Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge

Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this kn...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 127; pp. 150 - 161
Main Authors Wang, Yali, Wang, Dongbo, Liu, Yiwen, Wang, Qilin, Chen, Fei, Yang, Qi, Li, Xiaoming, Zeng, Guangming, Li, Hailong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production. [Display omitted] •Triclocarban affected SCFA production from anaerobic fermentation of sludge.•A significant level of triclocarban was degraded in the fermentation process.•Triclocarban facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes.•Triclocarban inhibited methanogenesis process.
AbstractList Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.
Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.
Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production. [Display omitted] •Triclocarban affected SCFA production from anaerobic fermentation of sludge.•A significant level of triclocarban was degraded in the fermentation process.•Triclocarban facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes.•Triclocarban inhibited methanogenesis process.
Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.
Author Chen, Fei
Zeng, Guangming
Wang, Qilin
Wang, Yali
Li, Hailong
Yang, Qi
Li, Xiaoming
Liu, Yiwen
Wang, Dongbo
Author_xml – sequence: 1
  givenname: Yali
  surname: Wang
  fullname: Wang, Yali
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 2
  givenname: Dongbo
  surname: Wang
  fullname: Wang, Dongbo
  email: w.dongbo@yahoo.com
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 3
  givenname: Yiwen
  surname: Liu
  fullname: Liu, Yiwen
  organization: Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
– sequence: 4
  givenname: Qilin
  surname: Wang
  fullname: Wang, Qilin
  organization: Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
– sequence: 5
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 6
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  email: yangqi@hnu.edu.cn
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 7
  givenname: Xiaoming
  surname: Li
  fullname: Li, Xiaoming
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 8
  givenname: Guangming
  surname: Zeng
  fullname: Zeng, Guangming
  organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
– sequence: 9
  givenname: Hailong
  surname: Li
  fullname: Li, Hailong
  organization: School of Energy Science and Engineering, Central South University, Changsha 410083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29045805$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFf4BQjlwSbMdOYg5IqAJaqRKXcracyZj1KrGL7bTqv6-XtBcO9DCyNH7vafS9M3Lig0dC3jPaMMq6T4fm3uSIqeGU9Q1VDe34K7JjQ69qLsRwQnaUirZmrRSn5CylA6WU81a9IadcUSEHKnfE30QHcwATR-Mr9HvjAVOV9iHmGvbG-cqanB8qA25K1W0M0wrZhbKOYamMNxjD6KCyGBf02fz9C7a6NyljcWV3ZzJOVZrX6Te-Ja-tmRO-e3rPya_v324uLuvrnz-uLr5e1yA6luueTlbaQVmL1nIubK9AMtN1wA2noxII0A0dF5ILoINtCxEpad8jjG0_yfacfNxyy8F_VkxZLy4BzrPxGNakeWEhu1YVHi9JmZItL9MfUz88SddxwUnfRreY-KCfcRbB500AMaQU0WpwG5IcjZs1o_rYnT7orTt97E5TpUt3xSz-MT_nv2D7stmw8LxzGHUCh6XFyUWErKfg_h_wCNbuttY
CitedBy_id crossref_primary_10_1016_j_biortech_2019_121598
crossref_primary_10_1016_j_scitotenv_2019_03_001
crossref_primary_10_1016_j_scitotenv_2023_168796
crossref_primary_10_1016_j_biortech_2021_126420
crossref_primary_10_1016_j_watres_2018_08_011
crossref_primary_10_1016_j_cej_2024_156041
crossref_primary_10_1016_j_watres_2022_118082
crossref_primary_10_1021_acsestwater_4c00816
crossref_primary_10_1016_j_jwpe_2024_106573
crossref_primary_10_1007_s13399_019_00576_1
crossref_primary_10_1016_j_cej_2022_139549
crossref_primary_10_1016_j_scitotenv_2022_161122
crossref_primary_10_1016_j_scitotenv_2020_139035
crossref_primary_10_1016_j_scitotenv_2022_157384
crossref_primary_10_2166_wst_2018_256
crossref_primary_10_1021_acs_est_2c04170
crossref_primary_10_1016_j_jhazmat_2024_134825
crossref_primary_10_1007_s10311_022_01465_2
crossref_primary_10_1007_s13762_018_02178_2
crossref_primary_10_1016_j_jclepro_2020_120321
crossref_primary_10_1016_j_biteb_2019_03_002
crossref_primary_10_1016_j_cej_2020_127026
crossref_primary_10_1007_s13762_018_1741_8
crossref_primary_10_1016_j_cej_2020_125885
crossref_primary_10_1016_j_still_2020_104723
crossref_primary_10_1016_j_watres_2019_01_016
crossref_primary_10_1016_j_jenvman_2022_115025
crossref_primary_10_1016_j_biortech_2020_123379
crossref_primary_10_1016_j_biortech_2022_128317
crossref_primary_10_1016_j_envres_2020_109764
crossref_primary_10_1016_j_watres_2020_115646
crossref_primary_10_1016_j_biortech_2022_126924
crossref_primary_10_1021_acs_est_2c06345
crossref_primary_10_1007_s13762_018_1654_6
crossref_primary_10_1016_j_applthermaleng_2018_07_048
crossref_primary_10_1016_j_jclepro_2023_139555
crossref_primary_10_1016_j_scitotenv_2020_142390
crossref_primary_10_1016_j_chemosphere_2024_143740
crossref_primary_10_1016_j_jhazmat_2020_122570
crossref_primary_10_1016_j_biortech_2023_129311
crossref_primary_10_1016_j_watres_2024_122368
crossref_primary_10_1016_j_biombioe_2020_105779
crossref_primary_10_1021_acs_est_4c00612
crossref_primary_10_3390_ijerph19052806
crossref_primary_10_1021_acs_est_4c06760
crossref_primary_10_1016_j_jenvman_2024_122409
crossref_primary_10_1016_j_watres_2019_114881
crossref_primary_10_2139_ssrn_4197919
crossref_primary_10_1016_j_scitotenv_2018_09_165
crossref_primary_10_1016_j_biortech_2021_125307
crossref_primary_10_1021_acssuschemeng_8b05420
crossref_primary_10_3390_su14105894
crossref_primary_10_1016_j_cej_2023_147138
crossref_primary_10_1016_j_jenvman_2021_114090
crossref_primary_10_1021_acsestengg_3c00325
crossref_primary_10_1016_j_jhazmat_2019_121615
crossref_primary_10_1016_j_jhazmat_2021_126206
crossref_primary_10_1016_j_wroa_2025_100301
crossref_primary_10_1016_j_watres_2019_114934
crossref_primary_10_1016_j_rser_2023_113502
crossref_primary_10_1016_j_bej_2018_10_010
crossref_primary_10_1016_j_chemosphere_2022_133903
crossref_primary_10_1016_j_biortech_2018_04_081
crossref_primary_10_1016_j_ijhydene_2022_11_015
crossref_primary_10_1016_j_biortech_2023_128754
crossref_primary_10_1016_j_watres_2017_12_007
crossref_primary_10_1016_j_biortech_2018_01_059
crossref_primary_10_1021_acssuschemeng_8b05799
crossref_primary_10_1016_j_cej_2019_123285
crossref_primary_10_1016_j_scitotenv_2020_142336
crossref_primary_10_1016_j_coesh_2025_100592
crossref_primary_10_1016_j_jenvman_2020_111237
crossref_primary_10_1016_j_biortech_2024_131094
crossref_primary_10_1016_j_chemosphere_2017_12_167
crossref_primary_10_1016_j_jhazmat_2024_134676
crossref_primary_10_1016_j_chemosphere_2017_12_169
crossref_primary_10_1016_j_wasman_2018_03_012
crossref_primary_10_1016_j_watres_2019_03_032
crossref_primary_10_1016_j_scitotenv_2020_144470
crossref_primary_10_1021_acs_est_2c00062
crossref_primary_10_1016_j_jhazmat_2019_121176
crossref_primary_10_1016_j_jclepro_2020_125765
crossref_primary_10_1016_j_jhazmat_2019_120835
crossref_primary_10_1016_j_jhazmat_2019_121888
crossref_primary_10_1016_j_biortech_2021_125494
crossref_primary_10_1016_j_biortech_2021_125253
crossref_primary_10_1016_j_watres_2019_02_036
crossref_primary_10_1016_j_biortech_2020_123903
crossref_primary_10_1016_j_jenvman_2017_11_073
crossref_primary_10_1016_j_biortech_2018_08_053
crossref_primary_10_1016_j_watres_2019_02_032
crossref_primary_10_1016_j_jenvman_2024_122828
crossref_primary_10_1016_j_biortech_2019_121713
crossref_primary_10_1016_j_sajce_2024_03_004
crossref_primary_10_1016_j_jece_2024_114828
crossref_primary_10_1016_j_biortech_2021_125805
crossref_primary_10_1016_j_watres_2020_115851
crossref_primary_10_1016_j_biortech_2020_123471
crossref_primary_10_1155_2020_1705232
crossref_primary_10_1016_j_jece_2020_103944
crossref_primary_10_1016_j_cej_2021_129948
crossref_primary_10_1016_j_biortech_2019_03_121
crossref_primary_10_1016_j_memsci_2022_121104
crossref_primary_10_1016_j_biortech_2018_07_018
crossref_primary_10_1016_j_envpol_2024_124346
crossref_primary_10_1016_j_jclepro_2021_129157
crossref_primary_10_1039_C8EW00873F
crossref_primary_10_1039_D3GC03614F
crossref_primary_10_1016_j_cej_2024_156633
crossref_primary_10_1021_acssuschemeng_0c01889
crossref_primary_10_1016_j_jhazmat_2024_134178
crossref_primary_10_1016_j_cej_2018_08_095
crossref_primary_10_1016_j_rser_2020_110283
crossref_primary_10_1016_j_biortech_2019_02_016
crossref_primary_10_1016_j_jhazmat_2022_129796
crossref_primary_10_1016_j_watres_2020_116539
crossref_primary_10_1007_s11356_023_25657_7
crossref_primary_10_1016_j_cej_2018_07_192
crossref_primary_10_1016_j_horiz_2022_100043
crossref_primary_10_1007_s11356_018_1221_1
crossref_primary_10_1080_07388551_2019_1682964
crossref_primary_10_1016_j_jhazmat_2019_121944
crossref_primary_10_1016_j_jhazmat_2020_123343
crossref_primary_10_1016_j_biortech_2018_01_084
crossref_primary_10_1016_j_biortech_2019_121977
crossref_primary_10_1016_j_jhazmat_2020_122930
crossref_primary_10_1016_j_watres_2020_116440
crossref_primary_10_1016_j_biortech_2018_04_050
crossref_primary_10_1016_j_jenvman_2025_124866
crossref_primary_10_1016_j_watres_2024_121757
crossref_primary_10_1016_j_biortech_2021_125116
crossref_primary_10_1016_j_ecoenv_2020_111318
crossref_primary_10_1016_j_scitotenv_2021_146505
crossref_primary_10_1016_j_biortech_2018_07_109
crossref_primary_10_1016_j_cej_2024_154201
crossref_primary_10_1016_j_scitotenv_2019_135878
crossref_primary_10_1016_j_biortech_2018_08_039
crossref_primary_10_1016_j_jwpe_2023_103515
crossref_primary_10_1016_j_watres_2024_121909
crossref_primary_10_1016_j_biortech_2020_124022
crossref_primary_10_1016_j_chemosphere_2018_12_015
crossref_primary_10_2166_wst_2018_236
crossref_primary_10_1007_s11783_021_1403_9
crossref_primary_10_1016_j_scitotenv_2022_157402
crossref_primary_10_1016_j_resconrec_2022_106342
crossref_primary_10_1016_j_jhazmat_2019_121384
crossref_primary_10_1016_j_cej_2020_126797
crossref_primary_10_1016_j_chemosphere_2018_07_060
crossref_primary_10_1016_j_bej_2019_02_010
crossref_primary_10_1016_j_biortech_2019_122278
crossref_primary_10_1016_j_cej_2017_11_064
crossref_primary_10_1016_j_envres_2019_108840
crossref_primary_10_1016_j_jece_2024_114840
crossref_primary_10_1016_j_scitotenv_2019_03_175
crossref_primary_10_1016_j_scitotenv_2018_05_264
crossref_primary_10_1021_acs_est_1c05960
crossref_primary_10_1016_j_jclepro_2020_122921
crossref_primary_10_1016_j_seppur_2025_131692
crossref_primary_10_1016_j_biortech_2020_122989
crossref_primary_10_3389_fmicb_2023_1168902
crossref_primary_10_5004_dwt_2018_22027
crossref_primary_10_1016_j_jwpe_2024_104985
crossref_primary_10_1016_j_biortech_2020_123159
crossref_primary_10_1021_acs_est_4c07825
crossref_primary_10_1016_j_jhazmat_2022_128444
crossref_primary_10_1016_j_cej_2023_146001
crossref_primary_10_1016_j_scitotenv_2021_151413
crossref_primary_10_1007_s12649_022_01900_z
Cites_doi 10.1016/j.envres.2006.03.006
10.1007/s11356-013-2025-y
10.1021/acs.est.6b00003
10.1016/j.watres.2007.11.022
10.1038/srep19713
10.1016/j.chemosphere.2010.11.018
10.1016/j.watres.2016.08.062
10.1016/S0043-1354(98)00129-8
10.1073/pnas.1115187108
10.1099/ijs.0.02662-0
10.1016/j.watres.2015.01.017
10.1016/j.chemosphere.2012.03.005
10.1099/ijs.0.65108-0
10.1021/acssuschemeng.6b00816
10.1021/es8037142
10.1016/j.chemosphere.2006.04.066
10.1021/es500495p
10.1016/j.scitotenv.2014.08.108
10.1021/acs.est.5b03112
10.1021/es9014458
10.1016/j.watres.2015.04.012
10.1128/AEM.57.4.1213-1217.1991
10.1016/j.biortech.2017.02.059
10.1021/es0349204
10.1021/es052245n
10.1016/j.watres.2013.05.015
10.1016/j.ibiod.2015.06.012
10.1016/j.biortech.2010.11.119
10.1021/es902958c
10.1016/j.biortech.2016.03.156
10.1016/j.scitotenv.2015.08.108
10.1021/es304673s
10.1016/j.watres.2010.03.015
10.1002/jat.3012
10.1021/es702882g
10.1128/MMBR.59.2.201-222.1995
10.1016/j.envpol.2007.02.013
10.1016/S0168-1656(02)00025-1
10.1016/j.tibtech.2017.02.010
10.1016/j.envint.2014.03.006
10.1021/acs.est.6b04885
10.1021/es049524f
10.1016/j.jhazmat.2010.07.092
10.1016/j.biortech.2016.03.138
10.1021/es400210v
10.1016/j.cej.2016.06.041
10.1099/ijs.0.63116-0
10.1897/07-471.1
10.1016/j.watres.2012.02.005
10.1016/j.biortech.2017.04.054
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2017.09.062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 161
ExternalDocumentID 29045805
10_1016_j_watres_2017_09_062
S0043135417308199
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-70df5f89ffeff224f79c51a66c2a20b94ecc68624524c08f310155077ecb37d53
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Jul 11 02:48:47 EDT 2025
Fri Jul 11 04:16:09 EDT 2025
Wed Feb 19 02:42:00 EST 2025
Tue Jul 01 01:20:50 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Fri Feb 23 02:23:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anaerobic fermentation
Waste activated sludge
Short-chain fatty acids production
Emerging contaminants
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-70df5f89ffeff224f79c51a66c2a20b94ecc68624524c08f310155077ecb37d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29045805
PQID 1953295375
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000563922
proquest_miscellaneous_1953295375
pubmed_primary_29045805
crossref_citationtrail_10_1016_j_watres_2017_09_062
crossref_primary_10_1016_j_watres_2017_09_062
elsevier_sciencedirect_doi_10_1016_j_watres_2017_09_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Feng, Chen, Zheng (bib6) 2009; 43
Hou, Hao, Zhang, Wang, Liu, Liu (bib13) 2016; 212
Subedi, Lee, Moon, Kannan (bib30) 2014; 68
Verlicchi, Zambello (bib31) 2015; 538
Liu, Fang (bib17) 2002; 95
Yuan, Liu, Li, Wang, Wang, Peng (bib45) 2016; 211
APHA (American Public Health Association) (bib1) 1998
Wang, Sun, Zhang, Xie, Zhou, Qian, Yang, Zeng, Liu, Wang (bib35) 2016; 6
Zhao, Yang, Li, Wang, An, Xie, Xu, Deng, Zeng (bib49) 2015; 104
Ying, Yu, Kookana (bib42) 2007; 150
Lozano, Rice, Ramirez, Torrents (bib18) 2013; 47
Miranda-Tello, Fardeau, Sepúlveda, Fernández, Cayol, Thomas, Ollivier (bib24) 2003; 53
Heidler, Amir Sapkota, Halden (bib11) 2006; 40
Wang, Wang, Liu, Ngo, Lian, Zhao, Chen, Yang, Zeng, Li (bib37) 2017; 234
Huang, Du, Zhang, Hu, Wu, Song, Xia, Wang (bib14) 2014; 34
Heipieper, Keweloh, Rehm (bib10) 1991; 57
Duan, Wang, Xie, Feng, Yan, Zhou (bib5) 2016; 105
Sapkota, Heidler, Halden (bib27) 2007; 103
Nelson, Morrison, Yu (bib25) 2011; 102
Yan, Feng, Zhang, Wisniewski, Zhou (bib41) 2010; 44
Zhao, Chen, Zhang, Zhu (bib47) 2010; 44
Jiang, Chen, Zheng (bib15) 2009; 43
Sikkema, De Bont, Poolman (bib28) 1995; 59
Halden, Paull (bib8) 2004; 38
Miller, Heidler, Chillrud, DeLaquil, Ritchie, Mihalic, Halden (bib21) 2008; 42
Wyss, Dewhirst, Paster, Thurnheer, Luginbühl (bib39) 2005; 55
Zhao, Zhang, Wang, Li, An, Xie, Chen, Xu, Sun, Zeng, Yang (bib50) 2016; 4
Lu, Xing, Ren (bib19) 2012; 46
Niu, Song, Dong (bib26) 2008; 58
Zheng, Su, Li, Xiao, Wang, Chen (bib51) 2013; 47
Li, Yuan, Wu, Wang, Xiao, Wu, Chen, Zeng (bib16) 2016; 303
Wang, Liu, Ngo, Zhang, Yang, Peng, He, Zeng, Ni (bib36) 2017; 238
Zhu, Chen (bib53) 2014; 21
Luo, Chen, Feng (bib20) 2016; 50
Zhao, Wang, Li, Yang, Chen, Zhong, Zeng (bib48) 2015; 78
Zarate, Schulwitz, Stevens, Venables (bib46) 2012; 88
Harms, Schleicher, Collins, Andreesen (bib7) 1998; 48
Yang, Ying, Su, Stauber, Adams, Binet (bib40) 2008; 27
Wang, Zhao, Zeng, Chen, Bond, Li (bib34) 2015; 49
Wang, Wang, Yang, Zeng, Li (bib38) 2017; 35
Mino, van Loosdrecht, Heijnen (bib23) 1998; 32
Miller, Colquhoun, Halden (bib22) 2010; 183
Wang, Chen, Zheng, Li, Feng (bib32) 2013; 47
Brausch, Rand (bib2) 2011; 82
Wang, Zeng, Chen, Li (bib33) 2015; 73
Souchier, Benali-Raclot, Benanou, Boireau, Gomez, Casellas, Chiron (bib29) 2015; 502
Cai, Liu, Wei (bib3) 2004; 38
Halden (bib9) 2014; 48
Chung, Genco, Megrelis, Ruderman (bib4) 2011; 108
Yu, He, Shao, Zhu (bib43) 2008; 42
Zhilina, Zavarzina, Osipov, Kostrikina, Turova (bib52) 2009; 78
Heidler, Halden (bib12) 2007; 66
Yun, Liang, Qiu, Zhang, Zhao, Jiang, Wang (bib44) 2016; 51
Brausch (10.1016/j.watres.2017.09.062_bib2) 2011; 82
Zhao (10.1016/j.watres.2017.09.062_bib47) 2010; 44
Halden (10.1016/j.watres.2017.09.062_bib9) 2014; 48
Yu (10.1016/j.watres.2017.09.062_bib43) 2008; 42
Zhao (10.1016/j.watres.2017.09.062_bib48) 2015; 78
Harms (10.1016/j.watres.2017.09.062_bib7) 1998; 48
Wang (10.1016/j.watres.2017.09.062_bib32) 2013; 47
Heidler (10.1016/j.watres.2017.09.062_bib11) 2006; 40
Liu (10.1016/j.watres.2017.09.062_bib17) 2002; 95
Miller (10.1016/j.watres.2017.09.062_bib21) 2008; 42
Ying (10.1016/j.watres.2017.09.062_bib42) 2007; 150
Subedi (10.1016/j.watres.2017.09.062_bib30) 2014; 68
Jiang (10.1016/j.watres.2017.09.062_bib15) 2009; 43
Zheng (10.1016/j.watres.2017.09.062_bib51) 2013; 47
Halden (10.1016/j.watres.2017.09.062_bib8) 2004; 38
Sapkota (10.1016/j.watres.2017.09.062_bib27) 2007; 103
Yuan (10.1016/j.watres.2017.09.062_bib45) 2016; 211
Cai (10.1016/j.watres.2017.09.062_bib3) 2004; 38
Luo (10.1016/j.watres.2017.09.062_bib20) 2016; 50
Zhu (10.1016/j.watres.2017.09.062_bib53) 2014; 21
Miller (10.1016/j.watres.2017.09.062_bib22) 2010; 183
Lu (10.1016/j.watres.2017.09.062_bib19) 2012; 46
Wang (10.1016/j.watres.2017.09.062_bib35) 2016; 6
Mino (10.1016/j.watres.2017.09.062_bib23) 1998; 32
Yun (10.1016/j.watres.2017.09.062_bib44) 2016; 51
Nelson (10.1016/j.watres.2017.09.062_bib25) 2011; 102
Wang (10.1016/j.watres.2017.09.062_bib34) 2015; 49
Yan (10.1016/j.watres.2017.09.062_bib41) 2010; 44
Zarate (10.1016/j.watres.2017.09.062_bib46) 2012; 88
Souchier (10.1016/j.watres.2017.09.062_bib29) 2015; 502
Verlicchi (10.1016/j.watres.2017.09.062_bib31) 2015; 538
Duan (10.1016/j.watres.2017.09.062_bib5) 2016; 105
Zhilina (10.1016/j.watres.2017.09.062_bib52) 2009; 78
Chung (10.1016/j.watres.2017.09.062_bib4) 2011; 108
Miranda-Tello (10.1016/j.watres.2017.09.062_bib24) 2003; 53
Heidler (10.1016/j.watres.2017.09.062_bib12) 2007; 66
Feng (10.1016/j.watres.2017.09.062_bib6) 2009; 43
Lozano (10.1016/j.watres.2017.09.062_bib18) 2013; 47
Wang (10.1016/j.watres.2017.09.062_bib38) 2017; 35
Heipieper (10.1016/j.watres.2017.09.062_bib10) 1991; 57
Wyss (10.1016/j.watres.2017.09.062_bib39) 2005; 55
Huang (10.1016/j.watres.2017.09.062_bib14) 2014; 34
Hou (10.1016/j.watres.2017.09.062_bib13) 2016; 212
Zhao (10.1016/j.watres.2017.09.062_bib50) 2016; 4
APHA (American Public Health Association) (10.1016/j.watres.2017.09.062_bib1) 1998
Wang (10.1016/j.watres.2017.09.062_bib33) 2015; 73
Wang (10.1016/j.watres.2017.09.062_bib36) 2017; 238
Zhao (10.1016/j.watres.2017.09.062_bib49) 2015; 104
Yang (10.1016/j.watres.2017.09.062_bib40) 2008; 27
Niu (10.1016/j.watres.2017.09.062_bib26) 2008; 58
Sikkema (10.1016/j.watres.2017.09.062_bib28) 1995; 59
Wang (10.1016/j.watres.2017.09.062_bib37) 2017; 234
Li (10.1016/j.watres.2017.09.062_bib16) 2016; 303
References_xml – volume: 38
  start-page: 4849
  year: 2004
  end-page: 4855
  ident: bib8
  article-title: Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 667
  year: 2005
  end-page: 671
  ident: bib39
  article-title: Guggenheimella bovis gen. nov., sp. nov., isolated from lesions of bovine dermatitis digitalis
  publication-title: Int. J. Syst. Evol. Micro.
– volume: 57
  start-page: 1213
  year: 1991
  end-page: 1217
  ident: bib10
  article-title: Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli
  publication-title: Appl. Environ. Microbiol.
– volume: 303
  start-page: 636
  year: 2016
  end-page: 645
  ident: bib16
  article-title: Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 6921
  year: 2016
  end-page: 6929
  ident: bib20
  article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen
  publication-title: Environ. Sci. Technol.
– volume: 58
  start-page: 12
  year: 2008
  end-page: 16
  ident: bib26
  article-title: Proteiniborus ethanoligenes gen. nov., sp. nov., an anaerobic protein-utilizing bacterium
  publication-title: Int. J. Syst. Evol. Micro.
– volume: 34
  start-page: 1060
  year: 2014
  end-page: 1067
  ident: bib14
  article-title: The in Vitro estrogenic activities of triclosan and triclocarban
  publication-title: J. Appl. Toxicol.
– volume: 88
  start-page: 323
  year: 2012
  end-page: 329
  ident: bib46
  article-title: Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland
  publication-title: Chemosphere
– volume: 47
  start-page: 4262
  year: 2013
  end-page: 4268
  ident: bib51
  article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 3195
  year: 2004
  end-page: 3202
  ident: bib3
  article-title: Enhanced biohydrogen production from sewage sludge with alkaline pretreatment
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 291
  year: 2016
  end-page: 300
  ident: bib44
  article-title: Functional characterization of a novel amidase involved in biotransformation of triclocarban and its dehalogenated congeners in Ochrobactrum sp. TCC-2
  publication-title: Environ. Sci. Technol.
– volume: 104
  start-page: 283
  year: 2015
  end-page: 289
  ident: bib49
  article-title: Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside
  publication-title: Intern. Biodeter. Biodeg.
– volume: 59
  start-page: 201
  year: 1995
  end-page: 222
  ident: bib28
  article-title: Mechanisms of membrane toxicity of hydrocarbons
  publication-title: Microbiol. Rev.
– volume: 35
  start-page: 799
  year: 2017
  end-page: 802
  ident: bib38
  article-title: Wastewater opportunities for denitrifying anaerobic methane oxidation
  publication-title: Trends. Biotechnol.
– volume: 47
  start-page: 4519
  year: 2013
  end-page: 4527
  ident: bib18
  article-title: Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes
  publication-title: Water Res.
– volume: 102
  start-page: 3730
  year: 2011
  end-page: 3739
  ident: bib25
  article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters
  publication-title: Bioresour. Technol.
– volume: 538
  start-page: 750
  year: 2015
  end-page: 767
  ident: bib31
  article-title: Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review
  publication-title: Sci. Total. Environ.
– volume: 211
  start-page: 685
  year: 2016
  end-page: 690
  ident: bib45
  article-title: Short-chain fatty acids production and microbial community in sludge alkaline fermentation: long-term effect of temperature
  publication-title: Bioresour. Technol.
– volume: 48
  start-page: 3603
  year: 2014
  end-page: 3611
  ident: bib9
  article-title: On the need and speed of regulating triclosan and triclocarban in the United States
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 19713
  year: 2016
  ident: bib35
  article-title: Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate
  publication-title: Sci. Rep.
– volume: 150
  start-page: 300
  year: 2007
  end-page: 305
  ident: bib42
  article-title: Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling
  publication-title: Environ. Pollut.
– volume: 43
  start-page: 4373
  year: 2009
  end-page: 4380
  ident: bib6
  article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 2688
  year: 2013
  end-page: 2695
  ident: bib32
  article-title: Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and gram-staining bacteria
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 12253
  year: 2015
  end-page: 12262
  ident: bib34
  article-title: How does polyhydroxyalkanoates affect methane production from the anaerobic digestion of waste activated sludge?
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 4675
  year: 2016
  end-page: 4684
  ident: bib50
  article-title: Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the Co-fermentation of waste activated sludge and food waste
  publication-title: ACS. Sustain. Chem. Eng.
– volume: 42
  start-page: 4570
  year: 2008
  end-page: 4576
  ident: bib21
  article-title: Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments
  publication-title: Environ. Sci. Technol.
– volume: 68
  start-page: 33
  year: 2014
  end-page: 40
  ident: bib30
  article-title: Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea
  publication-title: Environ. Intern.
– volume: 212
  start-page: 20
  year: 2016
  end-page: 25
  ident: bib13
  article-title: Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation
  publication-title: Bioresour. Technol.
– volume: 78
  start-page: 506
  year: 2009
  ident: bib52
  article-title: Natronincola ferrireducens sp. nov. and Natronincola peptidovorans sp. nov.-new anaerobic alkaliphilic peptide lysing and iron reducing bacteria from soda lake
  publication-title: Mikrobiologiia
– volume: 183
  start-page: 766
  year: 2010
  end-page: 772
  ident: bib22
  article-title: Identification of wastewater bacteria involved in the degradation of triclocarban and its non-chlorinated congener
  publication-title: J. Hazard. Mater.
– volume: 82
  start-page: 1518
  year: 2011
  end-page: 1532
  ident: bib2
  article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity
  publication-title: Chemosphere
– volume: 234
  start-page: 456
  year: 2017
  end-page: 465
  ident: bib37
  article-title: Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?
  publication-title: Bioresour. Technol.
– volume: 48
  start-page: 983
  year: 1998
  end-page: 993
  ident: bib7
  article-title: Tissierella creatinophila sp. nov., a Gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism
  publication-title: Int. J. Syst. Evol. Micro.
– volume: 42
  start-page: 1925
  year: 2008
  end-page: 1934
  ident: bib43
  article-title: Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment
  publication-title: Water Res.
– volume: 40
  start-page: 3634
  year: 2006
  end-page: 3639
  ident: bib11
  article-title: Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 1509
  year: 2003
  end-page: 1514
  ident: bib24
  article-title: Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico
  publication-title: Int. J. Syst. Evol. Micro.
– volume: 44
  start-page: 3329
  year: 2010
  end-page: 3336
  ident: bib41
  article-title: Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0
  publication-title: Water. Res.
– volume: 238
  start-page: 343
  year: 2017
  end-page: 351
  ident: bib36
  article-title: Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation
  publication-title: Bioresour. Technol.
– volume: 78
  start-page: 111
  year: 2015
  end-page: 120
  ident: bib48
  article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge
  publication-title: Water. Res.
– year: 1998
  ident: bib1
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 103
  start-page: 21
  year: 2007
  end-page: 29
  ident: bib27
  article-title: Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry
  publication-title: Environ. Res.
– volume: 502
  start-page: 199
  year: 2015
  end-page: 205
  ident: bib29
  article-title: Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry
  publication-title: Sci. Total. Environ.
– volume: 27
  start-page: 1201
  year: 2008
  end-page: 1208
  ident: bib40
  article-title: Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga pseudokirchneriella subcapitata
  publication-title: Environ. Toxic. Chem.
– volume: 21
  start-page: 1466
  year: 2014
  end-page: 1479
  ident: bib53
  article-title: The fate and risk of selected pharmaceutical and personal care products in wastewater treatment plants and a pilotscale multistage constructed wetland system
  publication-title: Environ. Sci. Pollut. Res.
– volume: 105
  start-page: 209
  year: 2016
  end-page: 217
  ident: bib5
  article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
– volume: 66
  start-page: 362
  year: 2007
  end-page: 369
  ident: bib12
  article-title: Mass balance assessment of triclosan removal during conventional sewage treatment
  publication-title: Chemosphere
– volume: 44
  start-page: 3317
  year: 2010
  end-page: 3323
  ident: bib47
  article-title: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH
  publication-title: Environ. Sci. Technol.
– volume: 73
  start-page: 311
  year: 2015
  end-page: 322
  ident: bib33
  article-title: Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge
  publication-title: Water. Res.
– volume: 43
  start-page: 7734
  year: 2009
  end-page: 7741
  ident: bib15
  article-title: Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process
  publication-title: Environ. Sci. Technol.
– volume: 108
  start-page: 17732
  year: 2011
  end-page: 17737
  ident: bib4
  article-title: Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos
  publication-title: Proc. Nation. Acad. Sci.
– volume: 95
  start-page: 249
  year: 2002
  end-page: 256
  ident: bib17
  article-title: Extraction of extracellular polymeric substances (EPS) of sludges
  publication-title: J. Biotechnol.
– volume: 46
  start-page: 2425
  year: 2012
  end-page: 2434
  ident: bib19
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge
  publication-title: Water Res.
– volume: 32
  start-page: 3193
  year: 1998
  end-page: 3207
  ident: bib23
  article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process
  publication-title: Water Res.
– volume: 103
  start-page: 21
  year: 2007
  ident: 10.1016/j.watres.2017.09.062_bib27
  article-title: Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2006.03.006
– volume: 21
  start-page: 1466
  year: 2014
  ident: 10.1016/j.watres.2017.09.062_bib53
  article-title: The fate and risk of selected pharmaceutical and personal care products in wastewater treatment plants and a pilotscale multistage constructed wetland system
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-2025-y
– volume: 50
  start-page: 6921
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib20
  article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00003
– volume: 42
  start-page: 1925
  year: 2008
  ident: 10.1016/j.watres.2017.09.062_bib43
  article-title: Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.11.022
– volume: 6
  start-page: 19713
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib35
  article-title: Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate
  publication-title: Sci. Rep.
  doi: 10.1038/srep19713
– volume: 82
  start-page: 1518
  year: 2011
  ident: 10.1016/j.watres.2017.09.062_bib2
  article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.11.018
– volume: 105
  start-page: 209
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib5
  article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.08.062
– volume: 32
  start-page: 3193
  year: 1998
  ident: 10.1016/j.watres.2017.09.062_bib23
  article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00129-8
– volume: 108
  start-page: 17732
  year: 2011
  ident: 10.1016/j.watres.2017.09.062_bib4
  article-title: Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos
  publication-title: Proc. Nation. Acad. Sci.
  doi: 10.1073/pnas.1115187108
– volume: 53
  start-page: 1509
  year: 2003
  ident: 10.1016/j.watres.2017.09.062_bib24
  article-title: Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico
  publication-title: Int. J. Syst. Evol. Micro.
  doi: 10.1099/ijs.0.02662-0
– volume: 73
  start-page: 311
  year: 2015
  ident: 10.1016/j.watres.2017.09.062_bib33
  article-title: Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge
  publication-title: Water. Res.
  doi: 10.1016/j.watres.2015.01.017
– volume: 88
  start-page: 323
  year: 2012
  ident: 10.1016/j.watres.2017.09.062_bib46
  article-title: Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.03.005
– volume: 58
  start-page: 12
  year: 2008
  ident: 10.1016/j.watres.2017.09.062_bib26
  article-title: Proteiniborus ethanoligenes gen. nov., sp. nov., an anaerobic protein-utilizing bacterium
  publication-title: Int. J. Syst. Evol. Micro.
  doi: 10.1099/ijs.0.65108-0
– volume: 4
  start-page: 4675
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib50
  article-title: Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the Co-fermentation of waste activated sludge and food waste
  publication-title: ACS. Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00816
– volume: 43
  start-page: 4373
  year: 2009
  ident: 10.1016/j.watres.2017.09.062_bib6
  article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8037142
– volume: 66
  start-page: 362
  year: 2007
  ident: 10.1016/j.watres.2017.09.062_bib12
  article-title: Mass balance assessment of triclosan removal during conventional sewage treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.04.066
– volume: 48
  start-page: 3603
  year: 2014
  ident: 10.1016/j.watres.2017.09.062_bib9
  article-title: On the need and speed of regulating triclosan and triclocarban in the United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500495p
– volume: 502
  start-page: 199
  year: 2015
  ident: 10.1016/j.watres.2017.09.062_bib29
  article-title: Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2014.08.108
– volume: 49
  start-page: 12253
  year: 2015
  ident: 10.1016/j.watres.2017.09.062_bib34
  article-title: How does polyhydroxyalkanoates affect methane production from the anaerobic digestion of waste activated sludge?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03112
– volume: 43
  start-page: 7734
  year: 2009
  ident: 10.1016/j.watres.2017.09.062_bib15
  article-title: Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9014458
– volume: 78
  start-page: 111
  year: 2015
  ident: 10.1016/j.watres.2017.09.062_bib48
  article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge
  publication-title: Water. Res.
  doi: 10.1016/j.watres.2015.04.012
– volume: 78
  start-page: 506
  year: 2009
  ident: 10.1016/j.watres.2017.09.062_bib52
  article-title: Natronincola ferrireducens sp. nov. and Natronincola peptidovorans sp. nov.-new anaerobic alkaliphilic peptide lysing and iron reducing bacteria from soda lake
  publication-title: Mikrobiologiia
– volume: 57
  start-page: 1213
  year: 1991
  ident: 10.1016/j.watres.2017.09.062_bib10
  article-title: Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.57.4.1213-1217.1991
– volume: 234
  start-page: 456
  year: 2017
  ident: 10.1016/j.watres.2017.09.062_bib37
  article-title: Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.059
– volume: 38
  start-page: 3195
  year: 2004
  ident: 10.1016/j.watres.2017.09.062_bib3
  article-title: Enhanced biohydrogen production from sewage sludge with alkaline pretreatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0349204
– volume: 40
  start-page: 3634
  year: 2006
  ident: 10.1016/j.watres.2017.09.062_bib11
  article-title: Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052245n
– volume: 47
  start-page: 4519
  year: 2013
  ident: 10.1016/j.watres.2017.09.062_bib18
  article-title: Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.05.015
– volume: 104
  start-page: 283
  year: 2015
  ident: 10.1016/j.watres.2017.09.062_bib49
  article-title: Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside
  publication-title: Intern. Biodeter. Biodeg.
  doi: 10.1016/j.ibiod.2015.06.012
– volume: 102
  start-page: 3730
  year: 2011
  ident: 10.1016/j.watres.2017.09.062_bib25
  article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.119
– volume: 44
  start-page: 3317
  year: 2010
  ident: 10.1016/j.watres.2017.09.062_bib47
  article-title: Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902958c
– volume: 212
  start-page: 20
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib13
  article-title: Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.156
– volume: 538
  start-page: 750
  year: 2015
  ident: 10.1016/j.watres.2017.09.062_bib31
  article-title: Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2015.08.108
– volume: 47
  start-page: 2688
  year: 2013
  ident: 10.1016/j.watres.2017.09.062_bib32
  article-title: Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and gram-staining bacteria
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304673s
– volume: 44
  start-page: 3329
  year: 2010
  ident: 10.1016/j.watres.2017.09.062_bib41
  article-title: Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0
  publication-title: Water. Res.
  doi: 10.1016/j.watres.2010.03.015
– volume: 48
  start-page: 983
  year: 1998
  ident: 10.1016/j.watres.2017.09.062_bib7
  article-title: Tissierella creatinophila sp. nov., a Gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism
  publication-title: Int. J. Syst. Evol. Micro.
– volume: 34
  start-page: 1060
  year: 2014
  ident: 10.1016/j.watres.2017.09.062_bib14
  article-title: The in Vitro estrogenic activities of triclosan and triclocarban
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.3012
– volume: 42
  start-page: 4570
  year: 2008
  ident: 10.1016/j.watres.2017.09.062_bib21
  article-title: Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702882g
– volume: 59
  start-page: 201
  year: 1995
  ident: 10.1016/j.watres.2017.09.062_bib28
  article-title: Mechanisms of membrane toxicity of hydrocarbons
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.59.2.201-222.1995
– volume: 150
  start-page: 300
  year: 2007
  ident: 10.1016/j.watres.2017.09.062_bib42
  article-title: Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.02.013
– year: 1998
  ident: 10.1016/j.watres.2017.09.062_bib1
– volume: 95
  start-page: 249
  year: 2002
  ident: 10.1016/j.watres.2017.09.062_bib17
  article-title: Extraction of extracellular polymeric substances (EPS) of sludges
  publication-title: J. Biotechnol.
  doi: 10.1016/S0168-1656(02)00025-1
– volume: 35
  start-page: 799
  year: 2017
  ident: 10.1016/j.watres.2017.09.062_bib38
  article-title: Wastewater opportunities for denitrifying anaerobic methane oxidation
  publication-title: Trends. Biotechnol.
  doi: 10.1016/j.tibtech.2017.02.010
– volume: 68
  start-page: 33
  year: 2014
  ident: 10.1016/j.watres.2017.09.062_bib30
  article-title: Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea
  publication-title: Environ. Intern.
  doi: 10.1016/j.envint.2014.03.006
– volume: 51
  start-page: 291
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib44
  article-title: Functional characterization of a novel amidase involved in biotransformation of triclocarban and its dehalogenated congeners in Ochrobactrum sp. TCC-2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04885
– volume: 38
  start-page: 4849
  year: 2004
  ident: 10.1016/j.watres.2017.09.062_bib8
  article-title: Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049524f
– volume: 183
  start-page: 766
  year: 2010
  ident: 10.1016/j.watres.2017.09.062_bib22
  article-title: Identification of wastewater bacteria involved in the degradation of triclocarban and its non-chlorinated congener
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.07.092
– volume: 211
  start-page: 685
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib45
  article-title: Short-chain fatty acids production and microbial community in sludge alkaline fermentation: long-term effect of temperature
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.138
– volume: 47
  start-page: 4262
  year: 2013
  ident: 10.1016/j.watres.2017.09.062_bib51
  article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400210v
– volume: 303
  start-page: 636
  year: 2016
  ident: 10.1016/j.watres.2017.09.062_bib16
  article-title: Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.06.041
– volume: 55
  start-page: 667
  year: 2005
  ident: 10.1016/j.watres.2017.09.062_bib39
  article-title: Guggenheimella bovis gen. nov., sp. nov., isolated from lesions of bovine dermatitis digitalis
  publication-title: Int. J. Syst. Evol. Micro.
  doi: 10.1099/ijs.0.63116-0
– volume: 27
  start-page: 1201
  year: 2008
  ident: 10.1016/j.watres.2017.09.062_bib40
  article-title: Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga pseudokirchneriella subcapitata
  publication-title: Environ. Toxic. Chem.
  doi: 10.1897/07-471.1
– volume: 46
  start-page: 2425
  year: 2012
  ident: 10.1016/j.watres.2017.09.062_bib19
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.02.005
– volume: 238
  start-page: 343
  year: 2017
  ident: 10.1016/j.watres.2017.09.062_bib36
  article-title: Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.054
SSID ssj0002239
Score 2.6045053
Snippet Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms acetic acid
Acetic Acid - metabolism
activated sludge
Anaerobic fermentation
Anaerobiosis
antibiotics
Biotechnology - methods
Carbanilides - metabolism
Carbanilides - pharmacology
chemical oxygen demand
Emerging contaminants
enzymes
Fatty Acids, Volatile - biosynthesis
Fermentation
Hydrogen-Ion Concentration
methane production
microbial communities
Microbiota - drug effects
Sewage - microbiology
short chain fatty acids
Short-chain fatty acids production
Solubility
solubilization
Waste activated sludge
Waste Disposal, Fluid - methods
Title Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge
URI https://dx.doi.org/10.1016/j.watres.2017.09.062
https://www.ncbi.nlm.nih.gov/pubmed/29045805
https://www.proquest.com/docview/1953295375
https://www.proquest.com/docview/2000563922
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZW9NIeEKVQKA-5EtdA4thxckQItIDgBBI3y8_uVsi7ItkiLv3tncljC4cVEoccEjmR5W8yM9bM95mQIy9T5lxZJFhSSzjXBo95yRLY3-ZlaaoQWrHqm9tifM-vHsTDiJwNXBhsq-x9f-fTW2_dPznpV_NkPp0ixxeCXy54BkYKcQ1JfJxLtPLjv__bPCD8VUOVGUcP9Lm2x-tZIyEDG7xkq3ZasFXhaVX62Yahiw2y3ueP9LSb4lcy8nGTfHmlKviNxDvwbRijnoyO1McJAlvTegKZdmInehpp0E3zQrWduprOO81XwIci14TqqD2KM1kawGv31KRIZ4E-azAJikyIP5ChOlo_Ltwvv0XuL87vzsZJf6xCYnmRNYlMXRChBBg8IMF4kJUVmS4KyzRLTcUB1ZY3Ihi3aRkgAcR9jJTemlw6kW-TtTiLfodQI0zhStjxhTxwZ3WV-VKLnBvuQppauUvyYTWV7TXH8eiLRzU0l_1WHQYKMVBppQCDXZIs35p3mhvvjJcDUOqN7SgIC--8-XPAVcFvhbUSHf1sUSusLjK4pFg9BllOAjI8Bt_53hnFcr6swgp0Kn58eG575DPeYetMJvbJWvO08AeQADXmsLXwQ_Lp9PJ6fPsPLe8HFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgOZQeqhb6oE8jcY1IHDtOjggVLQX2tEjcLD-7i5B3RbJF_Htm8ljBYYXUQy5JHFn-JjNjzXyfCTnyMmXOlUWCJbWEc23wmJcsgf1tXpamCqEVq76aFONr_udG3GyR04ELg22Vve_vfHrrrfs7x_1qHi_nc-T4QvDLBc_ASCGuVdtkB9WpxIjsnJxfjCdrhwwRsBoKzThgYNC1bV4PGjkZ2OMlW8HTgm2KUJsy0DYSnb0n7_oUkp50s_xAtnzcI2-fCQvukzgF94Zh6t7oSH2cIbY1rWeQbCd2pueRBt00j1TbuavpspN9BYgo0k2ojtqjPpOlARx3z06KdBHogwaroEiG-AdJqqP13cr99R_J9dnv6ek46U9WSCwvsiaRqQsilICEBzAYD7KyItNFYZlmqak4ANtSRwTjNi0D5IC4lZHSW5NLJ_JPZBQX0X8h1AhTuBI2fSEP3FldZb7UIueGu5CmVh6QfFhNZXvZcTz94k4N_WW3qsNAIQYqrRRgcECS9ahlJ7vxyvtyAEq9MB8FkeGVkYcDrgr-LCyX6OgXq1phgZHBJcXmd5DoJCDJY_Cdz51RrOfLKixCp-Lrf8_tF3kznl5dqsvzycU3sotPsJMmE9_JqLlf-R-QDzXmZ2_vTyLhCcY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triclocarban+enhances+short-chain+fatty+acids+production+from+anaerobic+fermentation+of+waste+activated+sludge&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Yali&rft.au=Wang%2C+Dongbo&rft.au=Liu%2C+Yiwen&rft.au=Wang%2C+Qilin&rft.date=2017-12-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=127&rft.spage=150&rft_id=info:doi/10.1016%2Fj.watres.2017.09.062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon