Possibility of a multi-step electroweak phase transition in the two-Higgs doublet models

Abstract We discuss whether a multi-step electroweak phase transition (EWPT) occurs in two-Higgs doublet models (2HDMs). The EWPT is related to interesting phenomena such as baryogenesis and the ensuing gravitational wave. We examine parameter regions in CP-conserving 2HDMs and find certain areas wh...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2022; no. 6
Main Authors Aoki, Mayumi, Komatsu, Takatoshi, Shibuya, Hiroto
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.06.2022
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptac068

Cover

Abstract Abstract We discuss whether a multi-step electroweak phase transition (EWPT) occurs in two-Higgs doublet models (2HDMs). The EWPT is related to interesting phenomena such as baryogenesis and the ensuing gravitational wave. We examine parameter regions in CP-conserving 2HDMs and find certain areas where multi-step EWPTs occur. The parameter search shows the multi-step EWPT prefers the scalar potential with the approximate Z2 symmetry and a mass hierarchy between the neutral CP-odd and CP-even extra scalar bosons mA < mH. By contrast, the multi-step EWPT whose first step is strongly first order favors a mass hierarchy mA > mH. In addition, we compute the Higgs trilinear coupling in the parameter region where multi-step EWPTs occur, which can be observed at future colliders. We also discuss a multi-peaked gravitational wave from a multi-step EWPT. Subject index B53, B59
AbstractList We discuss whether a multi-step electroweak phase transition (EWPT) occurs in two-Higgs doublet models (2HDMs). The EWPT is related to interesting phenomena such as baryogenesis and the ensuing gravitational wave. We examine parameter regions in CP-conserving 2HDMs and find certain areas where multi-step EWPTs occur. The parameter search shows the multi-step EWPT prefers the scalar potential with the approximate Z2 symmetry and a mass hierarchy between the neutral CP-odd and CP-even extra scalar bosons mA < mH. By contrast, the multi-step EWPT whose first step is strongly first order favors a mass hierarchy mA > mH. In addition, we compute the Higgs trilinear coupling in the parameter region where multi-step EWPTs occur, which can be observed at future colliders. We also discuss a multi-peaked gravitational wave from a multi-step EWPT. Subject index B53, B59
Abstract We discuss whether a multi-step electroweak phase transition (EWPT) occurs in two-Higgs doublet models (2HDMs). The EWPT is related to interesting phenomena such as baryogenesis and the ensuing gravitational wave. We examine parameter regions in CP-conserving 2HDMs and find certain areas where multi-step EWPTs occur. The parameter search shows the multi-step EWPT prefers the scalar potential with the approximate Z2 symmetry and a mass hierarchy between the neutral CP-odd and CP-even extra scalar bosons mA < mH. By contrast, the multi-step EWPT whose first step is strongly first order favors a mass hierarchy mA > mH. In addition, we compute the Higgs trilinear coupling in the parameter region where multi-step EWPTs occur, which can be observed at future colliders. We also discuss a multi-peaked gravitational wave from a multi-step EWPT. Subject index B53, B59
Author Aoki, Mayumi
Komatsu, Takatoshi
Shibuya, Hiroto
Author_xml – sequence: 1
  givenname: Mayumi
  surname: Aoki
  fullname: Aoki, Mayumi
– sequence: 2
  givenname: Takatoshi
  surname: Komatsu
  fullname: Komatsu, Takatoshi
– sequence: 3
  givenname: Hiroto
  surname: Shibuya
  fullname: Shibuya, Hiroto
  email: h_shibuya@hep.s.kanazawa-u.ac.jp
BookMark eNp9kEFLAzEQhYNUsNbe_AEBD15cnWyyu92jFLVCQQ8K3pZsdlKj282aZCn996a0BxH0MjMM35vhvVMy6myHhJwzuGZQ8ps-YB-LVJDPjsg4hQwSXjI2-jGfkKn3HwDAoChAsDF5e7bem9q0Jmyp1VTS9dAGk_h4jWKLKji7QflJ-3fpkQYnO2-CsR01HQ3vcbOxycKsVp42dqhbDHRtG2z9GTnWsvU4PfQJeb2_e5kvkuXTw-P8dpkokbOQ5I0QItWZyGtdgy4FyxuNhUSWaZU3DFBomKFUBccaBC8yLPmsyHmWlamqGZ-Qi_3d3tmvAX2oPuzguviy4qxgokyj0Uile0q56NehrpQJcucjOjJtxaDahVjtQqwOIUbR1S9R78xauu1f-OUet0P_P_kNJbKGQA
CitedBy_id crossref_primary_10_1103_PhysRevD_107_035020
crossref_primary_10_1007_JHEP11_2024_129
crossref_primary_10_1007_JHEP02_2024_232
crossref_primary_10_1103_RevModPhys_97_015001
crossref_primary_10_1088_1475_7516_2022_12_025
crossref_primary_10_1007_JHEP11_2022_064
crossref_primary_10_1088_1475_7516_2024_10_042
crossref_primary_10_1103_PhysRevD_107_075040
crossref_primary_10_1103_PhysRevD_107_115008
crossref_primary_10_1088_1475_7516_2023_03_031
crossref_primary_10_1103_PhysRevD_108_055025
crossref_primary_10_1142_S0217751X23501063
crossref_primary_10_1088_1475_7516_2025_02_056
crossref_primary_10_1093_ptep_ptaf011
crossref_primary_10_1103_PhysRevD_110_015001
Cites_doi 10.1016/0550-3213(96)00052-1
10.1103/PhysRevD.78.043003
10.1088/1475-7516/2020/03/024
10.1016/j.physletb.2004.12.004
10.1007/JHEP02(2018)115
10.1103/PhysRevD.101.012002
10.1103/PhysRevLett.125.021302
10.1016/S0370-2693(99)01351-9
10.1016/S0370-2693(00)00962-X
10.1016/j.physletb.2016.05.087
10.1007/JHEP08(2020)026
10.1103/PhysRevLett.87.221103
10.1007/JHEP06(2020)163
10.1103/PhysRevD.88.015003
10.1103/PhysRevD.101.035011
10.1007/JHEP06(2013)045
10.1103/PhysRevD.81.023004
10.1103/PhysRevD.98.015014
10.1016/0550-3213(94)00410-2
10.1016/j.physletb.2018.11.045
10.1103/PhysRevD.78.123006
10.1103/PhysRevD.49.2837
10.1007/JHEP05(2018)151
10.1088/1475-7516/2015/07/028
10.1016/0370-2693(85)91028-7
10.1007/JHEP05(2020)050
10.1103/PhysRevD.92.123009
10.1016/S0370-2693(99)00019-2
10.1103/PhysRevLett.121.191802
10.1140/epjc/s10052-020-7723-2
10.1007/JHEP04(2021)055
10.1103/PhysRevD.101.015015
10.1103/PhysRevD.36.2474
10.1088/1475-7516/2008/09/022
10.1088/0264-9381/23/7/014
10.1103/PhysRevD.30.272
10.1103/PhysRevD.103.055020
10.1103/PhysRevD.92.035012
10.1103/PhysRevD.93.015013
10.1103/PhysRevD.73.064006
10.1088/0264-9381/33/3/035010
10.1103/PhysRevLett.82.21
10.1007/JHEP06(2018)088
10.1103/PhysRevD.97.123509
10.1016/j.physletb.2018.07.006
10.1088/1475-7516/2021/01/072
10.1088/1475-7516/2016/04/001
10.1088/0264-9381/28/9/094011
10.1103/PhysRevD.77.124015
10.1016/0550-3213(94)90316-6
10.1016/j.physletb.2012.08.021
10.1103/PhysRevD.47.4372
10.1088/1126-6708/2007/08/010
10.1103/PhysRevD.96.015036
10.1051/epjconf/201816805001
10.1103/PhysRevD.80.015017
10.1142/S0217751X2050075X
10.1140/epjc/s10052-020-8406-8
10.1088/1126-6708/2008/04/029
10.1007/JHEP01(2019)216
10.1088/1475-7516/2017/09/009
10.1103/PhysRevD.51.379
10.1007/JHEP04(2021)219
10.1007/JHEP08(2020)107
10.1103/PhysRevD.99.055003
10.1103/PhysRevD.90.023532
10.1103/PhysRevD.97.015005
10.1016/0370-2693(93)91205-2
10.1103/PhysRevD.88.035013
10.1103/PhysRevD.18.2574
10.1016/j.physletb.2020.135819
10.1016/S0370-2693(03)00268-5
10.1088/1475-7516/2017/05/052
10.1093/mnras/218.4.629
10.1070/PU1991v034n05ABEH002497
10.1016/j.physletb.2018.11.024
10.1088/1475-7516/2021/01/001
10.1007/BF01557241
10.1103/PhysRevD.97.015020
10.1088/1126-6708/2006/11/038
10.1016/j.nuclphysb.2017.04.023
10.1088/1475-7516/2009/12/024
10.1051/0004-6361/201833910
10.1016/j.cpc.2012.04.004
10.1103/PhysRevLett.112.041301
10.1142/S0217732394000629
10.1140/epjc/s10052-018-6131-3
10.1088/1361-6382/aab52f
10.1103/PhysRevD.83.055017
10.1088/1475-7516/2021/03/009
10.1016/j.physletb.2012.08.020
10.1007/JHEP06(2021)069
10.1007/JHEP07(2020)082
10.1016/0370-2693(92)90616-C
10.1103/PhysRevD.74.063521
10.1016/j.nuclphysb.2011.09.010
10.1103/PhysRevD.92.075014
10.1088/1475-7516/2020/07/057
10.1007/JHEP11(2011)089
10.1103/PhysRevD.103.103520
10.1007/JHEP11(2014)127
10.1088/1475-7516/2010/06/028
10.1103/PhysRevLett.113.141602
10.1007/JHEP10(2013)029
10.1103/PhysRevD.9.3320
10.1093/nsr/nwx116
10.1140/epjc/s10052-019-6655-1
10.1103/PhysRevD.47.3546
10.1103/PhysRevD.93.065032
10.1088/1475-7516/2018/07/014
10.1103/PhysRevD.45.4695
10.1103/PhysRevD.45.4514
10.1007/JHEP06(2019)075
10.1007/JHEP02(2017)121
10.1016/0370-1573(89)90061-6
10.1088/1475-7516/2020/04/036
10.1088/1475-7516/2012/06/027
10.1103/PhysRevD.45.2933
10.1103/PhysRevD.41.3421
10.1103/PhysRevLett.69.2026
10.1103/PhysRevD.92.055017
10.1007/JHEP12(2013)042
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptac068
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptac068
10.1093/ptep/ptac068
GroupedDBID .I3
0R~
4.4
5VS
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABPTD
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFPKN
AFULF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
BAYMD
BTTYL
CIDKT
D~K
EBS
EJD
ER.
GROUPED_DOAJ
H13
IAO
ISR
KQ8
KSI
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROL
ROX
RXO
TOX
~D7
88I
AAYXX
ABEJV
ABGNP
ABUWG
AFKRA
AMNDL
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
ITC
M2P
PHGZM
PHGZT
PIMPY
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c461t-6d4442f546bfb0f9416dfe7ae15fc6d10e4f08eac73eb04375e9387635592cb13
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:26:13 EDT 2025
Tue Jul 01 02:09:15 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Wed Aug 28 03:17:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Funded by SCOAP3
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-6d4442f546bfb0f9416dfe7ae15fc6d10e4f08eac73eb04375e9387635592cb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171492704?pq-origsite=%requestingapplication%
PQID 3171492704
PQPubID 7121340
ParticipantIDs proquest_journals_3171492704
crossref_citationtrail_10_1093_ptep_ptac068
crossref_primary_10_1093_ptep_ptac068
oup_primary_10_1093_ptep_ptac068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Semlali (2022061418002602000_bib108) 2020; 810
Andersen (2022061418002602000_bib19) 2018; 121
Hindmarsh (2022061418002602000_bib116) 2014; 112
Matsui (2022061418002602000_bib40) 2018; 168
Ivanov (2022061418002602000_bib98) 2015; 92
Chala (2022061418002602000_bib53) 2019; 79
Kosowsky (2022061418002602000_bib110) 1992; 45
Witten (2022061418002602000_bib28) 1984; 30
Kanemura (2022061418002602000_bib72) 2005; 606
Morais (2022061418002602000_bib62)
Croon (2022061418002602000_bib136) 2021; 04
Bian (2022061418002602000_bib63) 2019; 99
Ghosh (2022061418002602000_bib69)
Sakharov (2022061418002602000_bib2) 1991; 34
Weinberg (2022061418002602000_bib85) 1987; 36
Hammerschmitt (2022061418002602000_bib26) 1994; 64
Huang (2022061418002602000_bib43) 2018; 98
Land (2022061418002602000_bib48) 1992; 292
Gould (2022061418002602000_bib138) 2021; 06
Chiang (2022061418002602000_bib44) 2020; 07
ATLAS Collaboration (2022061418002602000_bib7) (2012)
Binetruy (2022061418002602000_bib125) 2012; 06
Corbin (2022061418002602000_bib77) 2006; 23
Cline (2022061418002602000_bib83) 2011; 11
Fabian (2022061418002602000_bib50)
Niemi (2022061418002602000_bib47)
Patel (2022061418002602000_bib52) 2013; 88
Braathen (2022061418002602000_bib73) 2020; 80
Kang (2022061418002602000_bib39) 2018; 02
Arnold (2022061418002602000_bib87) 1993; 47
Wang (2022061418002602000_bib135) 2020; 05
Bell (2022061418002602000_bib65) 2020; 19
Espinosa (2022061418002602000_bib126) 2010; 06
Nie (2022061418002602000_bib93) 1999; 449
Wang (2022061418002602000_bib142) 2021; 103
Wang (2022061418002602000_bib17) 2019; 788
Kajantie (2022061418002602000_bib4) 1996; 466
Cutting (2022061418002602000_bib134) 2020; 125
CMS Collaboration (2022061418002602000_bib9) (2012)
Haller (2022061418002602000_bib101) 2018; 78
Profumo (2022061418002602000_bib33) 2007; 08
Huber (2022061418002602000_bib115) 2008; 09
Giblin (2022061418002602000_bib118) 2014; 90
Chiang (2022061418002602000_bib41) 2018; 97
Csikor (2022061418002602000_bib5) 1999; 82
Ruan (2022061418002602000_bib130) 2020; 35
Arhrib (2022061418002602000_bib102)
Kahniashvili (2022061418002602000_bib123) 2010; 81
Ramsey-Musolf (2022061418002602000_bib60) 2018; 97
Kanemura (2022061418002602000_bib94) 1999; 471
Jiang (2022061418002602000_bib36) 2016; 93
Wainwright (2022061418002602000_bib99) 2012; 183
Deshpande (2022061418002602000_bib91) 1978; 18
Blinov (2022061418002602000_bib90) 2015; 07
ATLAS Collaboration (2022061418002602000_bib109) (2019)
Huet (2022061418002602000_bib12) 1995; 51
Caprini (2022061418002602000_bib120) 2006; 74
Kudoh (2022061418002602000_bib78) 2006; 73
Amaro-Seoane (2022061418002602000_bib31)
Bell (2022061418002602000_bib54) 2020; 05
Dorsch (2022061418002602000_bib14) 2013; 10
Aad (2022061418002602000_bib103) 2020; 101
Matsui (2022061418002602000_bib70)
Dorsch (2022061418002602000_bib22) 2017; 05
Huang (2022061418002602000_bib58) 2019; 788
Zhou (2022061418002602000_bib64) 2019; 01
Espinosa (2022061418002602000_bib34) 2012; 854
Inoue (2022061418002602000_bib57) 2016; 93
Fujii (2022061418002602000_bib76)
Blinov (2022061418002602000_bib25) 2015; 92
Giblin Jr (2022061418002602000_bib117) 2013; 12
Kuzmin (2022061418002602000_bib3) 1985; 155
Kahniashvili (2022061418002602000_bib122) 2008; 78
Chen (2022061418002602000_bib23) 2018; 97
Carena (2022061418002602000_bib45) 2020; 08
Kurup (2022061418002602000_bib38) 2017; 96
Fromme (2022061418002602000_bib27) 2006; 11
Caprini (2022061418002602000_bib30) 2016; 04
Sirunyan (2022061418002602000_bib106) 2020; 03
Giese (2022061418002602000_bib139) 2020; 07
Ghorbani (2022061418002602000_bib46)
Quiros (2022061418002602000_bib82) 1999
Caprini (2022061418002602000_bib32) 2020; 03
Hindmarsh (2022061418002602000_bib119) 2015; 92
Wang (2022061418002602000_bib51) 2020; 101
Chao (2022061418002602000_bib59) 2017; 09
Haber (2022061418002602000_bib100) 2011; 83
Kainulainen (2022061418002602000_bib20) 2019; 06
Kahniashvili (2022061418002602000_bib121) 2008; 78
Aad (2022061418002602000_bib6) 2012; 716
Kanemura (2022061418002602000_bib95) 1993; 313
D’Onofrio (2022061418002602000_bib10) 2014; 113
Haarr (2022061418002602000_bib21)
Höche (2022061418002602000_bib140) 2021; 03
Wang (2022061418002602000_bib143)
Niemi (2022061418002602000_bib55)
Sher (2022061418002602000_bib92) 1989; 179
Khachatryan (2022061418002602000_bib104) 2016; 759
Kawamura (2022061418002602000_bib128) 2011; 28
Dolan (2022061418002602000_bib84) 1974; 9
Guo (2022061418002602000_bib137)
Basler (2022061418002602000_bib15) 2017; 02
Arco (2022061418002602000_bib74) 2020; 80
Seto (2022061418002602000_bib127) 2001; 87
Curtin (2022061418002602000_bib35) 2014; 11
Huand (2022061418002602000_bib129) 2017; 4
Hashino (2022061418002602000_bib42) 2018; 06
Caprini (2022061418002602000_bib114) 2008; 77
Friedlander (2022061418002602000_bib49) 2021; 103
Laine (2022061418002602000_bib88) 2017; 920
Aoki (2022061418002602000_bib81) 2009; 80
Luo (2022061418002602000_bib131) 2016; 33
Huang (2022061418002602000_bib37) 2015; 92
Kosowsky (2022061418002602000_bib112) 1993; 47
Hu (2022061418002602000_bib132) 2018; 35
Bernon (2022061418002602000_bib16) 2018; 05
Bian (2022061418002602000_bib67) 2020; 101
Hogan (2022061418002602000_bib29) 1986; 218
Carrington (2022061418002602000_bib89) 1992; 45
Kling (2022061418002602000_bib107) 2020; 06
Giese (2022061418002602000_bib141) 2021; 01
Guo (2022061418002602000_bib133) 2021; 01
Akeroyd (2022061418002602000_bib96) 2000; 490
Kosowsky (2022061418002602000_bib111) 1992; 69
Gavela (2022061418002602000_bib11) 1994; 9
Parwani (2022061418002602000_bib86) 1992; 45
Su (2022061418002602000_bib18) 2021; 04
Kanemura (2022061418002602000_bib24) 2020; 08
Aaboud (2022061418002602000_bib105) 2018; 783
Patel (2022061418002602000_bib56) 2013; 88
Barger (2022061418002602000_bib79) 1990; 41
Kanemura (2022061418002602000_bib71) 2003; 558
Caprini (2022061418002602000_bib124) 2009; 12
Delaunay (2022061418002602000_bib144) 2008; 04
Morais (2022061418002602000_bib66) 2020; 04
Vieu (2022061418002602000_bib61) 2018; 07
Baum (2022061418002602000_bib68)
Chatrchyan (2022061418002602000_bib8) 2012; 716
Barroso (2022061418002602000_bib97) 2013; 06
Kamionkowski (2022061418002602000_bib113) 1994; 49
Aghanim (2022061418002602000_bib1) 2020; 641
Cepeda (2022061418002602000_bib75) 2019; 7
Grossman (2022061418002602000_bib80) 1994; 426
Gavela (2022061418002602000_bib13) 1994; 430
References_xml – volume: 466
  start-page: 189
  year: 1996
  ident: 2022061418002602000_bib4
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(96)00052-1
– volume: 78
  start-page: 043003
  year: 2008
  ident: 2022061418002602000_bib121
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.043003
– volume: 03
  start-page: 024
  year: 2020
  ident: 2022061418002602000_bib32
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/03/024
– volume: 606
  start-page: 361
  year: 2005
  ident: 2022061418002602000_bib72
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2004.12.004
– volume: 02
  start-page: 115
  year: 2018
  ident: 2022061418002602000_bib39
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2018)115
– start-page: 187
  year: 1999
  ident: 2022061418002602000_bib82
  article-title: Proc. ICTP Summer School in High-Energy Physics and Cosmology
– volume: 101
  start-page: 012002
  year: 2020
  ident: 2022061418002602000_bib103
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.012002
– volume: 05
  start-page: 045
  year: 2020
  ident: 2022061418002602000_bib135
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 2022061418002602000_bib46
– volume: 125
  start-page: 021302
  year: 2020
  ident: 2022061418002602000_bib134
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.021302
– volume: 471
  start-page: 182
  year: 1999
  ident: 2022061418002602000_bib94
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(99)01351-9
– volume: 490
  start-page: 119
  year: 2000
  ident: 2022061418002602000_bib96
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(00)00962-X
– volume: 759
  start-page: 369
  year: 2016
  ident: 2022061418002602000_bib104
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.05.087
– volume: 08
  start-page: 026
  year: 2020
  ident: 2022061418002602000_bib24
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2020)026
– ident: 2022061418002602000_bib69
– volume: 87
  start-page: 221103
  year: 2001
  ident: 2022061418002602000_bib127
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.221103
– volume: 06
  start-page: 163
  year: 2020
  ident: 2022061418002602000_bib107
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2020)163
– volume: 88
  start-page: 015003
  year: 2013
  ident: 2022061418002602000_bib56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.015003
– volume: 101
  start-page: 035011
  year: 2020
  ident: 2022061418002602000_bib67
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.035011
– volume: 06
  start-page: 045
  year: 2013
  ident: 2022061418002602000_bib97
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2013)045
– volume: 81
  start-page: 023004
  year: 2010
  ident: 2022061418002602000_bib123
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.023004
– volume: 98
  start-page: 015014
  year: 2018
  ident: 2022061418002602000_bib43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.015014
– volume: 430
  start-page: 382
  year: 1994
  ident: 2022061418002602000_bib13
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)00410-2
– volume: 788
  start-page: 519
  year: 2019
  ident: 2022061418002602000_bib17
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.11.045
– ident: 2022061418002602000_bib76
– ident: 2022061418002602000_bib50
– volume: 78
  start-page: 123006
  year: 2008
  ident: 2022061418002602000_bib122
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.123006
– volume: 49
  start-page: 2837
  year: 1994
  ident: 2022061418002602000_bib113
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.2837
– volume: 05
  start-page: 151
  year: 2018
  ident: 2022061418002602000_bib16
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2018)151
– volume: 07
  start-page: 028
  year: 2015
  ident: 2022061418002602000_bib90
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/07/028
– volume: 19
  start-page: 012
  year: 2020
  ident: 2022061418002602000_bib65
  publication-title: J. High Energy Phys.
– ident: 2022061418002602000_bib143
– volume: 155
  start-page: 36
  year: 1985
  ident: 2022061418002602000_bib3
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)91028-7
– ident: 2022061418002602000_bib31
– volume: 05
  start-page: 050
  year: 2020
  ident: 2022061418002602000_bib54
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2020)050
– volume: 92
  start-page: 123009
  year: 2015
  ident: 2022061418002602000_bib119
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.123009
– volume: 449
  start-page: 89
  year: 1999
  ident: 2022061418002602000_bib93
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(99)00019-2
– volume: 121
  start-page: 191802
  year: 2018
  ident: 2022061418002602000_bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.191802
– volume: 80
  start-page: 227
  year: 2020
  ident: 2022061418002602000_bib73
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7723-2
– volume: 04
  start-page: 055
  year: 2021
  ident: 2022061418002602000_bib136
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2021)055
– volume: 101
  start-page: 015015
  year: 2020
  ident: 2022061418002602000_bib51
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.015015
– volume: 36
  start-page: 2474
  year: 1987
  ident: 2022061418002602000_bib85
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.36.2474
– volume: 09
  start-page: 022
  year: 2008
  ident: 2022061418002602000_bib115
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2008/09/022
– ident: 2022061418002602000_bib102
– volume: 23
  start-page: 2435
  year: 2006
  ident: 2022061418002602000_bib77
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/23/7/014
– volume: 30
  start-page: 272
  year: 1984
  ident: 2022061418002602000_bib28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.30.272
– volume: 103
  start-page: 055020
  year: 2021
  ident: 2022061418002602000_bib49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.055020
– volume: 03
  start-page: 055
  year: 2020
  ident: 2022061418002602000_bib106
  publication-title: J. High Energy Phys.
– volume: 92
  start-page: 035012
  year: 2015
  ident: 2022061418002602000_bib25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.035012
– volume: 93
  start-page: 015013
  year: 2016
  ident: 2022061418002602000_bib57
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.015013
– volume: 73
  start-page: 064006
  year: 2006
  ident: 2022061418002602000_bib78
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.064006
– volume: 33
  start-page: 035010
  year: 2016
  ident: 2022061418002602000_bib131
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/33/3/035010
– volume: 82
  start-page: 21
  year: 1999
  ident: 2022061418002602000_bib5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.21
– volume: 06
  start-page: 088
  year: 2018
  ident: 2022061418002602000_bib42
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2018)088
– ident: 2022061418002602000_bib47
– ident: 2022061418002602000_bib68
– volume: 97
  start-page: 123509
  year: 2018
  ident: 2022061418002602000_bib60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.123509
– volume: 783
  start-page: 392
  year: 2018
  ident: 2022061418002602000_bib105
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.07.006
– ident: 2022061418002602000_bib137
– volume: 01
  start-page: 072
  year: 2021
  ident: 2022061418002602000_bib141
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/01/072
– volume: 04
  start-page: 001
  year: 2016
  ident: 2022061418002602000_bib30
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/04/001
– volume: 28
  start-page: 094011
  year: 2011
  ident: 2022061418002602000_bib128
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/28/9/094011
– volume: 77
  start-page: 124015
  year: 2008
  ident: 2022061418002602000_bib114
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.124015
– volume: 426
  start-page: 355
  year: 1994
  ident: 2022061418002602000_bib80
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)90316-6
– volume: 716
  start-page: 30
  year: 2012
  ident: 2022061418002602000_bib8
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.08.021
– volume: 47
  start-page: 4372
  year: 1993
  ident: 2022061418002602000_bib112
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.4372
– volume: 08
  start-page: 010
  year: 2007
  ident: 2022061418002602000_bib33
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2007/08/010
– volume: 96
  start-page: 015036
  year: 2017
  ident: 2022061418002602000_bib38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.015036
– volume: 168
  start-page: 05001
  year: 2018
  ident: 2022061418002602000_bib40
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201816805001
– volume: 80
  start-page: 015017
  year: 2009
  ident: 2022061418002602000_bib81
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.015017
– volume: 35
  start-page: 2050075
  year: 2020
  ident: 2022061418002602000_bib130
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X2050075X
– volume: 7
  start-page: 221
  year: 2019
  ident: 2022061418002602000_bib75
  publication-title: CERN Yellow Rep. Monogr.
– volume: 80
  start-page: 884
  year: 2020
  ident: 2022061418002602000_bib74
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8406-8
– ident: 2022061418002602000_bib21
– volume: 04
  start-page: 029
  year: 2008
  ident: 2022061418002602000_bib144
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/04/029
– volume: 01
  start-page: 216
  year: 2019
  ident: 2022061418002602000_bib64
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2019)216
– volume: 09
  start-page: 009
  year: 2017
  ident: 2022061418002602000_bib59
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/09/009
– volume: 51
  start-page: 379
  year: 1995
  ident: 2022061418002602000_bib12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.51.379
– volume: 04
  start-page: 219
  year: 2021
  ident: 2022061418002602000_bib18
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2021)219
– volume: 08
  start-page: 107
  year: 2020
  ident: 2022061418002602000_bib45
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2020)107
– volume: 99
  start-page: 055003
  year: 2019
  ident: 2022061418002602000_bib63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.055003
– volume: 90
  start-page: 023532
  year: 2014
  ident: 2022061418002602000_bib118
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.023532
– volume: 97
  start-page: 015005
  year: 2018
  ident: 2022061418002602000_bib41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.015005
– volume: 313
  start-page: 155
  year: 1993
  ident: 2022061418002602000_bib95
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(93)91205-2
– volume: 88
  start-page: 035013
  year: 2013
  ident: 2022061418002602000_bib52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.035013
– volume: 18
  start-page: 2574
  year: 1978
  ident: 2022061418002602000_bib91
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.18.2574
– volume: 810
  start-page: 135819
  year: 2020
  ident: 2022061418002602000_bib108
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135819
– volume: 558
  start-page: 157
  year: 2003
  ident: 2022061418002602000_bib71
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(03)00268-5
– volume: 05
  start-page: 052
  year: 2017
  ident: 2022061418002602000_bib22
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/05/052
– volume: 218
  start-page: 629
  year: 1986
  ident: 2022061418002602000_bib29
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/218.4.629
– volume: 34
  start-page: 392
  year: 1991
  ident: 2022061418002602000_bib2
  publication-title: Sov. Phys. Usp.
  doi: 10.1070/PU1991v034n05ABEH002497
– volume: 788
  start-page: 288
  year: 2019
  ident: 2022061418002602000_bib58
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.11.024
– volume: 01
  start-page: 001
  year: 2021
  ident: 2022061418002602000_bib133
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/01/001
– volume: 64
  start-page: 105
  year: 1994
  ident: 2022061418002602000_bib26
  publication-title: Z. Phys. C
  doi: 10.1007/BF01557241
– volume: 97
  start-page: 015020
  year: 2018
  ident: 2022061418002602000_bib23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.015020
– volume: 11
  start-page: 038
  year: 2006
  ident: 2022061418002602000_bib27
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2006/11/038
– volume: 920
  start-page: 565
  year: 2017
  ident: 2022061418002602000_bib88
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2017.04.023
– volume: 12
  start-page: 024
  year: 2009
  ident: 2022061418002602000_bib124
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2009/12/024
– volume: 641
  start-page: A6
  year: 2020
  ident: 2022061418002602000_bib1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201833910
– volume: 183
  start-page: 2006
  year: 2012
  ident: 2022061418002602000_bib99
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.04.004
– volume: 112
  start-page: 041301
  year: 2014
  ident: 2022061418002602000_bib116
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.041301
– volume: 9
  start-page: 795
  year: 1994
  ident: 2022061418002602000_bib11
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732394000629
– volume: 78
  start-page: 675
  year: 2018
  ident: 2022061418002602000_bib101
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6131-3
– volume: 35
  start-page: 095008
  year: 2018
  ident: 2022061418002602000_bib132
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aab52f
– volume: 83
  start-page: 055017
  year: 2011
  ident: 2022061418002602000_bib100
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.055017
– volume: 03
  start-page: 009
  year: 2021
  ident: 2022061418002602000_bib140
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/03/009
– volume: 716
  start-page: 1
  year: 2012
  ident: 2022061418002602000_bib6
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.08.020
– volume: 06
  start-page: 069
  year: 2021
  ident: 2022061418002602000_bib138
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2021)069
– volume: 07
  start-page: 082
  year: 2020
  ident: 2022061418002602000_bib44
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2020)082
– volume: 292
  start-page: 107
  year: 1992
  ident: 2022061418002602000_bib48
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(92)90616-C
– ident: 2022061418002602000_bib62
– volume: 74
  start-page: 063521
  year: 2006
  ident: 2022061418002602000_bib120
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.063521
– volume: 854
  start-page: 592
  year: 2012
  ident: 2022061418002602000_bib34
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2011.09.010
– volume: 92
  start-page: 075014
  year: 2015
  ident: 2022061418002602000_bib37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.075014
– volume: 07
  start-page: 057
  year: 2020
  ident: 2022061418002602000_bib139
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/07/057
– volume: 11
  start-page: 089
  year: 2011
  ident: 2022061418002602000_bib83
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2011)089
– volume: 103
  start-page: 103520
  year: 2021
  ident: 2022061418002602000_bib142
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.103520
– volume: 11
  start-page: 127
  year: 2014
  ident: 2022061418002602000_bib35
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2014)127
– volume: 06
  start-page: 028
  year: 2010
  ident: 2022061418002602000_bib126
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/06/028
– volume: 113
  start-page: 141602
  year: 2014
  ident: 2022061418002602000_bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.141602
– volume: 10
  start-page: 029
  year: 2013
  ident: 2022061418002602000_bib14
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2013)029
– volume: 9
  start-page: 3320
  year: 1974
  ident: 2022061418002602000_bib84
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.9.3320
– volume: 4
  start-page: 685
  year: 2017
  ident: 2022061418002602000_bib129
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx116
– volume: 79
  start-page: 156
  year: 2019
  ident: 2022061418002602000_bib53
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-6655-1
– volume: 47
  start-page: 3546
  year: 1993
  ident: 2022061418002602000_bib87
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.3546
– volume: 93
  start-page: 065032
  year: 2016
  ident: 2022061418002602000_bib36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.065032
– volume: 07
  start-page: 014
  year: 2018
  ident: 2022061418002602000_bib61
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/07/014
– volume: 45
  start-page: 4695
  year: 1992
  ident: 2022061418002602000_bib86
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.45.4695
– volume: 45
  start-page: 4514
  year: 1992
  ident: 2022061418002602000_bib110
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.45.4514
– volume: 06
  start-page: 075
  year: 2019
  ident: 2022061418002602000_bib20
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2019)075
– year: (2019)
  ident: 2022061418002602000_bib109
– volume: 02
  start-page: 121
  year: 2017
  ident: 2022061418002602000_bib15
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2017)121
– volume: 179
  start-page: 273
  year: 1989
  ident: 2022061418002602000_bib92
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(89)90061-6
– volume-title: Tech. Rep. ATLAS-CONF-2012-162, CERN
  year: (2012)
  ident: 2022061418002602000_bib7
– volume: 04
  start-page: 036
  year: 2020
  ident: 2022061418002602000_bib66
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/04/036
– volume: 06
  start-page: 027
  year: 2012
  ident: 2022061418002602000_bib125
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2012/06/027
– volume: 45
  start-page: 2933
  year: 1992
  ident: 2022061418002602000_bib89
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.45.2933
– volume: 41
  start-page: 3421
  year: 1990
  ident: 2022061418002602000_bib79
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.41.3421
– volume: 69
  start-page: 2026
  year: 1992
  ident: 2022061418002602000_bib111
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2026
– ident: 2022061418002602000_bib70
– volume-title: Tech. Rep. CMS-PAS-HIG-12-045, CERN
  year: (2012)
  ident: 2022061418002602000_bib9
– volume: 92
  start-page: 055017
  year: 2015
  ident: 2022061418002602000_bib98
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.055017
– ident: 2022061418002602000_bib55
– volume: 12
  start-page: 042
  year: 2013
  ident: 2022061418002602000_bib117
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2013)042
SSID ssj0001077041
Score 2.3270752
Snippet Abstract We discuss whether a multi-step electroweak phase transition (EWPT) occurs in two-Higgs doublet models (2HDMs). The EWPT is related to interesting...
We discuss whether a multi-step electroweak phase transition (EWPT) occurs in two-Higgs doublet models (2HDMs). The EWPT is related to interesting phenomena...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Asymmetry
Gravitational waves
Phase transitions
Quarks
Symmetry
Title Possibility of a multi-step electroweak phase transition in the two-Higgs doublet models
URI https://www.proquest.com/docview/3171492704
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagXVh4IwoFeYAJWc3DcZIJASqqkCgVAqlb5KdAoCaQVBX_nrPrUhiAxUsuy73vfL4PoROIiAHVsSKSJxmhWuckUwrM3UAdFmbSZG6R9u2QDR7pzTgZ-4Zb7ccqFz7ROWpVStsj78UWqTuP0oCeV2_EokbZ21UPobGK2uCCM9Dz9mV_OLpfdlmCFP4I_cQ7VO-9qtEVHFwGdrvqt1j0433bwiG7KHO9idZ9eogv5vLcQit6so02fKqIvSHWO2g8Kms_2PqBS4M5dpOBBGRWYQ9tM9P8BVdPEKZwYyOSG87CzxMMOR9uZiWx7eYaq3IqQHjYYeLUu-jxuv9wNSAeJIFIysKGMEUpjUxCmTAiMDkkWMrolOswMZKpMNDUBBm41zTWwi4ySnQeuzV0SR5JEcZ7qDUpJ3of4VgZKFlFwhmVNE0E5zxmGWORMJxDWdJBZwt2FdJvELdAFq_F_CY7LixzC8_cDjr9oq7mmzN-ocPA-X9IuguxFN7E6mKpEAd_fz5Ea5F9s-BaJ13Uat6n-ggyiUYce3U5dpU4nA9340_0P88i
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEu5VmxpQUf2BOymsSOkxwQotBqS7urCrXS3lI_BaLapCSr1f6p_saOsw6FA3DqJZdYUTT-xvPwzHwAb9EiRtwyQ7VMc8qtLWhuDKq7wzgszrXLu0Hak6kYX_Avs3S2ATd9L4wvq-zPxO6gNpX2OfJ95pm6iySL-If6mnrWKH-72lNorGFxYldLDNma98efcX9HSXJ0eP5pTAOrANVcxC0VhnOeuJQL5VTkCvRIjLOZtHHqtDBxZLmLcjyPMmaVn_yT2oJ1c9vSItEqZvjdB7DJfUfrADYPDqdnX--yOlGGfxiHCvuoYPt1a2t8SB35aa6_2b4_-ul6A9BZtaMnsBXcUfJxjZ-nsGHnz-BxcE1JUPzmOczOqiYU0q5I5YgkXSUiRYzUJFDpLK38QepvaBZJ6y1gVwxGvs8J-pikXVbUp7cbYqqFQrCQjoOneQEX9yK-bRjMq7l9CYQZhyGySqXgmmepklIykQuRKCclhkFDeNeLq9RhYrknzrgq1zfnrPTCLYNwhzD6tbpeT-r4yzqCkv_Pkt1-W8qg0k15B8Cdf79-Aw_H55PT8vR4evIKHiW-X6JL2-zCoP25sHvoxbTqdYAOgcv7RustJhwJ5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibility+of+a+multi-step+electroweak+phase+transition+in+the+two-Higgs+doublet+models&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Aoki%2C+Mayumi&rft.au=Komatsu%2C+Takatoshi&rft.au=Shibuya%2C+Hiroto&rft.date=2022-06-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2022&rft.issue=6&rft_id=info:doi/10.1093%2Fptep%2Fptac068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon