Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction
A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility...
Saved in:
Published in | Interface focus Vol. 10; no. 6; p. 20200007 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
06.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches. |
---|---|
AbstractList | A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches. A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches.A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches. |
Author | Zasada, Stefan J. Wan, Shunzhou Coveney, Peter V. Bhati, Agastya P. |
AuthorAffiliation | 1 Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ , UK 2 Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam , 1098XH Amsterdam , The Netherlands |
AuthorAffiliation_xml | – name: 1 Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ , UK – name: 2 Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam , 1098XH Amsterdam , The Netherlands |
Author_xml | – sequence: 1 givenname: Shunzhou orcidid: 0000-0001-7192-1999 surname: Wan fullname: Wan, Shunzhou organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK – sequence: 2 givenname: Agastya P. orcidid: 0000-0003-4539-4819 surname: Bhati fullname: Bhati, Agastya P. organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK – sequence: 3 givenname: Stefan J. orcidid: 0000-0003-4643-4982 surname: Zasada fullname: Zasada, Stefan J. organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK – sequence: 4 givenname: Peter V. orcidid: 0000-0002-8787-7256 surname: Coveney fullname: Coveney, Peter V. organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK, Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, 1098XH Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33178418$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uctq3TAUFCWheTTbLIuXXeTeHD1sy5tCCc0DAoFwN10JPY5vVHxlV7ID2eUf8of9ksgkNzSFgEBiNDNnOHNAdkIfkJBjCksKjTyNqU1LBgyWAFB_IvsMBFvIBujO9i0buUeOUvqdGSAqKoF9Jnuc01oKKvfJr1s9eHdSaGunqEc8KYaI1icsdHBFxCH2brLedFh0fp2xv49PGRvRh8L44HxYF21ELDBgXD_Mauft6Pvwhey2ukt49HofktX5z9XZ5eL65uLq7Mf1wuY446I0pStrqxtROio0BcvrspY5KOZj6sY2zDgjkOuWu4yUFQMjGoNZh5ofku8vtsNkNugshjHqTg3Rb3R8UL326v1P8Hdq3d-ruio5F1U2-PZqEPs_E6ZRbXyy2HU6YD8lxUQFIBmnkKlf_531NmS7zkxYvhBs7FOK2L5RKKi5MjVXpubK1FxZFoj_BNaPel5fzuq7j2TPkLqd_w |
CitedBy_id | crossref_primary_10_1080_07391102_2022_2027271 crossref_primary_10_1007_s00894_021_04963_2 crossref_primary_10_2174_1871526523666230816151614 crossref_primary_10_3390_molecules27041215 crossref_primary_10_1021_acs_jctc_1c00526 crossref_primary_10_1016_j_bbagen_2022_130153 crossref_primary_10_1016_j_compbiomed_2022_105509 crossref_primary_10_1016_j_csbj_2021_03_036 crossref_primary_10_1080_07391102_2021_1957716 crossref_primary_10_1186_s40643_024_00797_x crossref_primary_10_1080_23746149_2022_2080587 crossref_primary_10_1021_acs_jctc_4c01364 crossref_primary_10_3390_ph17121593 crossref_primary_10_1016_j_jare_2023_01_020 crossref_primary_10_1038_s43588_022_00389_9 crossref_primary_10_1134_S1023193524700472 crossref_primary_10_1007_s10822_022_00441_w crossref_primary_10_1080_07391102_2024_2438357 crossref_primary_10_1098_rsfs_2019_0128 crossref_primary_10_1016_j_bioorg_2022_105869 crossref_primary_10_1021_acs_jctc_1c01288 crossref_primary_10_1186_s13036_023_00378_0 crossref_primary_10_3390_ph17111540 crossref_primary_10_1039_D1MD00140J crossref_primary_10_1021_acs_jctc_1c00796 crossref_primary_10_1038_s41598_021_92785_w crossref_primary_10_2174_1570163820666230606113158 crossref_primary_10_1016_j_dnarep_2023_103510 crossref_primary_10_1021_jasms_2c00259 crossref_primary_10_1093_bib_bbab484 crossref_primary_10_1021_acs_jcim_3c01654 crossref_primary_10_1021_acs_jcim_4c02053 crossref_primary_10_1021_acsomega_4c10201 crossref_primary_10_1039_D1ME00124H crossref_primary_10_1055_s_0044_1789016 crossref_primary_10_1098_rsfs_2020_0047 crossref_primary_10_1002_2211_5463_13855 crossref_primary_10_1021_acs_jctc_3c00020 crossref_primary_10_1039_D1CP02157E crossref_primary_10_1002_jcb_30277 crossref_primary_10_1016_j_fshw_2022_06_021 crossref_primary_10_1098_rsfs_2019_0133 crossref_primary_10_1021_acs_chemrev_3c00042 crossref_primary_10_1186_s13036_023_00342_y crossref_primary_10_1021_acs_jcim_2c00255 crossref_primary_10_1016_j_sciaf_2024_e02326 crossref_primary_10_3389_fendo_2022_895240 crossref_primary_10_1021_acs_jctc_2c00114 crossref_primary_10_3389_fphar_2024_1435254 crossref_primary_10_3389_fvets_2022_854528 crossref_primary_10_1063_5_0247878 crossref_primary_10_1098_rsfs_2021_0018 crossref_primary_10_1080_17460441_2022_2002298 crossref_primary_10_1039_D4DD00006D crossref_primary_10_1002_cpz1_699 crossref_primary_10_1016_j_compbiolchem_2025_108391 crossref_primary_10_1021_acs_jcim_3c00631 crossref_primary_10_1021_acs_jctc_3c00842 crossref_primary_10_3390_biom12070960 crossref_primary_10_1007_s12033_023_00711_4 crossref_primary_10_1021_acschemneuro_1c00749 crossref_primary_10_1007_s00217_024_04526_8 crossref_primary_10_1016_j_foodres_2024_114930 crossref_primary_10_1021_acs_jctc_4c00576 crossref_primary_10_1021_acs_jctc_4c01389 crossref_primary_10_1038_s41467_023_38681_5 crossref_primary_10_2174_1570180819666220429161808 crossref_primary_10_3390_ijms231810728 crossref_primary_10_1021_acs_jctc_0c01179 crossref_primary_10_1021_acs_jcim_2c01596 crossref_primary_10_1002_wcms_1563 crossref_primary_10_1002_jsfa_13647 crossref_primary_10_1021_acs_jcim_4c02236 crossref_primary_10_1021_acsnano_1c05139 crossref_primary_10_3390_pharmaceutics15041095 crossref_primary_10_1016_j_foodchem_2024_140834 crossref_primary_10_1088_1742_5468_ad1be7 crossref_primary_10_1098_rsta_2020_0082 crossref_primary_10_1021_acs_jpcb_4c02303 crossref_primary_10_1038_s41524_024_01272_z crossref_primary_10_1093_molbev_msac217 crossref_primary_10_32947_ajps_v22i3_889 crossref_primary_10_1021_acs_jcim_4c01024 crossref_primary_10_1186_s13036_022_00284_x crossref_primary_10_1002_cphc_202400119 crossref_primary_10_1038_s41598_022_13319_6 crossref_primary_10_1016_j_compag_2024_109266 crossref_primary_10_1134_S0036024423030299 crossref_primary_10_1016_j_envpol_2024_123549 crossref_primary_10_3390_ijms24054397 crossref_primary_10_1021_acs_jctc_1c01194 crossref_primary_10_3390_ijms252312676 |
Cites_doi | 10.1021/ct800559d 10.1016/j.revip.2017.05.001 10.1038/350456a0 10.3390/e16010163 10.1007/s10699-016-9489-4 10.1021/acs.jctc.8b00391 10.1002/jcc.21546 10.1098/rsfs.2019.0133 10.1080/0889311X.2019.1569643 10.1016/j.ebiom.2015.02.009 10.1016/j.bpj.2010.02.034 10.1098/rsta.2005.1627 10.1098/rsta.2005.1625 10.1371/journal.pone.0032131 10.1201/9780429246593 10.1002/jcc.20289 10.1021/acs.jctc.8b01118 10.1002/adts.201900195 10.1016/S0006-3495(04)74084-9 10.1146/annurev-biophys-070816-033834 10.1021/acs.jctc.5b00179 10.1016/j.future.2016.08.007 10.1093/nar/gkm232 10.1038/533452a 10.1088/0034-4885/71/12/126601 10.1093/protein/6.3.289 10.1021/ct5000296 10.1016/j.drudis.2016.05.009 10.1021/jm8001197 10.1038/s42003-018-0075-x 10.1103/PhysRevLett.86.4983 10.1002/anie.201702945 10.1039/C9SC03754C 10.1017/CBO9781139170666 10.1021/ar000033j 10.1038/s41598-019-41758-1 10.1038/s41558-020-0731-2 10.1021/ct900223z 10.1021/acs.jctc.8b00825 10.1146/annurev-biophys-070816-033654 10.1038/267585a0 10.1021/ar010030m 10.1006/jmbi.1993.1551 10.1158/1535-7163.MCT-12-0644-T 10.1088/1361-651X/ab46d6 10.1007/978-3-030-22747-0_36 10.1021/acs.jctc.8b01290 10.1016/j.jhealeco.2016.01.012 10.1021/ci100007w 10.1103/PhysRevLett.113.090601 10.1039/C5SC02678D 10.2174/1568026617666170414142131 10.1016/j.bpj.2018.02.038 10.1098/rsif.2010.0609 10.1021/acs.jctc.8b00230 10.1021/acs.jcim.0c00900 10.1039/C9SC04606B 10.1063/1.2978177 10.1063/1.1730376 10.1002/jcc.10379 10.1016/j.sbi.2016.12.004 10.1007/s10822-018-0110-5 10.1021/acsomega.6b00086 10.1007/s10822-016-9996-y 10.1007/s10586-007-0029-4 10.1021/ct4007037 10.1016/j.bbagen.2014.10.019 10.1002/adts.201900122 10.1016/j.sbi.2018.02.004 10.1021/acs.jcim.6b00780 10.1002/adma.202003213 10.1098/rsfs.2019.0128 10.1146/annurev.biophys.33.110502.133350 10.1126/science.3810157 10.1038/sj.bjp.0707515 10.1016/j.sbi.2016.11.019 10.1002/pro.5560070314 10.1016/j.jmb.2007.09.069 10.1371/journal.pmed.0020124 10.1073/pnas.1103547108 10.7554/eLife.44718 10.1039/C6CP02349E 10.1007/s10822-013-9689-8 10.1002/jcc.23804 10.1021/ar010014p 10.1016/j.chembiol.2015.11.015 10.7554/eLife.45318 10.1021/ci500091r 10.1517/17460441.2015.1032936 10.1371/journal.pcbi.1005659 10.1002/adts.201900194 10.1021/acs.jctc.6b01246 10.1021/acs.jctc.6b00277 10.1002/jcc.21366 10.1016/j.chembiol.2017.12.009 10.3389/fninf.2017.00076 10.1016/j.drudis.2018.01.039 10.1021/jp505332p 10.1021/acs.jctc.6b00794 10.1021/ct9000685 10.1186/s12859-018-2506-6 10.1021/acs.jctc.8b01270 10.1016/j.sbi.2015.03.007 10.1021/acscentsci.9b00590 10.1126/science.1213847 10.1002/qj.3383 10.1002/adma.201705791 10.1021/ci400285z 10.1021/acs.jctc.6b00979 10.1016/j.abb.2019.01.033 10.1007/s10822-013-9678-y 10.1021/acs.accounts.7b00613 10.1167/iovs.12-9967 10.1021/acs.jctc.8b00544 10.1021/acs.jcim.5b00538 10.1039/C8CP07796G 10.1017/CBO9781139626514 10.1016/j.future.2016.09.017 10.1063/1.1472510 10.1109/34.709601 10.1021/acs.jctc.7b01143 10.1021/jp204407d 10.1002/wsbm.1186 10.1126/science.282.5389.740 10.1021/ct500195p 10.1146/annurev-biophys-083012-130318 10.1007/978-3-540-87706-6_3 10.1145/3150224 10.1002/qj.49712252906 10.1021/ja512751q 10.1021/cr960370z 10.1021/ct9000894 10.1146/annurev-physchem-042018-052340 10.1073/pnas.1114017109 10.1021/acs.jcim.0c00165 10.1124/pr.112.007336 10.1073/pnas.1818411116 10.1002/jcc.23218 10.1063/1.454895 10.1021/ct2003995 10.7554/eLife.35560 10.1002/adts.201900125 10.1021/acs.jmedchem.7b00681 10.1021/acs.jcim.5b00368 10.1021/ci8000937 |
ContentType | Journal Article |
Copyright | 2020 The Authors. 2020 The Authors. 2020 |
Copyright_xml | – notice: 2020 The Authors. – notice: 2020 The Authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1098/rsfs.2020.0007 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | binding free energy prediction |
EISSN | 2042-8901 |
ExternalDocumentID | PMC7653346 33178418 10_1098_rsfs_2020_0007 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/L016311/1 – fundername: ; grantid: 671564; 675451; 800925; 823712 – fundername: ; grantid: 1713749 – fundername: ; grantid: 7-1083-1-191 – fundername: ; grantid: MR/L016311/1 |
GroupedDBID | 0R~ 4.4 53G 5VS AAKDD AAYXX ACQIA ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS BAWUL BTFSW CITATION DIK EBS H13 HYE HZ~ ICLEN KQ8 MV1 NSAHA O9- OK1 OP1 RPM RRY V1E NPM 7X8 5PM |
ID | FETCH-LOGICAL-c461t-5b5d57ca945d14a10c37578180e80eb79c92bdb4e3af3d0eb5620b49be5d5ea3 |
ISSN | 2042-8898 |
IngestDate | Thu Aug 21 13:42:39 EDT 2025 Fri Jul 11 10:25:35 EDT 2025 Sat May 31 02:12:23 EDT 2025 Tue Jul 01 02:38:25 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ensemble simulation molecular dynamics binding free energy reproducibility |
Language | English |
License | 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-5b5d57ca945d14a10c37578180e80eb79c92bdb4e3af3d0eb5620b49be5d5ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 One contribution of 9 to a theme issue ‘Computational biomedicine. Part I: molecular medicine’. |
ORCID | 0000-0003-4539-4819 0000-0001-7192-1999 0000-0003-4643-4982 0000-0002-8787-7256 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7653346 |
PMID | 33178418 |
PQID | 2460082310 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7653346 proquest_miscellaneous_2460082310 pubmed_primary_33178418 crossref_primary_10_1098_rsfs_2020_0007 crossref_citationtrail_10_1098_rsfs_2020_0007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-06 |
PublicationDateYYYYMMDD | 2020-12-06 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Interface focus |
PublicationTitleAlternate | Interface Focus |
PublicationYear | 2020 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_6_117_2 e_1_3_6_30_2 e_1_3_6_76_2 e_1_3_6_53_2 e_1_3_6_95_2 e_1_3_6_113_2 e_1_3_6_136_2 e_1_3_6_159_2 Manos S (e_1_3_6_18_2) 2008; 4 e_1_3_6_72_2 e_1_3_6_91_2 e_1_3_6_132_2 e_1_3_6_155_2 e_1_3_6_151_2 Hoekstra AG (e_1_3_6_8_2) 2019; 377 e_1_3_6_38_2 e_1_3_6_34_2 e_1_3_6_15_2 e_1_3_6_57_2 e_1_3_6_99_2 e_1_3_6_105_2 e_1_3_6_128_2 e_1_3_6_65_2 e_1_3_6_42_2 e_1_3_6_84_2 e_1_3_6_101_2 e_1_3_6_124_2 e_1_3_6_147_2 e_1_3_6_61_2 e_1_3_6_80_2 e_1_3_6_120_2 e_1_3_6_143_2 e_1_3_6_166_2 e_1_3_6_162_2 e_1_3_6_6_2 Succi S (e_1_3_6_3_2) 2019; 377 Frenkel D (e_1_3_6_49_2) 2002 e_1_3_6_27_2 e_1_3_6_109_2 e_1_3_6_23_2 e_1_3_6_69_2 e_1_3_6_46_2 e_1_3_6_88_2 e_1_3_6_52_2 e_1_3_6_75_2 e_1_3_6_98_2 e_1_3_6_118_2 e_1_3_6_10_2 e_1_3_6_71_2 e_1_3_6_94_2 e_1_3_6_137_2 e_1_3_6_114_2 e_1_3_6_156_2 e_1_3_6_90_2 e_1_3_6_133_2 e_1_3_6_110_2 e_1_3_6_152_2 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_79_2 e_1_3_6_41_2 e_1_3_6_64_2 e_1_3_6_87_2 e_1_3_6_106_2 e_1_3_6_129_2 e_1_3_6_60_2 e_1_3_6_83_2 e_1_3_6_102_2 e_1_3_6_148_2 e_1_3_6_125_2 e_1_3_6_144_2 e_1_3_6_121_2 e_1_3_6_163_2 e_1_3_6_140_2 e_1_3_6_7_2 Groen D (e_1_3_6_11_2) 2019 e_1_3_6_26_2 Sadiq SK (e_1_3_6_19_2) 2008; 366 Hoekstra AG (e_1_3_6_139_2) 2019; 377 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_68_2 e_1_3_6_51_2 e_1_3_6_97_2 e_1_3_6_119_2 e_1_3_6_138_2 e_1_3_6_32_2 e_1_3_6_74_2 e_1_3_6_93_2 e_1_3_6_115_2 e_1_3_6_134_2 e_1_3_6_157_2 e_1_3_6_70_2 e_1_3_6_111_2 e_1_3_6_130_2 e_1_3_6_153_2 e_1_3_6_13_2 e_1_3_6_59_2 e_1_3_6_17_2 e_1_3_6_55_2 e_1_3_6_36_2 e_1_3_6_78_2 e_1_3_6_40_2 Genheden S (e_1_3_6_48_2) 2010; 31 e_1_3_6_86_2 e_1_3_6_107_2 e_1_3_6_149_2 e_1_3_6_21_2 e_1_3_6_63_2 e_1_3_6_82_2 e_1_3_6_103_2 e_1_3_6_126_2 e_1_3_6_145_2 e_1_3_6_4_2 e_1_3_6_122_2 e_1_3_6_141_2 e_1_3_6_164_2 Coveney PV (e_1_3_6_2_2) 2016; 374 e_1_3_6_160_2 e_1_3_6_29_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_67_2 Lopes PEM (e_1_3_6_54_2) 2014 e_1_3_6_116_2 e_1_3_6_31_2 e_1_3_6_73_2 e_1_3_6_96_2 e_1_3_6_112_2 e_1_3_6_158_2 e_1_3_6_50_2 e_1_3_6_92_2 e_1_3_6_135_2 e_1_3_6_154_2 e_1_3_6_131_2 e_1_3_6_150_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_77_2 e_1_3_6_127_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_62_2 e_1_3_6_85_2 e_1_3_6_108_2 e_1_3_6_123_2 e_1_3_6_81_2 e_1_3_6_104_2 e_1_3_6_146_2 e_1_3_6_5_2 e_1_3_6_165_2 e_1_3_6_100_2 e_1_3_6_142_2 e_1_3_6_9_2 e_1_3_6_161_2 e_1_3_6_28_2 e_1_3_6_24_2 e_1_3_6_47_2 e_1_3_6_66_2 e_1_3_6_89_2 |
References_xml | – ident: e_1_3_6_39_2 doi: 10.1021/ct800559d – ident: e_1_3_6_122_2 doi: 10.1016/j.revip.2017.05.001 – ident: e_1_3_6_29_2 doi: 10.1038/350456a0 – ident: e_1_3_6_65_2 doi: 10.3390/e16010163 – ident: e_1_3_6_94_2 doi: 10.1007/s10699-016-9489-4 – ident: e_1_3_6_34_2 doi: 10.1021/acs.jctc.8b00391 – ident: e_1_3_6_50_2 doi: 10.1002/jcc.21546 – ident: e_1_3_6_149_2 doi: 10.1098/rsfs.2019.0133 – ident: e_1_3_6_13_2 doi: 10.1080/0889311X.2019.1569643 – ident: e_1_3_6_132_2 – volume: 377 start-page: 20180144 year: 2019 ident: e_1_3_6_139_2 article-title: Multiscale computing for science and engineering in the era of exascale performance publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume-title: Understanding molecular simulation: from algorithms to applications year: 2002 ident: e_1_3_6_49_2 – ident: e_1_3_6_77_2 doi: 10.1016/j.ebiom.2015.02.009 – ident: e_1_3_6_128_2 doi: 10.1016/j.bpj.2010.02.034 – ident: e_1_3_6_105_2 doi: 10.1098/rsta.2005.1627 – ident: e_1_3_6_109_2 doi: 10.1098/rsta.2005.1625 – ident: e_1_3_6_53_2 doi: 10.1371/journal.pone.0032131 – ident: e_1_3_6_33_2 – ident: e_1_3_6_35_2 doi: 10.1201/9780429246593 – ident: e_1_3_6_137_2 doi: 10.1002/jcc.20289 – ident: e_1_3_6_163_2 – ident: e_1_3_6_78_2 doi: 10.1021/acs.jctc.8b01118 – ident: e_1_3_6_79_2 doi: 10.1002/adts.201900195 – ident: e_1_3_6_100_2 doi: 10.1016/S0006-3495(04)74084-9 – ident: e_1_3_6_116_2 doi: 10.1146/annurev-biophys-070816-033834 – ident: e_1_3_6_26_2 doi: 10.1021/acs.jctc.5b00179 – ident: e_1_3_6_20_2 doi: 10.1016/j.future.2016.08.007 – volume: 377 start-page: 20180355 year: 2019 ident: e_1_3_6_8_2 article-title: Multiscale modelling, simulation and computing: from the desktop to the exascale publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – ident: e_1_3_6_55_2 doi: 10.1093/nar/gkm232 – ident: e_1_3_6_45_2 doi: 10.1038/533452a – ident: e_1_3_6_68_2 doi: 10.1088/0034-4885/71/12/126601 – ident: e_1_3_6_24_2 doi: 10.1093/protein/6.3.289 – ident: e_1_3_6_99_2 doi: 10.1021/ct5000296 – ident: e_1_3_6_134_2 doi: 10.1016/j.drudis.2016.05.009 – ident: e_1_3_6_126_2 doi: 10.1021/jm8001197 – ident: e_1_3_6_161_2 doi: 10.1038/s42003-018-0075-x – ident: e_1_3_6_115_2 doi: 10.1103/PhysRevLett.86.4983 – ident: e_1_3_6_28_2 doi: 10.1002/anie.201702945 – ident: e_1_3_6_108_2 doi: 10.1039/C9SC03754C – ident: e_1_3_6_37_2 doi: 10.1017/CBO9781139170666 – ident: e_1_3_6_90_2 doi: 10.1021/ar000033j – ident: e_1_3_6_102_2 doi: 10.1038/s41598-019-41758-1 – ident: e_1_3_6_16_2 doi: 10.1038/s41558-020-0731-2 – ident: e_1_3_6_14_2 – ident: e_1_3_6_40_2 doi: 10.1021/ct900223z – ident: e_1_3_6_107_2 doi: 10.1021/acs.jctc.8b00825 – ident: e_1_3_6_84_2 doi: 10.1146/annurev-biophys-070816-033654 – ident: e_1_3_6_136_2 doi: 10.1038/267585a0 – ident: e_1_3_6_166_2 doi: 10.1021/ar010030m – ident: e_1_3_6_47_2 doi: 10.1006/jmbi.1993.1551 – ident: e_1_3_6_127_2 doi: 10.1158/1535-7163.MCT-12-0644-T – ident: e_1_3_6_12_2 doi: 10.1088/1361-651X/ab46d6 – start-page: 479 volume-title: Computational science – ICCS 2019 year: 2019 ident: e_1_3_6_11_2 doi: 10.1007/978-3-030-22747-0_36 – ident: e_1_3_6_95_2 doi: 10.1021/acs.jctc.8b01290 – ident: e_1_3_6_5_2 doi: 10.1016/j.jhealeco.2016.01.012 – ident: e_1_3_6_25_2 doi: 10.1021/ci100007w – ident: e_1_3_6_67_2 doi: 10.1103/PhysRevLett.113.090601 – ident: e_1_3_6_80_2 doi: 10.1039/C5SC02678D – volume: 374 start-page: 20160153 year: 2016 ident: e_1_3_6_2_2 article-title: Big data need big theory too publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – ident: e_1_3_6_164_2 doi: 10.2174/1568026617666170414142131 – ident: e_1_3_6_97_2 – ident: e_1_3_6_157_2 doi: 10.1016/j.bpj.2018.02.038 – ident: e_1_3_6_32_2 doi: 10.1098/rsif.2010.0609 – ident: e_1_3_6_119_2 doi: 10.1021/acs.jctc.8b00230 – ident: e_1_3_6_76_2 doi: 10.1021/acs.jcim.0c00900 – ident: e_1_3_6_91_2 doi: 10.1039/C9SC04606B – ident: e_1_3_6_73_2 doi: 10.1063/1.2978177 – ident: e_1_3_6_57_2 doi: 10.1063/1.1730376 – ident: e_1_3_6_104_2 doi: 10.1002/jcc.10379 – ident: e_1_3_6_156_2 doi: 10.1016/j.sbi.2016.12.004 – ident: e_1_3_6_51_2 doi: 10.1007/s10822-018-0110-5 – ident: e_1_3_6_159_2 doi: 10.1021/acsomega.6b00086 – ident: e_1_3_6_75_2 doi: 10.1007/s10822-016-9996-y – volume: 377 start-page: 20180145 year: 2019 ident: e_1_3_6_3_2 article-title: Big data: the end of the scientific method? publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – ident: e_1_3_6_111_2 doi: 10.1007/s10586-007-0029-4 – ident: e_1_3_6_27_2 doi: 10.1021/ct4007037 – ident: e_1_3_6_66_2 doi: 10.1016/j.bbagen.2014.10.019 – ident: e_1_3_6_4_2 doi: 10.1002/adts.201900122 – ident: e_1_3_6_88_2 doi: 10.1016/j.sbi.2018.02.004 – ident: e_1_3_6_60_2 doi: 10.1021/acs.jcim.6b00780 – ident: e_1_3_6_121_2 doi: 10.1002/adma.202003213 – ident: e_1_3_6_103_2 doi: 10.1098/rsfs.2019.0128 – ident: e_1_3_6_110_2 – ident: e_1_3_6_135_2 doi: 10.1146/annurev.biophys.33.110502.133350 – ident: e_1_3_6_58_2 doi: 10.1126/science.3810157 – ident: e_1_3_6_85_2 doi: 10.1038/sj.bjp.0707515 – ident: e_1_3_6_10_2 doi: 10.1016/j.sbi.2016.11.019 – ident: e_1_3_6_46_2 doi: 10.1002/pro.5560070314 – ident: e_1_3_6_125_2 doi: 10.1016/j.jmb.2007.09.069 – ident: e_1_3_6_44_2 doi: 10.1371/journal.pmed.0020124 – ident: e_1_3_6_124_2 doi: 10.1073/pnas.1103547108 – ident: e_1_3_6_7_2 – ident: e_1_3_6_155_2 doi: 10.7554/eLife.44718 – ident: e_1_3_6_22_2 doi: 10.1039/C6CP02349E – ident: e_1_3_6_144_2 doi: 10.1007/s10822-013-9689-8 – ident: e_1_3_6_146_2 doi: 10.1002/jcc.23804 – ident: e_1_3_6_89_2 doi: 10.1021/ar010014p – start-page: 47 volume-title: Molecular modeling of proteins year: 2014 ident: e_1_3_6_54_2 – ident: e_1_3_6_114_2 doi: 10.1016/j.chembiol.2015.11.015 – ident: e_1_3_6_154_2 doi: 10.7554/eLife.45318 – ident: e_1_3_6_86_2 doi: 10.1021/ci500091r – ident: e_1_3_6_59_2 doi: 10.1517/17460441.2015.1032936 – ident: e_1_3_6_140_2 doi: 10.1371/journal.pcbi.1005659 – ident: e_1_3_6_101_2 doi: 10.1002/adts.201900194 – ident: e_1_3_6_120_2 doi: 10.1021/acs.jctc.6b01246 – ident: e_1_3_6_117_2 doi: 10.1021/acs.jctc.6b00277 – volume: 31 start-page: 837 year: 2010 ident: e_1_3_6_48_2 article-title: How to obtain statistically converged MM/GBSA results publication-title: J. Comput. Chem. doi: 10.1002/jcc.21366 – ident: e_1_3_6_162_2 doi: 10.1016/j.chembiol.2017.12.009 – volume: 4 year: 2008 ident: e_1_3_6_18_2 article-title: Life or death decision-making: the medical case for large-scale, on-demand grid computing publication-title: CTWatch Quarterly – ident: e_1_3_6_43_2 doi: 10.3389/fninf.2017.00076 – ident: e_1_3_6_87_2 doi: 10.1016/j.drudis.2018.01.039 – ident: e_1_3_6_147_2 doi: 10.1021/jp505332p – ident: e_1_3_6_61_2 doi: 10.1021/acs.jctc.6b00794 – ident: e_1_3_6_141_2 doi: 10.1021/ct9000685 – ident: e_1_3_6_9_2 doi: 10.1186/s12859-018-2506-6 – ident: e_1_3_6_118_2 doi: 10.1021/acs.jctc.8b01270 – ident: e_1_3_6_138_2 doi: 10.1016/j.sbi.2015.03.007 – ident: e_1_3_6_93_2 doi: 10.1021/acscentsci.9b00590 – ident: e_1_3_6_6_2 doi: 10.1126/science.1213847 – ident: e_1_3_6_17_2 doi: 10.1002/qj.3383 – ident: e_1_3_6_63_2 doi: 10.1002/adma.201705791 – ident: e_1_3_6_152_2 – ident: e_1_3_6_38_2 doi: 10.1021/ci400285z – ident: e_1_3_6_52_2 doi: 10.1021/acs.jctc.6b00979 – ident: e_1_3_6_131_2 doi: 10.1016/j.abb.2019.01.033 – volume: 366 start-page: 3199 year: 2008 ident: e_1_3_6_19_2 article-title: Patient-specific simulation as a basis for clinical decision-making publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – ident: e_1_3_6_98_2 – ident: e_1_3_6_150_2 doi: 10.1007/s10822-013-9678-y – ident: e_1_3_6_133_2 doi: 10.1021/acs.accounts.7b00613 – ident: e_1_3_6_36_2 doi: 10.1167/iovs.12-9967 – ident: e_1_3_6_42_2 doi: 10.1021/acs.jctc.8b00544 – ident: e_1_3_6_160_2 doi: 10.1021/acs.jcim.5b00538 – ident: e_1_3_6_64_2 doi: 10.1039/C8CP07796G – ident: e_1_3_6_30_2 doi: 10.1017/CBO9781139626514 – ident: e_1_3_6_21_2 doi: 10.1016/j.future.2016.09.017 – ident: e_1_3_6_69_2 doi: 10.1063/1.1472510 – ident: e_1_3_6_151_2 doi: 10.1109/34.709601 – ident: e_1_3_6_62_2 doi: 10.1021/acs.jctc.7b01143 – ident: e_1_3_6_70_2 doi: 10.1021/jp204407d – ident: e_1_3_6_83_2 doi: 10.1002/wsbm.1186 – ident: e_1_3_6_130_2 doi: 10.1126/science.282.5389.740 – ident: e_1_3_6_106_2 doi: 10.1021/ct500195p – ident: e_1_3_6_15_2 doi: 10.1146/annurev-biophys-083012-130318 – ident: e_1_3_6_56_2 doi: 10.1007/978-3-540-87706-6_3 – ident: e_1_3_6_41_2 – ident: e_1_3_6_165_2 doi: 10.1145/3150224 – ident: e_1_3_6_23_2 doi: 10.1002/qj.49712252906 – ident: e_1_3_6_129_2 – ident: e_1_3_6_74_2 doi: 10.1021/ja512751q – ident: e_1_3_6_81_2 doi: 10.1021/cr960370z – ident: e_1_3_6_112_2 doi: 10.1021/ct9000894 – ident: e_1_3_6_123_2 doi: 10.1146/annurev-physchem-042018-052340 – ident: e_1_3_6_71_2 doi: 10.1073/pnas.1114017109 – ident: e_1_3_6_148_2 doi: 10.1021/acs.jcim.0c00165 – ident: e_1_3_6_82_2 doi: 10.1124/pr.112.007336 – ident: e_1_3_6_96_2 doi: 10.1073/pnas.1818411116 – ident: e_1_3_6_143_2 doi: 10.1002/jcc.23218 – ident: e_1_3_6_113_2 doi: 10.1063/1.454895 – ident: e_1_3_6_72_2 doi: 10.1021/ct2003995 – ident: e_1_3_6_153_2 doi: 10.7554/eLife.35560 – ident: e_1_3_6_31_2 doi: 10.1002/adts.201900125 – ident: e_1_3_6_158_2 doi: 10.1021/acs.jmedchem.7b00681 – ident: e_1_3_6_145_2 doi: 10.1021/acs.jcim.5b00368 – ident: e_1_3_6_92_2 – ident: e_1_3_6_142_2 doi: 10.1021/ci8000937 |
SSID | ssj0000461802 |
Score | 2.5176833 |
SecondaryResourceType | review_article |
Snippet | A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20200007 |
SubjectTerms | Review |
Title | Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33178418 https://www.proquest.com/docview/2460082310 https://pubmed.ncbi.nlm.nih.gov/PMC7653346 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCGNdyk5GQAG2BXJzb4wSbBowhoU6reIl8XYOmtGqbh-3Xc07sOg0MaSBVUeQ6Sevz5ejYPt93CHmVmKQ0ScaDOOcqYKpUgYCXLihEwkuhEmZKJAp_Pc4OT9jnSTrpa2x27JKVeCcvr-SV_I9VoQ3siizZf7Csvyk0wDnYF45gYThey8bf-bzuLMSlbFHzAc_nqFextLsCKFmJiq418qPO6zNoCzplhrrZEbUltJiF1jvaUgDhWlVLb6uffZr7wnCJ-uCy9UH4qVs7nbbN5XTW-on9lNsUgb0zvlxd8J5B9oMvueIut8wgb8rvgMzQ5174hGGXeutWI2Kb2ZH1TitGuk9R2MrS3sOGG0gauMsw7vZSr_TlYYn8hMXSoKp6jBl4tuNQNPv4W3VwcnRUjfcn45vkVgyzBSxk8fHTF7_UhpryRZd96n-dl-8s3g8fMAxP_phz_J46uxGLjO-SO24SQfcsIrbJDd3cI9vOTS_pG6cl_vY-Oe0gskvXANmlDh4UoEA34UGH8KAOHhThQS08aA-PB2R8sD_-cBi4WhqBhH-_ClKRqjSXvGSpihiPQplgJQMYFw0fkZeyjIUSTCfcJApaIC4OBSuFhus0Tx6SrWbW6MeEFoYrXTKjUmZYagyPCy5iKU3KIhVH0YgE6xGspNOZx3In55XNdygqHPEKRxwzH_IRee37z63Cyl97vlwbpAIniDtbvNGzFrqwrNsyjsIReWQN5O-VQIRcsKgYkXxgOt8BBdaH3zT1tBNazzMkqmdPrvHcp-R2_zo8I1urRaufQ7i6Ei86MP4Cwd6aSQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid%2C+accurate%2C+precise+and+reproducible+ligand-protein+binding+free+energy+prediction&rft.jtitle=Interface+focus&rft.au=Wan%2C+Shunzhou&rft.au=Bhati%2C+Agastya+P&rft.au=Zasada%2C+Stefan+J&rft.au=Coveney%2C+Peter+V&rft.date=2020-12-06&rft.issn=2042-8898&rft.volume=10&rft.issue=6&rft.spage=20200007&rft_id=info:doi/10.1098%2Frsfs.2020.0007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-8898&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-8898&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-8898&client=summon |