A data-driven method for enhancing the image-based automatic inspection of IC wire bonding defects

Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of IC X-ray images offers an unprecedented opportunity of studying the image-based automatic IC wire inspection. In this paper, a data-driven me...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 59; no. 16; pp. 4779 - 4793
Main Authors Chen, Junlong, Zhang, Zijun, Wu, Feng
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 18.08.2021
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of IC X-ray images offers an unprecedented opportunity of studying the image-based automatic IC wire inspection. In this paper, a data-driven method consists of data pre-processing, feature engineering, and classification is developed to address such problem. The data pre-processing is composed of a chip identification algorithm for locating and separating IC chip image patches from the raw images as well as a wire segmentation algorithm for obtaining the wire region. Next, geometric features extracted from the segmented wires are fed into classification models for identifying defects. Five data mining methods are utilised to develop classification models. The vision detection system (VDS) and convolutional neural networks (CNN) are considered as benchmarks. In computational studies, the effectiveness of the developed method is validated by using X-ray images collected from a semiconductor back-end factory in Mainland China. A comparative analysis is conducted to determine the most suitable classifier for the developed method in the chip classification and the SVM model is finally selected. Advantages of the developed method are verified by benchmarking against the VDS and CNN.
AbstractList Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of IC X-ray images offers an unprecedented opportunity of studying the image-based automatic IC wire inspection. In this paper, a data-driven method consists of data pre-processing, feature engineering, and classification is developed to address such problem. The data pre-processing is composed of a chip identification algorithm for locating and separating IC chip image patches from the raw images as well as a wire segmentation algorithm for obtaining the wire region. Next, geometric features extracted from the segmented wires are fed into classification models for identifying defects. Five data mining methods are utilised to develop classification models. The vision detection system (VDS) and convolutional neural networks (CNN) are considered as benchmarks. In computational studies, the effectiveness of the developed method is validated by using X-ray images collected from a semiconductor back-end factory in Mainland China. A comparative analysis is conducted to determine the most suitable classifier for the developed method in the chip classification and the SVM model is finally selected. Advantages of the developed method are verified by benchmarking against the VDS and CNN.
Author Zhang, Zijun
Chen, Junlong
Wu, Feng
Author_xml – sequence: 1
  givenname: Junlong
  surname: Chen
  fullname: Chen, Junlong
  organization: School of Data Science, City University of Hong Kong
– sequence: 2
  givenname: Zijun
  surname: Zhang
  fullname: Zhang, Zijun
  email: zijzhang@cityu.edu.hk
  organization: School of Data Science, City University of Hong Kong
– sequence: 3
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  organization: School of Management, Xi'an Jiaotong University
BookMark eNqFkE1rGzEQhkVIoM7HTygIel5XHyutllxqTNMYDL20kJuQpVEsY0uuJDfk31eLk0sPrS7SoPeZYZ5rdBlTBIQ-UjKnRJHPhDAyiJ7PWXvMqWJ0ZOoCzSiXshNKPV2i2ZTpptAHdF3KjrQjVD9DmwV2pprO5fAbIj5A3SaHfcoY4tZEG-IzrlvA4WCeoduYAg6bU00HU4PFIZYj2BpSxMnj1RK_hAx4k6KbOAe-fZZbdOXNvsDd232Dfj58_bF87Nbfv62Wi3Vne0lrJ2A0MAy9YMS7kXCpeqfIYPhmtJbA4EdDhaCk1d5KGCVzIAkQJsEPI1X8Bn069z3m9OsEpepdOuXYRmomJOVcsJG31P05ZXMqJYPXNlQzrVCzCXtNiZ6k6nepepKq36Q2WvxFH3NTk1__y305cyE2twfzkvLe6Wpe9yn7PHkumv-7xR_lYY9P
CitedBy_id crossref_primary_10_1080_00207543_2021_1956675
crossref_primary_10_3390_mi14061119
crossref_primary_10_20965_ijat_2022_p0309
crossref_primary_10_1080_00207543_2024_2407919
crossref_primary_10_1080_00207543_2021_2010827
crossref_primary_10_1016_j_apenergy_2023_120843
crossref_primary_10_1016_j_procs_2024_02_081
crossref_primary_10_3390_s23083918
crossref_primary_10_1080_00207543_2023_2219344
crossref_primary_10_1080_00207543_2023_2227903
crossref_primary_10_3390_s24123933
crossref_primary_10_1007_s00170_024_13275_7
crossref_primary_10_3390_mi14091737
crossref_primary_10_3390_coatings15010091
crossref_primary_10_1080_00207543_2022_2138613
crossref_primary_10_1109_TCPMT_2024_3447040
crossref_primary_10_1109_ACCESS_2022_3197624
crossref_primary_10_1109_TCPMT_2024_3367244
crossref_primary_10_1016_j_ifacol_2022_10_041
crossref_primary_10_1109_TIE_2021_3120473
crossref_primary_10_1049_cit2_12240
crossref_primary_10_1016_j_ifacol_2024_09_190
crossref_primary_10_1088_1361_6501_ad4fae
crossref_primary_10_1080_00207543_2023_2281664
crossref_primary_10_3390_mi14071375
crossref_primary_10_1088_1361_6501_ace926
crossref_primary_10_1108_IJLSS_05_2021_0088
crossref_primary_10_1080_00207543_2024_2387074
crossref_primary_10_1007_s00170_024_14055_z
crossref_primary_10_1109_TCPMT_2024_3428595
crossref_primary_10_1109_TIM_2022_3193183
Cites_doi 10.1109/TSM.2019.2902657
10.1109/ICICIC.2007.368
10.1080/00207543.2018.1524164
10.1007/s10845-016-1270-6
10.1109/95.335048
10.1023/A:1010933404324
10.1109/TBCAS.2017.2751545
10.1016/j.compind.2014.10.006
10.1016/j.asoc.2016.12.050
10.1109/ISBA.2018.8311465
10.1007/s10845-012-0685-y
10.1016/j.ymssp.2012.08.005
10.1007/s10845-009-0369-4
10.1080/00207543.2016.1213914
10.1109/IC3INA.2017.8251748
10.1007/BF00994018
10.1007/BF00993309
10.1109/TCPMT.2018.2812815
10.1080/00207540903059497
10.1007/s10845-014-0924-5
10.1080/00207540210136568
10.3390/s18071981
10.1080/00031305.1992.10475879
10.1201/9781315139470
10.1016/j.ymssp.2010.09.010
10.1007/s10845-018-1415-x
10.1016/j.mee.2004.12.003
10.1109/95.477473
10.1109/TADVP.2005.853554
10.1109/ICEPT.2007.4441498
10.1007/s10845-012-0725-7
10.1109/TSMC.1979.4310076
10.1109/3476.622881
10.1109/TSM.2019.2941752
10.1007/s00170-006-0611-6
10.1109/5.726791
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207543.2020.1821928
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 4793
ExternalDocumentID 10_1080_00207543_2020_1821928
1821928
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c461t-5e9ae774520fd903684d807a3b9cc0e7f9a155103b9fc6e962de60e026ef79183
ISSN 0020-7543
IngestDate Wed Aug 13 07:01:03 EDT 2025
Tue Jul 01 03:30:21 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Dec 25 09:06:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-5e9ae774520fd903684d807a3b9cc0e7f9a155103b9fc6e962de60e026ef79183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2561335293
PQPubID 30924
PageCount 15
ParticipantIDs proquest_journals_2561335293
informaworld_taylorfrancis_310_1080_00207543_2020_1821928
crossref_citationtrail_10_1080_00207543_2020_1821928
crossref_primary_10_1080_00207543_2020_1821928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-18
PublicationDateYYYYMMDD 2021-08-18
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of production research
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Heijmans H. J. A. M. (CIT0015) 1994
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
Haykin S. (CIT0014) 1994; 2
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0009
  doi: 10.1109/TSM.2019.2902657
– ident: CIT0005
  doi: 10.1109/ICICIC.2007.368
– ident: CIT0006
  doi: 10.1080/00207543.2018.1524164
– ident: CIT0018
  doi: 10.1007/s10845-016-1270-6
– volume: 2
  volume-title: Neural Networks
  year: 1994
  ident: CIT0014
– ident: CIT0028
  doi: 10.1109/95.335048
– ident: CIT0003
  doi: 10.1023/A:1010933404324
– ident: CIT0011
  doi: 10.1109/TBCAS.2017.2751545
– ident: CIT0031
– ident: CIT0016
  doi: 10.1016/j.compind.2014.10.006
– ident: CIT0027
  doi: 10.1016/j.asoc.2016.12.050
– ident: CIT0036
  doi: 10.1109/ISBA.2018.8311465
– ident: CIT0037
  doi: 10.1007/s10845-012-0685-y
– ident: CIT0035
  doi: 10.1016/j.ymssp.2012.08.005
– ident: CIT0007
  doi: 10.1007/s10845-009-0369-4
– ident: CIT0013
  doi: 10.1080/00207543.2016.1213914
– ident: CIT0025
  doi: 10.1109/IC3INA.2017.8251748
– ident: CIT0010
  doi: 10.1007/BF00994018
– volume-title: Morphological Image Operators
  year: 1994
  ident: CIT0015
– ident: CIT0033
  doi: 10.1007/BF00993309
– ident: CIT0039
  doi: 10.1109/TCPMT.2018.2812815
– ident: CIT0030
  doi: 10.1080/00207540903059497
– ident: CIT0008
  doi: 10.1007/s10845-014-0924-5
– ident: CIT0038
  doi: 10.1080/00207540210136568
– ident: CIT0002
  doi: 10.3390/s18071981
– ident: CIT0001
  doi: 10.1080/00031305.1992.10475879
– ident: CIT0004
  doi: 10.1201/9781315139470
– ident: CIT0012
  doi: 10.1016/j.ymssp.2010.09.010
– ident: CIT0022
  doi: 10.1007/s10845-018-1415-x
– ident: CIT0034
  doi: 10.1016/j.mee.2004.12.003
– ident: CIT0032
  doi: 10.1109/95.477473
– ident: CIT0021
  doi: 10.1109/TADVP.2005.853554
– ident: CIT0023
  doi: 10.1109/ICEPT.2007.4441498
– ident: CIT0019
  doi: 10.1007/s10845-012-0725-7
– ident: CIT0026
  doi: 10.1109/TSMC.1979.4310076
– ident: CIT0024
  doi: 10.1109/3476.622881
– ident: CIT0017
  doi: 10.1109/TSM.2019.2941752
– ident: CIT0029
  doi: 10.1007/s00170-006-0611-6
– ident: CIT0020
  doi: 10.1109/5.726791
SSID ssj0000584
Score 2.4995484
Snippet Visually inspecting integrated circuit (IC) wire bonding defects is important to ensuring the product quality after the packaging process. The availability of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4779
SubjectTerms Algorithms
Artificial neural networks
automatic inspection
Bonding
Classification
Data mining
Defects
Feature extraction
Image enhancement
Image segmentation
Inspection
Integrated circuits
intelligent manufacturing
Semiconductors
Wire
wire bonding quality
X-ray images
Title A data-driven method for enhancing the image-based automatic inspection of IC wire bonding defects
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2020.1821928
https://www.proquest.com/docview/2561335293
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcZGmHok80bVpw6GbQoPXmaLgJ3CJIFxsxsggSH6iLRApSaek_yL_OUTzRMmI0bRfBpi3K5n28F3jfEfI5C6NUwU5gOlAFi0KVMAF2gxXcBJrrqSW5tKctzpPFKvq2jtej0d3g1FLblBP5e29dyf9IFcZArrZK9h8k6yeFAXgN8oUrSBiufyXj2dge8GTq1qosbAbtOLyrH5ZHAyuhNtegNJi1V2pctE3tWFo3lauydA4jCMOyFo_L2pW5KN2d8xj6rrvJwwHlxI1jjbUzIXeQzzHPffFHdVWjkRymqS83P1sPz4u2c6U1fg9zEUGXXEX12VWzPWgL4lsf96UDnKWx42WaaKdxwyRhcdb1F_YqGUnCEXpDBRulrvcMGmubF9xrCPqTkwG3z5vAj4XBDECJpeg7xNvn3_PT1dlZvjxZL5-QwwAiDlCZh7PFl8uLrVmPM6T0dv-hLwezRO37HrPj6OzQ4D4w-50vs3xBnmMQQmcOUS_JSFevyLMBNeVrUs7oAFvUYYvC7NRjiwK26ABb1GOLbrFFa0O_zqnFFkVsUcTWG7I6PVnOFwz7cTAZJdOGxVoUGsKFOOBGCXB9skhlPC3CUkjJdWpEYR1wDu-NTLRIAqUTriHK1yYVYDvekoOqrvQ7QqXSRRqCb56GOpoaI6QIJZel7X8gtCmOSNQvXi6RrN72TLnKp57T1q15btc8xzU_IhN_241ja3nsBjGUTN50CDYOvHn4yL3HvRhz3HO_8sAG5BDUiPD9nz_-QJ5ud9AxOWhuW_0R_Num_ITIuwcuqqAa
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvFELBXyAo1deOy8fOFSFapeWPbVSbyaxx6WCJqjNCsHP4q_wh5jJo7Qg1APqgWMi2XE8r2-smc8ALwqT5IEsQaIOpUxMyKSluCFLFTUqnDLJJVdbLLLZfvL2ID1Yge9jLwyXVXIOHXuiiM5Xs3HzYfRYEsct3BTpEkPpnaZXBX1LF0Nh5Q5-_UJp2-mr-WuS8Uutt9_sbc3kcLOA9Ek2bWWKtkQCPqlWMVhy4kUSCpWXprLeK8yjLRlKKHqOPkOb6YCZQspXMOaWrIDmvQbXU5vlbFtGLX55_7QYmJ-V5DWOXUN_W_aFeHiBLfWP6NCFvO078GPcrL7S5eNk2VYT_-03Hsn_azfvwu0BgYvN3mTuwQrW9-HWOV7GB1BtCq6cleGEY4Hob9kWtGcC6w9MUFIfCgLO4uiYvLFkIBBEuWybjv5WHNV9-2pTiyaK-ZZgOmhRNV3_kAjYFdA8hP0r-clHsFo3Na6B8AHL3BAwzQ0m0xitt8YrXzH5v8VYrkMyqoTzA1M7XxjyyU3PCF17kTkWmRtEtg6Ts2Gfe6qSywbY8_rm2u6MKPYXujhzydiNUTnd4PVOneZslBC9NY__YerncGO2927X7c4XO0_gpuYiIuYgLjZgtT1Z4lNCgW31rDM7Ae-vWjN_ApmHWgo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE4lLfaUsAHOHrltbNJfOBQtay6FK04UKk3k9jjUkGTqs0Kwb_qX-kvYiaP0oJQD6gHjolkJ_G8o2--AXiVmyQLZAkSdShkYkIqLcUNWaioUeGYSS4ZbTFPd_aSd_uT_SU4G3phGFbJNXTsiCJaX83GfRzigIjjDm4KdImh6k7TrZwepfMeV7mL379R1Xb6ZrZNIn6t9fTtx60d2Q8WkD5Jx42coC2Q8p6JVjFY8uF5EnKVFaa03ivMoi04k1B0HX2KNtUBU4VUrmDMLBkB7XsLbqfc2MldI2r-y_lP8p74WUl-x6Fp6G-vfSUcXiFL_SM4tBFveh_Oh7PqgC5fRoumHPkfv9FI_leH-QBW-vxbbHYG8xCWsHoE9y6xMj6GclMwblaGE44EopuxLejIBFafmZ6kOhCUNovDI_LFktOAIIpFU7fkt-Kw6ppX60rUUcy2BJNBi7Juu4dEwBY-8wT2buQjn8JyVVe4CsIHLDJDaWlmMBnHaL01XvmSqf8txmINkkEjnO952nlcyFc3vqBz7UTmWGSuF9kajC6WHXdEJdctsJfVzTXtH6LYjXNx5pq1G4Nuut7nnTrNtSjl89as_8PWL-HOh-2pez-b7z6Du5oRRExAnG_AcnOywOeUAjbli9boBHy6acX8CdL0WK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+method+for+enhancing+the+image-based+automatic+inspection+of+IC+wire+bonding+defects&rft.jtitle=International+journal+of+production+research&rft.au=Chen%2C+Junlong&rft.au=Zhang%2C+Zijun&rft.au=Wu%2C+Feng&rft.date=2021-08-18&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=59&rft.issue=16&rft.spage=4779&rft.epage=4793&rft_id=info:doi/10.1080%2F00207543.2020.1821928&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon