Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints
The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) method...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 45; no. 7; pp. 1372 - 1385 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach. |
---|---|
AbstractList | The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach. |
Author | Ding Wang Xiong Yang Derong Liu Qinglai Wei |
Author_xml | – sequence: 1 givenname: Derong surname: Liu fullname: Liu, Derong – sequence: 2 givenname: Xiong surname: Yang fullname: Yang, Xiong – sequence: 3 givenname: Ding surname: Wang fullname: Wang, Ding – sequence: 4 givenname: Qinglai surname: Wei fullname: Wei, Qinglai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25872221$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPAyEUhYnR-Kj-AGNiWLqZCswDutT6atJo0taFqwlD7xiaGajALLr1l0sfduFCNsDNdw7hnDN0aKwBhC4p6VNKBrez4cd9nxGa91lGOeXkAJ0yWoiEMZ4f7s8FP0EX3i9IXCKOBuIYnbBccMYYPUXfE9Cmtk5BCyYkY5DOaPOZ3EsPczyxVecDHloTnG0acPgBvP40OCo2U2062_lkplvA70aBC1Ib_GpNo020wtOVD9B6PO2qBaiAg8Ujs-w2lj64CAd_jo5q2Xi42O099P70OBu-JOO359HwbpyorKAhyTNGqqwCosgAUjIvlMi4SCXLa5HXAygKVc3zjEtaSyKrIs0IYyRnFYVUpPHeQzdb36WzXx34ULbaK2gaaSB-otyEk1EmeESvd2hXtTAvl0630q3K39wiQLeActZ7B_UeoaRc11Ou6ynX9ZS7eqKG_9EoHWTQ63Clbv5VXm2VGgD2L3EiUk5Z-gNmyZ30 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1049_iet_cta_2017_0961 crossref_primary_10_1109_TCYB_2016_2586082 crossref_primary_10_1109_TSMC_2021_3105663 crossref_primary_10_1016_j_jfranklin_2024_106833 crossref_primary_10_1016_j_neunet_2021_08_025 crossref_primary_10_1109_TAI_2024_3444731 crossref_primary_10_1002_rnc_4962 crossref_primary_10_1080_00207179_2016_1192687 crossref_primary_10_1016_j_neunet_2017_11_022 crossref_primary_10_1109_TNNLS_2019_2900510 crossref_primary_10_1177_0142331220940161 crossref_primary_10_1109_TCYB_2016_2536149 crossref_primary_10_1109_TNNLS_2020_3027653 crossref_primary_10_1109_TCYB_2020_3028988 crossref_primary_10_1016_j_asoc_2021_107153 crossref_primary_10_1109_TCYB_2022_3233593 crossref_primary_10_1016_j_neunet_2021_08_012 crossref_primary_10_1109_TCYB_2024_3354945 crossref_primary_10_1109_TCYB_2023_3234295 crossref_primary_10_1016_j_neucom_2015_08_119 crossref_primary_10_1002_oca_3202 crossref_primary_10_1109_TCYB_2020_3037321 crossref_primary_10_1016_j_neucom_2019_10_038 crossref_primary_10_1016_j_jfranklin_2018_02_001 crossref_primary_10_1088_1402_4896_ad98cc crossref_primary_10_1016_j_neucom_2025_129986 crossref_primary_10_1109_TCYB_2019_2926248 crossref_primary_10_1016_j_eng_2019_01_019 crossref_primary_10_1016_j_amc_2019_04_084 crossref_primary_10_1016_j_neucom_2017_09_020 crossref_primary_10_1016_j_jfranklin_2025_107653 crossref_primary_10_1109_TNNLS_2022_3143527 crossref_primary_10_1109_TSMC_2017_2774602 crossref_primary_10_1049_iet_cta_2017_0501 crossref_primary_10_1016_j_neucom_2025_130044 crossref_primary_10_1016_j_asr_2022_04_061 crossref_primary_10_1109_TCYB_2023_3251653 crossref_primary_10_1109_TSMC_2024_3452122 crossref_primary_10_1016_j_neucom_2024_127631 crossref_primary_10_1016_j_neucom_2018_02_107 crossref_primary_10_1016_j_oceaneng_2022_112449 crossref_primary_10_1002_asjc_2866 crossref_primary_10_1177_0142331219868403 crossref_primary_10_1007_s11071_021_06908_z crossref_primary_10_1007_s11071_025_10946_2 crossref_primary_10_1016_j_isatra_2020_07_042 crossref_primary_10_1109_TIE_2017_2782205 crossref_primary_10_1016_j_ifacol_2024_10_062 crossref_primary_10_1016_j_isatra_2018_08_013 crossref_primary_10_1109_TNNLS_2023_3267516 crossref_primary_10_1109_TSMC_2020_2997559 crossref_primary_10_1016_j_neucom_2021_03_017 crossref_primary_10_1109_TSMC_2023_3302656 crossref_primary_10_1016_j_neunet_2022_10_025 crossref_primary_10_1109_TNNLS_2017_2749641 crossref_primary_10_1109_TNNLS_2021_3138924 crossref_primary_10_1109_TCYB_2016_2539300 crossref_primary_10_1007_s00034_021_01890_8 crossref_primary_10_1109_TCYB_2016_2543238 crossref_primary_10_1016_j_jai_2023_100018 crossref_primary_10_1109_TAI_2024_3351095 crossref_primary_10_1049_iet_cta_2015_0590 crossref_primary_10_1109_TCYB_2020_2982119 crossref_primary_10_1109_TNNLS_2021_3105176 crossref_primary_10_1109_TNNLS_2023_3264511 crossref_primary_10_1109_TCSI_2023_3346029 crossref_primary_10_3390_e25081158 crossref_primary_10_1016_j_neucom_2023_126963 crossref_primary_10_1109_TCYB_2025_3530951 crossref_primary_10_1002_rnc_6432 crossref_primary_10_1080_00207179_2018_1466059 crossref_primary_10_1016_j_neucom_2015_09_078 crossref_primary_10_1080_00207179_2018_1503724 crossref_primary_10_1155_2022_8980664 crossref_primary_10_1002_rnc_6550 crossref_primary_10_1109_TASE_2023_3306101 crossref_primary_10_1109_TNNLS_2022_3224029 crossref_primary_10_1109_TCYB_2020_2978088 crossref_primary_10_1016_j_ijepes_2023_109679 crossref_primary_10_1109_TNNLS_2023_3292154 crossref_primary_10_1016_j_oceaneng_2024_117034 crossref_primary_10_1109_TSMC_2019_2946857 crossref_primary_10_1109_TCYB_2020_2989419 crossref_primary_10_1109_TFUZZ_2022_3148865 crossref_primary_10_1109_JAS_2021_1004018 crossref_primary_10_1007_s11071_024_10574_2 crossref_primary_10_1016_j_neucom_2024_128873 crossref_primary_10_1109_TCYB_2019_2927410 crossref_primary_10_1080_00207179_2021_1890824 crossref_primary_10_1007_s11071_018_4309_8 crossref_primary_10_1016_j_jfranklin_2018_01_005 crossref_primary_10_1016_j_neucom_2017_03_053 crossref_primary_10_1002_asjc_3078 crossref_primary_10_1016_j_amc_2019_01_066 crossref_primary_10_1109_TSMC_2024_3417230 crossref_primary_10_1007_s12555_020_0812_z crossref_primary_10_1109_TIV_2023_3338486 crossref_primary_10_1080_00207721_2017_1401153 crossref_primary_10_1109_TCSI_2020_2984763 crossref_primary_10_1109_TNNLS_2017_2661865 crossref_primary_10_1016_j_chaos_2022_113034 crossref_primary_10_1016_j_apm_2023_03_030 crossref_primary_10_1080_00207721_2024_2364289 crossref_primary_10_1109_TSMC_2023_3318650 crossref_primary_10_1109_TCYB_2022_3175366 crossref_primary_10_1109_TC_2021_3072072 crossref_primary_10_1109_TCYB_2018_2827037 crossref_primary_10_1016_j_neucom_2023_126502 crossref_primary_10_1016_j_neunet_2023_07_044 crossref_primary_10_1002_rnc_6334 crossref_primary_10_1109_TSMC_2019_2958846 crossref_primary_10_1109_TCYB_2021_3054626 crossref_primary_10_1016_j_jfranklin_2024_107026 crossref_primary_10_1109_ACCESS_2019_2939161 crossref_primary_10_1016_j_neucom_2021_05_046 crossref_primary_10_1016_j_ast_2021_107204 crossref_primary_10_1109_TAC_2022_3228969 crossref_primary_10_1016_j_neunet_2022_11_012 crossref_primary_10_1109_TAI_2023_3346334 crossref_primary_10_1109_TNNLS_2022_3185055 crossref_primary_10_1080_00207179_2017_1282177 crossref_primary_10_1109_TASE_2022_3182720 crossref_primary_10_1016_j_neucom_2023_126973 crossref_primary_10_1016_j_neucom_2024_128412 crossref_primary_10_1109_TNNLS_2016_2516948 crossref_primary_10_26599_AIR_2022_9150007 crossref_primary_10_1109_TNNLS_2017_2654539 crossref_primary_10_1002_rnc_5419 crossref_primary_10_1109_TCSII_2019_2947682 crossref_primary_10_1002_rnc_6627 crossref_primary_10_1016_j_cja_2021_08_005 crossref_primary_10_1109_TITS_2024_3355411 crossref_primary_10_1177_0954410017752764 crossref_primary_10_1002_rnc_6623 crossref_primary_10_1016_j_asoc_2019_105629 crossref_primary_10_1109_TASE_2023_3326661 crossref_primary_10_1109_TRO_2019_2955321 crossref_primary_10_1109_TNNLS_2018_2810138 crossref_primary_10_1080_00207721_2024_2395928 crossref_primary_10_1109_TNSE_2024_3434633 crossref_primary_10_1109_TNNLS_2022_3178017 crossref_primary_10_1109_TCYB_2022_3196003 crossref_primary_10_1016_j_neucom_2024_127575 crossref_primary_10_1002_rnc_6190 crossref_primary_10_1109_TCYB_2019_2926631 crossref_primary_10_1016_j_neucom_2018_05_010 crossref_primary_10_1007_s11063_019_10072_2 crossref_primary_10_1109_ACCESS_2024_3471798 crossref_primary_10_1109_TFUZZ_2018_2859904 crossref_primary_10_1109_TFUZZ_2023_3245294 crossref_primary_10_1007_s12555_022_1127_z crossref_primary_10_1109_TCYB_2022_3158898 crossref_primary_10_1016_j_neunet_2022_04_013 crossref_primary_10_1109_TCYB_2022_3175650 crossref_primary_10_1016_j_neucom_2023_127048 crossref_primary_10_1109_TFUZZ_2019_2893211 crossref_primary_10_1109_JAS_2021_1003922 crossref_primary_10_1016_j_ast_2020_106368 crossref_primary_10_1016_j_neucom_2022_06_110 crossref_primary_10_1016_j_neucom_2022_09_103 crossref_primary_10_1016_j_neucom_2018_07_095 crossref_primary_10_1177_10775463241273765 crossref_primary_10_1016_j_isatra_2021_03_011 crossref_primary_10_1002_rnc_7278 crossref_primary_10_1109_TFUZZ_2024_3439351 crossref_primary_10_1016_j_neucom_2023_127042 crossref_primary_10_1016_j_neucom_2017_05_086 crossref_primary_10_1007_s11071_021_06624_8 crossref_primary_10_1109_TASE_2019_2924444 crossref_primary_10_1109_TCYB_2017_2785801 crossref_primary_10_1109_ACCESS_2020_3038674 crossref_primary_10_1109_TCYB_2025_3533139 crossref_primary_10_1109_TFUZZ_2017_2787128 crossref_primary_10_1109_TCYB_2023_3283771 crossref_primary_10_1002_oca_2782 crossref_primary_10_1109_TCYB_2020_2984952 crossref_primary_10_1109_TII_2024_3485724 crossref_primary_10_1109_TR_2017_2746754 crossref_primary_10_1002_rnc_5687 crossref_primary_10_1002_rnc_7622 crossref_primary_10_1016_j_isatra_2024_09_018 crossref_primary_10_1109_TNNLS_2015_2499757 crossref_primary_10_1109_ACCESS_2020_3041834 crossref_primary_10_1109_TNNLS_2023_3244934 crossref_primary_10_1109_TCYB_2015_2492242 crossref_primary_10_1109_TSMC_2018_2810117 crossref_primary_10_1016_j_neucom_2022_09_119 crossref_primary_10_1109_TNNLS_2022_3183991 crossref_primary_10_1016_j_neucom_2021_10_046 crossref_primary_10_1049_iet_cta_2020_0098 crossref_primary_10_1109_ACCESS_2022_3210136 crossref_primary_10_1109_TNNLS_2020_2976787 crossref_primary_10_1007_s12555_021_0674_z crossref_primary_10_1002_oca_2409 crossref_primary_10_1002_rnc_4342 crossref_primary_10_1109_JAS_2022_105692 crossref_primary_10_1080_00207179_2021_2005257 crossref_primary_10_1016_j_neunet_2020_07_016 crossref_primary_10_1016_j_neucom_2022_11_015 crossref_primary_10_1109_TCSII_2021_3106348 crossref_primary_10_1007_s11071_024_09778_3 crossref_primary_10_1016_j_ins_2023_02_081 crossref_primary_10_1002_oca_3251 crossref_primary_10_1007_s40815_024_01901_1 crossref_primary_10_1109_TAI_2022_3217978 crossref_primary_10_1016_j_neucom_2020_10_012 crossref_primary_10_1109_TSMC_2015_2492941 crossref_primary_10_1016_j_fmre_2021_08_004 crossref_primary_10_1109_TCYB_2021_3085883 crossref_primary_10_1109_JAS_2024_124989 crossref_primary_10_1109_TNNLS_2019_2954983 crossref_primary_10_1007_s10489_023_05233_9 crossref_primary_10_1109_TSMC_2018_2853089 crossref_primary_10_1002_rnc_4096 crossref_primary_10_1002_asjc_1517 crossref_primary_10_1109_TII_2018_2884214 crossref_primary_10_1016_j_isatra_2024_09_011 crossref_primary_10_1109_TNNLS_2022_3171828 crossref_primary_10_1002_oca_3001 crossref_primary_10_1109_TSMC_2016_2642118 crossref_primary_10_1049_iet_cta_2016_0766 crossref_primary_10_1002_rnc_5964 crossref_primary_10_1109_TSMC_2016_2563982 crossref_primary_10_1109_TSMC_2023_3247466 crossref_primary_10_1109_TCYB_2021_3107801 crossref_primary_10_1177_01423312211004819 crossref_primary_10_1109_TNNLS_2015_2490072 crossref_primary_10_1109_TSMC_2023_3344883 crossref_primary_10_1109_TNNLS_2020_3008249 crossref_primary_10_1049_cth2_12520 crossref_primary_10_1002_rnc_7595 crossref_primary_10_1109_TCYB_2017_2778195 crossref_primary_10_1016_j_neucom_2018_09_097 crossref_primary_10_1109_TSMC_2022_3173275 crossref_primary_10_1109_TCYB_2017_2712188 crossref_primary_10_1109_TNNLS_2015_2503772 crossref_primary_10_1016_j_ast_2021_107279 crossref_primary_10_1109_TSMC_2023_3320653 crossref_primary_10_1007_s10462_017_9603_1 crossref_primary_10_1080_00207721_2021_1987578 crossref_primary_10_1109_TCYB_2018_2857400 crossref_primary_10_1016_j_neucom_2021_01_116 crossref_primary_10_4108_ew_6098 crossref_primary_10_1016_j_neucom_2022_09_034 crossref_primary_10_1088_1361_6501_ad7a18 crossref_primary_10_1109_TAI_2023_3327678 crossref_primary_10_3934_mbe_2022430 crossref_primary_10_1016_j_apenergy_2019_114193 crossref_primary_10_1016_j_neucom_2017_05_030 crossref_primary_10_1109_JSYST_2023_3318525 crossref_primary_10_1016_j_engappai_2025_110207 crossref_primary_10_1016_j_neunet_2024_106274 crossref_primary_10_1109_TSMC_2024_3461781 crossref_primary_10_1109_TCYB_2018_2823199 crossref_primary_10_1109_TSMC_2023_3257269 crossref_primary_10_1109_TNNLS_2015_2490168 crossref_primary_10_1016_j_neunet_2018_05_005 crossref_primary_10_1109_TCYB_2020_2982168 crossref_primary_10_1016_j_jfranklin_2018_08_024 crossref_primary_10_1109_TCYB_2021_3111082 crossref_primary_10_1038_s41746_024_01028_5 crossref_primary_10_1109_TNNLS_2022_3208611 crossref_primary_10_1016_j_jfranklin_2017_06_017 crossref_primary_10_1007_s10489_024_05593_w crossref_primary_10_1016_j_actaastro_2018_03_007 crossref_primary_10_1109_TCYB_2019_2927471 crossref_primary_10_1002_asjc_2818 crossref_primary_10_1016_j_ast_2025_110050 crossref_primary_10_3934_mbe_2022561 crossref_primary_10_1007_s11071_024_09840_0 crossref_primary_10_1109_TSMC_2018_2853091 crossref_primary_10_1109_TCYB_2020_3003550 crossref_primary_10_1016_j_ins_2018_06_022 |
Cites_doi | 10.1109/TSMCB.2012.2203336 10.1109/TNNLS.2014.2328590 10.1007/978-1-4612-0205-9 10.1109/TNNLS.2013.2247627 10.1109/TNNLS.2014.2360724 10.1016/j.automatica.2010.02.018 10.1109/ACC.2010.5531586 10.1109/TASE.2014.2303139 10.1016/j.automatica.2012.09.019 10.1109/TNN.2011.2168538 10.1109/TCYB.2014.2314612 10.1109/TNNLS.2014.2305841 10.1016/j.automatica.2013.09.043 10.1109/MCS.2012.2214134 10.1016/0893-6080(89)90020-8 10.1016/S0005-1098(97)00128-3 10.1109/TCYB.2014.2354377 10.1109/TNNLS.2013.2271454 10.1109/TSMCB.2012.2227253 10.1109/TNNLS.2013.2281663 10.1109/TAC.2013.2294618 10.1016/j.automatica.2012.06.096 10.1109/TSMCB.2010.2043839 10.1016/j.ins.2012.07.006 10.1016/j.automatica.2004.11.034 10.1002/9781118122631 10.1007/s00521-010-0441-1 10.1109/TCYB.2014.2322116 10.1016/j.neunet.2006.08.010 10.1109/TNNLS.2014.2376703 10.1016/j.neunet.2014.03.008 10.1080/00207179.2013.848292 10.1049/iet-cta.2013.0472 10.1016/j.automatica.2014.05.011 10.1109/70.660845 10.1109/TASE.2013.2296206 10.1109/TNN.2005.863416 10.1109/TAC.2013.2272973 10.1109/IJCNN.2014.6889462 10.1109/TAC.1981.1102785 10.1109/TNNLS.2013.2251747 10.1109/TNNLS.2013.2294968 10.1137/1.9780898717563 10.1109/TCYB.2014.2319577 10.1007/978-1-4471-4757-2 10.1109/TNNLS.2015.2401334 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2015.2417170 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 1385 |
ExternalDocumentID | 25872221 10_1109_TCYB_2015_2417170 7083712 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Early Career Development Award of the State Key Laboratory of Management and Control for Complex Systems – fundername: Beijing Natural Science Foundation grantid: 4132078 – fundername: National Natural Science Foundation of China grantid: 61034002; 61233001; 61273140; 61304086; 61374105 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c461t-5420b4be0c09e30d6c84783a25f85f9e66cbd547a1fa0ab634022052b1e383b63 |
IEDL.DBID | RIE |
ISSN | 2168-2267 |
IngestDate | Thu Jul 10 23:18:46 EDT 2025 Thu Jan 02 22:22:01 EST 2025 Thu Apr 24 22:55:38 EDT 2025 Tue Jul 01 04:35:05 EDT 2025 Tue Aug 26 16:38:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | nonlinear systems neural networks (NNs) Approximate dynamic programming (ADP) optimal control robust control neuro-dynamic programming reinforcement learning (RL) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-5420b4be0c09e30d6c84783a25f85f9e66cbd547a1fa0ab634022052b1e383b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25872221 |
PQID | 1689841287 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1689841287 crossref_citationtrail_10_1109_TCYB_2015_2417170 crossref_primary_10_1109_TCYB_2015_2417170 ieee_primary_7083712 pubmed_primary_25872221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref56 ref15 bhasin (ref33) 2013; 49 ref14 ref52 bellman (ref7) 1957 ref11 ref54 ref10 rudin (ref51) 1976 sutton (ref21) 1998 ref17 ref16 ref19 ref18 werbos (ref8) 1974 abu-khalaf (ref38) 2005; 41 ni (ref13) 2013; 24 beard (ref50) 1997; 33 ref46 ref45 ref47 ref41 ref44 ref43 ref4 ref3 ref6 ref40 bryson (ref5) 1975 zhang (ref9) 2013 ref35 ref37 ref36 lewis (ref53) 1999 ref31 ref30 ref32 ref2 ref1 ref39 khalil (ref48) 2002 jiang (ref42) 2012; 48 ref24 ref23 ref26 ref25 ref20 finlayson (ref55) 1972 ref22 liu (ref12) 2014; 25 rudin (ref49) 1991 ref28 ref27 ref29 lewis (ref34) 2013 |
References_xml | – ident: ref15 doi: 10.1109/TSMCB.2012.2203336 – ident: ref29 doi: 10.1109/TNNLS.2014.2328590 – year: 1999 ident: ref53 publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems – year: 1972 ident: ref55 publication-title: The Method of Weighted Residuals and Variational Principles – ident: ref1 doi: 10.1007/978-1-4612-0205-9 – ident: ref14 doi: 10.1109/TNNLS.2013.2247627 – ident: ref28 doi: 10.1109/TNNLS.2014.2360724 – ident: ref31 doi: 10.1016/j.automatica.2010.02.018 – year: 2013 ident: ref34 publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control – ident: ref45 doi: 10.1109/ACC.2010.5531586 – ident: ref16 doi: 10.1109/TASE.2014.2303139 – volume: 49 start-page: 82 year: 2013 ident: ref33 article-title: A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2012.09.019 – ident: ref32 doi: 10.1109/TNN.2011.2168538 – ident: ref20 doi: 10.1109/TCYB.2014.2314612 – ident: ref27 doi: 10.1109/TNNLS.2014.2305841 – ident: ref39 doi: 10.1016/j.automatica.2013.09.043 – ident: ref23 doi: 10.1109/MCS.2012.2214134 – ident: ref54 doi: 10.1016/0893-6080(89)90020-8 – volume: 33 start-page: 2159 year: 1997 ident: ref50 article-title: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation publication-title: Automatica doi: 10.1016/S0005-1098(97)00128-3 – ident: ref10 doi: 10.1109/TCYB.2014.2354377 – volume: 24 start-page: 2038 year: 2013 ident: ref13 article-title: Goal representation heuristic dynamic programming on maze navigation publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2271454 – ident: ref18 doi: 10.1109/TSMCB.2012.2227253 – year: 1998 ident: ref21 publication-title: Reinforcement LearningAn Introduction – volume: 25 start-page: 621 year: 2014 ident: ref12 article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2281663 – ident: ref4 doi: 10.1109/TAC.2013.2294618 – year: 1957 ident: ref7 publication-title: Dynamic Programming – year: 1974 ident: ref8 article-title: Beyond regression: New tools for prediction and analysis in the behavioral sciences – volume: 48 start-page: 2699 year: 2012 ident: ref42 article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics publication-title: Automatica doi: 10.1016/j.automatica.2012.06.096 – ident: ref24 doi: 10.1109/TSMCB.2010.2043839 – ident: ref11 doi: 10.1016/j.ins.2012.07.006 – volume: 41 start-page: 779 year: 2005 ident: ref38 article-title: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach publication-title: Automatica doi: 10.1016/j.automatica.2004.11.034 – ident: ref6 doi: 10.1002/9781118122631 – ident: ref43 doi: 10.1007/s00521-010-0441-1 – ident: ref37 doi: 10.1109/TCYB.2014.2322116 – ident: ref56 doi: 10.1016/j.neunet.2006.08.010 – ident: ref22 doi: 10.1109/TNNLS.2014.2376703 – ident: ref36 doi: 10.1016/j.neunet.2014.03.008 – year: 2002 ident: ref48 publication-title: Nonlinear Systems – ident: ref41 doi: 10.1080/00207179.2013.848292 – ident: ref35 doi: 10.1049/iet-cta.2013.0472 – ident: ref40 doi: 10.1016/j.automatica.2014.05.011 – ident: ref47 doi: 10.1109/70.660845 – ident: ref30 doi: 10.1109/TASE.2013.2296206 – ident: ref3 doi: 10.1109/TNN.2005.863416 – ident: ref19 doi: 10.1109/TAC.2013.2272973 – year: 1991 ident: ref49 publication-title: Functional Analysis – ident: ref25 doi: 10.1109/IJCNN.2014.6889462 – ident: ref46 doi: 10.1109/TAC.1981.1102785 – ident: ref52 doi: 10.1109/TNNLS.2013.2251747 – year: 1976 ident: ref51 publication-title: Principles of Mathematical Analysis – ident: ref44 doi: 10.1109/TNNLS.2013.2294968 – ident: ref2 doi: 10.1137/1.9780898717563 – ident: ref26 doi: 10.1109/TCYB.2014.2319577 – year: 2013 ident: ref9 publication-title: Adaptive Dynamic Programming for Control Algorithms and Stability doi: 10.1007/978-1-4471-4757-2 – year: 1975 ident: ref5 publication-title: Applied Optimal Control Optimization Estimation and Control – ident: ref17 doi: 10.1109/TNNLS.2015.2401334 |
SSID | ssj0000816898 |
Score | 2.5412157 |
Snippet | The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1372 |
SubjectTerms | Algorithm design and analysis Approximate dynamic programming (ADP) Approximation algorithms Artificial neural networks neural networks (NNs) neuro-dynamic programming Nonlinear systems Optimal control reinforcement learning (RL) Robust control Robustness |
Title | Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints |
URI | https://ieeexplore.ieee.org/document/7083712 https://www.ncbi.nlm.nih.gov/pubmed/25872221 https://www.proquest.com/docview/1689841287 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1yAUh5LW2QkDoDw1s46TnJsF6qC1B6qrlROke1MKkSVVJvk0iO_nPHEG4kKELck8jiOZ5x5ePwNY2-lqQunlBdK20xokztRGA_C5FUlkcallO1-dm5OV_rrVXq1xT5OZ2EAgJLPYB4uaS-_av0QQmWHGdoLWSgp_AAdt_Gs1hRPoQISVPo2wQuBVkUWNzGVLA4vl9-OQx5XOkeNhR5MKACXpHmG2lH9ppGoxMrfrU3SOieP2dlmvGOyyY_50Lu5v7sH5fi_H_SEPYrmJz8a5WWHbUHzlO3EBd7xdxGF-v0u-3kBBKrqKX4oIg7rtThGtVfxi9YNXc-XY6L7Daz5J0oF4UhBT783Qzt0Ipww4SvsmxIP-PkIzGHXPCKlc_xxhUgQ71v-pbkdqMuO6lb03TO2Ovl8uTwVsWCD8NqoXqQ6kU47kF4WsJCV8aj78oVN0jpP6wKM8a5KdWZVbaV1ZqHpnG_iFKCjjPfP2XbTNvCScUAZ8rbOpV8U2soK56mWyqvMekCrRM6Y3DCt9BHNPAzupiSvRhZlYHkZWF5Gls_Yh4nkdoTy-Ffj3cCuqWHk1Iy92UhGieswbK7YBnA-S5I-jdo-m7EXo8hMxBtJe_XnTvfYw_DqMQl4n2336wEO0NTp3WuS8V8pHvjg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoALUMrP8mskkADJWzvrOMmBA91S7dJ2D9WuVE7BdpyqospWm0QIjjwHr8K7MXa8kUDArRI3J7JHlv3ZMx5_ngF4zmSZac4N5UIlVMhU00waS2VaFAzb6Niz3Y9mcrIQ70_ikw343r-FsdZ68pkduqK_yy-WpnWusp0E7YWER4FCeWC_fMYDWv1muoez-SKK9t_NxxMacghQIyRvaCwipoW2zLDMjlghDW7H6UhFcZnGZWalNLqIRaJ4qZjSciT809NIc4tnN_xGuVfgKtoZcdS9Dus9OD5lhU-2G2GBoh2ThGtTzrKd-fjDrmOOxUPUkXhmcinnojhNUB_zX3SgT-ryd_vW67n9m_BjPUIdveXTsG300Hz9LXjk_zqEt-BGMLDJ225FbMGGrW7DVtjCavIyxNl-tQ3fjq0PG2u8h5SGSLOndBcVe0GOl7qtGzLuqPzndkX2PNmFYAv_96xql21N3RsaskDZnlpBZl3oEbUiIRY8wa3Z-bpIsyTT6qL1ImufmaOp78DiUsbiLmxWy8reB2JxlRhVpsyMMqFYgfNSMm54ooxFu4sNgK1BkpsQr9117jz35zaW5Q5iuYNYHiA2gNd9k4suWMm_Km87ePQVAzIG8GyNxBx3Gnd9pCqL45l7tAu0Z5IB3Osg2jdeI_vBn4U-hWuT-dFhfjidHTyE664bHeX5EWw2q9Y-RsOu0U_8-iLw8bLR-BOMQVSv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement-Learning-Based+Robust+Controller+Design+for+Continuous-Time+Uncertain+Nonlinear+Systems+Subject+to+Input+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Derong&rft.au=Yang%2C+Xiong&rft.au=Wang%2C+Ding&rft.au=Wei%2C+Qinglai&rft.date=2015-07-01&rft.eissn=2168-2275&rft.volume=45&rft.issue=7&rft.spage=1372&rft.epage=1385&rft_id=info:doi/10.1109%2FTCYB.2015.2417170&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |