A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium al...
Saved in:
Published in | RSC advances Vol. 8; no. 2; pp. 186 - 1817 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2018
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of
d
-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO
3
), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10
−5
to 8.03 × 10
−3
S cm
−1
. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. |
---|---|
AbstractList | Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO3), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10-5 to 8.03 × 10-3 S cm-1. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO3), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10-5 to 8.03 × 10-3 S cm-1. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO₃), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10⁻⁵ to 8.03 × 10⁻³ S cm⁻¹. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO ), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10 to 8.03 × 10 S cm . The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d -glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO 3 ), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10 −5 to 8.03 × 10 −3 S cm −1 . The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d -glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO 3 ), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10 −5 to 8.03 × 10 −3 S cm −1 . The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO3), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10−5 to 8.03 × 10−3 S cm−1. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. |
Author | Dai, Hong-lian Huang, Zhi-Jun Xu, Wen-Jin Xu, Pei-Hu Yin, Yi-xia Bu, Ying Wang, Xiao-bin Xu, Hai-Xing Li, Xin |
AuthorAffiliation | Department of Pharmaceutical Engineering Wuhan Kanghua Century Pharmaceutical Company Biomedical Materials and Engineering Research Center Wuhan University of Technology School of Chemistry, Chemical Engineering and Life Sciences |
AuthorAffiliation_xml | – sequence: 0 name: Wuhan Kanghua Century Pharmaceutical Company – sequence: 0 name: Department of Pharmaceutical Engineering – sequence: 0 name: Biomedical Materials and Engineering Research Center – sequence: 0 name: School of Chemistry, Chemical Engineering and Life Sciences – sequence: 0 name: Wuhan University of Technology |
Author_xml | – sequence: 1 givenname: Ying surname: Bu fullname: Bu, Ying – sequence: 2 givenname: Hai-Xing surname: Xu fullname: Xu, Hai-Xing – sequence: 3 givenname: Xin surname: Li fullname: Li, Xin – sequence: 4 givenname: Wen-Jin surname: Xu fullname: Xu, Wen-Jin – sequence: 5 givenname: Yi-xia surname: Yin fullname: Yin, Yi-xia – sequence: 6 givenname: Hong-lian surname: Dai fullname: Dai, Hong-lian – sequence: 7 givenname: Xiao-bin surname: Wang fullname: Wang, Xiao-bin – sequence: 8 givenname: Zhi-Jun surname: Huang fullname: Huang, Zhi-Jun – sequence: 9 givenname: Pei-Hu surname: Xu fullname: Xu, Pei-Hu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35541536$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9rFDEUxwep2Fp78a4EvIiwmmQmmc2lsCz1BxQE0XPIZF52UjLJmGSq89-bdutaiwdzyYN83pf38v0-rY588FBVzwl-S3At3ul1VJhgJuBRdUJxw1cUc3F0rz6uzlK6wuVwRignT6rjmrGGsJqfVMsG6eD7WWd7DSiF3s4jUm5nvcqAlO-RVrELP5cR8rA4pAebQ1IeDUsfww4c6sMEPfph84Cm4JZpiTE4QCZENEG00wBROeQhFv0IOyiVyjb4Z9Vjo1yCs7v7tPr2_uLr9uPq8vOHT9vN5Uo3nORVY2raNb0xwFtuOsPWXcewgtpgBlQY0EQLobAhjepEzdoGeNeyVnWgemZ4fVqd73WnuRuh1-BzGUhO0Y4qLjIoK_9-8XaQu3AtBW7XArMi8PpOIIbvM6QsR5s0OKc8hDlJyjllTUvJf6CUFqsopk1BXz1Ar8IcffkJSTFha8FbcUO9vD_8YerfBhbgzR7QMaQUwRwQguVNQOR2_WVzG5CLAuMHsLb51oyyuHX_bnmxb4lJH6T_ZK7-BRUKynY |
CitedBy_id | crossref_primary_10_1111_iwj_14511 crossref_primary_10_1039_C9TB00173E crossref_primary_10_1016_j_mtbio_2023_100668 crossref_primary_10_1021_acs_chemrev_1c00363 crossref_primary_10_1088_1361_6528_ac8881 crossref_primary_10_1089_ten_teb_2019_0100 crossref_primary_10_1002_admi_202300373 crossref_primary_10_1016_j_mtcomm_2024_109949 crossref_primary_10_3390_polym13030326 crossref_primary_10_1016_j_ijbiomac_2020_03_155 crossref_primary_10_1016_j_ijbiomac_2020_11_032 crossref_primary_10_1089_bioe_2020_0027 crossref_primary_10_1016_j_colsurfa_2021_127380 crossref_primary_10_1016_j_jddst_2024_105402 crossref_primary_10_1039_D1RA04573C crossref_primary_10_1021_acs_chemmater_0c02906 crossref_primary_10_1088_1742_6596_2468_1_012072 crossref_primary_10_1002_adfm_201901369 crossref_primary_10_1002_agt2_21 crossref_primary_10_1016_j_ijbiomac_2019_06_115 crossref_primary_10_1016_j_molliq_2020_114226 crossref_primary_10_1002_adbi_202300455 crossref_primary_10_1016_j_ijbiomac_2023_123913 crossref_primary_10_3390_coatings10121189 crossref_primary_10_1016_j_mtcomm_2024_110685 crossref_primary_10_1039_D3SC00145H crossref_primary_10_3390_polym10101078 crossref_primary_10_1080_25740881_2022_2033769 crossref_primary_10_1016_j_ijbiomac_2019_09_020 crossref_primary_10_1016_j_synthmet_2020_116674 crossref_primary_10_1002_adfm_202209658 crossref_primary_10_1007_s00441_020_03301_x crossref_primary_10_1021_acsaem_9b02007 crossref_primary_10_1007_s10570_021_04330_7 crossref_primary_10_1016_j_ijbiomac_2021_04_004 crossref_primary_10_1016_j_powera_2020_100033 crossref_primary_10_1039_D1TB01260F crossref_primary_10_3390_gels7040272 crossref_primary_10_1016_j_carbpol_2018_10_037 crossref_primary_10_3390_molecules27238326 crossref_primary_10_1038_s41467_022_33089_z crossref_primary_10_1016_j_synthmet_2019_04_015 crossref_primary_10_1088_1758_5090_ac8baa crossref_primary_10_1007_s00289_020_03429_4 crossref_primary_10_1021_acsbiomaterials_3c00194 crossref_primary_10_3390_polym12010111 crossref_primary_10_1177_08839115221085736 crossref_primary_10_1016_j_jmst_2022_09_036 crossref_primary_10_3390_polym14081549 crossref_primary_10_1016_j_ijbiomac_2023_123450 crossref_primary_10_1016_j_progpolymsci_2022_101573 crossref_primary_10_1002_pat_6546 crossref_primary_10_1016_j_apmt_2021_101117 crossref_primary_10_1016_j_bprint_2023_e00264 crossref_primary_10_3390_ma17143472 crossref_primary_10_1007_s10853_021_06757_6 crossref_primary_10_1021_acsbiomaterials_9b00778 crossref_primary_10_1177_08853282211064403 crossref_primary_10_1039_D0RA00102C crossref_primary_10_1002_adhm_202001876 crossref_primary_10_1016_j_bioactmat_2025_01_014 crossref_primary_10_1016_j_eurpolymj_2023_112137 crossref_primary_10_1016_j_msec_2019_110560 crossref_primary_10_1016_j_crgsc_2021_100143 crossref_primary_10_1016_j_dyepig_2019_107686 crossref_primary_10_1177_08853282231200963 crossref_primary_10_1016_j_tibtech_2023_11_017 crossref_primary_10_1016_j_electacta_2020_137168 crossref_primary_10_1080_00914037_2020_1785462 crossref_primary_10_1016_j_ijbiomac_2024_136910 crossref_primary_10_1002_pol_20210933 crossref_primary_10_1021_acs_chemmater_0c00767 crossref_primary_10_1002_jbm_a_37510 crossref_primary_10_1002_term_2945 crossref_primary_10_1007_s10439_022_02955_8 crossref_primary_10_1016_j_crgsc_2022_100316 crossref_primary_10_1016_j_scitotenv_2021_147430 crossref_primary_10_3390_gels8010041 crossref_primary_10_1088_1758_5090_acab35 crossref_primary_10_1038_s41598_024_63186_6 crossref_primary_10_1016_j_bprint_2021_e00166 crossref_primary_10_3390_ijms23020842 crossref_primary_10_3390_polym16101346 crossref_primary_10_3389_fmats_2020_00061 crossref_primary_10_4103_ATN_ATN_D_24_00017 crossref_primary_10_1038_s41598_020_78650_2 crossref_primary_10_1016_j_mtbio_2024_101415 crossref_primary_10_1039_D1TB01415C crossref_primary_10_61186_sjku_28_4_110 crossref_primary_10_1002_adma_202007429 crossref_primary_10_1016_j_optmat_2022_113128 crossref_primary_10_1080_00914037_2020_1725764 crossref_primary_10_1007_s10965_022_02983_x crossref_primary_10_3390_polym14224953 crossref_primary_10_1080_00914037_2020_1857384 crossref_primary_10_1002_btm2_10667 crossref_primary_10_3390_pharmaceutics15122760 crossref_primary_10_1039_D2BM01216B crossref_primary_10_1016_j_smaim_2020_08_002 crossref_primary_10_1016_j_ajps_2024_101007 crossref_primary_10_1016_j_polymertesting_2019_106213 crossref_primary_10_1039_D2TB02019J crossref_primary_10_1002_mabi_202400265 crossref_primary_10_1021_acs_nanolett_4c01659 crossref_primary_10_1016_j_jhazmat_2023_130772 crossref_primary_10_1007_s42765_023_00352_x crossref_primary_10_1016_j_neuint_2020_104953 |
Cites_doi | 10.1016/j.carbpol.2010.10.022 10.1002/jbm.a.36176 10.1021/acsbiomaterials.6b00034 10.1039/C6SM00827E 10.3390/polym8040110 10.1016/j.biomaterials.2011.09.030 10.1016/j.carbpol.2009.11.022 10.1039/C5RA19467A 10.1016/j.biomaterials.2017.06.024 10.1371/journal.pone.0116711 10.1016/j.clinph.2008.03.018 10.1039/C6TB01710J 10.1002/jbm.a.36172 10.1016/j.actbio.2016.03.016 10.1039/C5RA19562D 10.1039/C6TA02738E 10.1089/ten.tea.2012.0111 10.1021/acsami.7b02072 10.1016/j.polymer.2010.02.034 10.1016/j.biomaterials.2011.02.023 10.1016/j.jmbbm.2017.05.014 10.1002/jbm.a.34693 10.1161/CIRCULATIONAHA.114.014937 10.1039/C6RA24450E 10.1016/j.injury.2005.10.012 10.1088/1748-6041/8/6/065004 10.4103/1673-5374.133168 10.1016/j.neulet.2014.04.029 10.1021/acsami.6b08834 10.1002/jbm.a.32923 10.1016/j.biomaterials.2013.10.002 10.1016/j.biomaterials.2009.07.034 10.1016/j.carbpol.2017.06.095 10.1002/adfm.201702969 10.1016/j.msec.2016.06.084 10.1016/j.carbpol.2016.04.064 10.1016/S0168-3659(03)00303-1 10.1039/C6TB02259F 10.1002/mabi.201600148 10.1002/micr.20318 10.1002/jbm.a.34810 10.1016/j.polymdegradstab.2009.05.011 10.1016/j.carbpol.2017.06.101 10.1016/j.ijpharm.2009.07.019 10.1016/j.ijpharm.2009.04.031 10.1186/1423-0127-16-65 10.1002/adhm.201500355 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/c8ra01059e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 1817 |
ExternalDocumentID | PMC9078905 35541536 10_1039_C8RA01059E c8ra01059e |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 51473130; 51572206; 51403168 – fundername: ; grantid: 20171049720018; 20171049720019; 20171049720009 |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABGFH ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAEMU AAYXX ABASK ABIQK ABJNI AETIL AFPKN AFRZK AKMSF ANBJS CITATION ECGLT J3G J3H RAOCF YAE NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c461t-4f32b4dffe676fbf58bb50ae3f05e29fec1c99a0f14ab93574e6b757abead5f63 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 14:12:16 EDT 2025 Fri Jul 11 06:37:47 EDT 2025 Fri Jul 11 00:14:22 EDT 2025 Mon Jun 30 05:53:47 EDT 2025 Mon Jul 21 06:08:51 EDT 2025 Tue Jul 01 04:24:14 EDT 2025 Thu Apr 24 22:50:27 EDT 2025 Tue Dec 17 21:00:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-4f32b4dffe676fbf58bb50ae3f05e29fec1c99a0f14ab93574e6b757abead5f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1039/c8ra01059e |
PMID | 35541536 |
PQID | 2015896794 |
PQPubID | 2047525 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9078905 crossref_primary_10_1039_C8RA01059E proquest_miscellaneous_2662547215 rsc_primary_c8ra01059e crossref_citationtrail_10_1039_C8RA01059E proquest_miscellaneous_2221052024 pubmed_primary_35541536 proquest_journals_2015896794 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Goding (C8RA01059E-(cit1)/*[position()=1]) 2017; 6 Zhuang (C8RA01059E-(cit11)/*[position()=1]) 2016; 4 Liu (C8RA01059E-(cit6)/*[position()=1]) 2016; 148 Campbell (C8RA01059E-(cit15)/*[position()=1]) 2008; 119 Xu (C8RA01059E-(cit20)/*[position()=1]) 2014; 35 Sherstova (C8RA01059E-(cit2)/*[position()=1]) 2016; 12 Huang (C8RA01059E-(cit18)/*[position()=1]) 2012; 33 Sun (C8RA01059E-(cit22)/*[position()=1]) 2016; 4 Yang (C8RA01059E-(cit5)/*[position()=1]) 2016; 8 Liuyun (C8RA01059E-(cit9)/*[position()=1]) 2009; 16 Murdan (C8RA01059E-(cit7)/*[position()=1]) 2003; 92 Lloyd (C8RA01059E-(cit24)/*[position()=1]) 2007; 27 Gao (C8RA01059E-(cit31)/*[position()=1]) 2009; 94 Wu (C8RA01059E-(cit28)/*[position()=1]) 2017; 174 Lin (C8RA01059E-(cit41)/*[position()=1]) 2015; 10 Wang (C8RA01059E-(cit10)/*[position()=1]) 2016; 69 Chan (C8RA01059E-(cit12)/*[position()=1]) 2009; 30 Xu (C8RA01059E-(cit19)/*[position()=1]) 2011; 32 Wang (C8RA01059E-(cit37)/*[position()=1]) 2016; 8 Zhou (C8RA01059E-(cit43)/*[position()=1]) 2011; 83 Yang (C8RA01059E-(cit8)/*[position()=1]) 2016; 16 Zhang (C8RA01059E-(cit40)/*[position()=1]) 2017; 142 Li (C8RA01059E-(cit33)/*[position()=1]) 2015; 5 Pelto (C8RA01059E-(cit29)/*[position()=1]) 2013; 19 Xie (C8RA01059E-(cit47)/*[position()=1]) 2015; 4 Wang (C8RA01059E-(cit3)/*[position()=1]) 2016; 36 Growney Kalaf (C8RA01059E-(cit25)/*[position()=1]) 2017; 72 Sun (C8RA01059E-(cit44)/*[position()=1]) 2010; 95 Pasqui (C8RA01059E-(cit4)/*[position()=1]) 2014; 102 Hopkins (C8RA01059E-(cit45)/*[position()=1]) 2017; 105 Alberti (C8RA01059E-(cit46)/*[position()=1]) 2016; 2 Chung (C8RA01059E-(cit27)/*[position()=1]) 2014; 102 Liu (C8RA01059E-(cit35)/*[position()=1]) 2017; 9 Zhou (C8RA01059E-(cit23)/*[position()=1]) 2017; 105 Mammadov (C8RA01059E-(cit16)/*[position()=1]) 2016; 6 Mihic (C8RA01059E-(cit34)/*[position()=1]) 2015; 132 Zhao (C8RA01059E-(cit36)/*[position()=1]) 2016; 4 Liu (C8RA01059E-(cit21)/*[position()=1]) 2009; 376 di Summa (C8RA01059E-(cit17)/*[position()=1]) 2014; 572 Chansai (C8RA01059E-(cit13)/*[position()=1]) 2009; 381 Dehghan Baniani (C8RA01059E-(cit30)/*[position()=1]) 2017; 174 Iannuzzi (C8RA01059E-(cit32)/*[position()=1]) 2010; 51 Tanuma (C8RA01059E-(cit38)/*[position()=1]) 2010; 80 Johnson (C8RA01059E-(cit14)/*[position()=1]) 2005; 36 Yu (C8RA01059E-(cit26)/*[position()=1]) 2015; 5 Zhang (C8RA01059E-(cit42)/*[position()=1]) 2014; 9 Marycz (C8RA01059E-(cit39)/*[position()=1]) 2013; 8 |
References_xml | – volume: 83 start-page: 1643 year: 2011 ident: C8RA01059E-(cit43)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2010.10.022 – volume: 105 start-page: 3148 year: 2017 ident: C8RA01059E-(cit45)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.36176 – volume: 2 start-page: 937 year: 2016 ident: C8RA01059E-(cit46)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00034 – volume: 12 start-page: 7338 year: 2016 ident: C8RA01059E-(cit2)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C6SM00827E – volume: 8 start-page: 110 year: 2016 ident: C8RA01059E-(cit37)/*[position()=1] publication-title: Polymers doi: 10.3390/polym8040110 – volume: 33 start-page: 59 year: 2012 ident: C8RA01059E-(cit18)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.030 – volume: 80 start-page: 260 year: 2010 ident: C8RA01059E-(cit38)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.11.022 – volume: 5 start-page: 92490 year: 2015 ident: C8RA01059E-(cit33)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA19467A – volume: 142 start-page: 90 year: 2017 ident: C8RA01059E-(cit40)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.024 – volume: 10 start-page: e0116711 year: 2015 ident: C8RA01059E-(cit41)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0116711 – volume: 119 start-page: 1951 year: 2008 ident: C8RA01059E-(cit15)/*[position()=1] publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.03.018 – volume: 4 start-page: 6670 year: 2016 ident: C8RA01059E-(cit22)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C6TB01710J – volume: 105 start-page: 3077 year: 2017 ident: C8RA01059E-(cit23)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.36172 – volume: 36 start-page: 143 year: 2016 ident: C8RA01059E-(cit3)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.03.016 – volume: 5 start-page: 106953 year: 2015 ident: C8RA01059E-(cit26)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA19562D – volume: 4 start-page: 10885 year: 2016 ident: C8RA01059E-(cit11)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02738E – volume: 19 start-page: 882 year: 2013 ident: C8RA01059E-(cit29)/*[position()=1] publication-title: Tissue Eng., Part A doi: 10.1089/ten.tea.2012.0111 – volume: 9 start-page: 14677 year: 2017 ident: C8RA01059E-(cit35)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02072 – volume: 51 start-page: 2049 year: 2010 ident: C8RA01059E-(cit32)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2010.02.034 – volume: 32 start-page: 4506 year: 2011 ident: C8RA01059E-(cit19)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.02.023 – volume: 72 start-page: 229 year: 2017 ident: C8RA01059E-(cit25)/*[position()=1] publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.05.014 – volume: 102 start-page: 315 year: 2014 ident: C8RA01059E-(cit27)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.34693 – volume: 132 start-page: 772 year: 2015 ident: C8RA01059E-(cit34)/*[position()=1] publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.014937 – volume: 6 start-page: 110535 year: 2016 ident: C8RA01059E-(cit16)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA24450E – volume: 36 start-page: S24 issue: suppl. 4 year: 2005 ident: C8RA01059E-(cit14)/*[position()=1] publication-title: Injury doi: 10.1016/j.injury.2005.10.012 – volume: 8 start-page: 065004 year: 2013 ident: C8RA01059E-(cit39)/*[position()=1] publication-title: Biomed. Mater. doi: 10.1088/1748-6041/8/6/065004 – volume: 9 start-page: 1075 year: 2014 ident: C8RA01059E-(cit42)/*[position()=1] publication-title: Neural Regener. Res. doi: 10.4103/1673-5374.133168 – volume: 572 start-page: 26 year: 2014 ident: C8RA01059E-(cit17)/*[position()=1] publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.04.029 – volume: 8 start-page: 25621 year: 2016 ident: C8RA01059E-(cit5)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08834 – volume: 95 start-page: 1019 year: 2010 ident: C8RA01059E-(cit44)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.32923 – volume: 35 start-page: 225 year: 2014 ident: C8RA01059E-(cit20)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.10.002 – volume: 30 start-page: 6119 year: 2009 ident: C8RA01059E-(cit12)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.07.034 – volume: 174 start-page: 633 year: 2017 ident: C8RA01059E-(cit30)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.095 – volume: 6 year: 2017 ident: C8RA01059E-(cit1)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adfm.201702969 – volume: 69 start-page: 268 year: 2016 ident: C8RA01059E-(cit10)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2016.06.084 – volume: 148 start-page: 259 year: 2016 ident: C8RA01059E-(cit6)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.04.064 – volume: 92 start-page: 1 year: 2003 ident: C8RA01059E-(cit7)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/S0168-3659(03)00303-1 – volume: 4 start-page: 8016 year: 2016 ident: C8RA01059E-(cit36)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C6TB02259F – volume: 16 start-page: 1653 year: 2016 ident: C8RA01059E-(cit8)/*[position()=1] publication-title: Macromol. Biosci. doi: 10.1002/mabi.201600148 – volume: 27 start-page: 138 year: 2007 ident: C8RA01059E-(cit24)/*[position()=1] publication-title: Microsurgery doi: 10.1002/micr.20318 – volume: 102 start-page: 1568 year: 2014 ident: C8RA01059E-(cit4)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.34810 – volume: 94 start-page: 1405 year: 2009 ident: C8RA01059E-(cit31)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2009.05.011 – volume: 174 start-page: 830 year: 2017 ident: C8RA01059E-(cit28)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.101 – volume: 381 start-page: 25 year: 2009 ident: C8RA01059E-(cit13)/*[position()=1] publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.07.019 – volume: 376 start-page: 92 year: 2009 ident: C8RA01059E-(cit21)/*[position()=1] publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.04.031 – volume: 16 start-page: 65 year: 2009 ident: C8RA01059E-(cit9)/*[position()=1] publication-title: J. Biomed. Sci. doi: 10.1186/1423-0127-16-65 – volume: 4 start-page: 2195 year: 2015 ident: C8RA01059E-(cit47)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201500355 |
SSID | ssj0000651261 |
Score | 2.5442843 |
Snippet | Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 186 |
SubjectTerms | animal experimentation Biocompatibility biocompatible materials calcium Calcium carbonate Calcium ions cell growth Chemistry Chitosan Crosslinking Electrical resistivity electrical treatment Gelation Hydrogels ions Mechanical properties Modulus of elasticity nerve regeneration nerve tissue Polymers Polypyrroles Porosity pyrroles Regeneration Sodium alginate Sustained release Swelling ratio Tissue engineering |
Title | A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35541536 https://www.proquest.com/docview/2015896794 https://www.proquest.com/docview/2221052024 https://www.proquest.com/docview/2662547215 https://pubmed.ncbi.nlm.nih.gov/PMC9078905 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZr-rC9jP3qmq0rGtvLCO5syZbtxxBSQuk66JLNezKWLbcBYwfHgXl__U6yZSckjG4vJpwOIXKfpNPp0x1CHxMHcMK8yDDjyDFsTn0jojExpJwnvkcplw-cv9yw2cK-Cpygj-mq1yUVv4h_H3xX8j9WBRnYVb6S_QfLdp2CAH6DfeELFobvg2w8lqRxmbBV0n_WRbKUTONMVlqomluBOCp58auWZaLrTD7croo1TOj7OimLO5GNkmKl6eerIqtXdanYhpJ6KDMgq5QD2SiXrMhRKe5UiurOkjqt97eJZhL0IfeNWtr1tgiSQElm0dIItqTXiksQLPNdtR8iN65aYRuRsLytiIRauAicucFOTQmWC3FA1q683hbAiDlaKcIjg53Ba95ztouqkm7t0F373vJvUpk9NfbKSBb-9EW_yemL_Zuv4eXi-jqcT4P5ETomcLggA3R8-30R_Oxic-CWWUSl2u2GrTPbUv9z3_2uL7N3QNnn2R6VuqyMcl_mz9DT9tyBxw2InqNHIn-BHk90ub-XqB7jHky4ARPWYMIAJrwDJqzBhDWYsAITlmDCW2DCACbcgwkrMOFtML1Ci8vpfDIz2rocRmwzqzLslBJuJ2kqmMtSnjoe544ZCZqajiB-KmIr9v3ITC074j51XFsw7jpuxGHZclJGT9AgL3JxirANx_0UtgVb-ooR8Tmn1AJfANzmmNhOPESf9D8cxm3Selk7JQsVeYL64cS7HStrTIfoQ6e7alK1HNQ604YK26m8DgHFjucz2JuG6H3XDAaQt2dRLooN6BBiSdIY-ZsOY8SxXXCjh-h1Y_tuKNKxB_eCDZG7g4pOQSZ6323Jl_cq4bsva0KY0OcJ4KfT73H45gGDfoue9HP1DA2qciPegT9d8XMVhzpvJ8EfDILR3A |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conductive+sodium+alginate+and+carboxymethyl+chitosan+hydrogel+doped+with+polypyrrole+for+peripheral+nerve+regeneration&rft.jtitle=RSC+advances&rft.au=Bu%2C+Ying&rft.au=Xu%2C+Hai-Xing&rft.au=Li%2C+Xin&rft.au=Xu%2C+Wen-Jin&rft.date=2018-01-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=8&rft.issue=20+p.10806-10817&rft.spage=10806&rft.epage=10817&rft_id=info:doi/10.1039%2Fc8ra01059e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |