Allosteric transitions in hemoglobin revisited
Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, ther...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 2; p. 129335 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes.
I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination.
New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin.
These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins.
•Despite much effort, structural basis for hemoglobin allostery has been controversial.•A unique single crystal can reveal the full allosteric pathway in hemoglobin.•Results clarify equilibria of multiple conformations including a third affinity state.•Conformational population shifts are critical to hemoglobin allostery.•Conformational population shifts are consistent with the concerted MWC model. |
---|---|
AbstractList | Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes.BACKGROUNDHuman hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes.I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination.SCOPE OF REVIEWI review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination.New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin.MAJOR CONCLUSIONSNew crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin.These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins.GENERAL SIGNIFICANCEThese approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins. Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes.I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination.New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O₂ affinity of hemoglobin.These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins. Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes. I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination. New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O affinity of hemoglobin. These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins. Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model without intermediates offers a simple qualitative description of the allosteric behavior of hemoglobin, as presented in textbooks. However, there is renewed interest in this topic due to recent experimental breakthroughs that show how hemoglobin actually undergoes conformational transitions in response to environmental changes. I review the current understanding of hemoglobin structure-function relationships revealed by recent discoveries. A unique single crystal, in which three protein molecules are allowed to express a whole range of quaternary structures, helped to reveal the detailed transition pathway including various intermediate forms. I also discuss the potential of single-molecule techniques that are currently under examination. New crystallographic approaches reveal that the hemoglobin allosteric transition involves population shifts in multiple quaternary conformers rather than a simple two-state switch, and that coexisting individual conformers may have disproportionate effects on the apparent O2 affinity of hemoglobin. These approaches provide a further level of complexity on the textbook statement of hemoglobin allostery, highlighting the relevance of conformational distributions in controlling the function and regulation of allosteric proteins. •Despite much effort, structural basis for hemoglobin allostery has been controversial.•A unique single crystal can reveal the full allosteric pathway in hemoglobin.•Results clarify equilibria of multiple conformations including a third affinity state.•Conformational population shifts are critical to hemoglobin allostery.•Conformational population shifts are consistent with the concerted MWC model. |
ArticleNumber | 129335 |
Author | Shibayama, Naoya |
Author_xml | – sequence: 1 givenname: Naoya surname: Shibayama fullname: Shibayama, Naoya email: shibayam@jichi.ac.jp organization: Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30951803$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkM9LwzAUx4Mouk3_A5EdvbS-16Rt6kEY4i8QvOg5pOnrzOgaTbqB_70Zmx48qLkkkM_3-3ifMdvvXU-MnSKkCFhcLNK61nPq0wywSoGnkOEeG6Ess0QCFPtsBBxEIrDIj9g4hAXEk1f5ITviUOUogY9YOus6Fwby1kwHr_tgB-v6MLX99JWWbt65Oj49rW38oeaYHbS6C3Syuyfs5fbm-fo-eXy6e7iePSZGFDgkJUpeiDjA5BKkrjg3WNd5KyViJhrITFVWUkCNpcaadEkZ6ryS3BQtNrzlE3a-7X3z7n1FYVBLGwx1ne7JrYLKspzHvaOIf6AgiqpAwSN6tkNX9ZIa9ebtUvsP9aUjAmILGO9C8NR-IwhqY10t1Na62lhXwFW0HmOXP2LGDnojMiq13V_hq22Yos-1Ja-CsdQbaqwnM6jG2d8LPgGaXZy8 |
CitedBy_id | crossref_primary_10_1021_acsnano_3c01709 crossref_primary_10_1016_j_ijbiomac_2024_131457 crossref_primary_10_1016_j_mam_2021_101050 crossref_primary_10_1016_j_scitotenv_2024_177700 crossref_primary_10_1371_journal_pone_0278417 crossref_primary_10_1107_S2052252521009386 crossref_primary_10_1016_j_abb_2019_108121 crossref_primary_10_1016_j_heliyon_2021_e08464 crossref_primary_10_1016_j_bpj_2021_05_014 crossref_primary_10_1016_j_mam_2021_101022 crossref_primary_10_1021_acs_jpclett_1c00915 crossref_primary_10_3390_biology10060453 crossref_primary_10_1021_acs_jcim_1c00315 crossref_primary_10_1089_ham_2023_0044 crossref_primary_10_1021_acs_jpcb_1c07520 crossref_primary_10_1021_acs_jcim_2c00727 crossref_primary_10_3390_oxygen2040038 crossref_primary_10_1021_acs_molpharmaceut_3c00289 crossref_primary_10_1021_acs_jpcb_3c07176 crossref_primary_10_1016_j_biochi_2021_08_006 crossref_primary_10_1038_s41598_019_55331_3 crossref_primary_10_2142_biophysico_bppb_v19_0019 crossref_primary_10_1080_07391102_2023_2245043 crossref_primary_10_2142_biophysico_bppb_v19_0035 crossref_primary_10_26508_lsa_202402925 |
Cites_doi | 10.1021/bi9805700 10.1126/science.1553532 10.1110/ps.20501 10.1002/pro.5560060230 10.1016/S0014-5793(01)02225-6 10.1006/jmbi.1996.0257 10.1110/ps.03259908 10.1016/j.bpj.2015.04.037 10.1107/S0907444999009750 10.1021/bi00085a009 10.1002/bip.360240307 10.3390/cryst7090282 10.7554/eLife.03080 10.1107/S0907444905004622 10.1021/bi980134d 10.1073/pnas.0305836101 10.1038/ncomms10471 10.1073/pnas.91.23.11113 10.1021/bi00131a030 10.1038/nature12822 10.1113/jphysiol.1958.sp005999 10.1371/journal.pone.0077141 10.1110/ps.062272306 10.1006/jmbi.1996.0355 10.1021/ja210126j 10.1017/S0033583500001840 10.1126/science.aab1576 10.1126/science.aad7974 10.1038/s41467-019-08991-8 10.1021/bi00247a010 10.1073/pnas.0405987101 10.1021/bi00062a021 10.1073/pnas.1413566111 10.1016/0301-4622(90)88020-S 10.1074/jbc.272.51.32050 10.1021/ja503328a 10.1038/351416a0 10.1073/pnas.80.23.7055 10.1126/science.1585178 10.1006/jmbi.1999.3124 10.1006/jmbi.1993.1530 10.1038/nature14892 10.1021/bi00061a007 10.1126/science.1249410 10.1016/j.bbapap.2011.02.013 10.1016/S0022-2836(83)80313-1 10.1021/bi00160a032 10.1016/S0021-9258(17)39466-8 10.1038/228726a0 10.1016/0022-2836(72)90077-0 10.1038/nchembio.232 10.1021/bi00707a026 10.1073/pnas.1011995108 10.1038/219131a0 10.1016/S1631-0691(03)00150-1 10.1021/bi050412q 10.1016/S0006-3495(02)75665-8 10.1021/bi970009m 10.1016/0022-2836(86)90367-0 10.1016/S0021-9258(18)41919-9 10.1007/s000180050260 10.1146/annurev.biophys.27.1.1 10.1016/j.jmb.2006.05.036 10.1016/S0162-0134(00)00151-3 10.1074/jbc.M111.266056 10.1002/prot.20232 10.1002/2211-5463.12090 10.1006/jmbi.1995.0427 10.1073/pnas.88.4.1110 10.1038/nature14853 10.1021/bi9905361 10.1038/srep06384 10.1021/bi00865a047 10.1016/j.bbabio.2011.04.004 10.1002/prot.23112 10.1074/jbc.M117.781146 10.1073/pnas.71.4.1418 10.1371/journal.pone.0064176 10.1016/S0022-2836(67)80082-2 10.1111/j.1748-1716.1904.tb01382.x 10.1016/S0301-4622(02)00091-1 10.1016/S0022-2836(65)80285-6 10.1016/0022-2836(79)90277-8 10.1002/prot.340150102 10.1016/0022-2836(86)90368-2 10.1021/bi00014a035 10.1016/j.cell.2015.12.055 10.1103/PhysRevE.62.3843 10.1074/jbc.M203135200 10.1016/j.cell.2007.11.040 10.1038/nature14275 10.1016/S0968-0004(99)01444-9 10.1016/0022-2836(84)90472-8 10.1016/0022-0248(68)90071-7 10.1021/bi00144a008 10.1021/acs.jpcb.8b07414 10.1073/pnas.232715799 10.1002/prot.1074 10.1038/ncomms16099 10.1016/j.biosystems.2006.09.041 10.1006/jmbi.1999.2970 10.1021/ja500380e |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2019.03.021 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 30951803 10_1016_j_bbagen_2019_03_021 S0304416519300777 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-718364803c5808a933c1bb5f881124d02c979840b17a1bea7e21a5983c6f1d3f3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 01:52:58 EDT 2025 Fri Jul 11 04:57:41 EDT 2025 Wed Feb 19 02:30:41 EST 2025 Thu Apr 24 22:57:19 EDT 2025 Tue Jul 01 00:22:12 EDT 2025 Fri Feb 23 02:50:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | XL[α(Fe)β(Ni)]2 HL nmax FL Conformational change PDB X-ray crystallography IHP R XL[α(Ni)β(Fe)]2 T Protein function Hemoglobin Pi R2 Allostery RMSD P50 BZF XL[α(Fe-CO)β(Ni)][α(Ni)β(Fe-CO)] XL[α(Fe)β(Ni)][α(Ni)β(Fe)] RR2 PEG Allosteric regulation BPG XL[α(Fe)β(Fe)][α(Ni)β(Ni)] TR Ki |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-718364803c5808a933c1bb5f881124d02c979840b17a1bea7e21a5983c6f1d3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 30951803 |
PQID | 2204696143 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2253201101 proquest_miscellaneous_2204696143 pubmed_primary_30951803 crossref_primary_10_1016_j_bbagen_2019_03_021 crossref_citationtrail_10_1016_j_bbagen_2019_03_021 elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_03_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-Feb 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Park, Yokoyama, Shibayama, Shiro, Tame (bb0375) 2006; 360 Herzik, Wu, Lander (bb0480) 2019; 10 Bohr, Hasselbalch, Krogh (bb0005) 1904; 16 Mouawad, Perahia (bb0495) 1996; 258 Shibayama, Morimoto, Kitagawa (bb0310) 1986; 192 Matthies, Dalmas, Borgnia, Dominik, Merk, Rao, Reddy, Islam, Bartesaghi, Perozo, Subramaniam (bb0460) 2016; 164 Perutz, Muirhead, Cox, Goaman (bb0035) 1968; 219 Lukin, Kontaxis, Simplaceanu, Yuan, Bax, Ho (bb0225) 2003; 100 Cho, Schotte, Stadnytskyi, DiChiara, Henning, Anfinrud (bb0230) 2018; 122 Daugherty, Shea, Johnson, LiCata, Turner, Ackers (bb0090) 1991; 88 Kiger, Marden (bb0145) 1999; 291 Mozzarelli, Rivetti, Rossi, Henry, Eaton (bb0155) 1991; 351 Yamamoto, Tsuchida, Noguchi, Ogawa, Sekiguchi, Sasaki, Yohda (bb0530) 2016; 6 Kiger, Poyart, Marden (bb0135) 1998; 37 Rivetti, Mozzarelli, Rossi, Henry, Eaton (bb0160) 1993; 32 Shibayama, Morimoto, Saigo (bb0130) 1998; 37 Szabo, Karplus (bb0080) 1972; 72 Ronda, Bruno, Viappiani, Abbruzzetti, Mozzarelli, Lowe, Bettati (bb0285) 2006; 15 Kavanaugh, Rogers, Case, Arnone (bb0350) 1992; 31 Du, Lü, Wu, Cheng, Gouaux (bb0450) 2015; 526 Shimizu, Iwamoto, Konno, Nihei, Sasaki, Oiki (bb0515) 2008; 132 Koshland, Nemethy, Filmer (bb0025) 1966; 5 Li, Nagai, Nagai (bb0295) 2000; 82 Tame (bb0065) 1999; 24 Patskovska, Patskovsky, Almo, Hirsch (bb0220) 2005; 61 Gunasekaran, Ma, Nussinov (bb0405) 2004; 57 Shibayama, Morimoto, Saigo (bb0125) 1997; 36 Cui, Karplus (bb0415) 2008 Shibayama (bb0255) 2011 Shibayama, Ohki, Tame, Park (bb0390) 2017; 292 Marden, Kiger, Poyart, Edelstein (bb0140) 1998; 54 Viappiani, Abbruzzetti, Ronda, Bettati, Henry, Mozzarelli, Eaton (bb0200) 2014; 111 Fischer, Neumann, Konevega, Bock, Ficner, Rodnina, Stark (bb0430) 2015; 520 Seixas, de Azevedo, Colombo (bb0300) 1999; 55 Perutz (bb0395) 1968; 2 Safo, Abraham (bb0070) 2005; 44 Jones, Ansari, Henry, Christoph, Hofrichter, Eaton (bb0180) 1992; 31 Amunts, Brown, Bai, Llácer, Hussain, Emsley, Long, Murshudov, Scheres, Ramakrishnan (bb0425) 2014 Liao, Cao, Julius, Cheng (bb0455) 2013; 504 Janin, Wodak (bb0205) 1993; 15 Perutz, Wilkinson, Paoli, Dodson (bb0215) 1998; 27 Adair (bb0010) 1925; 108A Henry, Mozzarelli, Viappiani, Abbruzzetti, Bettati, Ronda, Bruno, Eaton (bb0110) 2015; 109 Biswal, Vijayan (bb0340) 2001; 81 Doyle (bb0095) 1992; 31 Shibayama, Saigo (bb0280) 1995; 251 Tame, Wilson, Weber (bb0370) 1996; 259 Fischer, Olsen, Nam, Karplus (bb0500) 2011; 108 Sasaki, Suzuki, Yagi, Adachi, Ishibashi, Suda, Toyota, Yanagihara (bb0510) 2000; 62 Sekiguchi, Nakagawa, Moriya, Makabe, Ichiyanagi, Nozawa, Sato, Adachi, Kuwajima, Yohda, Sasaki (bb0525) 2013; 8 Colombo, Rau, Parsegian (bb0270) 1992; 256 Mouawad, Perahia, Robert, Guilbert (bb0490) 2002; 82 Shibayama, Imai, Hirata, Hiraiwa, Morimoto, Saigo (bb0325) 1991; 30 Dey, Chakrabarti, Janin (bb0235) 2011; 79 Fermi, Perutz, Shaanan, Fourme (bb0345) 1984; 175 Banerjee, Bartesaghi, Merk, Rao, Bulfer, Yan, Green, Mroczkowski, Neitz, Wipf, Falconieri, Deshaies, Milne, Huryn, Arkin, Subramaniam (bb0470) 2016; 351 Shibayama, Sugiyama, Park (bb0245) 2011; 286 Kavanaugh, Moo-Penn, Arnone (bb0355) 1993; 32 Padlan, Love (bb0360) 1985; 260 Henry, Bettati, Hofrichter, Eaton (bb0105) 2002; 98 Shibayama, Morimoto, Miyazaki (bb0305) 1986; 192 Sato-Tomita, Shibayama (bb0380) 2017; 7 Bellelli, Brunori (bb0420) 2011; 1807 Wong, Bai, Brown, Fernandez, Hanssen, Condron, Tan, Baum, Scheres (bb0440) 2014; 3 Yonetani, Park, Tsuneshige, Imai, Kanaori (bb0115) 2002; 277 Colombo, Seixas (bb0260) 1999; 38 Safo, Ahmed, Ghatge, Boyiri (bb0075) 2011; 1814 Bartesaghi, Merk, Banerjee, Matthies, Wu, Milne, Subramaniam (bb0465) 2015; 348 Jones, Monza, Balakrishnan, Blouin, Mak, Zhu, Kincaid, Guallar, Spiro (bb0190) 2014; 136 Shaanan (bb0400) 1983; 171 Imai (bb0015) 1982 Baldwin, Chothia (bb0045) 1979; 129 Shibayama, Saigo (bb0275) 2001; 492 Yonetani, Tsuneshige (bb0120) 2003; 326 Shibayama, Imai, Morimoto, Saigo (bb0315) 1993; 32 Mihailescu, Fronticelli, Russu (bb0385) 2001; 44 Shimizu (bb0265) 2004; 101 Srinivasan, Rose (bb0210) 1994; 91 Perutz, Ladner, Simon, Ho (bb0290) 1974; 13 Silva, Rogers, Arnone (bb0060) 1992; 267 Viappiani, Bettati, Bruno, Ronda, Abbruzzetti, Mozzarelli, Eaton (bb0195) 2004; 101 Monod, Wyman, Changeux (bb0020) 1965; 12 Sugawa, Arai, Iwane, Ishii, Yanagida (bb0505) 2007 Boehr, Nussinov, Wright (bb0410) 2009; 5 Jomaa, Boehringer, Leibundgut, Ban (bb0435) 2016; 7 Minton, Imai (bb0055) 1974; 71 Shulman, Hopfield, Ogawa (bb0050) 1975; 8 Miyazaki, Morimoto, Yun, Park, Nakagawa, Minagawa, Shibayama (bb0250) 1999; 292 Joels, Pugh (bb0330) 1958; 142 Ackers, Doyle, Myers, Daugherty (bb0100) 1992; 255 Muirhead, Cox, Mazzarella, Perutz (bb0030) 1967; 28 Bai, Yan, Yang, Lu, Ma, Sun, Zhou, Scheres, Shi (bb0445) 2015; 525 Perrella, Colosimo, Benazzi, Ripamonti, Rossi-Bernardi (bb0150) 1990; 37 Shibayama, Imai, Morimoto, Saigo (bb0320) 1995; 34 Sekiguchi, Suzuki, Nishino, Kobayashi, Shimoyama, Cai, Nagata, Okada, Ichiyanagi, Ohta, Yagi, Miyazawa, Kubo, Sasaki (bb0520) 2015; 4 Perutz, Fermi, Poyart, Pagnier, Kister (bb0365) 1993; 233 Bruno, Bonaccio, Bettati, Rivetti, Viappiani, Abbruzzetti, Mozzarelli (bb0170) 2001; 10 Mozzarelli, Rivetti, Rossi, Eaton, Henry (bb0165) 1991; 6 Janin, Wodak (bb0485) 1985; 24 Lee, Karplus (bb0085) 1983; 80 Khoshouei, Radjainia, Baumeister, Danev (bb0475) 2017; 8 Jones, Balakrishnan, Spiro (bb0185) 2012; 134 Shibayama, Sugiyama, Tame, Park (bb0335) 2014; 136 Perutz (bb0040) 1970; 228 Ren (bb0240) 2013; 8 Bettati, Mozzarelli (bb0175) 1997; 272 Shibayama (10.1016/j.bbagen.2019.03.021_bb0130) 1998; 37 Lee (10.1016/j.bbagen.2019.03.021_bb0085) 1983; 80 Liao (10.1016/j.bbagen.2019.03.021_bb0455) 2013; 504 Kavanaugh (10.1016/j.bbagen.2019.03.021_bb0350) 1992; 31 Mouawad (10.1016/j.bbagen.2019.03.021_bb0490) 2002; 82 Bettati (10.1016/j.bbagen.2019.03.021_bb0175) 1997; 272 Mihailescu (10.1016/j.bbagen.2019.03.021_bb0385) 2001; 44 Fischer (10.1016/j.bbagen.2019.03.021_bb0430) 2015; 520 Jones (10.1016/j.bbagen.2019.03.021_bb0190) 2014; 136 Sato-Tomita (10.1016/j.bbagen.2019.03.021_bb0380) 2017; 7 Amunts (10.1016/j.bbagen.2019.03.021_bb0425) 2014 Muirhead (10.1016/j.bbagen.2019.03.021_bb0030) 1967; 28 Kiger (10.1016/j.bbagen.2019.03.021_bb0135) 1998; 37 Janin (10.1016/j.bbagen.2019.03.021_bb0205) 1993; 15 Henry (10.1016/j.bbagen.2019.03.021_bb0105) 2002; 98 Yonetani (10.1016/j.bbagen.2019.03.021_bb0115) 2002; 277 Shibayama (10.1016/j.bbagen.2019.03.021_bb0280) 1995; 251 Shimizu (10.1016/j.bbagen.2019.03.021_bb0515) 2008; 132 Shibayama (10.1016/j.bbagen.2019.03.021_bb0390) 2017; 292 Patskovska (10.1016/j.bbagen.2019.03.021_bb0220) 2005; 61 Imai (10.1016/j.bbagen.2019.03.021_bb0015) 1982 Lukin (10.1016/j.bbagen.2019.03.021_bb0225) 2003; 100 Park (10.1016/j.bbagen.2019.03.021_bb0375) 2006; 360 Colombo (10.1016/j.bbagen.2019.03.021_bb0260) 1999; 38 Bruno (10.1016/j.bbagen.2019.03.021_bb0170) 2001; 10 Ronda (10.1016/j.bbagen.2019.03.021_bb0285) 2006; 15 Shibayama (10.1016/j.bbagen.2019.03.021_bb0320) 1995; 34 Daugherty (10.1016/j.bbagen.2019.03.021_bb0090) 1991; 88 Mozzarelli (10.1016/j.bbagen.2019.03.021_bb0165) 1991; 6 Banerjee (10.1016/j.bbagen.2019.03.021_bb0470) 2016; 351 Yamamoto (10.1016/j.bbagen.2019.03.021_bb0530) 2016; 6 Kavanaugh (10.1016/j.bbagen.2019.03.021_bb0355) 1993; 32 Adair (10.1016/j.bbagen.2019.03.021_bb0010) 1925; 108A Cho (10.1016/j.bbagen.2019.03.021_bb0230) 2018; 122 Safo (10.1016/j.bbagen.2019.03.021_bb0070) 2005; 44 Baldwin (10.1016/j.bbagen.2019.03.021_bb0045) 1979; 129 Shibayama (10.1016/j.bbagen.2019.03.021_bb0125) 1997; 36 Colombo (10.1016/j.bbagen.2019.03.021_bb0270) 1992; 256 Viappiani (10.1016/j.bbagen.2019.03.021_bb0200) 2014; 111 Koshland (10.1016/j.bbagen.2019.03.021_bb0025) 1966; 5 Perutz (10.1016/j.bbagen.2019.03.021_bb0215) 1998; 27 Shibayama (10.1016/j.bbagen.2019.03.021_bb0305) 1986; 192 Shibayama (10.1016/j.bbagen.2019.03.021_bb0335) 2014; 136 Perutz (10.1016/j.bbagen.2019.03.021_bb0040) 1970; 228 Dey (10.1016/j.bbagen.2019.03.021_bb0235) 2011; 79 Sekiguchi (10.1016/j.bbagen.2019.03.021_bb0520) 2015; 4 Boehr (10.1016/j.bbagen.2019.03.021_bb0410) 2009; 5 Minton (10.1016/j.bbagen.2019.03.021_bb0055) 1974; 71 Shibayama (10.1016/j.bbagen.2019.03.021_bb0245) 2011; 286 Tame (10.1016/j.bbagen.2019.03.021_bb0065) 1999; 24 Khoshouei (10.1016/j.bbagen.2019.03.021_bb0475) 2017; 8 Doyle (10.1016/j.bbagen.2019.03.021_bb0095) 1992; 31 Szabo (10.1016/j.bbagen.2019.03.021_bb0080) 1972; 72 Perutz (10.1016/j.bbagen.2019.03.021_bb0365) 1993; 233 Bellelli (10.1016/j.bbagen.2019.03.021_bb0420) 2011; 1807 Sasaki (10.1016/j.bbagen.2019.03.021_bb0510) 2000; 62 Ackers (10.1016/j.bbagen.2019.03.021_bb0100) 1992; 255 Perutz (10.1016/j.bbagen.2019.03.021_bb0290) 1974; 13 Safo (10.1016/j.bbagen.2019.03.021_bb0075) 2011; 1814 Mozzarelli (10.1016/j.bbagen.2019.03.021_bb0155) 1991; 351 Jones (10.1016/j.bbagen.2019.03.021_bb0180) 1992; 31 Biswal (10.1016/j.bbagen.2019.03.021_bb0340) 2001; 81 Perrella (10.1016/j.bbagen.2019.03.021_bb0150) 1990; 37 Sekiguchi (10.1016/j.bbagen.2019.03.021_bb0525) 2013; 8 Marden (10.1016/j.bbagen.2019.03.021_bb0140) 1998; 54 Gunasekaran (10.1016/j.bbagen.2019.03.021_bb0405) 2004; 57 Li (10.1016/j.bbagen.2019.03.021_bb0295) 2000; 82 Srinivasan (10.1016/j.bbagen.2019.03.021_bb0210) 1994; 91 Henry (10.1016/j.bbagen.2019.03.021_bb0110) 2015; 109 Jones (10.1016/j.bbagen.2019.03.021_bb0185) 2012; 134 Shibayama (10.1016/j.bbagen.2019.03.021_bb0315) 1993; 32 Shimizu (10.1016/j.bbagen.2019.03.021_bb0265) 2004; 101 Ren (10.1016/j.bbagen.2019.03.021_bb0240) 2013; 8 Padlan (10.1016/j.bbagen.2019.03.021_bb0360) 1985; 260 Shaanan (10.1016/j.bbagen.2019.03.021_bb0400) 1983; 171 Perutz (10.1016/j.bbagen.2019.03.021_bb0035) 1968; 219 Shibayama (10.1016/j.bbagen.2019.03.021_bb0325) 1991; 30 Matthies (10.1016/j.bbagen.2019.03.021_bb0460) 2016; 164 Miyazaki (10.1016/j.bbagen.2019.03.021_bb0250) 1999; 292 Rivetti (10.1016/j.bbagen.2019.03.021_bb0160) 1993; 32 Joels (10.1016/j.bbagen.2019.03.021_bb0330) 1958; 142 Fermi (10.1016/j.bbagen.2019.03.021_bb0345) 1984; 175 Yonetani (10.1016/j.bbagen.2019.03.021_bb0120) 2003; 326 Bohr (10.1016/j.bbagen.2019.03.021_bb0005) 1904; 16 Jomaa (10.1016/j.bbagen.2019.03.021_bb0435) 2016; 7 Kiger (10.1016/j.bbagen.2019.03.021_bb0145) 1999; 291 Du (10.1016/j.bbagen.2019.03.021_bb0450) 2015; 526 Shibayama (10.1016/j.bbagen.2019.03.021_bb0310) 1986; 192 Viappiani (10.1016/j.bbagen.2019.03.021_bb0195) 2004; 101 Cui (10.1016/j.bbagen.2019.03.021_bb0415) 2008 Mouawad (10.1016/j.bbagen.2019.03.021_bb0495) 1996; 258 Seixas (10.1016/j.bbagen.2019.03.021_bb0300) 1999; 55 Herzik (10.1016/j.bbagen.2019.03.021_bb0480) 2019; 10 Tame (10.1016/j.bbagen.2019.03.021_bb0370) 1996; 259 Shulman (10.1016/j.bbagen.2019.03.021_bb0050) 1975; 8 Janin (10.1016/j.bbagen.2019.03.021_bb0485) 1985; 24 Monod (10.1016/j.bbagen.2019.03.021_bb0020) 1965; 12 Bartesaghi (10.1016/j.bbagen.2019.03.021_bb0465) 2015; 348 Shibayama (10.1016/j.bbagen.2019.03.021_bb0275) 2001; 492 Bai (10.1016/j.bbagen.2019.03.021_bb0445) 2015; 525 Shibayama (10.1016/j.bbagen.2019.03.021_bb0255) 2011 Wong (10.1016/j.bbagen.2019.03.021_bb0440) 2014; 3 Fischer (10.1016/j.bbagen.2019.03.021_bb0500) 2011; 108 Silva (10.1016/j.bbagen.2019.03.021_bb0060) 1992; 267 Sugawa (10.1016/j.bbagen.2019.03.021_bb0505) 2007 Perutz (10.1016/j.bbagen.2019.03.021_bb0395) 1968; 2 |
References_xml | – volume: 5 start-page: 365 year: 1966 end-page: 385 ident: bb0025 article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits publication-title: Biochemistry – volume: 28 start-page: 117 year: 1967 end-page: 156 ident: bb0030 article-title: Structure and function of haemoglobin. 3. A three-dimensional Fourier synthesis of human deoxyhaemoglobin at 5.5 Å resolution publication-title: J. Mol. Biol. – volume: 192 start-page: 323 year: 1986 end-page: 329 ident: bb0305 article-title: Oxygen equilibrium study and light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins publication-title: J. Mol. Biol. – volume: 88 start-page: 1110 year: 1991 end-page: 1114 ident: bb0090 article-title: Identification of the intermediate allosteric species in human hemoglobin reveals a molecular code for cooperative switching publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2011 ident: bb0255 article-title: Functional dissection of the oxygen-binding intermediates of human hemoglobin publication-title: Hemoglobin: Recent Developments and Topics – start-page: 1295 year: 2008 end-page: 1307 ident: bb0415 article-title: Allostery and cooperativity revisited publication-title: Protein Sci. – volume: 492 start-page: 50 year: 2001 end-page: 53 ident: bb0275 article-title: Direct observation of two distinct affinity conformations in the T state human deoxyhemoglobin publication-title: FEBS Lett. – volume: 3 year: 2014 ident: bb0440 article-title: Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine publication-title: eLife – volume: 348 start-page: 1147 year: 2015 end-page: 1151 ident: bb0465 article-title: 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor publication-title: Science – volume: 108A start-page: 627 year: 1925 end-page: 637 ident: bb0010 article-title: A critical study of the direct method of measuring the osmotic pressure of haemoglobin publication-title: Proc. R. Soc. London Ser. A – volume: 82 start-page: 93 year: 2000 end-page: 101 ident: bb0295 article-title: Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin publication-title: J. Inorg. Biochem. – volume: 1814 start-page: 797 year: 2011 end-page: 809 ident: bb0075 article-title: Hemoglobin-ligand binding: understanding Hb function and allostery on atomic level publication-title: Biochim. Biophys. Acta – volume: 36 start-page: 4375 year: 1997 end-page: 4381 ident: bb0125 article-title: Reexamination of the hyper thermodynamic stability of asymmetric cyanomet valency hybrid hemoglobin, (α publication-title: Biochemistry – volume: 37 start-page: 14643 year: 1998 end-page: 14650 ident: bb0135 article-title: CO binding and valency exchange in asymmetric Hb hybrids publication-title: Biochemistry – volume: 37 start-page: 6221 year: 1998 end-page: 6228 ident: bb0130 article-title: Asymmetric cyanomet valency hybrid hemoglobin, (α publication-title: Biochemistry – volume: 277 start-page: 34508 year: 2002 end-page: 34520 ident: bb0115 article-title: Global allostery model of hemoglobin: modulation of O publication-title: J. Biol. Chem. – volume: 16 start-page: 401 year: 1904 end-page: 412 ident: bb0005 article-title: Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt publication-title: Skand. Arch. Physiol. – volume: 34 start-page: 4773 year: 1995 end-page: 4780 ident: bb0320 article-title: Oxygen equilibrium properties of nickel(II)-iron(II) hybrid hemoglobins cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate: determination of the first two-step microscopic Adair constants for human hemoglobin publication-title: Biochemistry – volume: 233 start-page: 536 year: 1993 end-page: 545 ident: bb0365 article-title: A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin publication-title: J. Mol. Biol. – volume: 6 start-page: 751 year: 2016 end-page: 764 ident: bb0530 article-title: Characterization of group II chaperonins from an acidothermophilic archaeon publication-title: FEBS Open Bio. – volume: 122 start-page: 11488 year: 2018 end-page: 11496 ident: bb0230 article-title: Dynamics of quaternary structure transitions in R-state carbonmonoxyhemoglobin unveiled in time-resolved X-ray scattering patterns following a temperature jump publication-title: J. Phys. Chem. B – volume: 5 start-page: 789 year: 2009 end-page: 796 ident: bb0410 article-title: The role of dynamic conformational ensembles in biomolecular recognition publication-title: Nat. Chem. Biol. – volume: 55 start-page: 1914 year: 1999 end-page: 1916 ident: bb0300 article-title: Crystallization and x-ray diffraction data analysis of human deoxyhaemoglobin A publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 2 start-page: 54 year: 1968 end-page: 56 ident: bb0395 article-title: Preparation of haemoglobin crystals publication-title: J. Crystal Growth – volume: 24 start-page: 509 year: 1985 end-page: 526 ident: bb0485 article-title: Reaction pathway for the quaternary structure change in hemoglobin publication-title: Biopolymers. – volume: 44 start-page: 8347 year: 2005 end-page: 8359 ident: bb0070 article-title: The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin publication-title: Biochemistry – volume: 228 start-page: 726 year: 1970 end-page: 739 ident: bb0040 article-title: Stereochemistry of cooperative effects in haemoglobin publication-title: Nature – volume: 79 start-page: 2861 year: 2011 end-page: 2870 ident: bb0235 article-title: A survey of hemoglobin quaternary structures publication-title: Proteins – volume: 15 start-page: 1 year: 1993 end-page: 4 ident: bb0205 article-title: The quaternary structure of carbonmonoxy hemoglobin Ypsilanti publication-title: Proteins – volume: 31 start-page: 11182 year: 1992 end-page: 11195 ident: bb0095 article-title: G.K. Cooperative oxygen binding, subunit assembly, and sulfhydryl reaction kinetics of the eight cyanomet intermediate ligation states of human hemoglobin publication-title: Biochemistry – volume: 10 start-page: 1032 year: 2019 ident: bb0480 article-title: High-resolution structure determination of sub-100 publication-title: Nat. Commun. – start-page: 243 year: 2007 end-page: 250 ident: bb0505 article-title: Single molecule FRET for the study on structural dynamics of biomolecules publication-title: Biosystems – volume: 136 start-page: 10325 year: 2014 end-page: 10339 ident: bb0190 article-title: Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 11113 year: 1994 end-page: 11117 ident: bb0210 article-title: The T-to-R transformation in hemoglobin: a reevaluation publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 1982 ident: bb0015 article-title: Allosteric Effects in Haemoglobin – volume: 164 start-page: 747 year: 2016 end-page: 756 ident: bb0460 article-title: Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating publication-title: Cell – volume: 24 start-page: 372 year: 1999 end-page: 377 ident: bb0065 article-title: What is the true structure of liganded haemoglobin? publication-title: Trends Biochem. Sci. – volume: 13 start-page: 2163 year: 1974 end-page: 2173 ident: bb0290 article-title: Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin publication-title: Biochemistry – volume: 175 start-page: 159 year: 1984 end-page: 174 ident: bb0345 article-title: The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution publication-title: J. Mol. Biol. – volume: 10 start-page: 2401 year: 2001 end-page: 2407 ident: bb0170 article-title: High and low oxygen affinity conformations of T state hemoglobin publication-title: Protein Sci. – volume: 44 start-page: 73 year: 2001 end-page: 78 ident: bb0385 article-title: Allosteric free energy changes at the α1β2 interface of human hemoglobin probed by proton exchange of Trpβ37 publication-title: Proteins – volume: 38 start-page: 11741 year: 1999 end-page: 11748 ident: bb0260 article-title: Novel allosteric conformation of human HB revealed by the hydration and anion effects on O publication-title: Biochemistry – volume: 30 start-page: 8158 year: 1991 end-page: 8165 ident: bb0325 article-title: Oxygen equilibrium properties of highly purified human adult hemoglobin cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate publication-title: Biochemistry – volume: 259 start-page: 749 year: 1996 end-page: 760 ident: bb0370 article-title: The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms publication-title: J. Mol. Biol. – volume: 4 start-page: 6384 year: 2015 ident: bb0520 article-title: Real time ligand-induced motion mappings of AChBP and nAChR using x-ray single molecule tracking publication-title: Sci. Rep. – volume: 258 start-page: 393 year: 1996 end-page: 410 ident: bb0495 article-title: Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures publication-title: J. Mol. Biol. – volume: 142 start-page: 63 year: 1958 end-page: 77 ident: bb0330 article-title: The carbon monoxide dissociation curve of human blood publication-title: J. Physiol. – volume: 61 start-page: 566 year: 2005 end-page: 573 ident: bb0220 article-title: COHbC and COHbS crystallize in the R2 quaternary state at neutral pH in the presence of PEG 4000 publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 57 start-page: 433 year: 2004 end-page: 443 ident: bb0405 article-title: Is allostery an intrinsic property of all dynamic proteins? publication-title: Proteins – volume: 71 start-page: 1418 year: 1974 end-page: 1421 ident: bb0055 article-title: The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 255 start-page: 54 year: 1992 end-page: 63 ident: bb0100 article-title: Molecular code for cooperativity in hemoglobin publication-title: Science – volume: 272 start-page: 32050 year: 1997 end-page: 32055 ident: bb0175 article-title: T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate, and chloride publication-title: J. Biol. Chem. – volume: 31 start-page: 4111 year: 1992 end-page: 4121 ident: bb0350 article-title: High-resolution X-ray study of deoxyhemoglobin Rothschild 37β Trp → Arg: a mutation that creates an intersubunit chloride-binding site publication-title: Biochemistry – volume: 54 start-page: 1365 year: 1998 end-page: 1384 ident: bb0140 article-title: Identifying the conformational state of bi-liganded haemoglobin publication-title: Cell. Mol. Life Sci. – volume: 136 start-page: 5097 year: 2014 end-page: 5105 ident: bb0335 article-title: Capturing the hemoglobin allosteric transition in a single crystal form publication-title: J. Am. Chem. Soc. – volume: 504 start-page: 107 year: 2013 end-page: 112 ident: bb0455 article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy publication-title: Nature – volume: 81 start-page: 1100 year: 2001 end-page: 1105 ident: bb0340 article-title: Structure of human methaemoglobin: the variation of a theme publication-title: Curr. Sci. – volume: 12 start-page: 88 year: 1965 end-page: 118 ident: bb0020 article-title: On the nature of allosteric transitions: a plausible model publication-title: J. Mol. Biol. – volume: 219 start-page: 131 year: 1968 end-page: 139 ident: bb0035 article-title: Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: the atomic model publication-title: Nature – volume: 62 start-page: 3843 year: 2000 end-page: 3847 ident: bb0510 article-title: Tracking of individual nanocrystals using diffracted x rays publication-title: Phys. Rev. E – volume: 32 start-page: 8792 year: 1993 end-page: 8798 ident: bb0315 article-title: Oxygen equilibrium properties of asymmetric nickel(II)-iron(II) hybrid hemoglobin publication-title: Biochemistry – volume: 171 start-page: 31 year: 1983 end-page: 59 ident: bb0400 article-title: Structure of human oxyhaemoglobin at 2.1 Å resolution publication-title: J. Mol. Biol. – volume: 351 start-page: 871 year: 2016 end-page: 875 ident: bb0470 article-title: 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition publication-title: Science – volume: 32 start-page: 2888 year: 1993 end-page: 2906 ident: bb0160 article-title: Oxygen binding by crystals of hemoglobin publication-title: Biochemistry – volume: 37 start-page: 211 year: 1990 end-page: 223 ident: bb0150 article-title: What the intermediate compounds in ligand binding to hemoglobin tell about the mechanism of cooperativity publication-title: Biophys. Chem. – volume: 108 start-page: 5608 year: 2011 end-page: 5613 ident: bb0500 article-title: Unsuspected pathway of the allosteric transition in hemoglobin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 80 start-page: 7055 year: 1983 end-page: 7059 ident: bb0085 article-title: Structure-specific model of hemoglobin cooperativity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 267 start-page: 17248 year: 1992 end-page: 17256 ident: bb0060 article-title: A third quaternary structure of human hemoglobin A at 1.7-Å resolution publication-title: J. Biol. Chem. – volume: 15 start-page: 1961 year: 2006 end-page: 1967 ident: bb0285 article-title: Circular dichroism spectroscopy of tertiary and quaternary conformations of human hemoglobin entrapped in wet silica gels publication-title: Protein Sci. – volume: 31 start-page: 6692 year: 1992 end-page: 6702 ident: bb0180 article-title: The speed of intersubunit communication in proteins publication-title: Biochemistry – volume: 101 start-page: 1195 year: 2004 end-page: 1199 ident: bb0265 article-title: Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 286 start-page: 33661 year: 2011 end-page: 33668 ident: bb0245 article-title: Structures and oxygen affinities of crystalline human hemoglobin C (β6 Glu→Lys) in the R and R2 quaternary structures publication-title: J. Biol. Chem. – volume: 100 start-page: 517 year: 2003 end-page: 520 ident: bb0225 article-title: Quaternary structure of hemoglobin in solution publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 1485 year: 2014 end-page: 1489 ident: bb0425 article-title: Structure of the yeast mitochondrial large ribosomal subunit publication-title: Science – volume: 72 start-page: 163 year: 1972 end-page: 197 ident: bb0080 article-title: A mathematical model for structure function relations in hemoglobin publication-title: J. Mol. Biol. – volume: 8 year: 2013 ident: bb0240 article-title: Reaction trajectory revealed by a joint analysis of protein data bank publication-title: PLoS One – volume: 525 start-page: 212 year: 2015 end-page: 217 ident: bb0445 article-title: An atomic structure of human g-secretase publication-title: Nature – volume: 1807 start-page: 1262 year: 2011 end-page: 1272 ident: bb0420 article-title: Hemoglobin allostery: variations on the theme publication-title: Biochim. Biophys. Acta – volume: 256 start-page: 655 year: 1992 end-page: 659 ident: bb0270 article-title: Protein solvation in allosteric regulation: a water effect on hemoglobin publication-title: Science – volume: 27 start-page: 1 year: 1998 end-page: 34 ident: bb0215 article-title: The stereochemical mechanism of the cooperative effects in hemoglobin revisited publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 260 start-page: 8272 year: 1985 end-page: 8279 ident: bb0360 article-title: Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-Å resolution publication-title: J. Biol. Chem. – volume: 291 start-page: 227 year: 1999 end-page: 236 ident: bb0145 article-title: Asymmetric [deoxy dimer/azido-met dimer] hemoglobin hybrids dissociate within seconds publication-title: J. Mol. Biol. – volume: 134 start-page: 3461 year: 2012 end-page: 3471 ident: bb0185 article-title: Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study publication-title: J. Am. Chem. Soc. – volume: 360 start-page: 690 year: 2006 end-page: 701 ident: bb0375 article-title: 1.25 Å resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms publication-title: J. Mol. Biol. – volume: 7 start-page: 10471 year: 2016 ident: bb0435 article-title: Structures of the publication-title: Nat. Commun. – volume: 7 start-page: 282 year: 2017 ident: bb0380 article-title: Size and shape controlled crystallization of hemoglobin for advanced crystallography publication-title: Crystals – volume: 132 start-page: 67 year: 2008 end-page: 78 ident: bb0515 article-title: Global twisting motion of single molecular KcsA potassium channel upon gating publication-title: Cell – volume: 6 start-page: 484 year: 1991 end-page: 489 ident: bb0165 article-title: Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals publication-title: Protein Sci. – volume: 351 start-page: 416 year: 1991 end-page: 419 ident: bb0155 article-title: Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect publication-title: Nature – volume: 98 start-page: 149 year: 2002 end-page: 164 ident: bb0105 article-title: A tertiary two-state allosteric model for hemoglobin publication-title: Biophys. Chem. – volume: 192 start-page: 331 year: 1986 end-page: 336 ident: bb0310 article-title: Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins: Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme publication-title: J. Mol. Biol. – volume: 526 start-page: 224 year: 2015 end-page: 229 ident: bb0450 article-title: Glycine receptor mechanism elucidated by electron cryo-microscopy publication-title: Nature – volume: 8 year: 2013 ident: bb0525 article-title: ATP dependent rotational motion of group II chaperonin observed by x-ray single molecule tracking publication-title: PLoS One – volume: 8 start-page: 16099 year: 2017 ident: bb0475 article-title: Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate publication-title: Nat. Commun. – volume: 520 start-page: 567 year: 2015 end-page: 570 ident: bb0430 article-title: Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM publication-title: Nature – volume: 292 start-page: 1121 year: 1999 end-page: 1136 ident: bb0250 article-title: Magnesium(II) and Zinc(II)-protoporphyrin IX's stabilize the lowest affinity state of human hemoglobin even more strongly than deoxyheme publication-title: J. Mol. Biol. – volume: 101 start-page: 14414 year: 2004 end-page: 14419 ident: bb0195 article-title: New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 111 start-page: 12758 year: 2014 end-page: 12763 ident: bb0200 article-title: Experimental basis for a new allosteric model for multisubunit proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 292 start-page: 18258 year: 2017 end-page: 18269 ident: bb0390 article-title: Direct observation of conformational population shifts in crystalline human hemoglobin publication-title: J. Biol. Chem. – volume: 326 start-page: 523 year: 2003 end-page: 532 ident: bb0120 article-title: The global allostery model of hemoglobin: an allosteric mechanism involving homotropic and heterotropic interactions publication-title: C. R. Biol. – volume: 129 start-page: 175 year: 1979 end-page: 220 ident: bb0045 article-title: Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism publication-title: J. Mol.Biol. – volume: 109 start-page: 1264 year: 2015 end-page: 1272 ident: bb0110 article-title: Experiments on hemoglobin in single crystals and silica gels distinguish among allosteric models publication-title: Biophys. J. – volume: 32 start-page: 2509 year: 1993 end-page: 2513 ident: bb0355 article-title: Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37α-Glu-Thr 38α) generates a 3 publication-title: Biochemistry – volume: 8 start-page: 325 year: 1975 end-page: 420 ident: bb0050 article-title: Allosteric interpretation of haemoglobin properties publication-title: Q. Rev. Biophys. – volume: 251 start-page: 203 year: 1995 end-page: 209 ident: bb0280 article-title: Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels publication-title: J. Mol. Biol. – volume: 82 start-page: 3224 year: 2002 end-page: 3245 ident: bb0490 article-title: New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations publication-title: Biophys. J. – volume: 37 start-page: 14643 year: 1998 ident: 10.1016/j.bbagen.2019.03.021_bb0135 article-title: CO binding and valency exchange in asymmetric Hb hybrids publication-title: Biochemistry doi: 10.1021/bi9805700 – volume: 255 start-page: 54 year: 1992 ident: 10.1016/j.bbagen.2019.03.021_bb0100 article-title: Molecular code for cooperativity in hemoglobin publication-title: Science doi: 10.1126/science.1553532 – volume: 10 start-page: 2401 year: 2001 ident: 10.1016/j.bbagen.2019.03.021_bb0170 article-title: High and low oxygen affinity conformations of T state hemoglobin publication-title: Protein Sci. doi: 10.1110/ps.20501 – volume: 6 start-page: 484 year: 1991 ident: 10.1016/j.bbagen.2019.03.021_bb0165 article-title: Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals publication-title: Protein Sci. doi: 10.1002/pro.5560060230 – volume: 492 start-page: 50 year: 2001 ident: 10.1016/j.bbagen.2019.03.021_bb0275 article-title: Direct observation of two distinct affinity conformations in the T state human deoxyhemoglobin publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02225-6 – volume: 258 start-page: 393 year: 1996 ident: 10.1016/j.bbagen.2019.03.021_bb0495 article-title: Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0257 – start-page: 1295 year: 2008 ident: 10.1016/j.bbagen.2019.03.021_bb0415 article-title: Allostery and cooperativity revisited publication-title: Protein Sci. doi: 10.1110/ps.03259908 – volume: 109 start-page: 1264 year: 2015 ident: 10.1016/j.bbagen.2019.03.021_bb0110 article-title: Experiments on hemoglobin in single crystals and silica gels distinguish among allosteric models publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.04.037 – volume: 55 start-page: 1914 year: 1999 ident: 10.1016/j.bbagen.2019.03.021_bb0300 article-title: Crystallization and x-ray diffraction data analysis of human deoxyhaemoglobin A0 fully stripped of any anions publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444999009750 – volume: 32 start-page: 8792 year: 1993 ident: 10.1016/j.bbagen.2019.03.021_bb0315 article-title: Oxygen equilibrium properties of asymmetric nickel(II)-iron(II) hybrid hemoglobin publication-title: Biochemistry doi: 10.1021/bi00085a009 – volume: 24 start-page: 509 year: 1985 ident: 10.1016/j.bbagen.2019.03.021_bb0485 article-title: Reaction pathway for the quaternary structure change in hemoglobin publication-title: Biopolymers. doi: 10.1002/bip.360240307 – volume: 7 start-page: 282 year: 2017 ident: 10.1016/j.bbagen.2019.03.021_bb0380 article-title: Size and shape controlled crystallization of hemoglobin for advanced crystallography publication-title: Crystals doi: 10.3390/cryst7090282 – volume: 3 year: 2014 ident: 10.1016/j.bbagen.2019.03.021_bb0440 article-title: Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine publication-title: eLife doi: 10.7554/eLife.03080 – volume: 61 start-page: 566 year: 2005 ident: 10.1016/j.bbagen.2019.03.021_bb0220 article-title: COHbC and COHbS crystallize in the R2 quaternary state at neutral pH in the presence of PEG 4000 publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444905004622 – volume: 37 start-page: 6221 year: 1998 ident: 10.1016/j.bbagen.2019.03.021_bb0130 article-title: Asymmetric cyanomet valency hybrid hemoglobin, (α+CN-β+CN-)(αβ): the issue of valency exchange publication-title: Biochemistry doi: 10.1021/bi980134d – volume: 101 start-page: 1195 year: 2004 ident: 10.1016/j.bbagen.2019.03.021_bb0265 article-title: Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0305836101 – volume: 7 start-page: 10471 year: 2016 ident: 10.1016/j.bbagen.2019.03.021_bb0435 article-title: Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon publication-title: Nat. Commun. doi: 10.1038/ncomms10471 – volume: 91 start-page: 11113 year: 1994 ident: 10.1016/j.bbagen.2019.03.021_bb0210 article-title: The T-to-R transformation in hemoglobin: a reevaluation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.23.11113 – volume: 31 start-page: 4111 year: 1992 ident: 10.1016/j.bbagen.2019.03.021_bb0350 article-title: High-resolution X-ray study of deoxyhemoglobin Rothschild 37β Trp → Arg: a mutation that creates an intersubunit chloride-binding site publication-title: Biochemistry doi: 10.1021/bi00131a030 – volume: 504 start-page: 107 year: 2013 ident: 10.1016/j.bbagen.2019.03.021_bb0455 article-title: Structure of the TRPV1 ion channel determined by electron cryo-microscopy publication-title: Nature doi: 10.1038/nature12822 – volume: 142 start-page: 63 year: 1958 ident: 10.1016/j.bbagen.2019.03.021_bb0330 article-title: The carbon monoxide dissociation curve of human blood publication-title: J. Physiol. doi: 10.1113/jphysiol.1958.sp005999 – volume: 8 year: 2013 ident: 10.1016/j.bbagen.2019.03.021_bb0240 article-title: Reaction trajectory revealed by a joint analysis of protein data bank publication-title: PLoS One doi: 10.1371/journal.pone.0077141 – volume: 15 start-page: 1961 year: 2006 ident: 10.1016/j.bbagen.2019.03.021_bb0285 article-title: Circular dichroism spectroscopy of tertiary and quaternary conformations of human hemoglobin entrapped in wet silica gels publication-title: Protein Sci. doi: 10.1110/ps.062272306 – volume: 259 start-page: 749 year: 1996 ident: 10.1016/j.bbagen.2019.03.021_bb0370 article-title: The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0355 – volume: 134 start-page: 3461 year: 2012 ident: 10.1016/j.bbagen.2019.03.021_bb0185 article-title: Heme reactivity is uncoupled from quaternary structure in gel-encapsulated hemoglobin: a resonance Raman spectroscopic study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210126j – volume: 8 start-page: 325 year: 1975 ident: 10.1016/j.bbagen.2019.03.021_bb0050 article-title: Allosteric interpretation of haemoglobin properties publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583500001840 – volume: 348 start-page: 1147 year: 2015 ident: 10.1016/j.bbagen.2019.03.021_bb0465 article-title: 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor publication-title: Science doi: 10.1126/science.aab1576 – volume: 351 start-page: 871 year: 2016 ident: 10.1016/j.bbagen.2019.03.021_bb0470 article-title: 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition publication-title: Science doi: 10.1126/science.aad7974 – volume: 10 start-page: 1032 year: 2019 ident: 10.1016/j.bbagen.2019.03.021_bb0480 article-title: High-resolution structure determination of sub-100kDa complexes using conventional cryo-EM publication-title: Nat. Commun. doi: 10.1038/s41467-019-08991-8 – volume: 30 start-page: 8158 year: 1991 ident: 10.1016/j.bbagen.2019.03.021_bb0325 article-title: Oxygen equilibrium properties of highly purified human adult hemoglobin cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate publication-title: Biochemistry doi: 10.1021/bi00247a010 – volume: 101 start-page: 14414 year: 2004 ident: 10.1016/j.bbagen.2019.03.021_bb0195 article-title: New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0405987101 – volume: 32 start-page: 2888 year: 1993 ident: 10.1016/j.bbagen.2019.03.021_bb0160 article-title: Oxygen binding by crystals of hemoglobin publication-title: Biochemistry doi: 10.1021/bi00062a021 – volume: 111 start-page: 12758 year: 2014 ident: 10.1016/j.bbagen.2019.03.021_bb0200 article-title: Experimental basis for a new allosteric model for multisubunit proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1413566111 – volume: 37 start-page: 211 year: 1990 ident: 10.1016/j.bbagen.2019.03.021_bb0150 article-title: What the intermediate compounds in ligand binding to hemoglobin tell about the mechanism of cooperativity publication-title: Biophys. Chem. doi: 10.1016/0301-4622(90)88020-S – volume: 272 start-page: 32050 year: 1997 ident: 10.1016/j.bbagen.2019.03.021_bb0175 article-title: T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate, and chloride publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.51.32050 – volume: 81 start-page: 1100 year: 2001 ident: 10.1016/j.bbagen.2019.03.021_bb0340 article-title: Structure of human methaemoglobin: the variation of a theme publication-title: Curr. Sci. – volume: 136 start-page: 10325 year: 2014 ident: 10.1016/j.bbagen.2019.03.021_bb0190 article-title: Differential control of heme reactivity in alpha and beta subunits of hemoglobin: a combined Raman spectroscopic and computational study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503328a – volume: 351 start-page: 416 year: 1991 ident: 10.1016/j.bbagen.2019.03.021_bb0155 article-title: Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect publication-title: Nature doi: 10.1038/351416a0 – volume: 80 start-page: 7055 year: 1983 ident: 10.1016/j.bbagen.2019.03.021_bb0085 article-title: Structure-specific model of hemoglobin cooperativity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.80.23.7055 – volume: 256 start-page: 655 year: 1992 ident: 10.1016/j.bbagen.2019.03.021_bb0270 article-title: Protein solvation in allosteric regulation: a water effect on hemoglobin publication-title: Science doi: 10.1126/science.1585178 – volume: 292 start-page: 1121 year: 1999 ident: 10.1016/j.bbagen.2019.03.021_bb0250 article-title: Magnesium(II) and Zinc(II)-protoporphyrin IX's stabilize the lowest affinity state of human hemoglobin even more strongly than deoxyheme publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3124 – volume: 233 start-page: 536 year: 1993 ident: 10.1016/j.bbagen.2019.03.021_bb0365 article-title: A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1530 – volume: 525 start-page: 212 year: 2015 ident: 10.1016/j.bbagen.2019.03.021_bb0445 article-title: An atomic structure of human g-secretase publication-title: Nature doi: 10.1038/nature14892 – volume: 32 start-page: 2509 year: 1993 ident: 10.1016/j.bbagen.2019.03.021_bb0355 article-title: Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37α-Glu-Thr 38α) generates a 310 → α bulge publication-title: Biochemistry doi: 10.1021/bi00061a007 – start-page: 1485 year: 2014 ident: 10.1016/j.bbagen.2019.03.021_bb0425 article-title: Structure of the yeast mitochondrial large ribosomal subunit publication-title: Science doi: 10.1126/science.1249410 – volume: 1814 start-page: 797 year: 2011 ident: 10.1016/j.bbagen.2019.03.021_bb0075 article-title: Hemoglobin-ligand binding: understanding Hb function and allostery on atomic level publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2011.02.013 – volume: 171 start-page: 31 year: 1983 ident: 10.1016/j.bbagen.2019.03.021_bb0400 article-title: Structure of human oxyhaemoglobin at 2.1 Å resolution publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(83)80313-1 – volume: 31 start-page: 11182 year: 1992 ident: 10.1016/j.bbagen.2019.03.021_bb0095 article-title: G.K. Cooperative oxygen binding, subunit assembly, and sulfhydryl reaction kinetics of the eight cyanomet intermediate ligation states of human hemoglobin publication-title: Biochemistry doi: 10.1021/bi00160a032 – volume: 260 start-page: 8272 year: 1985 ident: 10.1016/j.bbagen.2019.03.021_bb0360 article-title: Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-Å resolution publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)39466-8 – volume: 228 start-page: 726 year: 1970 ident: 10.1016/j.bbagen.2019.03.021_bb0040 article-title: Stereochemistry of cooperative effects in haemoglobin publication-title: Nature doi: 10.1038/228726a0 – volume: 72 start-page: 163 year: 1972 ident: 10.1016/j.bbagen.2019.03.021_bb0080 article-title: A mathematical model for structure function relations in hemoglobin publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(72)90077-0 – volume: 5 start-page: 789 year: 2009 ident: 10.1016/j.bbagen.2019.03.021_bb0410 article-title: The role of dynamic conformational ensembles in biomolecular recognition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.232 – volume: 13 start-page: 2163 year: 1974 ident: 10.1016/j.bbagen.2019.03.021_bb0290 article-title: Influence of globin structure on the state of the heme. I. Human deoxyhemoglobin publication-title: Biochemistry doi: 10.1021/bi00707a026 – volume: 108 start-page: 5608 year: 2011 ident: 10.1016/j.bbagen.2019.03.021_bb0500 article-title: Unsuspected pathway of the allosteric transition in hemoglobin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1011995108 – volume: 219 start-page: 131 year: 1968 ident: 10.1016/j.bbagen.2019.03.021_bb0035 article-title: Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: the atomic model publication-title: Nature doi: 10.1038/219131a0 – volume: 108A start-page: 627 year: 1925 ident: 10.1016/j.bbagen.2019.03.021_bb0010 article-title: A critical study of the direct method of measuring the osmotic pressure of haemoglobin publication-title: Proc. R. Soc. London Ser. A – volume: 326 start-page: 523 year: 2003 ident: 10.1016/j.bbagen.2019.03.021_bb0120 article-title: The global allostery model of hemoglobin: an allosteric mechanism involving homotropic and heterotropic interactions publication-title: C. R. Biol. doi: 10.1016/S1631-0691(03)00150-1 – volume: 44 start-page: 8347 year: 2005 ident: 10.1016/j.bbagen.2019.03.021_bb0070 article-title: The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin publication-title: Biochemistry doi: 10.1021/bi050412q – volume: 82 start-page: 3224 year: 2002 ident: 10.1016/j.bbagen.2019.03.021_bb0490 article-title: New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75665-8 – volume: 36 start-page: 4375 year: 1997 ident: 10.1016/j.bbagen.2019.03.021_bb0125 article-title: Reexamination of the hyper thermodynamic stability of asymmetric cyanomet valency hybrid hemoglobin, (α+CN-β+CN-)(αβ): no preferentially populating asymmetric hybrid at equilibrium publication-title: Biochemistry doi: 10.1021/bi970009m – volume: 192 start-page: 323 year: 1986 ident: 10.1016/j.bbagen.2019.03.021_bb0305 article-title: Oxygen equilibrium study and light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(86)90367-0 – volume: 267 start-page: 17248 year: 1992 ident: 10.1016/j.bbagen.2019.03.021_bb0060 article-title: A third quaternary structure of human hemoglobin A at 1.7-Å resolution publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)41919-9 – volume: 54 start-page: 1365 year: 1998 ident: 10.1016/j.bbagen.2019.03.021_bb0140 article-title: Identifying the conformational state of bi-liganded haemoglobin publication-title: Cell. Mol. Life Sci. doi: 10.1007/s000180050260 – volume: 27 start-page: 1 year: 1998 ident: 10.1016/j.bbagen.2019.03.021_bb0215 article-title: The stereochemical mechanism of the cooperative effects in hemoglobin revisited publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.27.1.1 – volume: 360 start-page: 690 year: 2006 ident: 10.1016/j.bbagen.2019.03.021_bb0375 article-title: 1.25 Å resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.05.036 – volume: 82 start-page: 93 year: 2000 ident: 10.1016/j.bbagen.2019.03.021_bb0295 article-title: Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin publication-title: J. Inorg. Biochem. doi: 10.1016/S0162-0134(00)00151-3 – volume: 286 start-page: 33661 year: 2011 ident: 10.1016/j.bbagen.2019.03.021_bb0245 article-title: Structures and oxygen affinities of crystalline human hemoglobin C (β6 Glu→Lys) in the R and R2 quaternary structures publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.266056 – volume: 57 start-page: 433 year: 2004 ident: 10.1016/j.bbagen.2019.03.021_bb0405 article-title: Is allostery an intrinsic property of all dynamic proteins? publication-title: Proteins doi: 10.1002/prot.20232 – volume: 6 start-page: 751 year: 2016 ident: 10.1016/j.bbagen.2019.03.021_bb0530 article-title: Characterization of group II chaperonins from an acidothermophilic archaeon Picrophilus torridus publication-title: FEBS Open Bio. doi: 10.1002/2211-5463.12090 – volume: 251 start-page: 203 year: 1995 ident: 10.1016/j.bbagen.2019.03.021_bb0280 article-title: Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0427 – volume: 88 start-page: 1110 year: 1991 ident: 10.1016/j.bbagen.2019.03.021_bb0090 article-title: Identification of the intermediate allosteric species in human hemoglobin reveals a molecular code for cooperative switching publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.88.4.1110 – volume: 526 start-page: 224 year: 2015 ident: 10.1016/j.bbagen.2019.03.021_bb0450 article-title: Glycine receptor mechanism elucidated by electron cryo-microscopy publication-title: Nature doi: 10.1038/nature14853 – volume: 38 start-page: 11741 year: 1999 ident: 10.1016/j.bbagen.2019.03.021_bb0260 article-title: Novel allosteric conformation of human HB revealed by the hydration and anion effects on O2 binding publication-title: Biochemistry doi: 10.1021/bi9905361 – year: 2011 ident: 10.1016/j.bbagen.2019.03.021_bb0255 article-title: Functional dissection of the oxygen-binding intermediates of human hemoglobin – volume: 4 start-page: 6384 year: 2015 ident: 10.1016/j.bbagen.2019.03.021_bb0520 article-title: Real time ligand-induced motion mappings of AChBP and nAChR using x-ray single molecule tracking publication-title: Sci. Rep. doi: 10.1038/srep06384 – volume: 5 start-page: 365 year: 1966 ident: 10.1016/j.bbagen.2019.03.021_bb0025 article-title: Comparison of experimental binding data and theoretical models in proteins containing subunits publication-title: Biochemistry doi: 10.1021/bi00865a047 – volume: 1807 start-page: 1262 year: 2011 ident: 10.1016/j.bbagen.2019.03.021_bb0420 article-title: Hemoglobin allostery: variations on the theme publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2011.04.004 – volume: 79 start-page: 2861 year: 2011 ident: 10.1016/j.bbagen.2019.03.021_bb0235 article-title: A survey of hemoglobin quaternary structures publication-title: Proteins doi: 10.1002/prot.23112 – volume: 292 start-page: 18258 year: 2017 ident: 10.1016/j.bbagen.2019.03.021_bb0390 article-title: Direct observation of conformational population shifts in crystalline human hemoglobin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.781146 – volume: 71 start-page: 1418 year: 1974 ident: 10.1016/j.bbagen.2019.03.021_bb0055 article-title: The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.71.4.1418 – volume: 8 year: 2013 ident: 10.1016/j.bbagen.2019.03.021_bb0525 article-title: ATP dependent rotational motion of group II chaperonin observed by x-ray single molecule tracking publication-title: PLoS One doi: 10.1371/journal.pone.0064176 – volume: 28 start-page: 117 year: 1967 ident: 10.1016/j.bbagen.2019.03.021_bb0030 article-title: Structure and function of haemoglobin. 3. A three-dimensional Fourier synthesis of human deoxyhaemoglobin at 5.5 Å resolution publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(67)80082-2 – volume: 16 start-page: 401 year: 1904 ident: 10.1016/j.bbagen.2019.03.021_bb0005 article-title: Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt publication-title: Skand. Arch. Physiol. doi: 10.1111/j.1748-1716.1904.tb01382.x – volume: 98 start-page: 149 year: 2002 ident: 10.1016/j.bbagen.2019.03.021_bb0105 article-title: A tertiary two-state allosteric model for hemoglobin publication-title: Biophys. Chem. doi: 10.1016/S0301-4622(02)00091-1 – volume: 12 start-page: 88 year: 1965 ident: 10.1016/j.bbagen.2019.03.021_bb0020 article-title: On the nature of allosteric transitions: a plausible model publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(65)80285-6 – volume: 129 start-page: 175 year: 1979 ident: 10.1016/j.bbagen.2019.03.021_bb0045 article-title: Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism publication-title: J. Mol.Biol. doi: 10.1016/0022-2836(79)90277-8 – volume: 15 start-page: 1 year: 1993 ident: 10.1016/j.bbagen.2019.03.021_bb0205 article-title: The quaternary structure of carbonmonoxy hemoglobin Ypsilanti publication-title: Proteins doi: 10.1002/prot.340150102 – volume: 192 start-page: 331 year: 1986 ident: 10.1016/j.bbagen.2019.03.021_bb0310 article-title: Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins: Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(86)90368-2 – volume: 34 start-page: 4773 year: 1995 ident: 10.1016/j.bbagen.2019.03.021_bb0320 article-title: Oxygen equilibrium properties of nickel(II)-iron(II) hybrid hemoglobins cross-linked between 82β1 and 82β2 lysyl residues by bis(3,5-dibromosalicyl)fumarate: determination of the first two-step microscopic Adair constants for human hemoglobin publication-title: Biochemistry doi: 10.1021/bi00014a035 – year: 1982 ident: 10.1016/j.bbagen.2019.03.021_bb0015 – volume: 164 start-page: 747 year: 2016 ident: 10.1016/j.bbagen.2019.03.021_bb0460 article-title: Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating publication-title: Cell doi: 10.1016/j.cell.2015.12.055 – volume: 62 start-page: 3843 year: 2000 ident: 10.1016/j.bbagen.2019.03.021_bb0510 article-title: Tracking of individual nanocrystals using diffracted x rays publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.3843 – volume: 277 start-page: 34508 year: 2002 ident: 10.1016/j.bbagen.2019.03.021_bb0115 article-title: Global allostery model of hemoglobin: modulation of O2 affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors publication-title: J. Biol. Chem. doi: 10.1074/jbc.M203135200 – volume: 132 start-page: 67 year: 2008 ident: 10.1016/j.bbagen.2019.03.021_bb0515 article-title: Global twisting motion of single molecular KcsA potassium channel upon gating publication-title: Cell doi: 10.1016/j.cell.2007.11.040 – volume: 520 start-page: 567 year: 2015 ident: 10.1016/j.bbagen.2019.03.021_bb0430 article-title: Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM publication-title: Nature doi: 10.1038/nature14275 – volume: 24 start-page: 372 year: 1999 ident: 10.1016/j.bbagen.2019.03.021_bb0065 article-title: What is the true structure of liganded haemoglobin? publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01444-9 – volume: 175 start-page: 159 year: 1984 ident: 10.1016/j.bbagen.2019.03.021_bb0345 article-title: The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(84)90472-8 – volume: 2 start-page: 54 year: 1968 ident: 10.1016/j.bbagen.2019.03.021_bb0395 article-title: Preparation of haemoglobin crystals publication-title: J. Crystal Growth doi: 10.1016/0022-0248(68)90071-7 – volume: 31 start-page: 6692 year: 1992 ident: 10.1016/j.bbagen.2019.03.021_bb0180 article-title: The speed of intersubunit communication in proteins publication-title: Biochemistry doi: 10.1021/bi00144a008 – volume: 122 start-page: 11488 year: 2018 ident: 10.1016/j.bbagen.2019.03.021_bb0230 article-title: Dynamics of quaternary structure transitions in R-state carbonmonoxyhemoglobin unveiled in time-resolved X-ray scattering patterns following a temperature jump publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b07414 – volume: 100 start-page: 517 year: 2003 ident: 10.1016/j.bbagen.2019.03.021_bb0225 article-title: Quaternary structure of hemoglobin in solution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.232715799 – volume: 44 start-page: 73 year: 2001 ident: 10.1016/j.bbagen.2019.03.021_bb0385 article-title: Allosteric free energy changes at the α1β2 interface of human hemoglobin probed by proton exchange of Trpβ37 publication-title: Proteins doi: 10.1002/prot.1074 – volume: 8 start-page: 16099 year: 2017 ident: 10.1016/j.bbagen.2019.03.021_bb0475 article-title: Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate publication-title: Nat. Commun. doi: 10.1038/ncomms16099 – start-page: 243 year: 2007 ident: 10.1016/j.bbagen.2019.03.021_bb0505 article-title: Single molecule FRET for the study on structural dynamics of biomolecules publication-title: Biosystems doi: 10.1016/j.biosystems.2006.09.041 – volume: 291 start-page: 227 year: 1999 ident: 10.1016/j.bbagen.2019.03.021_bb0145 article-title: Asymmetric [deoxy dimer/azido-met dimer] hemoglobin hybrids dissociate within seconds publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.2970 – volume: 136 start-page: 5097 year: 2014 ident: 10.1016/j.bbagen.2019.03.021_bb0335 article-title: Capturing the hemoglobin allosteric transition in a single crystal form publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500380e |
SSID | ssj0000595 |
Score | 2.4378784 |
SecondaryResourceType | review_article |
Snippet | Human hemoglobin is an allosteric protein that exerts exquisite control over ligand binding through large-scale conformational changes. The two-state model... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129335 |
SubjectTerms | Allosteric regulation Allostery Conformational change Hemoglobin humans ligands oxygen Protein function structure-activity relationships X-ray crystallography |
Title | Allosteric transitions in hemoglobin revisited |
URI | https://dx.doi.org/10.1016/j.bbagen.2019.03.021 https://www.ncbi.nlm.nih.gov/pubmed/30951803 https://www.proquest.com/docview/2204696143 https://www.proquest.com/docview/2253201101 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KInoRra_6KBG8ps2-8jiWYqkKvWiht2U32UKlpKWmBy_-dmeyScVDLXgLYXZZvt3MfJOdByEPoY3BO84i30qtwUEJrK-lZj5YOxsYbTLmonxH4XAsnidy0iD9OhcGwyor3e90eqmtqzfdCs3ucjbrvuKlHtAJpCBYlAYzyoWI8JR3vn7CPIA-SHeTIHyUrtPnyhgvY-CjxSqo1JU6ZXSbedpGP0szNDghxxV_9HpuiaekYfMmOXAdJT-b5LBfN3A7I53efI4pHKDpvAJNkovO8ma5B0ILLAUCj6syvRx45zkZDx7f-kO_ao_gpyKkhQ9WhYciDngq4yDWCecpNUZO4xg4lMgCliZRAv6boZGmxurIMqplEvM0nNKMT_kF2csXub0iXgojkwCoiKCZCK024JTojGYSbBVMHLUIr1FRaVU7HFtYzFUdJPauHJYKsVQBV4Bli_ibUUtXO2OHfFQDrn6dAQXqfcfI-3p_FICMdx46t4v1h2IMfwAAB-F_yWB3DOBBMM-l29zNejlSUMD4-t9ruyFHDH30MtL7luwVq7W9AyJTmHZ5Uttkv_f0Mhx9A1sT7u4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi9SL-LY-I3iNzWazeRxLsbRWe1HB27KbbKFS0lLbg__emWxS8aAFbyHsLMu3m5lvsvMAuA1NjN5xFrlGKIUOimdcJZTvorUznlY6822U7yjsvwYPb-KtBt0qF4bCKkvdb3V6oa3LN-0SzfZ8Mmk_06Ue0gmiIFSUJtqCBlWnEnVodAbD_uhbIYui-QqNd0mgyqArwry0xu-WCqEyW-3UZ79ZqN8YaGGJenuwW1JIp2NXuQ81kx_Atm0q-XkAzW7Vw-0Q7jrTKWVxoLJzlmSVbICWM8kdHDSjaiD4uCgyzJF6HsFr7_6l23fLDgluGoRs6aJh4WEQezwVsRerhPOUaS3GcYw0Ksg8P02iBF04zSLFtFGR8ZkSSczTcMwyPubHUM9nuTkFJ0XJxEM2ErAsCI3S6JeojGUCzRVOHLWAV6jItCwfTl0sprKKE3uXFktJWEqPS8SyBe5aam7LZ2wYH1WAyx_HQKKG3yB5U-2PRJDp2kPlZrb6kL5P_wCQhvC_xlCDDKRCOM-J3dz1ejmxUMT47N9ru4Zm_-XpUT4ORsNz2PHJZS8Cvy-gvlyszCXymqW-Ks_tF5am8Z8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allosteric+transitions+in+hemoglobin+revisited&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Shibayama%2C+Naoya&rft.date=2020-02-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=2&rft.spage=129335&rft_id=info:doi/10.1016%2Fj.bbagen.2019.03.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2019_03_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |