Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints

The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) method...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 45; no. 7; pp. 1372 - 1385
Main Authors Liu, Derong, Yang, Xiong, Wang, Ding, Wei, Qinglai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.
AbstractList The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.
Author Ding Wang
Xiong Yang
Derong Liu
Qinglai Wei
Author_xml – sequence: 1
  givenname: Derong
  surname: Liu
  fullname: Liu, Derong
– sequence: 2
  givenname: Xiong
  surname: Yang
  fullname: Yang, Xiong
– sequence: 3
  givenname: Ding
  surname: Wang
  fullname: Wang, Ding
– sequence: 4
  givenname: Qinglai
  surname: Wei
  fullname: Wei, Qinglai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25872221$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPAyEUhYnR-Kj-AGNiWLqZCswDutT6atJo0taFqwlD7xiaGajALLr1l0sfduFCNsDNdw7hnDN0aKwBhC4p6VNKBrez4cd9nxGa91lGOeXkAJ0yWoiEMZ4f7s8FP0EX3i9IXCKOBuIYnbBccMYYPUXfE9Cmtk5BCyYkY5DOaPOZ3EsPczyxVecDHloTnG0acPgBvP40OCo2U2062_lkplvA70aBC1Ib_GpNo020wtOVD9B6PO2qBaiAg8Ujs-w2lj64CAd_jo5q2Xi42O099P70OBu-JOO359HwbpyorKAhyTNGqqwCosgAUjIvlMi4SCXLa5HXAygKVc3zjEtaSyKrIs0IYyRnFYVUpPHeQzdb36WzXx34ULbaK2gaaSB-otyEk1EmeESvd2hXtTAvl0630q3K39wiQLeActZ7B_UeoaRc11Ou6ynX9ZS7eqKG_9EoHWTQ63Clbv5VXm2VGgD2L3EiUk5Z-gNmyZ30
CODEN ITCEB8
CitedBy_id crossref_primary_10_1049_iet_cta_2017_0961
crossref_primary_10_1109_TCYB_2016_2586082
crossref_primary_10_1109_TSMC_2021_3105663
crossref_primary_10_1016_j_jfranklin_2024_106833
crossref_primary_10_1016_j_neunet_2021_08_025
crossref_primary_10_1109_TAI_2024_3444731
crossref_primary_10_1002_rnc_4962
crossref_primary_10_1080_00207179_2016_1192687
crossref_primary_10_1016_j_neunet_2017_11_022
crossref_primary_10_1109_TNNLS_2019_2900510
crossref_primary_10_1177_0142331220940161
crossref_primary_10_1109_TCYB_2016_2536149
crossref_primary_10_1109_TNNLS_2020_3027653
crossref_primary_10_1109_TCYB_2020_3028988
crossref_primary_10_1016_j_asoc_2021_107153
crossref_primary_10_1109_TCYB_2022_3233593
crossref_primary_10_1016_j_neunet_2021_08_012
crossref_primary_10_1109_TCYB_2024_3354945
crossref_primary_10_1109_TCYB_2023_3234295
crossref_primary_10_1016_j_neucom_2015_08_119
crossref_primary_10_1002_oca_3202
crossref_primary_10_1109_TCYB_2020_3037321
crossref_primary_10_1016_j_neucom_2019_10_038
crossref_primary_10_1016_j_jfranklin_2018_02_001
crossref_primary_10_1088_1402_4896_ad98cc
crossref_primary_10_1016_j_neucom_2025_129986
crossref_primary_10_1109_TCYB_2019_2926248
crossref_primary_10_1016_j_eng_2019_01_019
crossref_primary_10_1016_j_amc_2019_04_084
crossref_primary_10_1016_j_neucom_2017_09_020
crossref_primary_10_1016_j_jfranklin_2025_107653
crossref_primary_10_1109_TNNLS_2022_3143527
crossref_primary_10_1109_TSMC_2017_2774602
crossref_primary_10_1049_iet_cta_2017_0501
crossref_primary_10_1016_j_neucom_2025_130044
crossref_primary_10_1016_j_asr_2022_04_061
crossref_primary_10_1109_TCYB_2023_3251653
crossref_primary_10_1109_TSMC_2024_3452122
crossref_primary_10_1016_j_neucom_2024_127631
crossref_primary_10_1016_j_neucom_2018_02_107
crossref_primary_10_1016_j_oceaneng_2022_112449
crossref_primary_10_1002_asjc_2866
crossref_primary_10_1177_0142331219868403
crossref_primary_10_1007_s11071_021_06908_z
crossref_primary_10_1007_s11071_025_10946_2
crossref_primary_10_1016_j_isatra_2020_07_042
crossref_primary_10_1109_TIE_2017_2782205
crossref_primary_10_1016_j_ifacol_2024_10_062
crossref_primary_10_1016_j_isatra_2018_08_013
crossref_primary_10_1109_TNNLS_2023_3267516
crossref_primary_10_1109_TSMC_2020_2997559
crossref_primary_10_1016_j_neucom_2021_03_017
crossref_primary_10_1109_TSMC_2023_3302656
crossref_primary_10_1016_j_neunet_2022_10_025
crossref_primary_10_1109_TNNLS_2017_2749641
crossref_primary_10_1109_TNNLS_2021_3138924
crossref_primary_10_1109_TCYB_2016_2539300
crossref_primary_10_1007_s00034_021_01890_8
crossref_primary_10_1109_TCYB_2016_2543238
crossref_primary_10_1016_j_jai_2023_100018
crossref_primary_10_1109_TAI_2024_3351095
crossref_primary_10_1049_iet_cta_2015_0590
crossref_primary_10_1109_TCYB_2020_2982119
crossref_primary_10_1109_TNNLS_2021_3105176
crossref_primary_10_1109_TNNLS_2023_3264511
crossref_primary_10_1109_TCSI_2023_3346029
crossref_primary_10_3390_e25081158
crossref_primary_10_1016_j_neucom_2023_126963
crossref_primary_10_1109_TCYB_2025_3530951
crossref_primary_10_1002_rnc_6432
crossref_primary_10_1080_00207179_2018_1466059
crossref_primary_10_1016_j_neucom_2015_09_078
crossref_primary_10_1080_00207179_2018_1503724
crossref_primary_10_1155_2022_8980664
crossref_primary_10_1002_rnc_6550
crossref_primary_10_1109_TASE_2023_3306101
crossref_primary_10_1109_TNNLS_2022_3224029
crossref_primary_10_1109_TCYB_2020_2978088
crossref_primary_10_1016_j_ijepes_2023_109679
crossref_primary_10_1109_TNNLS_2023_3292154
crossref_primary_10_1016_j_oceaneng_2024_117034
crossref_primary_10_1109_TSMC_2019_2946857
crossref_primary_10_1109_TCYB_2020_2989419
crossref_primary_10_1109_TFUZZ_2022_3148865
crossref_primary_10_1109_JAS_2021_1004018
crossref_primary_10_1007_s11071_024_10574_2
crossref_primary_10_1016_j_neucom_2024_128873
crossref_primary_10_1109_TCYB_2019_2927410
crossref_primary_10_1080_00207179_2021_1890824
crossref_primary_10_1007_s11071_018_4309_8
crossref_primary_10_1016_j_jfranklin_2018_01_005
crossref_primary_10_1016_j_neucom_2017_03_053
crossref_primary_10_1002_asjc_3078
crossref_primary_10_1016_j_amc_2019_01_066
crossref_primary_10_1109_TSMC_2024_3417230
crossref_primary_10_1007_s12555_020_0812_z
crossref_primary_10_1109_TIV_2023_3338486
crossref_primary_10_1080_00207721_2017_1401153
crossref_primary_10_1109_TCSI_2020_2984763
crossref_primary_10_1109_TNNLS_2017_2661865
crossref_primary_10_1016_j_chaos_2022_113034
crossref_primary_10_1016_j_apm_2023_03_030
crossref_primary_10_1080_00207721_2024_2364289
crossref_primary_10_1109_TSMC_2023_3318650
crossref_primary_10_1109_TCYB_2022_3175366
crossref_primary_10_1109_TC_2021_3072072
crossref_primary_10_1109_TCYB_2018_2827037
crossref_primary_10_1016_j_neucom_2023_126502
crossref_primary_10_1016_j_neunet_2023_07_044
crossref_primary_10_1002_rnc_6334
crossref_primary_10_1109_TSMC_2019_2958846
crossref_primary_10_1109_TCYB_2021_3054626
crossref_primary_10_1016_j_jfranklin_2024_107026
crossref_primary_10_1109_ACCESS_2019_2939161
crossref_primary_10_1016_j_neucom_2021_05_046
crossref_primary_10_1016_j_ast_2021_107204
crossref_primary_10_1109_TAC_2022_3228969
crossref_primary_10_1016_j_neunet_2022_11_012
crossref_primary_10_1109_TAI_2023_3346334
crossref_primary_10_1109_TNNLS_2022_3185055
crossref_primary_10_1080_00207179_2017_1282177
crossref_primary_10_1109_TASE_2022_3182720
crossref_primary_10_1016_j_neucom_2023_126973
crossref_primary_10_1016_j_neucom_2024_128412
crossref_primary_10_1109_TNNLS_2016_2516948
crossref_primary_10_26599_AIR_2022_9150007
crossref_primary_10_1109_TNNLS_2017_2654539
crossref_primary_10_1002_rnc_5419
crossref_primary_10_1109_TCSII_2019_2947682
crossref_primary_10_1002_rnc_6627
crossref_primary_10_1016_j_cja_2021_08_005
crossref_primary_10_1109_TITS_2024_3355411
crossref_primary_10_1177_0954410017752764
crossref_primary_10_1002_rnc_6623
crossref_primary_10_1016_j_asoc_2019_105629
crossref_primary_10_1109_TASE_2023_3326661
crossref_primary_10_1109_TRO_2019_2955321
crossref_primary_10_1109_TNNLS_2018_2810138
crossref_primary_10_1080_00207721_2024_2395928
crossref_primary_10_1109_TNSE_2024_3434633
crossref_primary_10_1109_TNNLS_2022_3178017
crossref_primary_10_1109_TCYB_2022_3196003
crossref_primary_10_1016_j_neucom_2024_127575
crossref_primary_10_1002_rnc_6190
crossref_primary_10_1109_TCYB_2019_2926631
crossref_primary_10_1016_j_neucom_2018_05_010
crossref_primary_10_1007_s11063_019_10072_2
crossref_primary_10_1109_ACCESS_2024_3471798
crossref_primary_10_1109_TFUZZ_2018_2859904
crossref_primary_10_1109_TFUZZ_2023_3245294
crossref_primary_10_1007_s12555_022_1127_z
crossref_primary_10_1109_TCYB_2022_3158898
crossref_primary_10_1016_j_neunet_2022_04_013
crossref_primary_10_1109_TCYB_2022_3175650
crossref_primary_10_1016_j_neucom_2023_127048
crossref_primary_10_1109_TFUZZ_2019_2893211
crossref_primary_10_1109_JAS_2021_1003922
crossref_primary_10_1016_j_ast_2020_106368
crossref_primary_10_1016_j_neucom_2022_06_110
crossref_primary_10_1016_j_neucom_2022_09_103
crossref_primary_10_1016_j_neucom_2018_07_095
crossref_primary_10_1177_10775463241273765
crossref_primary_10_1016_j_isatra_2021_03_011
crossref_primary_10_1002_rnc_7278
crossref_primary_10_1109_TFUZZ_2024_3439351
crossref_primary_10_1016_j_neucom_2023_127042
crossref_primary_10_1016_j_neucom_2017_05_086
crossref_primary_10_1007_s11071_021_06624_8
crossref_primary_10_1109_TASE_2019_2924444
crossref_primary_10_1109_TCYB_2017_2785801
crossref_primary_10_1109_ACCESS_2020_3038674
crossref_primary_10_1109_TCYB_2025_3533139
crossref_primary_10_1109_TFUZZ_2017_2787128
crossref_primary_10_1109_TCYB_2023_3283771
crossref_primary_10_1002_oca_2782
crossref_primary_10_1109_TCYB_2020_2984952
crossref_primary_10_1109_TII_2024_3485724
crossref_primary_10_1109_TR_2017_2746754
crossref_primary_10_1002_rnc_5687
crossref_primary_10_1002_rnc_7622
crossref_primary_10_1016_j_isatra_2024_09_018
crossref_primary_10_1109_TNNLS_2015_2499757
crossref_primary_10_1109_ACCESS_2020_3041834
crossref_primary_10_1109_TNNLS_2023_3244934
crossref_primary_10_1109_TCYB_2015_2492242
crossref_primary_10_1109_TSMC_2018_2810117
crossref_primary_10_1016_j_neucom_2022_09_119
crossref_primary_10_1109_TNNLS_2022_3183991
crossref_primary_10_1016_j_neucom_2021_10_046
crossref_primary_10_1049_iet_cta_2020_0098
crossref_primary_10_1109_ACCESS_2022_3210136
crossref_primary_10_1109_TNNLS_2020_2976787
crossref_primary_10_1007_s12555_021_0674_z
crossref_primary_10_1002_oca_2409
crossref_primary_10_1002_rnc_4342
crossref_primary_10_1109_JAS_2022_105692
crossref_primary_10_1080_00207179_2021_2005257
crossref_primary_10_1016_j_neunet_2020_07_016
crossref_primary_10_1016_j_neucom_2022_11_015
crossref_primary_10_1109_TCSII_2021_3106348
crossref_primary_10_1007_s11071_024_09778_3
crossref_primary_10_1016_j_ins_2023_02_081
crossref_primary_10_1002_oca_3251
crossref_primary_10_1007_s40815_024_01901_1
crossref_primary_10_1109_TAI_2022_3217978
crossref_primary_10_1016_j_neucom_2020_10_012
crossref_primary_10_1109_TSMC_2015_2492941
crossref_primary_10_1016_j_fmre_2021_08_004
crossref_primary_10_1109_TCYB_2021_3085883
crossref_primary_10_1109_JAS_2024_124989
crossref_primary_10_1109_TNNLS_2019_2954983
crossref_primary_10_1007_s10489_023_05233_9
crossref_primary_10_1109_TSMC_2018_2853089
crossref_primary_10_1002_rnc_4096
crossref_primary_10_1002_asjc_1517
crossref_primary_10_1109_TII_2018_2884214
crossref_primary_10_1016_j_isatra_2024_09_011
crossref_primary_10_1109_TNNLS_2022_3171828
crossref_primary_10_1002_oca_3001
crossref_primary_10_1109_TSMC_2016_2642118
crossref_primary_10_1049_iet_cta_2016_0766
crossref_primary_10_1002_rnc_5964
crossref_primary_10_1109_TSMC_2016_2563982
crossref_primary_10_1109_TSMC_2023_3247466
crossref_primary_10_1109_TCYB_2021_3107801
crossref_primary_10_1177_01423312211004819
crossref_primary_10_1109_TNNLS_2015_2490072
crossref_primary_10_1109_TSMC_2023_3344883
crossref_primary_10_1109_TNNLS_2020_3008249
crossref_primary_10_1049_cth2_12520
crossref_primary_10_1002_rnc_7595
crossref_primary_10_1109_TCYB_2017_2778195
crossref_primary_10_1016_j_neucom_2018_09_097
crossref_primary_10_1109_TSMC_2022_3173275
crossref_primary_10_1109_TCYB_2017_2712188
crossref_primary_10_1109_TNNLS_2015_2503772
crossref_primary_10_1016_j_ast_2021_107279
crossref_primary_10_1109_TSMC_2023_3320653
crossref_primary_10_1007_s10462_017_9603_1
crossref_primary_10_1080_00207721_2021_1987578
crossref_primary_10_1109_TCYB_2018_2857400
crossref_primary_10_1016_j_neucom_2021_01_116
crossref_primary_10_4108_ew_6098
crossref_primary_10_1016_j_neucom_2022_09_034
crossref_primary_10_1088_1361_6501_ad7a18
crossref_primary_10_1109_TAI_2023_3327678
crossref_primary_10_3934_mbe_2022430
crossref_primary_10_1016_j_apenergy_2019_114193
crossref_primary_10_1016_j_neucom_2017_05_030
crossref_primary_10_1109_JSYST_2023_3318525
crossref_primary_10_1016_j_engappai_2025_110207
crossref_primary_10_1016_j_neunet_2024_106274
crossref_primary_10_1109_TSMC_2024_3461781
crossref_primary_10_1109_TCYB_2018_2823199
crossref_primary_10_1109_TSMC_2023_3257269
crossref_primary_10_1109_TNNLS_2015_2490168
crossref_primary_10_1016_j_neunet_2018_05_005
crossref_primary_10_1109_TCYB_2020_2982168
crossref_primary_10_1016_j_jfranklin_2018_08_024
crossref_primary_10_1109_TCYB_2021_3111082
crossref_primary_10_1038_s41746_024_01028_5
crossref_primary_10_1109_TNNLS_2022_3208611
crossref_primary_10_1016_j_jfranklin_2017_06_017
crossref_primary_10_1007_s10489_024_05593_w
crossref_primary_10_1016_j_actaastro_2018_03_007
crossref_primary_10_1109_TCYB_2019_2927471
crossref_primary_10_1002_asjc_2818
crossref_primary_10_1016_j_ast_2025_110050
crossref_primary_10_3934_mbe_2022561
crossref_primary_10_1007_s11071_024_09840_0
crossref_primary_10_1109_TSMC_2018_2853091
crossref_primary_10_1109_TCYB_2020_3003550
crossref_primary_10_1016_j_ins_2018_06_022
Cites_doi 10.1109/TSMCB.2012.2203336
10.1109/TNNLS.2014.2328590
10.1007/978-1-4612-0205-9
10.1109/TNNLS.2013.2247627
10.1109/TNNLS.2014.2360724
10.1016/j.automatica.2010.02.018
10.1109/ACC.2010.5531586
10.1109/TASE.2014.2303139
10.1016/j.automatica.2012.09.019
10.1109/TNN.2011.2168538
10.1109/TCYB.2014.2314612
10.1109/TNNLS.2014.2305841
10.1016/j.automatica.2013.09.043
10.1109/MCS.2012.2214134
10.1016/0893-6080(89)90020-8
10.1016/S0005-1098(97)00128-3
10.1109/TCYB.2014.2354377
10.1109/TNNLS.2013.2271454
10.1109/TSMCB.2012.2227253
10.1109/TNNLS.2013.2281663
10.1109/TAC.2013.2294618
10.1016/j.automatica.2012.06.096
10.1109/TSMCB.2010.2043839
10.1016/j.ins.2012.07.006
10.1016/j.automatica.2004.11.034
10.1002/9781118122631
10.1007/s00521-010-0441-1
10.1109/TCYB.2014.2322116
10.1016/j.neunet.2006.08.010
10.1109/TNNLS.2014.2376703
10.1016/j.neunet.2014.03.008
10.1080/00207179.2013.848292
10.1049/iet-cta.2013.0472
10.1016/j.automatica.2014.05.011
10.1109/70.660845
10.1109/TASE.2013.2296206
10.1109/TNN.2005.863416
10.1109/TAC.2013.2272973
10.1109/IJCNN.2014.6889462
10.1109/TAC.1981.1102785
10.1109/TNNLS.2013.2251747
10.1109/TNNLS.2013.2294968
10.1137/1.9780898717563
10.1109/TCYB.2014.2319577
10.1007/978-1-4471-4757-2
10.1109/TNNLS.2015.2401334
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2015.2417170
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1385
ExternalDocumentID 25872221
10_1109_TCYB_2015_2417170
7083712
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Early Career Development Award of the State Key Laboratory of Management and Control for Complex Systems
– fundername: Beijing Natural Science Foundation
  grantid: 4132078
– fundername: National Natural Science Foundation of China
  grantid: 61034002; 61233001; 61273140; 61304086; 61374105
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c461t-5420b4be0c09e30d6c84783a25f85f9e66cbd547a1fa0ab634022052b1e383b63
IEDL.DBID RIE
ISSN 2168-2267
IngestDate Thu Jul 10 23:18:46 EDT 2025
Thu Jan 02 22:22:01 EST 2025
Thu Apr 24 22:55:38 EDT 2025
Tue Jul 01 04:35:05 EDT 2025
Tue Aug 26 16:38:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords nonlinear systems
neural networks (NNs)
Approximate dynamic programming (ADP)
optimal control
robust control
neuro-dynamic programming
reinforcement learning (RL)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-5420b4be0c09e30d6c84783a25f85f9e66cbd547a1fa0ab634022052b1e383b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25872221
PQID 1689841287
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1689841287
crossref_citationtrail_10_1109_TCYB_2015_2417170
crossref_primary_10_1109_TCYB_2015_2417170
ieee_primary_7083712
pubmed_primary_25872221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref56
ref15
bhasin (ref33) 2013; 49
ref14
ref52
bellman (ref7) 1957
ref11
ref54
ref10
rudin (ref51) 1976
sutton (ref21) 1998
ref17
ref16
ref19
ref18
werbos (ref8) 1974
abu-khalaf (ref38) 2005; 41
ni (ref13) 2013; 24
beard (ref50) 1997; 33
ref46
ref45
ref47
ref41
ref44
ref43
ref4
ref3
ref6
ref40
bryson (ref5) 1975
zhang (ref9) 2013
ref35
ref37
ref36
lewis (ref53) 1999
ref31
ref30
ref32
ref2
ref1
ref39
khalil (ref48) 2002
jiang (ref42) 2012; 48
ref24
ref23
ref26
ref25
ref20
finlayson (ref55) 1972
ref22
liu (ref12) 2014; 25
rudin (ref49) 1991
ref28
ref27
ref29
lewis (ref34) 2013
References_xml – ident: ref15
  doi: 10.1109/TSMCB.2012.2203336
– ident: ref29
  doi: 10.1109/TNNLS.2014.2328590
– year: 1999
  ident: ref53
  publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems
– year: 1972
  ident: ref55
  publication-title: The Method of Weighted Residuals and Variational Principles
– ident: ref1
  doi: 10.1007/978-1-4612-0205-9
– ident: ref14
  doi: 10.1109/TNNLS.2013.2247627
– ident: ref28
  doi: 10.1109/TNNLS.2014.2360724
– ident: ref31
  doi: 10.1016/j.automatica.2010.02.018
– year: 2013
  ident: ref34
  publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
– ident: ref45
  doi: 10.1109/ACC.2010.5531586
– ident: ref16
  doi: 10.1109/TASE.2014.2303139
– volume: 49
  start-page: 82
  year: 2013
  ident: ref33
  article-title: A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.09.019
– ident: ref32
  doi: 10.1109/TNN.2011.2168538
– ident: ref20
  doi: 10.1109/TCYB.2014.2314612
– ident: ref27
  doi: 10.1109/TNNLS.2014.2305841
– ident: ref39
  doi: 10.1016/j.automatica.2013.09.043
– ident: ref23
  doi: 10.1109/MCS.2012.2214134
– ident: ref54
  doi: 10.1016/0893-6080(89)90020-8
– volume: 33
  start-page: 2159
  year: 1997
  ident: ref50
  article-title: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation
  publication-title: Automatica
  doi: 10.1016/S0005-1098(97)00128-3
– ident: ref10
  doi: 10.1109/TCYB.2014.2354377
– volume: 24
  start-page: 2038
  year: 2013
  ident: ref13
  article-title: Goal representation heuristic dynamic programming on maze navigation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2271454
– ident: ref18
  doi: 10.1109/TSMCB.2012.2227253
– year: 1998
  ident: ref21
  publication-title: Reinforcement LearningAn Introduction
– volume: 25
  start-page: 621
  year: 2014
  ident: ref12
  article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref4
  doi: 10.1109/TAC.2013.2294618
– year: 1957
  ident: ref7
  publication-title: Dynamic Programming
– year: 1974
  ident: ref8
  article-title: Beyond regression: New tools for prediction and analysis in the behavioral sciences
– volume: 48
  start-page: 2699
  year: 2012
  ident: ref42
  article-title: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.06.096
– ident: ref24
  doi: 10.1109/TSMCB.2010.2043839
– ident: ref11
  doi: 10.1016/j.ins.2012.07.006
– volume: 41
  start-page: 779
  year: 2005
  ident: ref38
  article-title: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.11.034
– ident: ref6
  doi: 10.1002/9781118122631
– ident: ref43
  doi: 10.1007/s00521-010-0441-1
– ident: ref37
  doi: 10.1109/TCYB.2014.2322116
– ident: ref56
  doi: 10.1016/j.neunet.2006.08.010
– ident: ref22
  doi: 10.1109/TNNLS.2014.2376703
– ident: ref36
  doi: 10.1016/j.neunet.2014.03.008
– year: 2002
  ident: ref48
  publication-title: Nonlinear Systems
– ident: ref41
  doi: 10.1080/00207179.2013.848292
– ident: ref35
  doi: 10.1049/iet-cta.2013.0472
– ident: ref40
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref47
  doi: 10.1109/70.660845
– ident: ref30
  doi: 10.1109/TASE.2013.2296206
– ident: ref3
  doi: 10.1109/TNN.2005.863416
– ident: ref19
  doi: 10.1109/TAC.2013.2272973
– year: 1991
  ident: ref49
  publication-title: Functional Analysis
– ident: ref25
  doi: 10.1109/IJCNN.2014.6889462
– ident: ref46
  doi: 10.1109/TAC.1981.1102785
– ident: ref52
  doi: 10.1109/TNNLS.2013.2251747
– year: 1976
  ident: ref51
  publication-title: Principles of Mathematical Analysis
– ident: ref44
  doi: 10.1109/TNNLS.2013.2294968
– ident: ref2
  doi: 10.1137/1.9780898717563
– ident: ref26
  doi: 10.1109/TCYB.2014.2319577
– year: 2013
  ident: ref9
  publication-title: Adaptive Dynamic Programming for Control Algorithms and Stability
  doi: 10.1007/978-1-4471-4757-2
– year: 1975
  ident: ref5
  publication-title: Applied Optimal Control Optimization Estimation and Control
– ident: ref17
  doi: 10.1109/TNNLS.2015.2401334
SSID ssj0000816898
Score 2.5412157
Snippet The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1372
SubjectTerms Algorithm design and analysis
Approximate dynamic programming (ADP)
Approximation algorithms
Artificial neural networks
neural networks (NNs)
neuro-dynamic programming
Nonlinear systems
Optimal control
reinforcement learning (RL)
Robust control
Robustness
Title Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints
URI https://ieeexplore.ieee.org/document/7083712
https://www.ncbi.nlm.nih.gov/pubmed/25872221
https://www.proquest.com/docview/1689841287
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1yAUh5LW2QkDoDw1s46TnJsF6qC1B6qrlROke1MKkSVVJvk0iO_nPHEG4kKELck8jiOZ5x5ePwNY2-lqQunlBdK20xokztRGA_C5FUlkcallO1-dm5OV_rrVXq1xT5OZ2EAgJLPYB4uaS-_av0QQmWHGdoLWSgp_AAdt_Gs1hRPoQISVPo2wQuBVkUWNzGVLA4vl9-OQx5XOkeNhR5MKACXpHmG2lH9ppGoxMrfrU3SOieP2dlmvGOyyY_50Lu5v7sH5fi_H_SEPYrmJz8a5WWHbUHzlO3EBd7xdxGF-v0u-3kBBKrqKX4oIg7rtThGtVfxi9YNXc-XY6L7Daz5J0oF4UhBT783Qzt0Ipww4SvsmxIP-PkIzGHXPCKlc_xxhUgQ71v-pbkdqMuO6lb03TO2Ovl8uTwVsWCD8NqoXqQ6kU47kF4WsJCV8aj78oVN0jpP6wKM8a5KdWZVbaV1ZqHpnG_iFKCjjPfP2XbTNvCScUAZ8rbOpV8U2soK56mWyqvMekCrRM6Y3DCt9BHNPAzupiSvRhZlYHkZWF5Gls_Yh4nkdoTy-Ffj3cCuqWHk1Iy92UhGieswbK7YBnA-S5I-jdo-m7EXo8hMxBtJe_XnTvfYw_DqMQl4n2336wEO0NTp3WuS8V8pHvjg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoALUMrP8mskkADJWzvrOMmBA91S7dJ2D9WuVE7BdpyqospWm0QIjjwHr8K7MXa8kUDArRI3J7JHlv3ZMx5_ngF4zmSZac4N5UIlVMhU00waS2VaFAzb6Niz3Y9mcrIQ70_ikw343r-FsdZ68pkduqK_yy-WpnWusp0E7YWER4FCeWC_fMYDWv1muoez-SKK9t_NxxMacghQIyRvaCwipoW2zLDMjlghDW7H6UhFcZnGZWalNLqIRaJ4qZjSciT809NIc4tnN_xGuVfgKtoZcdS9Dus9OD5lhU-2G2GBoh2ThGtTzrKd-fjDrmOOxUPUkXhmcinnojhNUB_zX3SgT-ryd_vW67n9m_BjPUIdveXTsG300Hz9LXjk_zqEt-BGMLDJ225FbMGGrW7DVtjCavIyxNl-tQ3fjq0PG2u8h5SGSLOndBcVe0GOl7qtGzLuqPzndkX2PNmFYAv_96xql21N3RsaskDZnlpBZl3oEbUiIRY8wa3Z-bpIsyTT6qL1ImufmaOp78DiUsbiLmxWy8reB2JxlRhVpsyMMqFYgfNSMm54ooxFu4sNgK1BkpsQr9117jz35zaW5Q5iuYNYHiA2gNd9k4suWMm_Km87ePQVAzIG8GyNxBx3Gnd9pCqL45l7tAu0Z5IB3Osg2jdeI_vBn4U-hWuT-dFhfjidHTyE664bHeX5EWw2q9Y-RsOu0U_8-iLw8bLR-BOMQVSv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement-Learning-Based+Robust+Controller+Design+for+Continuous-Time+Uncertain+Nonlinear+Systems+Subject+to+Input+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Derong&rft.au=Yang%2C+Xiong&rft.au=Wang%2C+Ding&rft.au=Wei%2C+Qinglai&rft.date=2015-07-01&rft.eissn=2168-2275&rft.volume=45&rft.issue=7&rft.spage=1372&rft.epage=1385&rft_id=info:doi/10.1109%2FTCYB.2015.2417170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon