Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge
Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this kn...
Saved in:
Published in | Water research (Oxford) Vol. 127; pp. 150 - 161 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.
[Display omitted]
•Triclocarban affected SCFA production from anaerobic fermentation of sludge.•A significant level of triclocarban was degraded in the fermentation process.•Triclocarban facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes.•Triclocarban inhibited methanogenesis process. |
---|---|
AbstractList | Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production. Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production. Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production. [Display omitted] •Triclocarban affected SCFA production from anaerobic fermentation of sludge.•A significant level of triclocarban was degraded in the fermentation process.•Triclocarban facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes.•Triclocarban inhibited methanogenesis process. Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production. |
Author | Chen, Fei Zeng, Guangming Wang, Qilin Wang, Yali Li, Hailong Yang, Qi Li, Xiaoming Liu, Yiwen Wang, Dongbo |
Author_xml | – sequence: 1 givenname: Yali surname: Wang fullname: Wang, Yali organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 2 givenname: Dongbo surname: Wang fullname: Wang, Dongbo email: w.dongbo@yahoo.com organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 3 givenname: Yiwen surname: Liu fullname: Liu, Yiwen organization: Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia – sequence: 4 givenname: Qilin surname: Wang fullname: Wang, Qilin organization: Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia – sequence: 5 givenname: Fei surname: Chen fullname: Chen, Fei organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 6 givenname: Qi surname: Yang fullname: Yang, Qi email: yangqi@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 7 givenname: Xiaoming surname: Li fullname: Li, Xiaoming organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 8 givenname: Guangming surname: Zeng fullname: Zeng, Guangming organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 9 givenname: Hailong surname: Li fullname: Li, Hailong organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29045805$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFf4BQjlwSbMdOYg5IqAJaqRKXcracyZj1KrGL7bTqv6-XtBcO9DCyNH7vafS9M3Lig0dC3jPaMMq6T4fm3uSIqeGU9Q1VDe34K7JjQ69qLsRwQnaUirZmrRSn5CylA6WU81a9IadcUSEHKnfE30QHcwATR-Mr9HvjAVOV9iHmGvbG-cqanB8qA25K1W0M0wrZhbKOYamMNxjD6KCyGBf02fz9C7a6NyljcWV3ZzJOVZrX6Te-Ja-tmRO-e3rPya_v324uLuvrnz-uLr5e1yA6luueTlbaQVmL1nIubK9AMtN1wA2noxII0A0dF5ILoINtCxEpad8jjG0_yfacfNxyy8F_VkxZLy4BzrPxGNakeWEhu1YVHi9JmZItL9MfUz88SddxwUnfRreY-KCfcRbB500AMaQU0WpwG5IcjZs1o_rYnT7orTt97E5TpUt3xSz-MT_nv2D7stmw8LxzGHUCh6XFyUWErKfg_h_wCNbuttY |
CitedBy_id | crossref_primary_10_1016_j_biortech_2019_121598 crossref_primary_10_1016_j_scitotenv_2019_03_001 crossref_primary_10_1016_j_scitotenv_2023_168796 crossref_primary_10_1016_j_biortech_2021_126420 crossref_primary_10_1016_j_watres_2018_08_011 crossref_primary_10_1016_j_cej_2024_156041 crossref_primary_10_1016_j_watres_2022_118082 crossref_primary_10_1021_acsestwater_4c00816 crossref_primary_10_1016_j_jwpe_2024_106573 crossref_primary_10_1007_s13399_019_00576_1 crossref_primary_10_1016_j_cej_2022_139549 crossref_primary_10_1016_j_scitotenv_2022_161122 crossref_primary_10_1016_j_scitotenv_2020_139035 crossref_primary_10_1016_j_scitotenv_2022_157384 crossref_primary_10_2166_wst_2018_256 crossref_primary_10_1021_acs_est_2c04170 crossref_primary_10_1016_j_jhazmat_2024_134825 crossref_primary_10_1007_s10311_022_01465_2 crossref_primary_10_1007_s13762_018_02178_2 crossref_primary_10_1016_j_jclepro_2020_120321 crossref_primary_10_1016_j_biteb_2019_03_002 crossref_primary_10_1016_j_cej_2020_127026 crossref_primary_10_1007_s13762_018_1741_8 crossref_primary_10_1016_j_cej_2020_125885 crossref_primary_10_1016_j_still_2020_104723 crossref_primary_10_1016_j_watres_2019_01_016 crossref_primary_10_1016_j_jenvman_2022_115025 crossref_primary_10_1016_j_biortech_2020_123379 crossref_primary_10_1016_j_biortech_2022_128317 crossref_primary_10_1016_j_envres_2020_109764 crossref_primary_10_1016_j_watres_2020_115646 crossref_primary_10_1016_j_biortech_2022_126924 crossref_primary_10_1021_acs_est_2c06345 crossref_primary_10_1007_s13762_018_1654_6 crossref_primary_10_1016_j_applthermaleng_2018_07_048 crossref_primary_10_1016_j_jclepro_2023_139555 crossref_primary_10_1016_j_scitotenv_2020_142390 crossref_primary_10_1016_j_chemosphere_2024_143740 crossref_primary_10_1016_j_jhazmat_2020_122570 crossref_primary_10_1016_j_biortech_2023_129311 crossref_primary_10_1016_j_watres_2024_122368 crossref_primary_10_1016_j_biombioe_2020_105779 crossref_primary_10_1021_acs_est_4c00612 crossref_primary_10_3390_ijerph19052806 crossref_primary_10_1021_acs_est_4c06760 crossref_primary_10_1016_j_jenvman_2024_122409 crossref_primary_10_1016_j_watres_2019_114881 crossref_primary_10_2139_ssrn_4197919 crossref_primary_10_1016_j_scitotenv_2018_09_165 crossref_primary_10_1016_j_biortech_2021_125307 crossref_primary_10_1021_acssuschemeng_8b05420 crossref_primary_10_3390_su14105894 crossref_primary_10_1016_j_cej_2023_147138 crossref_primary_10_1016_j_jenvman_2021_114090 crossref_primary_10_1021_acsestengg_3c00325 crossref_primary_10_1016_j_jhazmat_2019_121615 crossref_primary_10_1016_j_jhazmat_2021_126206 crossref_primary_10_1016_j_wroa_2025_100301 crossref_primary_10_1016_j_watres_2019_114934 crossref_primary_10_1016_j_rser_2023_113502 crossref_primary_10_1016_j_bej_2018_10_010 crossref_primary_10_1016_j_chemosphere_2022_133903 crossref_primary_10_1016_j_biortech_2018_04_081 crossref_primary_10_1016_j_ijhydene_2022_11_015 crossref_primary_10_1016_j_biortech_2023_128754 crossref_primary_10_1016_j_watres_2017_12_007 crossref_primary_10_1016_j_biortech_2018_01_059 crossref_primary_10_1021_acssuschemeng_8b05799 crossref_primary_10_1016_j_cej_2019_123285 crossref_primary_10_1016_j_scitotenv_2020_142336 crossref_primary_10_1016_j_coesh_2025_100592 crossref_primary_10_1016_j_jenvman_2020_111237 crossref_primary_10_1016_j_biortech_2024_131094 crossref_primary_10_1016_j_chemosphere_2017_12_167 crossref_primary_10_1016_j_jhazmat_2024_134676 crossref_primary_10_1016_j_chemosphere_2017_12_169 crossref_primary_10_1016_j_wasman_2018_03_012 crossref_primary_10_1016_j_watres_2019_03_032 crossref_primary_10_1016_j_scitotenv_2020_144470 crossref_primary_10_1021_acs_est_2c00062 crossref_primary_10_1016_j_jhazmat_2019_121176 crossref_primary_10_1016_j_jclepro_2020_125765 crossref_primary_10_1016_j_jhazmat_2019_120835 crossref_primary_10_1016_j_jhazmat_2019_121888 crossref_primary_10_1016_j_biortech_2021_125494 crossref_primary_10_1016_j_biortech_2021_125253 crossref_primary_10_1016_j_watres_2019_02_036 crossref_primary_10_1016_j_biortech_2020_123903 crossref_primary_10_1016_j_jenvman_2017_11_073 crossref_primary_10_1016_j_biortech_2018_08_053 crossref_primary_10_1016_j_watres_2019_02_032 crossref_primary_10_1016_j_jenvman_2024_122828 crossref_primary_10_1016_j_biortech_2019_121713 crossref_primary_10_1016_j_sajce_2024_03_004 crossref_primary_10_1016_j_jece_2024_114828 crossref_primary_10_1016_j_biortech_2021_125805 crossref_primary_10_1016_j_watres_2020_115851 crossref_primary_10_1016_j_biortech_2020_123471 crossref_primary_10_1155_2020_1705232 crossref_primary_10_1016_j_jece_2020_103944 crossref_primary_10_1016_j_cej_2021_129948 crossref_primary_10_1016_j_biortech_2019_03_121 crossref_primary_10_1016_j_memsci_2022_121104 crossref_primary_10_1016_j_biortech_2018_07_018 crossref_primary_10_1016_j_envpol_2024_124346 crossref_primary_10_1016_j_jclepro_2021_129157 crossref_primary_10_1039_C8EW00873F crossref_primary_10_1039_D3GC03614F crossref_primary_10_1016_j_cej_2024_156633 crossref_primary_10_1021_acssuschemeng_0c01889 crossref_primary_10_1016_j_jhazmat_2024_134178 crossref_primary_10_1016_j_cej_2018_08_095 crossref_primary_10_1016_j_rser_2020_110283 crossref_primary_10_1016_j_biortech_2019_02_016 crossref_primary_10_1016_j_jhazmat_2022_129796 crossref_primary_10_1016_j_watres_2020_116539 crossref_primary_10_1007_s11356_023_25657_7 crossref_primary_10_1016_j_cej_2018_07_192 crossref_primary_10_1016_j_horiz_2022_100043 crossref_primary_10_1007_s11356_018_1221_1 crossref_primary_10_1080_07388551_2019_1682964 crossref_primary_10_1016_j_jhazmat_2019_121944 crossref_primary_10_1016_j_jhazmat_2020_123343 crossref_primary_10_1016_j_biortech_2018_01_084 crossref_primary_10_1016_j_biortech_2019_121977 crossref_primary_10_1016_j_jhazmat_2020_122930 crossref_primary_10_1016_j_watres_2020_116440 crossref_primary_10_1016_j_biortech_2018_04_050 crossref_primary_10_1016_j_jenvman_2025_124866 crossref_primary_10_1016_j_watres_2024_121757 crossref_primary_10_1016_j_biortech_2021_125116 crossref_primary_10_1016_j_ecoenv_2020_111318 crossref_primary_10_1016_j_scitotenv_2021_146505 crossref_primary_10_1016_j_biortech_2018_07_109 crossref_primary_10_1016_j_cej_2024_154201 crossref_primary_10_1016_j_scitotenv_2019_135878 crossref_primary_10_1016_j_biortech_2018_08_039 crossref_primary_10_1016_j_jwpe_2023_103515 crossref_primary_10_1016_j_watres_2024_121909 crossref_primary_10_1016_j_biortech_2020_124022 crossref_primary_10_1016_j_chemosphere_2018_12_015 crossref_primary_10_2166_wst_2018_236 crossref_primary_10_1007_s11783_021_1403_9 crossref_primary_10_1016_j_scitotenv_2022_157402 crossref_primary_10_1016_j_resconrec_2022_106342 crossref_primary_10_1016_j_jhazmat_2019_121384 crossref_primary_10_1016_j_cej_2020_126797 crossref_primary_10_1016_j_chemosphere_2018_07_060 crossref_primary_10_1016_j_bej_2019_02_010 crossref_primary_10_1016_j_biortech_2019_122278 crossref_primary_10_1016_j_cej_2017_11_064 crossref_primary_10_1016_j_envres_2019_108840 crossref_primary_10_1016_j_jece_2024_114840 crossref_primary_10_1016_j_scitotenv_2019_03_175 crossref_primary_10_1016_j_scitotenv_2018_05_264 crossref_primary_10_1021_acs_est_1c05960 crossref_primary_10_1016_j_jclepro_2020_122921 crossref_primary_10_1016_j_seppur_2025_131692 crossref_primary_10_1016_j_biortech_2020_122989 crossref_primary_10_3389_fmicb_2023_1168902 crossref_primary_10_5004_dwt_2018_22027 crossref_primary_10_1016_j_jwpe_2024_104985 crossref_primary_10_1016_j_biortech_2020_123159 crossref_primary_10_1021_acs_est_4c07825 crossref_primary_10_1016_j_jhazmat_2022_128444 crossref_primary_10_1016_j_cej_2023_146001 crossref_primary_10_1016_j_scitotenv_2021_151413 crossref_primary_10_1007_s12649_022_01900_z |
Cites_doi | 10.1016/j.envres.2006.03.006 10.1007/s11356-013-2025-y 10.1021/acs.est.6b00003 10.1016/j.watres.2007.11.022 10.1038/srep19713 10.1016/j.chemosphere.2010.11.018 10.1016/j.watres.2016.08.062 10.1016/S0043-1354(98)00129-8 10.1073/pnas.1115187108 10.1099/ijs.0.02662-0 10.1016/j.watres.2015.01.017 10.1016/j.chemosphere.2012.03.005 10.1099/ijs.0.65108-0 10.1021/acssuschemeng.6b00816 10.1021/es8037142 10.1016/j.chemosphere.2006.04.066 10.1021/es500495p 10.1016/j.scitotenv.2014.08.108 10.1021/acs.est.5b03112 10.1021/es9014458 10.1016/j.watres.2015.04.012 10.1128/AEM.57.4.1213-1217.1991 10.1016/j.biortech.2017.02.059 10.1021/es0349204 10.1021/es052245n 10.1016/j.watres.2013.05.015 10.1016/j.ibiod.2015.06.012 10.1016/j.biortech.2010.11.119 10.1021/es902958c 10.1016/j.biortech.2016.03.156 10.1016/j.scitotenv.2015.08.108 10.1021/es304673s 10.1016/j.watres.2010.03.015 10.1002/jat.3012 10.1021/es702882g 10.1128/MMBR.59.2.201-222.1995 10.1016/j.envpol.2007.02.013 10.1016/S0168-1656(02)00025-1 10.1016/j.tibtech.2017.02.010 10.1016/j.envint.2014.03.006 10.1021/acs.est.6b04885 10.1021/es049524f 10.1016/j.jhazmat.2010.07.092 10.1016/j.biortech.2016.03.138 10.1021/es400210v 10.1016/j.cej.2016.06.041 10.1099/ijs.0.63116-0 10.1897/07-471.1 10.1016/j.watres.2012.02.005 10.1016/j.biortech.2017.04.054 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2017.09.062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 161 |
ExternalDocumentID | 29045805 10_1016_j_watres_2017_09_062 S0043135417308199 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-70df5f89ffeff224f79c51a66c2a20b94ecc68624524c08f310155077ecb37d53 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 02:48:47 EDT 2025 Fri Jul 11 04:16:09 EDT 2025 Wed Feb 19 02:42:00 EST 2025 Tue Jul 01 01:20:50 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Fri Feb 23 02:23:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anaerobic fermentation Waste activated sludge Short-chain fatty acids production Emerging contaminants |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-70df5f89ffeff224f79c51a66c2a20b94ecc68624524c08f310155077ecb37d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29045805 |
PQID | 1953295375 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000563922 proquest_miscellaneous_1953295375 pubmed_primary_29045805 crossref_citationtrail_10_1016_j_watres_2017_09_062 crossref_primary_10_1016_j_watres_2017_09_062 elsevier_sciencedirect_doi_10_1016_j_watres_2017_09_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Feng, Chen, Zheng (bib6) 2009; 43 Hou, Hao, Zhang, Wang, Liu, Liu (bib13) 2016; 212 Subedi, Lee, Moon, Kannan (bib30) 2014; 68 Verlicchi, Zambello (bib31) 2015; 538 Liu, Fang (bib17) 2002; 95 Yuan, Liu, Li, Wang, Wang, Peng (bib45) 2016; 211 APHA (American Public Health Association) (bib1) 1998 Wang, Sun, Zhang, Xie, Zhou, Qian, Yang, Zeng, Liu, Wang (bib35) 2016; 6 Zhao, Yang, Li, Wang, An, Xie, Xu, Deng, Zeng (bib49) 2015; 104 Ying, Yu, Kookana (bib42) 2007; 150 Lozano, Rice, Ramirez, Torrents (bib18) 2013; 47 Miranda-Tello, Fardeau, Sepúlveda, Fernández, Cayol, Thomas, Ollivier (bib24) 2003; 53 Heidler, Amir Sapkota, Halden (bib11) 2006; 40 Wang, Wang, Liu, Ngo, Lian, Zhao, Chen, Yang, Zeng, Li (bib37) 2017; 234 Huang, Du, Zhang, Hu, Wu, Song, Xia, Wang (bib14) 2014; 34 Heipieper, Keweloh, Rehm (bib10) 1991; 57 Duan, Wang, Xie, Feng, Yan, Zhou (bib5) 2016; 105 Sapkota, Heidler, Halden (bib27) 2007; 103 Nelson, Morrison, Yu (bib25) 2011; 102 Yan, Feng, Zhang, Wisniewski, Zhou (bib41) 2010; 44 Zhao, Chen, Zhang, Zhu (bib47) 2010; 44 Jiang, Chen, Zheng (bib15) 2009; 43 Sikkema, De Bont, Poolman (bib28) 1995; 59 Halden, Paull (bib8) 2004; 38 Miller, Heidler, Chillrud, DeLaquil, Ritchie, Mihalic, Halden (bib21) 2008; 42 Wyss, Dewhirst, Paster, Thurnheer, Luginbühl (bib39) 2005; 55 Zhao, Zhang, Wang, Li, An, Xie, Chen, Xu, Sun, Zeng, Yang (bib50) 2016; 4 Lu, Xing, Ren (bib19) 2012; 46 Niu, Song, Dong (bib26) 2008; 58 Zheng, Su, Li, Xiao, Wang, Chen (bib51) 2013; 47 Li, Yuan, Wu, Wang, Xiao, Wu, Chen, Zeng (bib16) 2016; 303 Wang, Liu, Ngo, Zhang, Yang, Peng, He, Zeng, Ni (bib36) 2017; 238 Zhu, Chen (bib53) 2014; 21 Luo, Chen, Feng (bib20) 2016; 50 Zhao, Wang, Li, Yang, Chen, Zhong, Zeng (bib48) 2015; 78 Zarate, Schulwitz, Stevens, Venables (bib46) 2012; 88 Harms, Schleicher, Collins, Andreesen (bib7) 1998; 48 Yang, Ying, Su, Stauber, Adams, Binet (bib40) 2008; 27 Wang, Zhao, Zeng, Chen, Bond, Li (bib34) 2015; 49 Wang, Wang, Yang, Zeng, Li (bib38) 2017; 35 Mino, van Loosdrecht, Heijnen (bib23) 1998; 32 Miller, Colquhoun, Halden (bib22) 2010; 183 Wang, Chen, Zheng, Li, Feng (bib32) 2013; 47 Brausch, Rand (bib2) 2011; 82 Wang, Zeng, Chen, Li (bib33) 2015; 73 Souchier, Benali-Raclot, Benanou, Boireau, Gomez, Casellas, Chiron (bib29) 2015; 502 Cai, Liu, Wei (bib3) 2004; 38 Halden (bib9) 2014; 48 Chung, Genco, Megrelis, Ruderman (bib4) 2011; 108 Yu, He, Shao, Zhu (bib43) 2008; 42 Zhilina, Zavarzina, Osipov, Kostrikina, Turova (bib52) 2009; 78 Heidler, Halden (bib12) 2007; 66 Yun, Liang, Qiu, Zhang, Zhao, Jiang, Wang (bib44) 2016; 51 Brausch (10.1016/j.watres.2017.09.062_bib2) 2011; 82 Zhao (10.1016/j.watres.2017.09.062_bib47) 2010; 44 Halden (10.1016/j.watres.2017.09.062_bib9) 2014; 48 Yu (10.1016/j.watres.2017.09.062_bib43) 2008; 42 Zhao (10.1016/j.watres.2017.09.062_bib48) 2015; 78 Harms (10.1016/j.watres.2017.09.062_bib7) 1998; 48 Wang (10.1016/j.watres.2017.09.062_bib32) 2013; 47 Heidler (10.1016/j.watres.2017.09.062_bib11) 2006; 40 Liu (10.1016/j.watres.2017.09.062_bib17) 2002; 95 Miller (10.1016/j.watres.2017.09.062_bib21) 2008; 42 Ying (10.1016/j.watres.2017.09.062_bib42) 2007; 150 Subedi (10.1016/j.watres.2017.09.062_bib30) 2014; 68 Jiang (10.1016/j.watres.2017.09.062_bib15) 2009; 43 Zheng (10.1016/j.watres.2017.09.062_bib51) 2013; 47 Halden (10.1016/j.watres.2017.09.062_bib8) 2004; 38 Sapkota (10.1016/j.watres.2017.09.062_bib27) 2007; 103 Yuan (10.1016/j.watres.2017.09.062_bib45) 2016; 211 Cai (10.1016/j.watres.2017.09.062_bib3) 2004; 38 Luo (10.1016/j.watres.2017.09.062_bib20) 2016; 50 Zhu (10.1016/j.watres.2017.09.062_bib53) 2014; 21 Miller (10.1016/j.watres.2017.09.062_bib22) 2010; 183 Lu (10.1016/j.watres.2017.09.062_bib19) 2012; 46 Wang (10.1016/j.watres.2017.09.062_bib35) 2016; 6 Mino (10.1016/j.watres.2017.09.062_bib23) 1998; 32 Yun (10.1016/j.watres.2017.09.062_bib44) 2016; 51 Nelson (10.1016/j.watres.2017.09.062_bib25) 2011; 102 Wang (10.1016/j.watres.2017.09.062_bib34) 2015; 49 Yan (10.1016/j.watres.2017.09.062_bib41) 2010; 44 Zarate (10.1016/j.watres.2017.09.062_bib46) 2012; 88 Souchier (10.1016/j.watres.2017.09.062_bib29) 2015; 502 Verlicchi (10.1016/j.watres.2017.09.062_bib31) 2015; 538 Duan (10.1016/j.watres.2017.09.062_bib5) 2016; 105 Zhilina (10.1016/j.watres.2017.09.062_bib52) 2009; 78 Chung (10.1016/j.watres.2017.09.062_bib4) 2011; 108 Miranda-Tello (10.1016/j.watres.2017.09.062_bib24) 2003; 53 Heidler (10.1016/j.watres.2017.09.062_bib12) 2007; 66 Feng (10.1016/j.watres.2017.09.062_bib6) 2009; 43 Lozano (10.1016/j.watres.2017.09.062_bib18) 2013; 47 Wang (10.1016/j.watres.2017.09.062_bib38) 2017; 35 Heipieper (10.1016/j.watres.2017.09.062_bib10) 1991; 57 Wyss (10.1016/j.watres.2017.09.062_bib39) 2005; 55 Huang (10.1016/j.watres.2017.09.062_bib14) 2014; 34 Hou (10.1016/j.watres.2017.09.062_bib13) 2016; 212 Zhao (10.1016/j.watres.2017.09.062_bib50) 2016; 4 APHA (American Public Health Association) (10.1016/j.watres.2017.09.062_bib1) 1998 Wang (10.1016/j.watres.2017.09.062_bib33) 2015; 73 Wang (10.1016/j.watres.2017.09.062_bib36) 2017; 238 Zhao (10.1016/j.watres.2017.09.062_bib49) 2015; 104 Yang (10.1016/j.watres.2017.09.062_bib40) 2008; 27 Niu (10.1016/j.watres.2017.09.062_bib26) 2008; 58 Sikkema (10.1016/j.watres.2017.09.062_bib28) 1995; 59 Wang (10.1016/j.watres.2017.09.062_bib37) 2017; 234 Li (10.1016/j.watres.2017.09.062_bib16) 2016; 303 |
References_xml | – volume: 38 start-page: 4849 year: 2004 end-page: 4855 ident: bib8 article-title: Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry publication-title: Environ. Sci. Technol. – volume: 55 start-page: 667 year: 2005 end-page: 671 ident: bib39 article-title: Guggenheimella bovis gen. nov., sp. nov., isolated from lesions of bovine dermatitis digitalis publication-title: Int. J. Syst. Evol. Micro. – volume: 57 start-page: 1213 year: 1991 end-page: 1217 ident: bib10 article-title: Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli publication-title: Appl. Environ. Microbiol. – volume: 303 start-page: 636 year: 2016 end-page: 645 ident: bib16 article-title: Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process publication-title: Chem. Eng. J. – volume: 50 start-page: 6921 year: 2016 end-page: 6929 ident: bib20 article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen publication-title: Environ. Sci. Technol. – volume: 58 start-page: 12 year: 2008 end-page: 16 ident: bib26 article-title: Proteiniborus ethanoligenes gen. nov., sp. nov., an anaerobic protein-utilizing bacterium publication-title: Int. J. Syst. Evol. Micro. – volume: 34 start-page: 1060 year: 2014 end-page: 1067 ident: bib14 article-title: The in Vitro estrogenic activities of triclosan and triclocarban publication-title: J. Appl. Toxicol. – volume: 88 start-page: 323 year: 2012 end-page: 329 ident: bib46 article-title: Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland publication-title: Chemosphere – volume: 47 start-page: 4262 year: 2013 end-page: 4268 ident: bib51 article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production publication-title: Environ. Sci. Technol. – volume: 38 start-page: 3195 year: 2004 end-page: 3202 ident: bib3 article-title: Enhanced biohydrogen production from sewage sludge with alkaline pretreatment publication-title: Environ. Sci. Technol. – volume: 51 start-page: 291 year: 2016 end-page: 300 ident: bib44 article-title: Functional characterization of a novel amidase involved in biotransformation of triclocarban and its dehalogenated congeners in Ochrobactrum sp. TCC-2 publication-title: Environ. Sci. Technol. – volume: 104 start-page: 283 year: 2015 end-page: 289 ident: bib49 article-title: Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside publication-title: Intern. Biodeter. Biodeg. – volume: 59 start-page: 201 year: 1995 end-page: 222 ident: bib28 article-title: Mechanisms of membrane toxicity of hydrocarbons publication-title: Microbiol. Rev. – volume: 35 start-page: 799 year: 2017 end-page: 802 ident: bib38 article-title: Wastewater opportunities for denitrifying anaerobic methane oxidation publication-title: Trends. Biotechnol. – volume: 47 start-page: 4519 year: 2013 end-page: 4527 ident: bib18 article-title: Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes publication-title: Water Res. – volume: 102 start-page: 3730 year: 2011 end-page: 3739 ident: bib25 article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters publication-title: Bioresour. Technol. – volume: 538 start-page: 750 year: 2015 end-page: 767 ident: bib31 article-title: Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review publication-title: Sci. Total. Environ. – volume: 211 start-page: 685 year: 2016 end-page: 690 ident: bib45 article-title: Short-chain fatty acids production and microbial community in sludge alkaline fermentation: long-term effect of temperature publication-title: Bioresour. Technol. – volume: 48 start-page: 3603 year: 2014 end-page: 3611 ident: bib9 article-title: On the need and speed of regulating triclosan and triclocarban in the United States publication-title: Environ. Sci. Technol. – volume: 6 start-page: 19713 year: 2016 ident: bib35 article-title: Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate publication-title: Sci. Rep. – volume: 150 start-page: 300 year: 2007 end-page: 305 ident: bib42 article-title: Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling publication-title: Environ. Pollut. – volume: 43 start-page: 4373 year: 2009 end-page: 4380 ident: bib6 article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH publication-title: Environ. Sci. Technol. – volume: 47 start-page: 2688 year: 2013 end-page: 2695 ident: bib32 article-title: Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and gram-staining bacteria publication-title: Environ. Sci. Technol. – volume: 49 start-page: 12253 year: 2015 end-page: 12262 ident: bib34 article-title: How does polyhydroxyalkanoates affect methane production from the anaerobic digestion of waste activated sludge? publication-title: Environ. Sci. Technol. – volume: 4 start-page: 4675 year: 2016 end-page: 4684 ident: bib50 article-title: Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the Co-fermentation of waste activated sludge and food waste publication-title: ACS. Sustain. Chem. Eng. – volume: 42 start-page: 4570 year: 2008 end-page: 4576 ident: bib21 article-title: Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments publication-title: Environ. Sci. Technol. – volume: 68 start-page: 33 year: 2014 end-page: 40 ident: bib30 article-title: Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea publication-title: Environ. Intern. – volume: 212 start-page: 20 year: 2016 end-page: 25 ident: bib13 article-title: Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation publication-title: Bioresour. Technol. – volume: 78 start-page: 506 year: 2009 ident: bib52 article-title: Natronincola ferrireducens sp. nov. and Natronincola peptidovorans sp. nov.-new anaerobic alkaliphilic peptide lysing and iron reducing bacteria from soda lake publication-title: Mikrobiologiia – volume: 183 start-page: 766 year: 2010 end-page: 772 ident: bib22 article-title: Identification of wastewater bacteria involved in the degradation of triclocarban and its non-chlorinated congener publication-title: J. Hazard. Mater. – volume: 82 start-page: 1518 year: 2011 end-page: 1532 ident: bib2 article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity publication-title: Chemosphere – volume: 234 start-page: 456 year: 2017 end-page: 465 ident: bib37 article-title: Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? publication-title: Bioresour. Technol. – volume: 48 start-page: 983 year: 1998 end-page: 993 ident: bib7 article-title: Tissierella creatinophila sp. nov., a Gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism publication-title: Int. J. Syst. Evol. Micro. – volume: 42 start-page: 1925 year: 2008 end-page: 1934 ident: bib43 article-title: Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment publication-title: Water Res. – volume: 40 start-page: 3634 year: 2006 end-page: 3639 ident: bib11 article-title: Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment publication-title: Environ. Sci. Technol. – volume: 53 start-page: 1509 year: 2003 end-page: 1514 ident: bib24 article-title: Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico publication-title: Int. J. Syst. Evol. Micro. – volume: 44 start-page: 3329 year: 2010 end-page: 3336 ident: bib41 article-title: Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0 publication-title: Water. Res. – volume: 238 start-page: 343 year: 2017 end-page: 351 ident: bib36 article-title: Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation publication-title: Bioresour. Technol. – volume: 78 start-page: 111 year: 2015 end-page: 120 ident: bib48 article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge publication-title: Water. Res. – year: 1998 ident: bib1 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 103 start-page: 21 year: 2007 end-page: 29 ident: bib27 article-title: Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry publication-title: Environ. Res. – volume: 502 start-page: 199 year: 2015 end-page: 205 ident: bib29 article-title: Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry publication-title: Sci. Total. Environ. – volume: 27 start-page: 1201 year: 2008 end-page: 1208 ident: bib40 article-title: Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga pseudokirchneriella subcapitata publication-title: Environ. Toxic. Chem. – volume: 21 start-page: 1466 year: 2014 end-page: 1479 ident: bib53 article-title: The fate and risk of selected pharmaceutical and personal care products in wastewater treatment plants and a pilotscale multistage constructed wetland system publication-title: Environ. Sci. Pollut. Res. – volume: 105 start-page: 209 year: 2016 end-page: 217 ident: bib5 article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge publication-title: Water Res. – volume: 66 start-page: 362 year: 2007 end-page: 369 ident: bib12 article-title: Mass balance assessment of triclosan removal during conventional sewage treatment publication-title: Chemosphere – volume: 44 start-page: 3317 year: 2010 end-page: 3323 ident: bib47 article-title: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH publication-title: Environ. Sci. Technol. – volume: 73 start-page: 311 year: 2015 end-page: 322 ident: bib33 article-title: Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge publication-title: Water. Res. – volume: 43 start-page: 7734 year: 2009 end-page: 7741 ident: bib15 article-title: Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process publication-title: Environ. Sci. Technol. – volume: 108 start-page: 17732 year: 2011 end-page: 17737 ident: bib4 article-title: Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos publication-title: Proc. Nation. Acad. Sci. – volume: 95 start-page: 249 year: 2002 end-page: 256 ident: bib17 article-title: Extraction of extracellular polymeric substances (EPS) of sludges publication-title: J. Biotechnol. – volume: 46 start-page: 2425 year: 2012 end-page: 2434 ident: bib19 article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge publication-title: Water Res. – volume: 32 start-page: 3193 year: 1998 end-page: 3207 ident: bib23 article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process publication-title: Water Res. – volume: 103 start-page: 21 year: 2007 ident: 10.1016/j.watres.2017.09.062_bib27 article-title: Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry publication-title: Environ. Res. doi: 10.1016/j.envres.2006.03.006 – volume: 21 start-page: 1466 year: 2014 ident: 10.1016/j.watres.2017.09.062_bib53 article-title: The fate and risk of selected pharmaceutical and personal care products in wastewater treatment plants and a pilotscale multistage constructed wetland system publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-2025-y – volume: 50 start-page: 6921 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib20 article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00003 – volume: 42 start-page: 1925 year: 2008 ident: 10.1016/j.watres.2017.09.062_bib43 article-title: Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment publication-title: Water Res. doi: 10.1016/j.watres.2007.11.022 – volume: 6 start-page: 19713 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib35 article-title: Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate publication-title: Sci. Rep. doi: 10.1038/srep19713 – volume: 82 start-page: 1518 year: 2011 ident: 10.1016/j.watres.2017.09.062_bib2 article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.11.018 – volume: 105 start-page: 209 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib5 article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2016.08.062 – volume: 32 start-page: 3193 year: 1998 ident: 10.1016/j.watres.2017.09.062_bib23 article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process publication-title: Water Res. doi: 10.1016/S0043-1354(98)00129-8 – volume: 108 start-page: 17732 year: 2011 ident: 10.1016/j.watres.2017.09.062_bib4 article-title: Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos publication-title: Proc. Nation. Acad. Sci. doi: 10.1073/pnas.1115187108 – volume: 53 start-page: 1509 year: 2003 ident: 10.1016/j.watres.2017.09.062_bib24 article-title: Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico publication-title: Int. J. Syst. Evol. Micro. doi: 10.1099/ijs.0.02662-0 – volume: 73 start-page: 311 year: 2015 ident: 10.1016/j.watres.2017.09.062_bib33 article-title: Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge publication-title: Water. Res. doi: 10.1016/j.watres.2015.01.017 – volume: 88 start-page: 323 year: 2012 ident: 10.1016/j.watres.2017.09.062_bib46 article-title: Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.03.005 – volume: 58 start-page: 12 year: 2008 ident: 10.1016/j.watres.2017.09.062_bib26 article-title: Proteiniborus ethanoligenes gen. nov., sp. nov., an anaerobic protein-utilizing bacterium publication-title: Int. J. Syst. Evol. Micro. doi: 10.1099/ijs.0.65108-0 – volume: 4 start-page: 4675 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib50 article-title: Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the Co-fermentation of waste activated sludge and food waste publication-title: ACS. Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00816 – volume: 43 start-page: 4373 year: 2009 ident: 10.1016/j.watres.2017.09.062_bib6 article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH publication-title: Environ. Sci. Technol. doi: 10.1021/es8037142 – volume: 66 start-page: 362 year: 2007 ident: 10.1016/j.watres.2017.09.062_bib12 article-title: Mass balance assessment of triclosan removal during conventional sewage treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.04.066 – volume: 48 start-page: 3603 year: 2014 ident: 10.1016/j.watres.2017.09.062_bib9 article-title: On the need and speed of regulating triclosan and triclocarban in the United States publication-title: Environ. Sci. Technol. doi: 10.1021/es500495p – volume: 502 start-page: 199 year: 2015 ident: 10.1016/j.watres.2017.09.062_bib29 article-title: Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2014.08.108 – volume: 49 start-page: 12253 year: 2015 ident: 10.1016/j.watres.2017.09.062_bib34 article-title: How does polyhydroxyalkanoates affect methane production from the anaerobic digestion of waste activated sludge? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03112 – volume: 43 start-page: 7734 year: 2009 ident: 10.1016/j.watres.2017.09.062_bib15 article-title: Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process publication-title: Environ. Sci. Technol. doi: 10.1021/es9014458 – volume: 78 start-page: 111 year: 2015 ident: 10.1016/j.watres.2017.09.062_bib48 article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge publication-title: Water. Res. doi: 10.1016/j.watres.2015.04.012 – volume: 78 start-page: 506 year: 2009 ident: 10.1016/j.watres.2017.09.062_bib52 article-title: Natronincola ferrireducens sp. nov. and Natronincola peptidovorans sp. nov.-new anaerobic alkaliphilic peptide lysing and iron reducing bacteria from soda lake publication-title: Mikrobiologiia – volume: 57 start-page: 1213 year: 1991 ident: 10.1016/j.watres.2017.09.062_bib10 article-title: Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.57.4.1213-1217.1991 – volume: 234 start-page: 456 year: 2017 ident: 10.1016/j.watres.2017.09.062_bib37 article-title: Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.059 – volume: 38 start-page: 3195 year: 2004 ident: 10.1016/j.watres.2017.09.062_bib3 article-title: Enhanced biohydrogen production from sewage sludge with alkaline pretreatment publication-title: Environ. Sci. Technol. doi: 10.1021/es0349204 – volume: 40 start-page: 3634 year: 2006 ident: 10.1016/j.watres.2017.09.062_bib11 article-title: Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment publication-title: Environ. Sci. Technol. doi: 10.1021/es052245n – volume: 47 start-page: 4519 year: 2013 ident: 10.1016/j.watres.2017.09.062_bib18 article-title: Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes publication-title: Water Res. doi: 10.1016/j.watres.2013.05.015 – volume: 104 start-page: 283 year: 2015 ident: 10.1016/j.watres.2017.09.062_bib49 article-title: Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside publication-title: Intern. Biodeter. Biodeg. doi: 10.1016/j.ibiod.2015.06.012 – volume: 102 start-page: 3730 year: 2011 ident: 10.1016/j.watres.2017.09.062_bib25 article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.119 – volume: 44 start-page: 3317 year: 2010 ident: 10.1016/j.watres.2017.09.062_bib47 article-title: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH publication-title: Environ. Sci. Technol. doi: 10.1021/es902958c – volume: 212 start-page: 20 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib13 article-title: Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.156 – volume: 538 start-page: 750 year: 2015 ident: 10.1016/j.watres.2017.09.062_bib31 article-title: Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2015.08.108 – volume: 47 start-page: 2688 year: 2013 ident: 10.1016/j.watres.2017.09.062_bib32 article-title: Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and gram-staining bacteria publication-title: Environ. Sci. Technol. doi: 10.1021/es304673s – volume: 44 start-page: 3329 year: 2010 ident: 10.1016/j.watres.2017.09.062_bib41 article-title: Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0 publication-title: Water. Res. doi: 10.1016/j.watres.2010.03.015 – volume: 48 start-page: 983 year: 1998 ident: 10.1016/j.watres.2017.09.062_bib7 article-title: Tissierella creatinophila sp. nov., a Gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism publication-title: Int. J. Syst. Evol. Micro. – volume: 34 start-page: 1060 year: 2014 ident: 10.1016/j.watres.2017.09.062_bib14 article-title: The in Vitro estrogenic activities of triclosan and triclocarban publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3012 – volume: 42 start-page: 4570 year: 2008 ident: 10.1016/j.watres.2017.09.062_bib21 article-title: Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments publication-title: Environ. Sci. Technol. doi: 10.1021/es702882g – volume: 59 start-page: 201 year: 1995 ident: 10.1016/j.watres.2017.09.062_bib28 article-title: Mechanisms of membrane toxicity of hydrocarbons publication-title: Microbiol. Rev. doi: 10.1128/MMBR.59.2.201-222.1995 – volume: 150 start-page: 300 year: 2007 ident: 10.1016/j.watres.2017.09.062_bib42 article-title: Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.02.013 – year: 1998 ident: 10.1016/j.watres.2017.09.062_bib1 – volume: 95 start-page: 249 year: 2002 ident: 10.1016/j.watres.2017.09.062_bib17 article-title: Extraction of extracellular polymeric substances (EPS) of sludges publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(02)00025-1 – volume: 35 start-page: 799 year: 2017 ident: 10.1016/j.watres.2017.09.062_bib38 article-title: Wastewater opportunities for denitrifying anaerobic methane oxidation publication-title: Trends. Biotechnol. doi: 10.1016/j.tibtech.2017.02.010 – volume: 68 start-page: 33 year: 2014 ident: 10.1016/j.watres.2017.09.062_bib30 article-title: Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea publication-title: Environ. Intern. doi: 10.1016/j.envint.2014.03.006 – volume: 51 start-page: 291 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib44 article-title: Functional characterization of a novel amidase involved in biotransformation of triclocarban and its dehalogenated congeners in Ochrobactrum sp. TCC-2 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04885 – volume: 38 start-page: 4849 year: 2004 ident: 10.1016/j.watres.2017.09.062_bib8 article-title: Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/es049524f – volume: 183 start-page: 766 year: 2010 ident: 10.1016/j.watres.2017.09.062_bib22 article-title: Identification of wastewater bacteria involved in the degradation of triclocarban and its non-chlorinated congener publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.07.092 – volume: 211 start-page: 685 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib45 article-title: Short-chain fatty acids production and microbial community in sludge alkaline fermentation: long-term effect of temperature publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.138 – volume: 47 start-page: 4262 year: 2013 ident: 10.1016/j.watres.2017.09.062_bib51 article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production publication-title: Environ. Sci. Technol. doi: 10.1021/es400210v – volume: 303 start-page: 636 year: 2016 ident: 10.1016/j.watres.2017.09.062_bib16 article-title: Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.041 – volume: 55 start-page: 667 year: 2005 ident: 10.1016/j.watres.2017.09.062_bib39 article-title: Guggenheimella bovis gen. nov., sp. nov., isolated from lesions of bovine dermatitis digitalis publication-title: Int. J. Syst. Evol. Micro. doi: 10.1099/ijs.0.63116-0 – volume: 27 start-page: 1201 year: 2008 ident: 10.1016/j.watres.2017.09.062_bib40 article-title: Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga pseudokirchneriella subcapitata publication-title: Environ. Toxic. Chem. doi: 10.1897/07-471.1 – volume: 46 start-page: 2425 year: 2012 ident: 10.1016/j.watres.2017.09.062_bib19 article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2012.02.005 – volume: 238 start-page: 343 year: 2017 ident: 10.1016/j.watres.2017.09.062_bib36 article-title: Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.054 |
SSID | ssj0002239 |
Score | 2.6045053 |
Snippet | Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 150 |
SubjectTerms | acetic acid Acetic Acid - metabolism activated sludge Anaerobic fermentation Anaerobiosis antibiotics Biotechnology - methods Carbanilides - metabolism Carbanilides - pharmacology chemical oxygen demand Emerging contaminants enzymes Fatty Acids, Volatile - biosynthesis Fermentation Hydrogen-Ion Concentration methane production microbial communities Microbiota - drug effects Sewage - microbiology short chain fatty acids Short-chain fatty acids production Solubility solubilization Waste activated sludge Waste Disposal, Fluid - methods |
Title | Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge |
URI | https://dx.doi.org/10.1016/j.watres.2017.09.062 https://www.ncbi.nlm.nih.gov/pubmed/29045805 https://www.proquest.com/docview/1953295375 https://www.proquest.com/docview/2000563922 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZW9NIeEKVQKA-5EtdA4thxckQItIDgBBI3y8_uVsi7ItkiLv3tncljC4cVEoccEjmR5W8yM9bM95mQIy9T5lxZJFhSSzjXBo95yRLY3-ZlaaoQWrHqm9tifM-vHsTDiJwNXBhsq-x9f-fTW2_dPznpV_NkPp0ixxeCXy54BkYKcQ1JfJxLtPLjv__bPCD8VUOVGUcP9Lm2x-tZIyEDG7xkq3ZasFXhaVX62Yahiw2y3ueP9LSb4lcy8nGTfHmlKviNxDvwbRijnoyO1McJAlvTegKZdmInehpp0E3zQrWduprOO81XwIci14TqqD2KM1kawGv31KRIZ4E-azAJikyIP5ChOlo_Ltwvv0XuL87vzsZJf6xCYnmRNYlMXRChBBg8IMF4kJUVmS4KyzRLTcUB1ZY3Ihi3aRkgAcR9jJTemlw6kW-TtTiLfodQI0zhStjxhTxwZ3WV-VKLnBvuQppauUvyYTWV7TXH8eiLRzU0l_1WHQYKMVBppQCDXZIs35p3mhvvjJcDUOqN7SgIC--8-XPAVcFvhbUSHf1sUSusLjK4pFg9BllOAjI8Bt_53hnFcr6swgp0Kn58eG575DPeYetMJvbJWvO08AeQADXmsLXwQ_Lp9PJ6fPsPLe8HFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgOZQeqhb6oE8jcY1IHDtOjggVLQX2tEjcLD-7i5B3RbJF_Htm8ljBYYXUQy5JHFn-JjNjzXyfCTnyMmXOlUWCJbWEc23wmJcsgf1tXpamCqEVq76aFONr_udG3GyR04ELg22Vve_vfHrrrfs7x_1qHi_nc-T4QvDLBc_ASCGuVdtkB9WpxIjsnJxfjCdrhwwRsBoKzThgYNC1bV4PGjkZ2OMlW8HTgm2KUJsy0DYSnb0n7_oUkp50s_xAtnzcI2-fCQvukzgF94Zh6t7oSH2cIbY1rWeQbCd2pueRBt00j1TbuavpspN9BYgo0k2ojtqjPpOlARx3z06KdBHogwaroEiG-AdJqqP13cr99R_J9dnv6ek46U9WSCwvsiaRqQsilICEBzAYD7KyItNFYZlmqak4ANtSRwTjNi0D5IC4lZHSW5NLJ_JPZBQX0X8h1AhTuBI2fSEP3FldZb7UIueGu5CmVh6QfFhNZXvZcTz94k4N_WW3qsNAIQYqrRRgcECS9ahlJ7vxyvtyAEq9MB8FkeGVkYcDrgr-LCyX6OgXq1phgZHBJcXmd5DoJCDJY_Cdz51RrOfLKixCp-Lrf8_tF3kznl5dqsvzycU3sotPsJMmE9_JqLlf-R-QDzXmZ2_vTyLhCcY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triclocarban+enhances+short-chain+fatty+acids+production+from+anaerobic+fermentation+of+waste+activated+sludge&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Yali&rft.au=Wang%2C+Dongbo&rft.au=Liu%2C+Yiwen&rft.au=Wang%2C+Qilin&rft.date=2017-12-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=127&rft.spage=150&rft_id=info:doi/10.1016%2Fj.watres.2017.09.062&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |