A data-driven method for enhancing the image-based automatic inspection of IC wire bonding defects
Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of IC X-ray images offers an unprecedented opportunity of studying the image-based automatic IC wire inspection. In this paper, a data-driven me...
Saved in:
Published in | International journal of production research Vol. 59; no. 16; pp. 4779 - 4793 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
18.08.2021
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of IC X-ray images offers an unprecedented opportunity of studying the image-based automatic IC wire inspection. In this paper, a data-driven method consists of data pre-processing, feature engineering, and classification is developed to address such problem. The data pre-processing is composed of a chip identification algorithm for locating and separating IC chip image patches from the raw images as well as a wire segmentation algorithm for obtaining the wire region. Next, geometric features extracted from the segmented wires are fed into classification models for identifying defects. Five data mining methods are utilised to develop classification models. The vision detection system (VDS) and convolutional neural networks (CNN) are considered as benchmarks. In computational studies, the effectiveness of the developed method is validated by using X-ray images collected from a semiconductor back-end factory in Mainland China. A comparative analysis is conducted to determine the most suitable classifier for the developed method in the chip classification and the SVM model is finally selected. Advantages of the developed method are verified by benchmarking against the VDS and CNN. |
---|---|
AbstractList | Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of IC X-ray images offers an unprecedented opportunity of studying the image-based automatic IC wire inspection. In this paper, a data-driven method consists of data pre-processing, feature engineering, and classification is developed to address such problem. The data pre-processing is composed of a chip identification algorithm for locating and separating IC chip image patches from the raw images as well as a wire segmentation algorithm for obtaining the wire region. Next, geometric features extracted from the segmented wires are fed into classification models for identifying defects. Five data mining methods are utilised to develop classification models. The vision detection system (VDS) and convolutional neural networks (CNN) are considered as benchmarks. In computational studies, the effectiveness of the developed method is validated by using X-ray images collected from a semiconductor back-end factory in Mainland China. A comparative analysis is conducted to determine the most suitable classifier for the developed method in the chip classification and the SVM model is finally selected. Advantages of the developed method are verified by benchmarking against the VDS and CNN. |
Author | Zhang, Zijun Chen, Junlong Wu, Feng |
Author_xml | – sequence: 1 givenname: Junlong surname: Chen fullname: Chen, Junlong organization: School of Data Science, City University of Hong Kong – sequence: 2 givenname: Zijun surname: Zhang fullname: Zhang, Zijun email: zijzhang@cityu.edu.hk organization: School of Data Science, City University of Hong Kong – sequence: 3 givenname: Feng surname: Wu fullname: Wu, Feng organization: School of Management, Xi'an Jiaotong University |
BookMark | eNqFkE1rGzEQhkVIoM7HTygIel5XHyutllxqTNMYDL20kJuQpVEsY0uuJDfk31eLk0sPrS7SoPeZYZ5rdBlTBIQ-UjKnRJHPhDAyiJ7PWXvMqWJ0ZOoCzSiXshNKPV2i2ZTpptAHdF3KjrQjVD9DmwV2pprO5fAbIj5A3SaHfcoY4tZEG-IzrlvA4WCeoduYAg6bU00HU4PFIZYj2BpSxMnj1RK_hAx4k6KbOAe-fZZbdOXNvsDd232Dfj58_bF87Nbfv62Wi3Vne0lrJ2A0MAy9YMS7kXCpeqfIYPhmtJbA4EdDhaCk1d5KGCVzIAkQJsEPI1X8Bn069z3m9OsEpepdOuXYRmomJOVcsJG31P05ZXMqJYPXNlQzrVCzCXtNiZ6k6nepepKq36Q2WvxFH3NTk1__y305cyE2twfzkvLe6Wpe9yn7PHkumv-7xR_lYY9P |
CitedBy_id | crossref_primary_10_1080_00207543_2021_1956675 crossref_primary_10_3390_mi14061119 crossref_primary_10_20965_ijat_2022_p0309 crossref_primary_10_1080_00207543_2024_2407919 crossref_primary_10_1080_00207543_2021_2010827 crossref_primary_10_1016_j_apenergy_2023_120843 crossref_primary_10_1016_j_procs_2024_02_081 crossref_primary_10_3390_s23083918 crossref_primary_10_1080_00207543_2023_2219344 crossref_primary_10_1080_00207543_2023_2227903 crossref_primary_10_3390_s24123933 crossref_primary_10_1007_s00170_024_13275_7 crossref_primary_10_3390_mi14091737 crossref_primary_10_3390_coatings15010091 crossref_primary_10_1080_00207543_2022_2138613 crossref_primary_10_1109_TCPMT_2024_3447040 crossref_primary_10_1109_ACCESS_2022_3197624 crossref_primary_10_1109_TCPMT_2024_3367244 crossref_primary_10_1016_j_ifacol_2022_10_041 crossref_primary_10_1109_TIE_2021_3120473 crossref_primary_10_1049_cit2_12240 crossref_primary_10_1016_j_ifacol_2024_09_190 crossref_primary_10_1088_1361_6501_ad4fae crossref_primary_10_1080_00207543_2023_2281664 crossref_primary_10_3390_mi14071375 crossref_primary_10_1088_1361_6501_ace926 crossref_primary_10_1108_IJLSS_05_2021_0088 crossref_primary_10_1080_00207543_2024_2387074 crossref_primary_10_1007_s00170_024_14055_z crossref_primary_10_1109_TCPMT_2024_3428595 crossref_primary_10_1109_TIM_2022_3193183 |
Cites_doi | 10.1109/TSM.2019.2902657 10.1109/ICICIC.2007.368 10.1080/00207543.2018.1524164 10.1007/s10845-016-1270-6 10.1109/95.335048 10.1023/A:1010933404324 10.1109/TBCAS.2017.2751545 10.1016/j.compind.2014.10.006 10.1016/j.asoc.2016.12.050 10.1109/ISBA.2018.8311465 10.1007/s10845-012-0685-y 10.1016/j.ymssp.2012.08.005 10.1007/s10845-009-0369-4 10.1080/00207543.2016.1213914 10.1109/IC3INA.2017.8251748 10.1007/BF00994018 10.1007/BF00993309 10.1109/TCPMT.2018.2812815 10.1080/00207540903059497 10.1007/s10845-014-0924-5 10.1080/00207540210136568 10.3390/s18071981 10.1080/00031305.1992.10475879 10.1201/9781315139470 10.1016/j.ymssp.2010.09.010 10.1007/s10845-018-1415-x 10.1016/j.mee.2004.12.003 10.1109/95.477473 10.1109/TADVP.2005.853554 10.1109/ICEPT.2007.4441498 10.1007/s10845-012-0725-7 10.1109/TSMC.1979.4310076 10.1109/3476.622881 10.1109/TSM.2019.2941752 10.1007/s00170-006-0611-6 10.1109/5.726791 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1080/00207543.2020.1821928 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1366-588X |
EndPage | 4793 |
ExternalDocumentID | 10_1080_00207543_2020_1821928 1821928 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM LJTGL M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c461t-5e9ae774520fd903684d807a3b9cc0e7f9a155103b9fc6e962de60e026ef79183 |
ISSN | 0020-7543 |
IngestDate | Wed Aug 13 07:01:03 EDT 2025 Tue Jul 01 03:30:21 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Dec 25 09:06:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-5e9ae774520fd903684d807a3b9cc0e7f9a155103b9fc6e962de60e026ef79183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2561335293 |
PQPubID | 30924 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2561335293 informaworld_taylorfrancis_310_1080_00207543_2020_1821928 crossref_citationtrail_10_1080_00207543_2020_1821928 crossref_primary_10_1080_00207543_2020_1821928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-18 |
PublicationDateYYYYMMDD | 2021-08-18 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of production research |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Heijmans H. J. A. M. (CIT0015) 1994 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 Haykin S. (CIT0014) 1994; 2 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0009 doi: 10.1109/TSM.2019.2902657 – ident: CIT0005 doi: 10.1109/ICICIC.2007.368 – ident: CIT0006 doi: 10.1080/00207543.2018.1524164 – ident: CIT0018 doi: 10.1007/s10845-016-1270-6 – volume: 2 volume-title: Neural Networks year: 1994 ident: CIT0014 – ident: CIT0028 doi: 10.1109/95.335048 – ident: CIT0003 doi: 10.1023/A:1010933404324 – ident: CIT0011 doi: 10.1109/TBCAS.2017.2751545 – ident: CIT0031 – ident: CIT0016 doi: 10.1016/j.compind.2014.10.006 – ident: CIT0027 doi: 10.1016/j.asoc.2016.12.050 – ident: CIT0036 doi: 10.1109/ISBA.2018.8311465 – ident: CIT0037 doi: 10.1007/s10845-012-0685-y – ident: CIT0035 doi: 10.1016/j.ymssp.2012.08.005 – ident: CIT0007 doi: 10.1007/s10845-009-0369-4 – ident: CIT0013 doi: 10.1080/00207543.2016.1213914 – ident: CIT0025 doi: 10.1109/IC3INA.2017.8251748 – ident: CIT0010 doi: 10.1007/BF00994018 – volume-title: Morphological Image Operators year: 1994 ident: CIT0015 – ident: CIT0033 doi: 10.1007/BF00993309 – ident: CIT0039 doi: 10.1109/TCPMT.2018.2812815 – ident: CIT0030 doi: 10.1080/00207540903059497 – ident: CIT0008 doi: 10.1007/s10845-014-0924-5 – ident: CIT0038 doi: 10.1080/00207540210136568 – ident: CIT0002 doi: 10.3390/s18071981 – ident: CIT0001 doi: 10.1080/00031305.1992.10475879 – ident: CIT0004 doi: 10.1201/9781315139470 – ident: CIT0012 doi: 10.1016/j.ymssp.2010.09.010 – ident: CIT0022 doi: 10.1007/s10845-018-1415-x – ident: CIT0034 doi: 10.1016/j.mee.2004.12.003 – ident: CIT0032 doi: 10.1109/95.477473 – ident: CIT0021 doi: 10.1109/TADVP.2005.853554 – ident: CIT0023 doi: 10.1109/ICEPT.2007.4441498 – ident: CIT0019 doi: 10.1007/s10845-012-0725-7 – ident: CIT0026 doi: 10.1109/TSMC.1979.4310076 – ident: CIT0024 doi: 10.1109/3476.622881 – ident: CIT0017 doi: 10.1109/TSM.2019.2941752 – ident: CIT0029 doi: 10.1007/s00170-006-0611-6 – ident: CIT0020 doi: 10.1109/5.726791 |
SSID | ssj0000584 |
Score | 2.4995484 |
Snippet | Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4779 |
SubjectTerms | Algorithms Artificial neural networks automatic inspection Bonding Classification Data mining Defects Feature extraction Image enhancement Image segmentation Inspection Integrated circuits intelligent manufacturing Semiconductors Wire wire bonding quality X-ray images |
Title | A data-driven method for enhancing the image-based automatic inspection of IC wire bonding defects |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2020.1821928 https://www.proquest.com/docview/2561335293 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcZGmHok80bVpw6GbQoPXmaLgJ3CJIFxsxsggSH6iLRApSaek_yL_OUTzRMmI0bRfBpi3K5n28F3jfEfI5C6NUwU5gOlAFi0KVMAF2gxXcBJrrqSW5tKctzpPFKvq2jtej0d3g1FLblBP5e29dyf9IFcZArrZK9h8k6yeFAXgN8oUrSBiufyXj2dge8GTq1qosbAbtOLyrH5ZHAyuhNtegNJi1V2pctE3tWFo3lauydA4jCMOyFo_L2pW5KN2d8xj6rrvJwwHlxI1jjbUzIXeQzzHPffFHdVWjkRymqS83P1sPz4u2c6U1fg9zEUGXXEX12VWzPWgL4lsf96UDnKWx42WaaKdxwyRhcdb1F_YqGUnCEXpDBRulrvcMGmubF9xrCPqTkwG3z5vAj4XBDECJpeg7xNvn3_PT1dlZvjxZL5-QwwAiDlCZh7PFl8uLrVmPM6T0dv-hLwezRO37HrPj6OzQ4D4w-50vs3xBnmMQQmcOUS_JSFevyLMBNeVrUs7oAFvUYYvC7NRjiwK26ABb1GOLbrFFa0O_zqnFFkVsUcTWG7I6PVnOFwz7cTAZJdOGxVoUGsKFOOBGCXB9skhlPC3CUkjJdWpEYR1wDu-NTLRIAqUTriHK1yYVYDvekoOqrvQ7QqXSRRqCb56GOpoaI6QIJZel7X8gtCmOSNQvXi6RrN72TLnKp57T1q15btc8xzU_IhN_241ja3nsBjGUTN50CDYOvHn4yL3HvRhz3HO_8sAG5BDUiPD9nz_-QJ5ud9AxOWhuW_0R_Num_ITIuwcuqqAa |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvFELBXyAo1deOy8fOFSFapeWPbVSbyaxx6WCJqjNCsHP4q_wh5jJo7Qg1APqgWMi2XE8r2-smc8ALwqT5IEsQaIOpUxMyKSluCFLFTUqnDLJJVdbLLLZfvL2ID1Yge9jLwyXVXIOHXuiiM5Xs3HzYfRYEsct3BTpEkPpnaZXBX1LF0Nh5Q5-_UJp2-mr-WuS8Uutt9_sbc3kcLOA9Ek2bWWKtkQCPqlWMVhy4kUSCpWXprLeK8yjLRlKKHqOPkOb6YCZQspXMOaWrIDmvQbXU5vlbFtGLX55_7QYmJ-V5DWOXUN_W_aFeHiBLfWP6NCFvO078GPcrL7S5eNk2VYT_-03Hsn_azfvwu0BgYvN3mTuwQrW9-HWOV7GB1BtCq6cleGEY4Hob9kWtGcC6w9MUFIfCgLO4uiYvLFkIBBEuWybjv5WHNV9-2pTiyaK-ZZgOmhRNV3_kAjYFdA8hP0r-clHsFo3Na6B8AHL3BAwzQ0m0xitt8YrXzH5v8VYrkMyqoTzA1M7XxjyyU3PCF17kTkWmRtEtg6Ts2Gfe6qSywbY8_rm2u6MKPYXujhzydiNUTnd4PVOneZslBC9NY__YerncGO2927X7c4XO0_gpuYiIuYgLjZgtT1Z4lNCgW31rDM7Ae-vWjN_ApmHWgo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE4lLfaUsAHOHrltbNJfOBQtay6FK04UKk3k9jjUkGTqs0Kwb_qX-kvYiaP0oJQD6gHjolkJ_G8o2--AXiVmyQLZAkSdShkYkIqLcUNWaioUeGYSS4ZbTFPd_aSd_uT_SU4G3phGFbJNXTsiCJaX83GfRzigIjjDm4KdImh6k7TrZwepfMeV7mL379R1Xb6ZrZNIn6t9fTtx60d2Q8WkD5Jx42coC2Q8p6JVjFY8uF5EnKVFaa03ivMoi04k1B0HX2KNtUBU4VUrmDMLBkB7XsLbqfc2MldI2r-y_lP8p74WUl-x6Fp6G-vfSUcXiFL_SM4tBFveh_Oh7PqgC5fRoumHPkfv9FI_leH-QBW-vxbbHYG8xCWsHoE9y6xMj6GclMwblaGE44EopuxLejIBFafmZ6kOhCUNovDI_LFktOAIIpFU7fkt-Kw6ppX60rUUcy2BJNBi7Juu4dEwBY-8wT2buQjn8JyVVe4CsIHLDJDaWlmMBnHaL01XvmSqf8txmINkkEjnO952nlcyFc3vqBz7UTmWGSuF9kajC6WHXdEJdctsJfVzTXtH6LYjXNx5pq1G4Nuut7nnTrNtSjl89as_8PWL-HOh-2pez-b7z6Du5oRRExAnG_AcnOywOeUAjbli9boBHy6acX8CdL0WK4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+method+for+enhancing+the+image-based+automatic+inspection+of+IC+wire+bonding+defects&rft.jtitle=International+journal+of+production+research&rft.au=Chen%2C+Junlong&rft.au=Zhang%2C+Zijun&rft.au=Wu%2C+Feng&rft.date=2021-08-18&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=59&rft.issue=16&rft.spage=4779&rft.epage=4793&rft_id=info:doi/10.1080%2F00207543.2020.1821928&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |