A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration

Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium al...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 8; no. 2; pp. 186 - 1817
Main Authors Bu, Ying, Xu, Hai-Xing, Li, Xin, Xu, Wen-Jin, Yin, Yi-xia, Dai, Hong-lian, Wang, Xiao-bin, Huang, Zhi-Jun, Xu, Pei-Hu
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2018
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d -glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO 3 ), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10 −5 to 8.03 × 10 −3 S cm −1 . The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties.
AbstractList Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO3), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10-5 to 8.03 × 10-3 S cm-1. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO3), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10-5 to 8.03 × 10-3 S cm-1. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO₃), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10⁻⁵ to 8.03 × 10⁻³ S cm⁻¹. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO ), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10 to 8.03 × 10 S cm . The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d -glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO 3 ), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10 −5 to 8.03 × 10 −3 S cm −1 . The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d -glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO 3 ), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10 −5 to 8.03 × 10 −3 S cm −1 . The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering. Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties.
Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they usually exhibited poor mechanical properties and biocompatibility. In this work, we present a simple approach to prepare conductive sodium alginate (SA) and carboxymethyl chitosan (CMCS) polymer hydrogels (SA/CMCS/PPy) that can provide sufficient help for peripheral nerve regeneration. SA/CMCS hydrogel was cross-linked by calcium ions provided by the sustained release system consisting of d-glucono-δ-lactone (GDL) and superfine calcium carbonate (CaCO3), and the conductivity of the hydrogel was provided by doped with polypyrrole (PPy). Gelation time, swelling ratio, porosity and Young's modulus of the conductive SA/CMCS/PPy hydrogel were adjusted by polypyrrole content, and the conductivity of it was within 2.41 × 10−5 to 8.03 × 10−3 S cm−1. The advantages of conductive hydrogels in cell growth were verified by controlling electrical stimulation of cell experiments, and the hydrogels were also used as a filling material for the nerve conduit in animal experiments. The SA/CMCS/PPy conductive hydrogel showed good biocompatibility and repair features as a bioactive biomaterial, we expect this conductive hydrogel will have a good potential in the neural tissue engineering.
Author Dai, Hong-lian
Huang, Zhi-Jun
Xu, Wen-Jin
Xu, Pei-Hu
Yin, Yi-xia
Bu, Ying
Wang, Xiao-bin
Xu, Hai-Xing
Li, Xin
AuthorAffiliation Department of Pharmaceutical Engineering
Wuhan Kanghua Century Pharmaceutical Company
Biomedical Materials and Engineering Research Center
Wuhan University of Technology
School of Chemistry, Chemical Engineering and Life Sciences
AuthorAffiliation_xml – sequence: 0
  name: Wuhan Kanghua Century Pharmaceutical Company
– sequence: 0
  name: Department of Pharmaceutical Engineering
– sequence: 0
  name: Biomedical Materials and Engineering Research Center
– sequence: 0
  name: School of Chemistry, Chemical Engineering and Life Sciences
– sequence: 0
  name: Wuhan University of Technology
Author_xml – sequence: 1
  givenname: Ying
  surname: Bu
  fullname: Bu, Ying
– sequence: 2
  givenname: Hai-Xing
  surname: Xu
  fullname: Xu, Hai-Xing
– sequence: 3
  givenname: Xin
  surname: Li
  fullname: Li, Xin
– sequence: 4
  givenname: Wen-Jin
  surname: Xu
  fullname: Xu, Wen-Jin
– sequence: 5
  givenname: Yi-xia
  surname: Yin
  fullname: Yin, Yi-xia
– sequence: 6
  givenname: Hong-lian
  surname: Dai
  fullname: Dai, Hong-lian
– sequence: 7
  givenname: Xiao-bin
  surname: Wang
  fullname: Wang, Xiao-bin
– sequence: 8
  givenname: Zhi-Jun
  surname: Huang
  fullname: Huang, Zhi-Jun
– sequence: 9
  givenname: Pei-Hu
  surname: Xu
  fullname: Xu, Pei-Hu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35541536$$D View this record in MEDLINE/PubMed
BookMark eNqNks9rFDEUxwep2Fp78a4EvIiwmmQmmc2lsCz1BxQE0XPIZF52UjLJmGSq89-bdutaiwdzyYN83pf38v0-rY588FBVzwl-S3At3ul1VJhgJuBRdUJxw1cUc3F0rz6uzlK6wuVwRignT6rjmrGGsJqfVMsG6eD7WWd7DSiF3s4jUm5nvcqAlO-RVrELP5cR8rA4pAebQ1IeDUsfww4c6sMEPfph84Cm4JZpiTE4QCZENEG00wBROeQhFv0IOyiVyjb4Z9Vjo1yCs7v7tPr2_uLr9uPq8vOHT9vN5Uo3nORVY2raNb0xwFtuOsPWXcewgtpgBlQY0EQLobAhjepEzdoGeNeyVnWgemZ4fVqd73WnuRuh1-BzGUhO0Y4qLjIoK_9-8XaQu3AtBW7XArMi8PpOIIbvM6QsR5s0OKc8hDlJyjllTUvJf6CUFqsopk1BXz1Ar8IcffkJSTFha8FbcUO9vD_8YerfBhbgzR7QMaQUwRwQguVNQOR2_WVzG5CLAuMHsLb51oyyuHX_bnmxb4lJH6T_ZK7-BRUKynY
CitedBy_id crossref_primary_10_1111_iwj_14511
crossref_primary_10_1039_C9TB00173E
crossref_primary_10_1016_j_mtbio_2023_100668
crossref_primary_10_1021_acs_chemrev_1c00363
crossref_primary_10_1088_1361_6528_ac8881
crossref_primary_10_1089_ten_teb_2019_0100
crossref_primary_10_1002_admi_202300373
crossref_primary_10_1016_j_mtcomm_2024_109949
crossref_primary_10_3390_polym13030326
crossref_primary_10_1016_j_ijbiomac_2020_03_155
crossref_primary_10_1016_j_ijbiomac_2020_11_032
crossref_primary_10_1089_bioe_2020_0027
crossref_primary_10_1016_j_colsurfa_2021_127380
crossref_primary_10_1016_j_jddst_2024_105402
crossref_primary_10_1039_D1RA04573C
crossref_primary_10_1021_acs_chemmater_0c02906
crossref_primary_10_1088_1742_6596_2468_1_012072
crossref_primary_10_1002_adfm_201901369
crossref_primary_10_1002_agt2_21
crossref_primary_10_1016_j_ijbiomac_2019_06_115
crossref_primary_10_1016_j_molliq_2020_114226
crossref_primary_10_1002_adbi_202300455
crossref_primary_10_1016_j_ijbiomac_2023_123913
crossref_primary_10_3390_coatings10121189
crossref_primary_10_1016_j_mtcomm_2024_110685
crossref_primary_10_1039_D3SC00145H
crossref_primary_10_3390_polym10101078
crossref_primary_10_1080_25740881_2022_2033769
crossref_primary_10_1016_j_ijbiomac_2019_09_020
crossref_primary_10_1016_j_synthmet_2020_116674
crossref_primary_10_1002_adfm_202209658
crossref_primary_10_1007_s00441_020_03301_x
crossref_primary_10_1021_acsaem_9b02007
crossref_primary_10_1007_s10570_021_04330_7
crossref_primary_10_1016_j_ijbiomac_2021_04_004
crossref_primary_10_1016_j_powera_2020_100033
crossref_primary_10_1039_D1TB01260F
crossref_primary_10_3390_gels7040272
crossref_primary_10_1016_j_carbpol_2018_10_037
crossref_primary_10_3390_molecules27238326
crossref_primary_10_1038_s41467_022_33089_z
crossref_primary_10_1016_j_synthmet_2019_04_015
crossref_primary_10_1088_1758_5090_ac8baa
crossref_primary_10_1007_s00289_020_03429_4
crossref_primary_10_1021_acsbiomaterials_3c00194
crossref_primary_10_3390_polym12010111
crossref_primary_10_1177_08839115221085736
crossref_primary_10_1016_j_jmst_2022_09_036
crossref_primary_10_3390_polym14081549
crossref_primary_10_1016_j_ijbiomac_2023_123450
crossref_primary_10_1016_j_progpolymsci_2022_101573
crossref_primary_10_1002_pat_6546
crossref_primary_10_1016_j_apmt_2021_101117
crossref_primary_10_1016_j_bprint_2023_e00264
crossref_primary_10_3390_ma17143472
crossref_primary_10_1007_s10853_021_06757_6
crossref_primary_10_1021_acsbiomaterials_9b00778
crossref_primary_10_1177_08853282211064403
crossref_primary_10_1039_D0RA00102C
crossref_primary_10_1002_adhm_202001876
crossref_primary_10_1016_j_bioactmat_2025_01_014
crossref_primary_10_1016_j_eurpolymj_2023_112137
crossref_primary_10_1016_j_msec_2019_110560
crossref_primary_10_1016_j_crgsc_2021_100143
crossref_primary_10_1016_j_dyepig_2019_107686
crossref_primary_10_1177_08853282231200963
crossref_primary_10_1016_j_tibtech_2023_11_017
crossref_primary_10_1016_j_electacta_2020_137168
crossref_primary_10_1080_00914037_2020_1785462
crossref_primary_10_1016_j_ijbiomac_2024_136910
crossref_primary_10_1002_pol_20210933
crossref_primary_10_1021_acs_chemmater_0c00767
crossref_primary_10_1002_jbm_a_37510
crossref_primary_10_1002_term_2945
crossref_primary_10_1007_s10439_022_02955_8
crossref_primary_10_1016_j_crgsc_2022_100316
crossref_primary_10_1016_j_scitotenv_2021_147430
crossref_primary_10_3390_gels8010041
crossref_primary_10_1088_1758_5090_acab35
crossref_primary_10_1038_s41598_024_63186_6
crossref_primary_10_1016_j_bprint_2021_e00166
crossref_primary_10_3390_ijms23020842
crossref_primary_10_3390_polym16101346
crossref_primary_10_3389_fmats_2020_00061
crossref_primary_10_4103_ATN_ATN_D_24_00017
crossref_primary_10_1038_s41598_020_78650_2
crossref_primary_10_1016_j_mtbio_2024_101415
crossref_primary_10_1039_D1TB01415C
crossref_primary_10_61186_sjku_28_4_110
crossref_primary_10_1002_adma_202007429
crossref_primary_10_1016_j_optmat_2022_113128
crossref_primary_10_1080_00914037_2020_1725764
crossref_primary_10_1007_s10965_022_02983_x
crossref_primary_10_3390_polym14224953
crossref_primary_10_1080_00914037_2020_1857384
crossref_primary_10_1002_btm2_10667
crossref_primary_10_3390_pharmaceutics15122760
crossref_primary_10_1039_D2BM01216B
crossref_primary_10_1016_j_smaim_2020_08_002
crossref_primary_10_1016_j_ajps_2024_101007
crossref_primary_10_1016_j_polymertesting_2019_106213
crossref_primary_10_1039_D2TB02019J
crossref_primary_10_1002_mabi_202400265
crossref_primary_10_1021_acs_nanolett_4c01659
crossref_primary_10_1016_j_jhazmat_2023_130772
crossref_primary_10_1007_s42765_023_00352_x
crossref_primary_10_1016_j_neuint_2020_104953
Cites_doi 10.1016/j.carbpol.2010.10.022
10.1002/jbm.a.36176
10.1021/acsbiomaterials.6b00034
10.1039/C6SM00827E
10.3390/polym8040110
10.1016/j.biomaterials.2011.09.030
10.1016/j.carbpol.2009.11.022
10.1039/C5RA19467A
10.1016/j.biomaterials.2017.06.024
10.1371/journal.pone.0116711
10.1016/j.clinph.2008.03.018
10.1039/C6TB01710J
10.1002/jbm.a.36172
10.1016/j.actbio.2016.03.016
10.1039/C5RA19562D
10.1039/C6TA02738E
10.1089/ten.tea.2012.0111
10.1021/acsami.7b02072
10.1016/j.polymer.2010.02.034
10.1016/j.biomaterials.2011.02.023
10.1016/j.jmbbm.2017.05.014
10.1002/jbm.a.34693
10.1161/CIRCULATIONAHA.114.014937
10.1039/C6RA24450E
10.1016/j.injury.2005.10.012
10.1088/1748-6041/8/6/065004
10.4103/1673-5374.133168
10.1016/j.neulet.2014.04.029
10.1021/acsami.6b08834
10.1002/jbm.a.32923
10.1016/j.biomaterials.2013.10.002
10.1016/j.biomaterials.2009.07.034
10.1016/j.carbpol.2017.06.095
10.1002/adfm.201702969
10.1016/j.msec.2016.06.084
10.1016/j.carbpol.2016.04.064
10.1016/S0168-3659(03)00303-1
10.1039/C6TB02259F
10.1002/mabi.201600148
10.1002/micr.20318
10.1002/jbm.a.34810
10.1016/j.polymdegradstab.2009.05.011
10.1016/j.carbpol.2017.06.101
10.1016/j.ijpharm.2009.07.019
10.1016/j.ijpharm.2009.04.031
10.1186/1423-0127-16-65
10.1002/adhm.201500355
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2018
This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2018
– notice: This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/c8ra01059e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed
CrossRef


Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 1817
ExternalDocumentID PMC9078905
35541536
10_1039_C8RA01059E
c8ra01059e
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 51473130; 51572206; 51403168
– fundername: ;
  grantid: 20171049720018; 20171049720019; 20171049720009
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAEMU
AAYXX
ABASK
ABIQK
ABJNI
AETIL
AFPKN
AFRZK
AKMSF
ANBJS
CITATION
ECGLT
J3G
J3H
RAOCF
YAE
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-4f32b4dffe676fbf58bb50ae3f05e29fec1c99a0f14ab93574e6b757abead5f63
ISSN 2046-2069
IngestDate Thu Aug 21 14:12:16 EDT 2025
Fri Jul 11 06:37:47 EDT 2025
Fri Jul 11 00:14:22 EDT 2025
Mon Jun 30 05:53:47 EDT 2025
Mon Jul 21 06:08:51 EDT 2025
Tue Jul 01 04:24:14 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
Tue Dec 17 21:00:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-4f32b4dffe676fbf58bb50ae3f05e29fec1c99a0f14ab93574e6b757abead5f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1039/c8ra01059e
PMID 35541536
PQID 2015896794
PQPubID 2047525
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9078905
crossref_primary_10_1039_C8RA01059E
proquest_miscellaneous_2662547215
rsc_primary_c8ra01059e
crossref_citationtrail_10_1039_C8RA01059E
proquest_miscellaneous_2221052024
pubmed_primary_35541536
proquest_journals_2015896794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2018
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Goding (C8RA01059E-(cit1)/*[position()=1]) 2017; 6
Zhuang (C8RA01059E-(cit11)/*[position()=1]) 2016; 4
Liu (C8RA01059E-(cit6)/*[position()=1]) 2016; 148
Campbell (C8RA01059E-(cit15)/*[position()=1]) 2008; 119
Xu (C8RA01059E-(cit20)/*[position()=1]) 2014; 35
Sherstova (C8RA01059E-(cit2)/*[position()=1]) 2016; 12
Huang (C8RA01059E-(cit18)/*[position()=1]) 2012; 33
Sun (C8RA01059E-(cit22)/*[position()=1]) 2016; 4
Yang (C8RA01059E-(cit5)/*[position()=1]) 2016; 8
Liuyun (C8RA01059E-(cit9)/*[position()=1]) 2009; 16
Murdan (C8RA01059E-(cit7)/*[position()=1]) 2003; 92
Lloyd (C8RA01059E-(cit24)/*[position()=1]) 2007; 27
Gao (C8RA01059E-(cit31)/*[position()=1]) 2009; 94
Wu (C8RA01059E-(cit28)/*[position()=1]) 2017; 174
Lin (C8RA01059E-(cit41)/*[position()=1]) 2015; 10
Wang (C8RA01059E-(cit10)/*[position()=1]) 2016; 69
Chan (C8RA01059E-(cit12)/*[position()=1]) 2009; 30
Xu (C8RA01059E-(cit19)/*[position()=1]) 2011; 32
Wang (C8RA01059E-(cit37)/*[position()=1]) 2016; 8
Zhou (C8RA01059E-(cit43)/*[position()=1]) 2011; 83
Yang (C8RA01059E-(cit8)/*[position()=1]) 2016; 16
Zhang (C8RA01059E-(cit40)/*[position()=1]) 2017; 142
Li (C8RA01059E-(cit33)/*[position()=1]) 2015; 5
Pelto (C8RA01059E-(cit29)/*[position()=1]) 2013; 19
Xie (C8RA01059E-(cit47)/*[position()=1]) 2015; 4
Wang (C8RA01059E-(cit3)/*[position()=1]) 2016; 36
Growney Kalaf (C8RA01059E-(cit25)/*[position()=1]) 2017; 72
Sun (C8RA01059E-(cit44)/*[position()=1]) 2010; 95
Pasqui (C8RA01059E-(cit4)/*[position()=1]) 2014; 102
Hopkins (C8RA01059E-(cit45)/*[position()=1]) 2017; 105
Alberti (C8RA01059E-(cit46)/*[position()=1]) 2016; 2
Chung (C8RA01059E-(cit27)/*[position()=1]) 2014; 102
Liu (C8RA01059E-(cit35)/*[position()=1]) 2017; 9
Zhou (C8RA01059E-(cit23)/*[position()=1]) 2017; 105
Mammadov (C8RA01059E-(cit16)/*[position()=1]) 2016; 6
Mihic (C8RA01059E-(cit34)/*[position()=1]) 2015; 132
Zhao (C8RA01059E-(cit36)/*[position()=1]) 2016; 4
Liu (C8RA01059E-(cit21)/*[position()=1]) 2009; 376
di Summa (C8RA01059E-(cit17)/*[position()=1]) 2014; 572
Chansai (C8RA01059E-(cit13)/*[position()=1]) 2009; 381
Dehghan Baniani (C8RA01059E-(cit30)/*[position()=1]) 2017; 174
Iannuzzi (C8RA01059E-(cit32)/*[position()=1]) 2010; 51
Tanuma (C8RA01059E-(cit38)/*[position()=1]) 2010; 80
Johnson (C8RA01059E-(cit14)/*[position()=1]) 2005; 36
Yu (C8RA01059E-(cit26)/*[position()=1]) 2015; 5
Zhang (C8RA01059E-(cit42)/*[position()=1]) 2014; 9
Marycz (C8RA01059E-(cit39)/*[position()=1]) 2013; 8
References_xml – volume: 83
  start-page: 1643
  year: 2011
  ident: C8RA01059E-(cit43)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.10.022
– volume: 105
  start-page: 3148
  year: 2017
  ident: C8RA01059E-(cit45)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.36176
– volume: 2
  start-page: 937
  year: 2016
  ident: C8RA01059E-(cit46)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00034
– volume: 12
  start-page: 7338
  year: 2016
  ident: C8RA01059E-(cit2)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C6SM00827E
– volume: 8
  start-page: 110
  year: 2016
  ident: C8RA01059E-(cit37)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym8040110
– volume: 33
  start-page: 59
  year: 2012
  ident: C8RA01059E-(cit18)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.030
– volume: 80
  start-page: 260
  year: 2010
  ident: C8RA01059E-(cit38)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.11.022
– volume: 5
  start-page: 92490
  year: 2015
  ident: C8RA01059E-(cit33)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19467A
– volume: 142
  start-page: 90
  year: 2017
  ident: C8RA01059E-(cit40)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.06.024
– volume: 10
  start-page: e0116711
  year: 2015
  ident: C8RA01059E-(cit41)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116711
– volume: 119
  start-page: 1951
  year: 2008
  ident: C8RA01059E-(cit15)/*[position()=1]
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.03.018
– volume: 4
  start-page: 6670
  year: 2016
  ident: C8RA01059E-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB01710J
– volume: 105
  start-page: 3077
  year: 2017
  ident: C8RA01059E-(cit23)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.36172
– volume: 36
  start-page: 143
  year: 2016
  ident: C8RA01059E-(cit3)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.03.016
– volume: 5
  start-page: 106953
  year: 2015
  ident: C8RA01059E-(cit26)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19562D
– volume: 4
  start-page: 10885
  year: 2016
  ident: C8RA01059E-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02738E
– volume: 19
  start-page: 882
  year: 2013
  ident: C8RA01059E-(cit29)/*[position()=1]
  publication-title: Tissue Eng., Part A
  doi: 10.1089/ten.tea.2012.0111
– volume: 9
  start-page: 14677
  year: 2017
  ident: C8RA01059E-(cit35)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02072
– volume: 51
  start-page: 2049
  year: 2010
  ident: C8RA01059E-(cit32)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.02.034
– volume: 32
  start-page: 4506
  year: 2011
  ident: C8RA01059E-(cit19)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.02.023
– volume: 72
  start-page: 229
  year: 2017
  ident: C8RA01059E-(cit25)/*[position()=1]
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.05.014
– volume: 102
  start-page: 315
  year: 2014
  ident: C8RA01059E-(cit27)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.34693
– volume: 132
  start-page: 772
  year: 2015
  ident: C8RA01059E-(cit34)/*[position()=1]
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.014937
– volume: 6
  start-page: 110535
  year: 2016
  ident: C8RA01059E-(cit16)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA24450E
– volume: 36
  start-page: S24
  issue: suppl. 4
  year: 2005
  ident: C8RA01059E-(cit14)/*[position()=1]
  publication-title: Injury
  doi: 10.1016/j.injury.2005.10.012
– volume: 8
  start-page: 065004
  year: 2013
  ident: C8RA01059E-(cit39)/*[position()=1]
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/8/6/065004
– volume: 9
  start-page: 1075
  year: 2014
  ident: C8RA01059E-(cit42)/*[position()=1]
  publication-title: Neural Regener. Res.
  doi: 10.4103/1673-5374.133168
– volume: 572
  start-page: 26
  year: 2014
  ident: C8RA01059E-(cit17)/*[position()=1]
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2014.04.029
– volume: 8
  start-page: 25621
  year: 2016
  ident: C8RA01059E-(cit5)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08834
– volume: 95
  start-page: 1019
  year: 2010
  ident: C8RA01059E-(cit44)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.32923
– volume: 35
  start-page: 225
  year: 2014
  ident: C8RA01059E-(cit20)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.10.002
– volume: 30
  start-page: 6119
  year: 2009
  ident: C8RA01059E-(cit12)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.034
– volume: 174
  start-page: 633
  year: 2017
  ident: C8RA01059E-(cit30)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.095
– volume: 6
  year: 2017
  ident: C8RA01059E-(cit1)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adfm.201702969
– volume: 69
  start-page: 268
  year: 2016
  ident: C8RA01059E-(cit10)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2016.06.084
– volume: 148
  start-page: 259
  year: 2016
  ident: C8RA01059E-(cit6)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.04.064
– volume: 92
  start-page: 1
  year: 2003
  ident: C8RA01059E-(cit7)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/S0168-3659(03)00303-1
– volume: 4
  start-page: 8016
  year: 2016
  ident: C8RA01059E-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB02259F
– volume: 16
  start-page: 1653
  year: 2016
  ident: C8RA01059E-(cit8)/*[position()=1]
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201600148
– volume: 27
  start-page: 138
  year: 2007
  ident: C8RA01059E-(cit24)/*[position()=1]
  publication-title: Microsurgery
  doi: 10.1002/micr.20318
– volume: 102
  start-page: 1568
  year: 2014
  ident: C8RA01059E-(cit4)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.34810
– volume: 94
  start-page: 1405
  year: 2009
  ident: C8RA01059E-(cit31)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2009.05.011
– volume: 174
  start-page: 830
  year: 2017
  ident: C8RA01059E-(cit28)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.101
– volume: 381
  start-page: 25
  year: 2009
  ident: C8RA01059E-(cit13)/*[position()=1]
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2009.07.019
– volume: 376
  start-page: 92
  year: 2009
  ident: C8RA01059E-(cit21)/*[position()=1]
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2009.04.031
– volume: 16
  start-page: 65
  year: 2009
  ident: C8RA01059E-(cit9)/*[position()=1]
  publication-title: J. Biomed. Sci.
  doi: 10.1186/1423-0127-16-65
– volume: 4
  start-page: 2195
  year: 2015
  ident: C8RA01059E-(cit47)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201500355
SSID ssj0000651261
Score 2.5442843
Snippet Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties. However, they...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 186
SubjectTerms animal experimentation
Biocompatibility
biocompatible materials
calcium
Calcium carbonate
Calcium ions
cell growth
Chemistry
Chitosan
Crosslinking
Electrical resistivity
electrical treatment
Gelation
Hydrogels
ions
Mechanical properties
Modulus of elasticity
nerve regeneration
nerve tissue
Polymers
Polypyrroles
Porosity
pyrroles
Regeneration
Sodium alginate
Sustained release
Swelling ratio
Tissue engineering
Title A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/35541536
https://www.proquest.com/docview/2015896794
https://www.proquest.com/docview/2221052024
https://www.proquest.com/docview/2662547215
https://pubmed.ncbi.nlm.nih.gov/PMC9078905
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZr-rC9jP3qmq0rGtvLCO5syZbtxxBSQuk66JLNezKWLbcBYwfHgXl__U6yZSckjG4vJpwOIXKfpNPp0x1CHxMHcMK8yDDjyDFsTn0jojExpJwnvkcplw-cv9yw2cK-Cpygj-mq1yUVv4h_H3xX8j9WBRnYVb6S_QfLdp2CAH6DfeELFobvg2w8lqRxmbBV0n_WRbKUTONMVlqomluBOCp58auWZaLrTD7croo1TOj7OimLO5GNkmKl6eerIqtXdanYhpJ6KDMgq5QD2SiXrMhRKe5UiurOkjqt97eJZhL0IfeNWtr1tgiSQElm0dIItqTXiksQLPNdtR8iN65aYRuRsLytiIRauAicucFOTQmWC3FA1q683hbAiDlaKcIjg53Ba95ztouqkm7t0F373vJvUpk9NfbKSBb-9EW_yemL_Zuv4eXi-jqcT4P5ETomcLggA3R8-30R_Oxic-CWWUSl2u2GrTPbUv9z3_2uL7N3QNnn2R6VuqyMcl_mz9DT9tyBxw2InqNHIn-BHk90ub-XqB7jHky4ARPWYMIAJrwDJqzBhDWYsAITlmDCW2DCACbcgwkrMOFtML1Ci8vpfDIz2rocRmwzqzLslBJuJ2kqmMtSnjoe544ZCZqajiB-KmIr9v3ITC074j51XFsw7jpuxGHZclJGT9AgL3JxirANx_0UtgVb-ooR8Tmn1AJfANzmmNhOPESf9D8cxm3Selk7JQsVeYL64cS7HStrTIfoQ6e7alK1HNQ604YK26m8DgHFjucz2JuG6H3XDAaQt2dRLooN6BBiSdIY-ZsOY8SxXXCjh-h1Y_tuKNKxB_eCDZG7g4pOQSZ6323Jl_cq4bsva0KY0OcJ4KfT73H45gGDfoue9HP1DA2qciPegT9d8XMVhzpvJ8EfDILR3A
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conductive+sodium+alginate+and+carboxymethyl+chitosan+hydrogel+doped+with+polypyrrole+for+peripheral+nerve+regeneration&rft.jtitle=RSC+advances&rft.au=Bu%2C+Ying&rft.au=Xu%2C+Hai-Xing&rft.au=Li%2C+Xin&rft.au=Xu%2C+Wen-Jin&rft.date=2018-01-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=8&rft.issue=20+p.10806-10817&rft.spage=10806&rft.epage=10817&rft_id=info:doi/10.1039%2Fc8ra01059e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon