_bb0215
  article-title: The stereochemical mechanism of the cooperative effects in hemoglobin revisited
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.27.1.1
– volume: 360
  start-page: 690
  year: 2006
  ident: 10.1016/j.bbagen.2019.03.021_bb0375
  article-title: 1.25 Å resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.05.036
– volume: 82
  start-page: 93
  year: 2000
  ident: 10.1016/j.bbagen.2019.03.021_bb0295
  article-title: Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/S0162-0134(00)00151-3
– volume: 286
  start-page: 33661
  year: 2011
  ident: 10.1016/j.bbagen.2019.03.021_bb0245
  article-title: Structures and oxygen affinities of crystalline human hemoglobin C (β6 Glu→Lys) in the R and R2 quaternary structures
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.266056
– volume: 57
  start-page: 433
  year: 2004
  ident: 10.1016/j.bbagen.2019.03.021_bb0405
  article-title: Is allostery an intrinsic property of all dynamic proteins?
  publication-title: Proteins
  doi: 10.1002/prot.20232
– volume: 6
  start-page: 751
  year: 2016
  ident: 10.1016/j.bbagen.2019.03.021_bb0530
  article-title: Characterization of group II chaperonins from an acidothermophilic archaeon Picrophilus torridus
  publication-title: FEBS Open Bio.
  doi: 10.1002/2211-5463.12090
– volume: 251
  start-page: 203
  year: 1995
  ident: 10.1016/j.bbagen.2019.03.021_bb0280
  article-title: Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0427
– volume: 88
  start-page: 1110
  year: 1991
  ident: 10.1016/j.bbagen.2019.03.021_bb0090
  article-title: Identification of the intermediate allosteric species in human hemoglobin reveals a molecular code for cooperative switching
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.88.4.1110
– volume: 526
  start-page: 224
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.021_bb0450
  article-title: Glycine receptor mechanism elucidated by electron cryo-microscopy
  publication-title: Nature
  doi: 10.1038/nature14853
– volume: 38
  start-page: 11741
  year: 1999
  ident: 10.1016/j.bbagen.2019.03.021_bb0260
  article-title: Novel allosteric conformation of human HB revealed by the hydration and anion effects on O2 binding
  publication-title: Biochemistry
  doi: 10.1021/bi9905361
– year: 2011
  ident: 10.1016/j.bbagen.2019.03.021_bb0255
  article-title: Functional dissection of the oxygen-binding intermediates of human hemoglobin
– volume: 4
  start-page: 6384
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.021_bb0520
  article-title: Real time ligand-induced motion mappings of AChBP and nAChR using x-ray single molecule tracking
  publication-title: Sci. Rep.
  doi: 10.1038/srep06384
– volume: 5
  start-page: 365
  year: 1966
  ident: 10.1016/j.bbagen.2019.03.021_bb0025
  article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits
  publication-title: Biochemistry
  doi: 10.1021/bi00865a047
– volume: 1807
  start-page: 1262
  year: 2011
  ident: 10.1016/j.bbagen.2019.03.021_bb0420
  article-title: Hemoglobin allostery: variations on the theme
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2011.04.004
– volume: 79
  start-page: 2861
  year: 2011
  ident: 10.1016/j.bbagen.2019.03.021_bb0235
  article-title: A survey of hemoglobin quaternary structures
  publication-title: Proteins
  doi: 10.1002/prot.23112
– volume: 292
  start-page: 18258
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.021_bb0390
  article-title: Direct observation of conformational population shifts in crystalline human hemoglobin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.781146
– volume: 71
  start-page: 1418
  year: 1974
  ident: 10.1016/j.bbagen.2019.03.021_bb0055
  article-title: The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.71.4.1418
– volume: 8
  year: 2013
  ident: 10.1016/j.bbagen.2019.03.021_bb0525
  article-title: ATP dependent rotational motion of group II chaperonin observed by x-ray single molecule tracking
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0064176
– volume: 28
  start-page: 117
  year: 1967
  ident: 10.1016/j.bbagen.2019.03.021_bb0030
  article-title: Structure and function of haemoglobin. 3. A three-dimensional Fourier synthesis of human deoxyhaemoglobin at 5.5 Å resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(67)80082-2
– volume: 16
  start-page: 401
  year: 1904
  ident: 10.1016/j.bbagen.2019.03.021_bb0005
  article-title: Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt
  publication-title: Skand. Arch. Physiol.
  doi: 10.1111/j.1748-1716.1904.tb01382.x
– volume: 98
  start-page: 149
  year: 2002
  ident: 10.1016/j.bbagen.2019.03.021_bb0105
  article-title: A tertiary two-state allosteric model for hemoglobin
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(02)00091-1
– volume: 12
  start-page: 88
  year: 1965
  ident: 10.1016/j.bbagen.2019.03.021_bb0020
  article-title: On the nature of allosteric transitions: a plausible model
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(65)80285-6
– volume: 129
  start-page: 175
  year: 1979
  ident: 10.1016/j.bbagen.2019.03.021_bb0045
  article-title: Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism
  publication-title: J. Mol.Biol.
  doi: 10.1016/0022-2836(79)90277-8
– volume: 15
  start-page: 1
  year: 1993
  ident: 10.1016/j.bbagen.2019.03.021_bb0205
  article-title: The quaternary structure of carbonmonoxy hemoglobin Ypsilanti
  publication-title: Proteins
  doi: 10.1002/prot.340150102
– volume: 192
  start-page: 331
  year: 1986
  ident: 10.1016/j.bbagen.2019.03.021_bb0310
  article-title: Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins: Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(86)90368-2
– volume: 34
  start-page: 4773
  year: 1995
  ident: 10.1016/j.bbagen.2019.03.021_bb0320
  article-title: Oxygen equilibrium properties of nickel(II)-iron(II) hybrid hemoglobins cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate: determination of the first two-step microscopic Adair constants for human hemoglobin
  publication-title: Biochemistry
  doi: 10.1021/bi00014a035
– year: 1982
  ident: 10.1016/j.bbagen.2019.03.021_bb0015
– volume: 164
  start-page: 747
  year: 2016
  ident: 10.1016/j.bbagen.2019.03.021_bb0460
  article-title: Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.055
– volume: 62
  start-page: 3843
  year: 2000
  ident: 10.1016/j.bbagen.2019.03.021_bb0510
  article-title: Tracking of individual nanocrystals using diffracted x rays
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.3843
– volume: 277
  start-page: 34508
  year: 2002
  ident: 10.1016/j.bbagen.2019.03.021_bb0115
  article-title: Global allostery model of hemoglobin: modulation of O2 affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M203135200
– volume: 132
  start-page: 67
  year: 2008
  ident: 10.1016/j.bbagen.2019.03.021_bb0515
  article-title: Global twisting motion of single molecular KcsA potassium channel upon gating
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.040
– volume: 520
  start-page: 567
  year: 2015
  ident: 10.1016/j.bbagen.2019.03.021_bb0430
  article-title: Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM
  publication-title: Nature
  doi: 10.1038/nature14275
– volume: 24
  start-page: 372
  year: 1999
  ident: 10.1016/j.bbagen.2019.03.021_bb0065
  article-title: What is the true structure of liganded haemoglobin?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01444-9
– volume: 175
  start-page: 159
  year: 1984
  ident: 10.1016/j.bbagen.2019.03.021_bb0345
  article-title: The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(84)90472-8
– volume: 2
  start-page: 54
  year: 1968
  ident: 10.1016/j.bbagen.2019.03.021_bb0395
  article-title: Preparation of haemoglobin crystals
  publication-title: J. Crystal Growth
  doi: 10.1016/0022-0248(68)90071-7
– volume: 31
  start-page: 6692
  year: 1992
  ident: 10.1016/j.bbagen.2019.03.021_bb0180
  article-title: The speed of intersubunit communication in proteins
  publication-title: Biochemistry
  doi: 10.1021/bi00144a008
– volume: 122
  start-page: 11488
  year: 2018
  ident: 10.1016/j.bbagen.2019.03.021_bb0230
  article-title: Dynamics of quaternary structure transitions in R-state carbonmonoxyhemoglobin unveiled in time-resolved X-ray scattering patterns following a temperature jump
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b07414
– volume: 100
  start-page: 517
  year: 2003
  ident: 10.1016/j.bbagen.2019.03.021_bb0225
  article-title: Quaternary structure of hemoglobin in solution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.232715799
– volume: 44
  start-page: 73
  year: 2001
  ident: 10.1016/j.bbagen.2019.03.021_bb0385
  article-title: Allosteric free energy changes at the α1β2 interface of human hemoglobin probed by proton exchange of Trpβ37
  publication-title: Proteins
  doi: 10.1002/prot.1074
– volume: 8
  start-page: 16099
  year: 2017
  ident: 10.1016/j.bbagen.2019.03.021_bb0475
  article-title: Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16099
– start-page: 243
  year: 2007
  ident: 10.1016/j.bbagen.2019.03.021_bb0505
  article-title: Single molecule FRET for the study on structural dynamics of biomolecules
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2006.09.041
– volume: 291
  start-page: 227
  year: 1999
  ident: 10.1016/j.bbagen.2019.03.021_bb0145
  article-title: Asymmetric [deoxy dimer/azido-met dimer] hemoglobin hybrids dissociate within seconds
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.2970
– volume: 136
  start-page: 5097
  year: 2014
  ident: 10.1016/j.bbagen.2019.03.021_bb0335
  article-title: Capturing the hemoglobin allosteric transition in a single crystal form
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500380e
SSID ssj0000595
Score 2.4378784
SecondaryResourceType review_article
Snippet Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129335
SubjectTerms Allosteric regulation
Allostery
Conformational change
Hemoglobin
humans
ligands
oxygen
Protein function
structure-activity relationships
X-ray crystallography
Title Allosteric transitions in hemoglobin revisited
URI https://dx.doi.org/10.1016/j.bbagen.2019.03.021
https://www.ncbi.nlm.nih.gov/pubmed/30951803
https://www.proquest.com/docview/2204696143
https://www.proquest.com/docview/2253201101
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KInoRra_6KBG8ps2-8jiWYqkKvWiht2U32UKlpKWmBy_-dmeyScVDLXgLYXZZvt3MfJOdByEPoY3BO84i30qtwUEJrK-lZj5YOxsYbTLmonxH4XAsnidy0iD9OhcGwyor3e90eqmtqzfdCs3ucjbrvuKlHtAJpCBYlAYzyoWI8JR3vn7CPIA-SHeTIHyUrtPnyhgvY-CjxSqo1JU6ZXSbedpGP0szNDghxxV_9HpuiaekYfMmOXAdJT-b5LBfN3A7I53efI4pHKDpvAJNkovO8ma5B0ILLAUCj6syvRx45zkZDx7f-kO_ao_gpyKkhQ9WhYciDngq4yDWCecpNUZO4xg4lMgCliZRAv6boZGmxurIMqplEvM0nNKMT_kF2csXub0iXgojkwCoiKCZCK024JTojGYSbBVMHLUIr1FRaVU7HFtYzFUdJPauHJYKsVQBV4Bli_ibUUtXO2OHfFQDrn6dAQXqfcfI-3p_FICMdx46t4v1h2IMfwAAB-F_yWB3DOBBMM-l29zNejlSUMD4-t9ruyFHDH30MtL7luwVq7W9AyJTmHZ5Uttkv_f0Mhx9A1sT7u4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi9SL-LY-I3iNzWazeRxLsbRWe1HB27KbbKFS0lLbg__emWxS8aAFbyHsLMu3m5lvsvMAuA1NjN5xFrlGKIUOimdcJZTvorUznlY6822U7yjsvwYPb-KtBt0qF4bCKkvdb3V6oa3LN-0SzfZ8Mmk_06Ue0gmiIFSUJtqCBlWnEnVodAbD_uhbIYui-QqNd0mgyqArwry0xu-WCqEyW-3UZ79ZqN8YaGGJenuwW1JIp2NXuQ81kx_Atm0q-XkAzW7Vw-0Q7jrTKWVxoLJzlmSVbICWM8kdHDSjaiD4uCgyzJF6HsFr7_6l23fLDgluGoRs6aJh4WEQezwVsRerhPOUaS3GcYw0Ksg8P02iBF04zSLFtFGR8ZkSSczTcMwyPubHUM9nuTkFJ0XJxEM2ErAsCI3S6JeojGUCzRVOHLWAV6jItCwfTl0sprKKE3uXFktJWEqPS8SyBe5aam7LZ2wYH1WAyx_HQKKG3yB5U-2PRJDp2kPlZrb6kL5P_wCQhvC_xlCDDKRCOM-J3dz1ejmxUMT47N9ru4Zm_-XpUT4ORsNz2PHJZS8Cvy-gvlyszCXymqW-Ks_tF5am8Z8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allosteric+transitions+in+hemoglobin+revisited&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Shibayama%2C+Naoya&rft.date=2020-02-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=2&rft.spage=129335&rft_id=info:doi/10.1016%2Fj.bbagen.2019.03.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2019_03_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon