Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction

A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility...

Full description

Saved in:
Bibliographic Details
Published inInterface focus Vol. 10; no. 6; p. 20200007
Main Authors Wan, Shunzhou, Bhati, Agastya P., Zasada, Stefan J., Coveney, Peter V.
Format Journal Article
LanguageEnglish
Published England The Royal Society 06.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches.
AbstractList A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches.
A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches.A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches.
Author Zasada, Stefan J.
Wan, Shunzhou
Coveney, Peter V.
Bhati, Agastya P.
AuthorAffiliation 1 Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ , UK
2 Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam , 1098XH Amsterdam , The Netherlands
AuthorAffiliation_xml – name: 1 Centre for Computational Science, Department of Chemistry, University College London , London WC1H 0AJ , UK
– name: 2 Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam , 1098XH Amsterdam , The Netherlands
Author_xml – sequence: 1
  givenname: Shunzhou
  orcidid: 0000-0001-7192-1999
  surname: Wan
  fullname: Wan, Shunzhou
  organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
– sequence: 2
  givenname: Agastya P.
  orcidid: 0000-0003-4539-4819
  surname: Bhati
  fullname: Bhati, Agastya P.
  organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
– sequence: 3
  givenname: Stefan J.
  orcidid: 0000-0003-4643-4982
  surname: Zasada
  fullname: Zasada, Stefan J.
  organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
– sequence: 4
  givenname: Peter V.
  orcidid: 0000-0002-8787-7256
  surname: Coveney
  fullname: Coveney, Peter V.
  organization: Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK, Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, 1098XH Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33178418$$D View this record in MEDLINE/PubMed
BookMark eNp1Uctq3TAUFCWheTTbLIuXXeTeHD1sy5tCCc0DAoFwN10JPY5vVHxlV7ID2eUf8of9ksgkNzSFgEBiNDNnOHNAdkIfkJBjCksKjTyNqU1LBgyWAFB_IvsMBFvIBujO9i0buUeOUvqdGSAqKoF9Jnuc01oKKvfJr1s9eHdSaGunqEc8KYaI1icsdHBFxCH2brLedFh0fp2xv49PGRvRh8L44HxYF21ELDBgXD_Mauft6Pvwhey2ukt49HofktX5z9XZ5eL65uLq7Mf1wuY446I0pStrqxtROio0BcvrspY5KOZj6sY2zDgjkOuWu4yUFQMjGoNZh5ofku8vtsNkNugshjHqTg3Rb3R8UL326v1P8Hdq3d-ruio5F1U2-PZqEPs_E6ZRbXyy2HU6YD8lxUQFIBmnkKlf_531NmS7zkxYvhBs7FOK2L5RKKi5MjVXpubK1FxZFoj_BNaPel5fzuq7j2TPkLqd_w
CitedBy_id crossref_primary_10_1080_07391102_2022_2027271
crossref_primary_10_1007_s00894_021_04963_2
crossref_primary_10_2174_1871526523666230816151614
crossref_primary_10_3390_molecules27041215
crossref_primary_10_1021_acs_jctc_1c00526
crossref_primary_10_1016_j_bbagen_2022_130153
crossref_primary_10_1016_j_compbiomed_2022_105509
crossref_primary_10_1016_j_csbj_2021_03_036
crossref_primary_10_1080_07391102_2021_1957716
crossref_primary_10_1186_s40643_024_00797_x
crossref_primary_10_1080_23746149_2022_2080587
crossref_primary_10_1021_acs_jctc_4c01364
crossref_primary_10_3390_ph17121593
crossref_primary_10_1016_j_jare_2023_01_020
crossref_primary_10_1038_s43588_022_00389_9
crossref_primary_10_1134_S1023193524700472
crossref_primary_10_1007_s10822_022_00441_w
crossref_primary_10_1080_07391102_2024_2438357
crossref_primary_10_1098_rsfs_2019_0128
crossref_primary_10_1016_j_bioorg_2022_105869
crossref_primary_10_1021_acs_jctc_1c01288
crossref_primary_10_1186_s13036_023_00378_0
crossref_primary_10_3390_ph17111540
crossref_primary_10_1039_D1MD00140J
crossref_primary_10_1021_acs_jctc_1c00796
crossref_primary_10_1038_s41598_021_92785_w
crossref_primary_10_2174_1570163820666230606113158
crossref_primary_10_1016_j_dnarep_2023_103510
crossref_primary_10_1021_jasms_2c00259
crossref_primary_10_1093_bib_bbab484
crossref_primary_10_1021_acs_jcim_3c01654
crossref_primary_10_1021_acs_jcim_4c02053
crossref_primary_10_1021_acsomega_4c10201
crossref_primary_10_1039_D1ME00124H
crossref_primary_10_1055_s_0044_1789016
crossref_primary_10_1098_rsfs_2020_0047
crossref_primary_10_1002_2211_5463_13855
crossref_primary_10_1021_acs_jctc_3c00020
crossref_primary_10_1039_D1CP02157E
crossref_primary_10_1002_jcb_30277
crossref_primary_10_1016_j_fshw_2022_06_021
crossref_primary_10_1098_rsfs_2019_0133
crossref_primary_10_1021_acs_chemrev_3c00042
crossref_primary_10_1186_s13036_023_00342_y
crossref_primary_10_1021_acs_jcim_2c00255
crossref_primary_10_1016_j_sciaf_2024_e02326
crossref_primary_10_3389_fendo_2022_895240
crossref_primary_10_1021_acs_jctc_2c00114
crossref_primary_10_3389_fphar_2024_1435254
crossref_primary_10_3389_fvets_2022_854528
crossref_primary_10_1063_5_0247878
crossref_primary_10_1098_rsfs_2021_0018
crossref_primary_10_1080_17460441_2022_2002298
crossref_primary_10_1039_D4DD00006D
crossref_primary_10_1002_cpz1_699
crossref_primary_10_1016_j_compbiolchem_2025_108391
crossref_primary_10_1021_acs_jcim_3c00631
crossref_primary_10_1021_acs_jctc_3c00842
crossref_primary_10_3390_biom12070960
crossref_primary_10_1007_s12033_023_00711_4
crossref_primary_10_1021_acschemneuro_1c00749
crossref_primary_10_1007_s00217_024_04526_8
crossref_primary_10_1016_j_foodres_2024_114930
crossref_primary_10_1021_acs_jctc_4c00576
crossref_primary_10_1021_acs_jctc_4c01389
crossref_primary_10_1038_s41467_023_38681_5
crossref_primary_10_2174_1570180819666220429161808
crossref_primary_10_3390_ijms231810728
crossref_primary_10_1021_acs_jctc_0c01179
crossref_primary_10_1021_acs_jcim_2c01596
crossref_primary_10_1002_wcms_1563
crossref_primary_10_1002_jsfa_13647
crossref_primary_10_1021_acs_jcim_4c02236
crossref_primary_10_1021_acsnano_1c05139
crossref_primary_10_3390_pharmaceutics15041095
crossref_primary_10_1016_j_foodchem_2024_140834
crossref_primary_10_1088_1742_5468_ad1be7
crossref_primary_10_1098_rsta_2020_0082
crossref_primary_10_1021_acs_jpcb_4c02303
crossref_primary_10_1038_s41524_024_01272_z
crossref_primary_10_1093_molbev_msac217
crossref_primary_10_32947_ajps_v22i3_889
crossref_primary_10_1021_acs_jcim_4c01024
crossref_primary_10_1186_s13036_022_00284_x
crossref_primary_10_1002_cphc_202400119
crossref_primary_10_1038_s41598_022_13319_6
crossref_primary_10_1016_j_compag_2024_109266
crossref_primary_10_1134_S0036024423030299
crossref_primary_10_1016_j_envpol_2024_123549
crossref_primary_10_3390_ijms24054397
crossref_primary_10_1021_acs_jctc_1c01194
crossref_primary_10_3390_ijms252312676
Cites_doi 10.1021/ct800559d
10.1016/j.revip.2017.05.001
10.1038/350456a0
10.3390/e16010163
10.1007/s10699-016-9489-4
10.1021/acs.jctc.8b00391
10.1002/jcc.21546
10.1098/rsfs.2019.0133
10.1080/0889311X.2019.1569643
10.1016/j.ebiom.2015.02.009
10.1016/j.bpj.2010.02.034
10.1098/rsta.2005.1627
10.1098/rsta.2005.1625
10.1371/journal.pone.0032131
10.1201/9780429246593
10.1002/jcc.20289
10.1021/acs.jctc.8b01118
10.1002/adts.201900195
10.1016/S0006-3495(04)74084-9
10.1146/annurev-biophys-070816-033834
10.1021/acs.jctc.5b00179
10.1016/j.future.2016.08.007
10.1093/nar/gkm232
10.1038/533452a
10.1088/0034-4885/71/12/126601
10.1093/protein/6.3.289
10.1021/ct5000296
10.1016/j.drudis.2016.05.009
10.1021/jm8001197
10.1038/s42003-018-0075-x
10.1103/PhysRevLett.86.4983
10.1002/anie.201702945
10.1039/C9SC03754C
10.1017/CBO9781139170666
10.1021/ar000033j
10.1038/s41598-019-41758-1
10.1038/s41558-020-0731-2
10.1021/ct900223z
10.1021/acs.jctc.8b00825
10.1146/annurev-biophys-070816-033654
10.1038/267585a0
10.1021/ar010030m
10.1006/jmbi.1993.1551
10.1158/1535-7163.MCT-12-0644-T
10.1088/1361-651X/ab46d6
10.1007/978-3-030-22747-0_36
10.1021/acs.jctc.8b01290
10.1016/j.jhealeco.2016.01.012
10.1021/ci100007w
10.1103/PhysRevLett.113.090601
10.1039/C5SC02678D
10.2174/1568026617666170414142131
10.1016/j.bpj.2018.02.038
10.1098/rsif.2010.0609
10.1021/acs.jctc.8b00230
10.1021/acs.jcim.0c00900
10.1039/C9SC04606B
10.1063/1.2978177
10.1063/1.1730376
10.1002/jcc.10379
10.1016/j.sbi.2016.12.004
10.1007/s10822-018-0110-5
10.1021/acsomega.6b00086
10.1007/s10822-016-9996-y
10.1007/s10586-007-0029-4
10.1021/ct4007037
10.1016/j.bbagen.2014.10.019
10.1002/adts.201900122
10.1016/j.sbi.2018.02.004
10.1021/acs.jcim.6b00780
10.1002/adma.202003213
10.1098/rsfs.2019.0128
10.1146/annurev.biophys.33.110502.133350
10.1126/science.3810157
10.1038/sj.bjp.0707515
10.1016/j.sbi.2016.11.019
10.1002/pro.5560070314
10.1016/j.jmb.2007.09.069
10.1371/journal.pmed.0020124
10.1073/pnas.1103547108
10.7554/eLife.44718
10.1039/C6CP02349E
10.1007/s10822-013-9689-8
10.1002/jcc.23804
10.1021/ar010014p
10.1016/j.chembiol.2015.11.015
10.7554/eLife.45318
10.1021/ci500091r
10.1517/17460441.2015.1032936
10.1371/journal.pcbi.1005659
10.1002/adts.201900194
10.1021/acs.jctc.6b01246
10.1021/acs.jctc.6b00277
10.1002/jcc.21366
10.1016/j.chembiol.2017.12.009
10.3389/fninf.2017.00076
10.1016/j.drudis.2018.01.039
10.1021/jp505332p
10.1021/acs.jctc.6b00794
10.1021/ct9000685
10.1186/s12859-018-2506-6
10.1021/acs.jctc.8b01270
10.1016/j.sbi.2015.03.007
10.1021/acscentsci.9b00590
10.1126/science.1213847
10.1002/qj.3383
10.1002/adma.201705791
10.1021/ci400285z
10.1021/acs.jctc.6b00979
10.1016/j.abb.2019.01.033
10.1007/s10822-013-9678-y
10.1021/acs.accounts.7b00613
10.1167/iovs.12-9967
10.1021/acs.jctc.8b00544
10.1021/acs.jcim.5b00538
10.1039/C8CP07796G
10.1017/CBO9781139626514
10.1016/j.future.2016.09.017
10.1063/1.1472510
10.1109/34.709601
10.1021/acs.jctc.7b01143
10.1021/jp204407d
10.1002/wsbm.1186
10.1126/science.282.5389.740
10.1021/ct500195p
10.1146/annurev-biophys-083012-130318
10.1007/978-3-540-87706-6_3
10.1145/3150224
10.1002/qj.49712252906
10.1021/ja512751q
10.1021/cr960370z
10.1021/ct9000894
10.1146/annurev-physchem-042018-052340
10.1073/pnas.1114017109
10.1021/acs.jcim.0c00165
10.1124/pr.112.007336
10.1073/pnas.1818411116
10.1002/jcc.23218
10.1063/1.454895
10.1021/ct2003995
10.7554/eLife.35560
10.1002/adts.201900125
10.1021/acs.jmedchem.7b00681
10.1021/acs.jcim.5b00368
10.1021/ci8000937
ContentType Journal Article
Copyright 2020 The Authors.
2020 The Authors. 2020
Copyright_xml – notice: 2020 The Authors.
– notice: 2020 The Authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1098/rsfs.2020.0007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate binding free energy prediction
EISSN 2042-8901
ExternalDocumentID PMC7653346
33178418
10_1098_rsfs_2020_0007
Genre Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L016311/1
– fundername: ;
  grantid: 671564; 675451; 800925; 823712
– fundername: ;
  grantid: 1713749
– fundername: ;
  grantid: 7-1083-1-191
– fundername: ;
  grantid: MR/L016311/1
GroupedDBID 0R~
4.4
53G
5VS
AAKDD
AAYXX
ACQIA
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BTFSW
CITATION
DIK
EBS
H13
HYE
HZ~
ICLEN
KQ8
MV1
NSAHA
O9-
OK1
OP1
RPM
RRY
V1E
NPM
7X8
5PM
ID FETCH-LOGICAL-c461t-5b5d57ca945d14a10c37578180e80eb79c92bdb4e3af3d0eb5620b49be5d5ea3
ISSN 2042-8898
IngestDate Thu Aug 21 13:42:39 EDT 2025
Fri Jul 11 10:25:35 EDT 2025
Sat May 31 02:12:23 EDT 2025
Tue Jul 01 02:38:25 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ensemble simulation
molecular dynamics
binding free energy
reproducibility
Language English
License 2020 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-5b5d57ca945d14a10c37578180e80eb79c92bdb4e3af3d0eb5620b49be5d5ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
One contribution of 9 to a theme issue ‘Computational biomedicine. Part I: molecular medicine’.
ORCID 0000-0003-4539-4819
0000-0001-7192-1999
0000-0003-4643-4982
0000-0002-8787-7256
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7653346
PMID 33178418
PQID 2460082310
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7653346
proquest_miscellaneous_2460082310
pubmed_primary_33178418
crossref_primary_10_1098_rsfs_2020_0007
crossref_citationtrail_10_1098_rsfs_2020_0007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-06
PublicationDateYYYYMMDD 2020-12-06
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Interface focus
PublicationTitleAlternate Interface Focus
PublicationYear 2020
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_117_2
e_1_3_6_30_2
e_1_3_6_76_2
e_1_3_6_53_2
e_1_3_6_95_2
e_1_3_6_113_2
e_1_3_6_136_2
e_1_3_6_159_2
Manos S (e_1_3_6_18_2) 2008; 4
e_1_3_6_72_2
e_1_3_6_91_2
e_1_3_6_132_2
e_1_3_6_155_2
e_1_3_6_151_2
Hoekstra AG (e_1_3_6_8_2) 2019; 377
e_1_3_6_38_2
e_1_3_6_34_2
e_1_3_6_15_2
e_1_3_6_57_2
e_1_3_6_99_2
e_1_3_6_105_2
e_1_3_6_128_2
e_1_3_6_65_2
e_1_3_6_42_2
e_1_3_6_84_2
e_1_3_6_101_2
e_1_3_6_124_2
e_1_3_6_147_2
e_1_3_6_61_2
e_1_3_6_80_2
e_1_3_6_120_2
e_1_3_6_143_2
e_1_3_6_166_2
e_1_3_6_162_2
e_1_3_6_6_2
Succi S (e_1_3_6_3_2) 2019; 377
Frenkel D (e_1_3_6_49_2) 2002
e_1_3_6_27_2
e_1_3_6_109_2
e_1_3_6_23_2
e_1_3_6_69_2
e_1_3_6_46_2
e_1_3_6_88_2
e_1_3_6_52_2
e_1_3_6_75_2
e_1_3_6_98_2
e_1_3_6_118_2
e_1_3_6_10_2
e_1_3_6_71_2
e_1_3_6_94_2
e_1_3_6_137_2
e_1_3_6_114_2
e_1_3_6_156_2
e_1_3_6_90_2
e_1_3_6_133_2
e_1_3_6_110_2
e_1_3_6_152_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_79_2
e_1_3_6_41_2
e_1_3_6_64_2
e_1_3_6_87_2
e_1_3_6_106_2
e_1_3_6_129_2
e_1_3_6_60_2
e_1_3_6_83_2
e_1_3_6_102_2
e_1_3_6_148_2
e_1_3_6_125_2
e_1_3_6_144_2
e_1_3_6_121_2
e_1_3_6_163_2
e_1_3_6_140_2
e_1_3_6_7_2
Groen D (e_1_3_6_11_2) 2019
e_1_3_6_26_2
Sadiq SK (e_1_3_6_19_2) 2008; 366
Hoekstra AG (e_1_3_6_139_2) 2019; 377
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_68_2
e_1_3_6_51_2
e_1_3_6_97_2
e_1_3_6_119_2
e_1_3_6_138_2
e_1_3_6_32_2
e_1_3_6_74_2
e_1_3_6_93_2
e_1_3_6_115_2
e_1_3_6_134_2
e_1_3_6_157_2
e_1_3_6_70_2
e_1_3_6_111_2
e_1_3_6_130_2
e_1_3_6_153_2
e_1_3_6_13_2
e_1_3_6_59_2
e_1_3_6_17_2
e_1_3_6_55_2
e_1_3_6_36_2
e_1_3_6_78_2
e_1_3_6_40_2
Genheden S (e_1_3_6_48_2) 2010; 31
e_1_3_6_86_2
e_1_3_6_107_2
e_1_3_6_149_2
e_1_3_6_21_2
e_1_3_6_63_2
e_1_3_6_82_2
e_1_3_6_103_2
e_1_3_6_126_2
e_1_3_6_145_2
e_1_3_6_4_2
e_1_3_6_122_2
e_1_3_6_141_2
e_1_3_6_164_2
Coveney PV (e_1_3_6_2_2) 2016; 374
e_1_3_6_160_2
e_1_3_6_29_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_67_2
Lopes PEM (e_1_3_6_54_2) 2014
e_1_3_6_116_2
e_1_3_6_31_2
e_1_3_6_73_2
e_1_3_6_96_2
e_1_3_6_112_2
e_1_3_6_158_2
e_1_3_6_50_2
e_1_3_6_92_2
e_1_3_6_135_2
e_1_3_6_154_2
e_1_3_6_131_2
e_1_3_6_150_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_77_2
e_1_3_6_127_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_62_2
e_1_3_6_85_2
e_1_3_6_108_2
e_1_3_6_123_2
e_1_3_6_81_2
e_1_3_6_104_2
e_1_3_6_146_2
e_1_3_6_5_2
e_1_3_6_165_2
e_1_3_6_100_2
e_1_3_6_142_2
e_1_3_6_9_2
e_1_3_6_161_2
e_1_3_6_28_2
e_1_3_6_24_2
e_1_3_6_47_2
e_1_3_6_66_2
e_1_3_6_89_2
References_xml – ident: e_1_3_6_39_2
  doi: 10.1021/ct800559d
– ident: e_1_3_6_122_2
  doi: 10.1016/j.revip.2017.05.001
– ident: e_1_3_6_29_2
  doi: 10.1038/350456a0
– ident: e_1_3_6_65_2
  doi: 10.3390/e16010163
– ident: e_1_3_6_94_2
  doi: 10.1007/s10699-016-9489-4
– ident: e_1_3_6_34_2
  doi: 10.1021/acs.jctc.8b00391
– ident: e_1_3_6_50_2
  doi: 10.1002/jcc.21546
– ident: e_1_3_6_149_2
  doi: 10.1098/rsfs.2019.0133
– ident: e_1_3_6_13_2
  doi: 10.1080/0889311X.2019.1569643
– ident: e_1_3_6_132_2
– volume: 377
  start-page: 20180144
  year: 2019
  ident: e_1_3_6_139_2
  article-title: Multiscale computing for science and engineering in the era of exascale performance
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume-title: Understanding molecular simulation: from algorithms to applications
  year: 2002
  ident: e_1_3_6_49_2
– ident: e_1_3_6_77_2
  doi: 10.1016/j.ebiom.2015.02.009
– ident: e_1_3_6_128_2
  doi: 10.1016/j.bpj.2010.02.034
– ident: e_1_3_6_105_2
  doi: 10.1098/rsta.2005.1627
– ident: e_1_3_6_109_2
  doi: 10.1098/rsta.2005.1625
– ident: e_1_3_6_53_2
  doi: 10.1371/journal.pone.0032131
– ident: e_1_3_6_33_2
– ident: e_1_3_6_35_2
  doi: 10.1201/9780429246593
– ident: e_1_3_6_137_2
  doi: 10.1002/jcc.20289
– ident: e_1_3_6_163_2
– ident: e_1_3_6_78_2
  doi: 10.1021/acs.jctc.8b01118
– ident: e_1_3_6_79_2
  doi: 10.1002/adts.201900195
– ident: e_1_3_6_100_2
  doi: 10.1016/S0006-3495(04)74084-9
– ident: e_1_3_6_116_2
  doi: 10.1146/annurev-biophys-070816-033834
– ident: e_1_3_6_26_2
  doi: 10.1021/acs.jctc.5b00179
– ident: e_1_3_6_20_2
  doi: 10.1016/j.future.2016.08.007
– volume: 377
  start-page: 20180355
  year: 2019
  ident: e_1_3_6_8_2
  article-title: Multiscale modelling, simulation and computing: from the desktop to the exascale
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– ident: e_1_3_6_55_2
  doi: 10.1093/nar/gkm232
– ident: e_1_3_6_45_2
  doi: 10.1038/533452a
– ident: e_1_3_6_68_2
  doi: 10.1088/0034-4885/71/12/126601
– ident: e_1_3_6_24_2
  doi: 10.1093/protein/6.3.289
– ident: e_1_3_6_99_2
  doi: 10.1021/ct5000296
– ident: e_1_3_6_134_2
  doi: 10.1016/j.drudis.2016.05.009
– ident: e_1_3_6_126_2
  doi: 10.1021/jm8001197
– ident: e_1_3_6_161_2
  doi: 10.1038/s42003-018-0075-x
– ident: e_1_3_6_115_2
  doi: 10.1103/PhysRevLett.86.4983
– ident: e_1_3_6_28_2
  doi: 10.1002/anie.201702945
– ident: e_1_3_6_108_2
  doi: 10.1039/C9SC03754C
– ident: e_1_3_6_37_2
  doi: 10.1017/CBO9781139170666
– ident: e_1_3_6_90_2
  doi: 10.1021/ar000033j
– ident: e_1_3_6_102_2
  doi: 10.1038/s41598-019-41758-1
– ident: e_1_3_6_16_2
  doi: 10.1038/s41558-020-0731-2
– ident: e_1_3_6_14_2
– ident: e_1_3_6_40_2
  doi: 10.1021/ct900223z
– ident: e_1_3_6_107_2
  doi: 10.1021/acs.jctc.8b00825
– ident: e_1_3_6_84_2
  doi: 10.1146/annurev-biophys-070816-033654
– ident: e_1_3_6_136_2
  doi: 10.1038/267585a0
– ident: e_1_3_6_166_2
  doi: 10.1021/ar010030m
– ident: e_1_3_6_47_2
  doi: 10.1006/jmbi.1993.1551
– ident: e_1_3_6_127_2
  doi: 10.1158/1535-7163.MCT-12-0644-T
– ident: e_1_3_6_12_2
  doi: 10.1088/1361-651X/ab46d6
– start-page: 479
  volume-title: Computational science – ICCS 2019
  year: 2019
  ident: e_1_3_6_11_2
  doi: 10.1007/978-3-030-22747-0_36
– ident: e_1_3_6_95_2
  doi: 10.1021/acs.jctc.8b01290
– ident: e_1_3_6_5_2
  doi: 10.1016/j.jhealeco.2016.01.012
– ident: e_1_3_6_25_2
  doi: 10.1021/ci100007w
– ident: e_1_3_6_67_2
  doi: 10.1103/PhysRevLett.113.090601
– ident: e_1_3_6_80_2
  doi: 10.1039/C5SC02678D
– volume: 374
  start-page: 20160153
  year: 2016
  ident: e_1_3_6_2_2
  article-title: Big data need big theory too
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– ident: e_1_3_6_164_2
  doi: 10.2174/1568026617666170414142131
– ident: e_1_3_6_97_2
– ident: e_1_3_6_157_2
  doi: 10.1016/j.bpj.2018.02.038
– ident: e_1_3_6_32_2
  doi: 10.1098/rsif.2010.0609
– ident: e_1_3_6_119_2
  doi: 10.1021/acs.jctc.8b00230
– ident: e_1_3_6_76_2
  doi: 10.1021/acs.jcim.0c00900
– ident: e_1_3_6_91_2
  doi: 10.1039/C9SC04606B
– ident: e_1_3_6_73_2
  doi: 10.1063/1.2978177
– ident: e_1_3_6_57_2
  doi: 10.1063/1.1730376
– ident: e_1_3_6_104_2
  doi: 10.1002/jcc.10379
– ident: e_1_3_6_156_2
  doi: 10.1016/j.sbi.2016.12.004
– ident: e_1_3_6_51_2
  doi: 10.1007/s10822-018-0110-5
– ident: e_1_3_6_159_2
  doi: 10.1021/acsomega.6b00086
– ident: e_1_3_6_75_2
  doi: 10.1007/s10822-016-9996-y
– volume: 377
  start-page: 20180145
  year: 2019
  ident: e_1_3_6_3_2
  article-title: Big data: the end of the scientific method?
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– ident: e_1_3_6_111_2
  doi: 10.1007/s10586-007-0029-4
– ident: e_1_3_6_27_2
  doi: 10.1021/ct4007037
– ident: e_1_3_6_66_2
  doi: 10.1016/j.bbagen.2014.10.019
– ident: e_1_3_6_4_2
  doi: 10.1002/adts.201900122
– ident: e_1_3_6_88_2
  doi: 10.1016/j.sbi.2018.02.004
– ident: e_1_3_6_60_2
  doi: 10.1021/acs.jcim.6b00780
– ident: e_1_3_6_121_2
  doi: 10.1002/adma.202003213
– ident: e_1_3_6_103_2
  doi: 10.1098/rsfs.2019.0128
– ident: e_1_3_6_110_2
– ident: e_1_3_6_135_2
  doi: 10.1146/annurev.biophys.33.110502.133350
– ident: e_1_3_6_58_2
  doi: 10.1126/science.3810157
– ident: e_1_3_6_85_2
  doi: 10.1038/sj.bjp.0707515
– ident: e_1_3_6_10_2
  doi: 10.1016/j.sbi.2016.11.019
– ident: e_1_3_6_46_2
  doi: 10.1002/pro.5560070314
– ident: e_1_3_6_125_2
  doi: 10.1016/j.jmb.2007.09.069
– ident: e_1_3_6_44_2
  doi: 10.1371/journal.pmed.0020124
– ident: e_1_3_6_124_2
  doi: 10.1073/pnas.1103547108
– ident: e_1_3_6_7_2
– ident: e_1_3_6_155_2
  doi: 10.7554/eLife.44718
– ident: e_1_3_6_22_2
  doi: 10.1039/C6CP02349E
– ident: e_1_3_6_144_2
  doi: 10.1007/s10822-013-9689-8
– ident: e_1_3_6_146_2
  doi: 10.1002/jcc.23804
– ident: e_1_3_6_89_2
  doi: 10.1021/ar010014p
– start-page: 47
  volume-title: Molecular modeling of proteins
  year: 2014
  ident: e_1_3_6_54_2
– ident: e_1_3_6_114_2
  doi: 10.1016/j.chembiol.2015.11.015
– ident: e_1_3_6_154_2
  doi: 10.7554/eLife.45318
– ident: e_1_3_6_86_2
  doi: 10.1021/ci500091r
– ident: e_1_3_6_59_2
  doi: 10.1517/17460441.2015.1032936
– ident: e_1_3_6_140_2
  doi: 10.1371/journal.pcbi.1005659
– ident: e_1_3_6_101_2
  doi: 10.1002/adts.201900194
– ident: e_1_3_6_120_2
  doi: 10.1021/acs.jctc.6b01246
– ident: e_1_3_6_117_2
  doi: 10.1021/acs.jctc.6b00277
– volume: 31
  start-page: 837
  year: 2010
  ident: e_1_3_6_48_2
  article-title: How to obtain statistically converged MM/GBSA results
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21366
– ident: e_1_3_6_162_2
  doi: 10.1016/j.chembiol.2017.12.009
– volume: 4
  year: 2008
  ident: e_1_3_6_18_2
  article-title: Life or death decision-making: the medical case for large-scale, on-demand grid computing
  publication-title: CTWatch Quarterly
– ident: e_1_3_6_43_2
  doi: 10.3389/fninf.2017.00076
– ident: e_1_3_6_87_2
  doi: 10.1016/j.drudis.2018.01.039
– ident: e_1_3_6_147_2
  doi: 10.1021/jp505332p
– ident: e_1_3_6_61_2
  doi: 10.1021/acs.jctc.6b00794
– ident: e_1_3_6_141_2
  doi: 10.1021/ct9000685
– ident: e_1_3_6_9_2
  doi: 10.1186/s12859-018-2506-6
– ident: e_1_3_6_118_2
  doi: 10.1021/acs.jctc.8b01270
– ident: e_1_3_6_138_2
  doi: 10.1016/j.sbi.2015.03.007
– ident: e_1_3_6_93_2
  doi: 10.1021/acscentsci.9b00590
– ident: e_1_3_6_6_2
  doi: 10.1126/science.1213847
– ident: e_1_3_6_17_2
  doi: 10.1002/qj.3383
– ident: e_1_3_6_63_2
  doi: 10.1002/adma.201705791
– ident: e_1_3_6_152_2
– ident: e_1_3_6_38_2
  doi: 10.1021/ci400285z
– ident: e_1_3_6_52_2
  doi: 10.1021/acs.jctc.6b00979
– ident: e_1_3_6_131_2
  doi: 10.1016/j.abb.2019.01.033
– volume: 366
  start-page: 3199
  year: 2008
  ident: e_1_3_6_19_2
  article-title: Patient-specific simulation as a basis for clinical decision-making
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– ident: e_1_3_6_98_2
– ident: e_1_3_6_150_2
  doi: 10.1007/s10822-013-9678-y
– ident: e_1_3_6_133_2
  doi: 10.1021/acs.accounts.7b00613
– ident: e_1_3_6_36_2
  doi: 10.1167/iovs.12-9967
– ident: e_1_3_6_42_2
  doi: 10.1021/acs.jctc.8b00544
– ident: e_1_3_6_160_2
  doi: 10.1021/acs.jcim.5b00538
– ident: e_1_3_6_64_2
  doi: 10.1039/C8CP07796G
– ident: e_1_3_6_30_2
  doi: 10.1017/CBO9781139626514
– ident: e_1_3_6_21_2
  doi: 10.1016/j.future.2016.09.017
– ident: e_1_3_6_69_2
  doi: 10.1063/1.1472510
– ident: e_1_3_6_151_2
  doi: 10.1109/34.709601
– ident: e_1_3_6_62_2
  doi: 10.1021/acs.jctc.7b01143
– ident: e_1_3_6_70_2
  doi: 10.1021/jp204407d
– ident: e_1_3_6_83_2
  doi: 10.1002/wsbm.1186
– ident: e_1_3_6_130_2
  doi: 10.1126/science.282.5389.740
– ident: e_1_3_6_106_2
  doi: 10.1021/ct500195p
– ident: e_1_3_6_15_2
  doi: 10.1146/annurev-biophys-083012-130318
– ident: e_1_3_6_56_2
  doi: 10.1007/978-3-540-87706-6_3
– ident: e_1_3_6_41_2
– ident: e_1_3_6_165_2
  doi: 10.1145/3150224
– ident: e_1_3_6_23_2
  doi: 10.1002/qj.49712252906
– ident: e_1_3_6_129_2
– ident: e_1_3_6_74_2
  doi: 10.1021/ja512751q
– ident: e_1_3_6_81_2
  doi: 10.1021/cr960370z
– ident: e_1_3_6_112_2
  doi: 10.1021/ct9000894
– ident: e_1_3_6_123_2
  doi: 10.1146/annurev-physchem-042018-052340
– ident: e_1_3_6_71_2
  doi: 10.1073/pnas.1114017109
– ident: e_1_3_6_148_2
  doi: 10.1021/acs.jcim.0c00165
– ident: e_1_3_6_82_2
  doi: 10.1124/pr.112.007336
– ident: e_1_3_6_96_2
  doi: 10.1073/pnas.1818411116
– ident: e_1_3_6_143_2
  doi: 10.1002/jcc.23218
– ident: e_1_3_6_113_2
  doi: 10.1063/1.454895
– ident: e_1_3_6_72_2
  doi: 10.1021/ct2003995
– ident: e_1_3_6_153_2
  doi: 10.7554/eLife.35560
– ident: e_1_3_6_31_2
  doi: 10.1002/adts.201900125
– ident: e_1_3_6_158_2
  doi: 10.1021/acs.jmedchem.7b00681
– ident: e_1_3_6_145_2
  doi: 10.1021/acs.jcim.5b00368
– ident: e_1_3_6_92_2
– ident: e_1_3_6_142_2
  doi: 10.1021/ci8000937
SSID ssj0000461802
Score 2.5176833
SecondaryResourceType review_article
Snippet A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20200007
SubjectTerms Review
Title Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/33178418
https://www.proquest.com/docview/2460082310
https://pubmed.ncbi.nlm.nih.gov/PMC7653346
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCGNdyk5GQAG2BXJzb4wSbBowhoU6reIl8XYOmtGqbh-3Xc07sOg0MaSBVUeQ6Sevz5ejYPt93CHmVmKQ0ScaDOOcqYKpUgYCXLihEwkuhEmZKJAp_Pc4OT9jnSTrpa2x27JKVeCcvr-SV_I9VoQ3siizZf7Csvyk0wDnYF45gYThey8bf-bzuLMSlbFHzAc_nqFextLsCKFmJiq418qPO6zNoCzplhrrZEbUltJiF1jvaUgDhWlVLb6uffZr7wnCJ-uCy9UH4qVs7nbbN5XTW-on9lNsUgb0zvlxd8J5B9oMvueIut8wgb8rvgMzQ5174hGGXeutWI2Kb2ZH1TitGuk9R2MrS3sOGG0gauMsw7vZSr_TlYYn8hMXSoKp6jBl4tuNQNPv4W3VwcnRUjfcn45vkVgyzBSxk8fHTF7_UhpryRZd96n-dl-8s3g8fMAxP_phz_J46uxGLjO-SO24SQfcsIrbJDd3cI9vOTS_pG6cl_vY-Oe0gskvXANmlDh4UoEA34UGH8KAOHhThQS08aA-PB2R8sD_-cBi4WhqBhH-_ClKRqjSXvGSpihiPQplgJQMYFw0fkZeyjIUSTCfcJApaIC4OBSuFhus0Tx6SrWbW6MeEFoYrXTKjUmZYagyPCy5iKU3KIhVH0YgE6xGspNOZx3In55XNdygqHPEKRxwzH_IRee37z63Cyl97vlwbpAIniDtbvNGzFrqwrNsyjsIReWQN5O-VQIRcsKgYkXxgOt8BBdaH3zT1tBNazzMkqmdPrvHcp-R2_zo8I1urRaufQ7i6Ei86MP4Cwd6aSQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid%2C+accurate%2C+precise+and+reproducible+ligand-protein+binding+free+energy+prediction&rft.jtitle=Interface+focus&rft.au=Wan%2C+Shunzhou&rft.au=Bhati%2C+Agastya+P&rft.au=Zasada%2C+Stefan+J&rft.au=Coveney%2C+Peter+V&rft.date=2020-12-06&rft.issn=2042-8898&rft.volume=10&rft.issue=6&rft.spage=20200007&rft_id=info:doi/10.1098%2Frsfs.2020.0007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-8898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-8898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-8898&client=summon