Corrosion resistance for superwetting immiscible oil/water separation porous materials

In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZ...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 9; no. 23; pp. 12854 - 12863
Main Authors Rong, Wanting, Zhang, Haifeng, Tuo, Yanjing, Chen, Weiping, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 25.04.2019
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro-nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents. Superwetting porous FZCF as immiscible oil/organic solvents separation material that possesses excellent corrosion resistance can be widely applied in many industrial fields such as oily wastewater treatment and marine oil spill accidents.
AbstractList In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro-nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents.In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro-nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents.
In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic–superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro–nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents.
In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic–superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro–nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents. Superwetting porous FZCF as immiscible oil/organic solvents separation material that possesses excellent corrosion resistance can be widely applied in many industrial fields such as oily wastewater treatment and marine oil spill accidents.
Author Chen, Weiping
Liu, Xiaowei
Rong, Wanting
Zhang, Haifeng
Tuo, Yanjing
AuthorAffiliation Harbin Institute of Technology
Ministry of Education
Key Laboratory of Micro-Systems and Micro-Structures Manufacturing
MEMS Center
State Key Laboratory of Urban Water Resource & Environment
AuthorAffiliation_xml – sequence: 0
  name: Harbin Institute of Technology
– sequence: 0
  name: MEMS Center
– sequence: 0
  name: State Key Laboratory of Urban Water Resource & Environment
– sequence: 0
  name: Key Laboratory of Micro-Systems and Micro-Structures Manufacturing
– sequence: 0
  name: Ministry of Education
Author_xml – sequence: 1
  givenname: Wanting
  surname: Rong
  fullname: Rong, Wanting
– sequence: 2
  givenname: Haifeng
  surname: Zhang
  fullname: Zhang, Haifeng
– sequence: 3
  givenname: Yanjing
  surname: Tuo
  fullname: Tuo, Yanjing
– sequence: 4
  givenname: Weiping
  surname: Chen
  fullname: Chen, Weiping
– sequence: 5
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35520797$$D View this record in MEDLINE/PubMed
BookMark eNqFks1LHTEUxUOx1I-66d4y4EaEV_MxSSYbQR5qC4JQ2m5DXuaORmaSMcko_vfm-eyrSsFsbkh-93BPTrbRhg8eEPpC8DeCmTqyKhpMBKPwAW1RXIsZxUJtvNhvot2UbnBZghMqyCe0yTinWCq5hf7MQ4whueCrCMmlbLyFqguxStMI8R5ydv6qcsPgknWLHqrg-qN7k6EQMJpo8rJ3DDFMqRqW58706TP62JUCu891B_0-O_01_z67uDz_MT-5mNlakDyroZELISwjtJUKU2MMNUB43WLeYc47W9eNtA0XHQclu7Y1NWkI42ohQYBhO-h4pTtOiwFaCz5H0-sxusHEBx2M069vvLvWV-FOKyyYbGgROHgWiOF2gpT10ij0vfFQHGkqBMENlpK9j1LOKFOS4oLuv0FvwhR9eYlCESGVYg0v1NeXw6-n_ptOAQ5XgC0RpQjdGiFYL9PXc_Xz5Cn90wLjN7B1-SmdYtz1_2_ZW7XEZNfS_z4UewR907wf
CitedBy_id crossref_primary_10_1016_j_apsusc_2019_144256
crossref_primary_10_1016_j_colsurfa_2020_125850
crossref_primary_10_1016_j_jwpe_2022_103125
Cites_doi 10.1038/nature06599
10.1039/c3cc44003f
10.1039/c2ee21848h
10.1039/c2cc35844a
10.1038/ncomms3276
10.1002/adma.200801782
10.1039/c3cc43238f
10.1021/nn506633b
10.1039/C4CC01408A
10.1021/am200475b
10.1002/smll.201503685
10.1016/j.jcis.2017.08.061
10.1039/C1JM14327A
10.1016/j.apsusc.2006.01.026
10.1021/nn501851a
10.1002/anie.200353381
10.1039/C4CS00220B
10.1038/ncomms2027
10.1039/C5NR03670D
10.1039/C6TA07535E
10.1002/adma.201204520
10.1002/admi.201500234
10.1039/C5TA06314K
10.1002/adma.201601812
10.1021/acsami.5b07504
10.1021/am5091353
10.1021/nn4020533
10.1016/j.jhazmat.2015.07.002
10.1007/s10853-015-9057-2
10.1039/C4TA05075D
10.1002/smll.201500647
10.1021/la501804h
10.1016/j.cej.2009.06.041
10.1039/C4CC03045A
10.1016/j.apsusc.2013.09.051
10.1039/c2nr30813d
10.1038/nnano.2008.136
10.1016/j.cis.2016.05.008
10.1002/adfm.201702926
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/c9ra01632e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed


AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 12863
ExternalDocumentID PMC9063782
35520797
10_1039_C9RA01632E
c9ra01632e
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2016TS 06
– fundername: ;
  grantid: 2012CB934100
– fundername: ;
  grantid: F201418
– fundername: ;
  grantid: 61474034
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-4e87b66c312d7902aaa2ae154d05f055fc4487c856f5e97fdda4181359b7e6ea3
ISSN 2046-2069
IngestDate Thu Aug 21 14:38:49 EDT 2025
Fri Jul 11 11:01:41 EDT 2025
Fri Jul 11 11:51:05 EDT 2025
Mon Jun 30 05:25:23 EDT 2025
Thu Jan 02 22:54:28 EST 2025
Tue Jul 01 04:24:50 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
Tue Dec 17 21:00:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-4e87b66c312d7902aaa2ae154d05f055fc4487c856f5e97fdda4181359b7e6ea3
Notes 10.1039/c9ra01632e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4917-746X
0000-0002-7257-5546
OpenAccessLink http://dx.doi.org/10.1039/c9ra01632e
PMID 35520797
PQID 2216799385
PQPubID 2047525
PageCount 1
ParticipantIDs proquest_miscellaneous_2253239720
proquest_journals_2216799385
proquest_miscellaneous_2661080773
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9063782
crossref_primary_10_1039_C9RA01632E
rsc_primary_c9ra01632e
crossref_citationtrail_10_1039_C9RA01632E
pubmed_primary_35520797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-April-25
PublicationDateYYYYMMDD 2019-04-25
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April-25
  day: 25
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2019
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Korhonen (C9RA01632E-(cit20)/*[position()=1]) 2011; 3
Zhang (C9RA01632E-(cit34)/*[position()=1]) 2015; 50
Shannon (C9RA01632E-(cit1)/*[position()=1]) 2008; 452
Wang (C9RA01632E-(cit29)/*[position()=1]) 2015; 44
Feng (C9RA01632E-(cit4)/*[position()=1]) 2010; 43
Xu (C9RA01632E-(cit22)/*[position()=1]) 2013; 49
Li (C9RA01632E-(cit24)/*[position()=1]) 2013; 4
Yurt (C9RA01632E-(cit41)/*[position()=1]) 2006; 253
Chen (C9RA01632E-(cit17)/*[position()=1]) 2013; 7
Xu (C9RA01632E-(cit26)/*[position()=1]) 2015; 7
Khosravi (C9RA01632E-(cit10)/*[position()=1]) 2015; 7
Li (C9RA01632E-(cit33)/*[position()=1]) 2016; 4
Wu (C9RA01632E-(cit11)/*[position()=1]) 2015; 7
Jin (C9RA01632E-(cit32)/*[position()=1]) 2015; 300
Yang (C9RA01632E-(cit40)/*[position()=1]) 2017; 508
Zhang (C9RA01632E-(cit37)/*[position()=1]) 2012; 4
Zhang (C9RA01632E-(cit13)/*[position()=1]) 2013; 25
Luo (C9RA01632E-(cit25)/*[position()=1]) 2014; 30
Zhang (C9RA01632E-(cit38)/*[position()=1]) 2017; 4
Li (C9RA01632E-(cit9)/*[position()=1]) 2014; 50
Dong (C9RA01632E-(cit16)/*[position()=1]) 2012; 48
Nguyen (C9RA01632E-(cit31)/*[position()=1]) 2012; 5
Yuan (C9RA01632E-(cit3)/*[position()=1]) 2008; 3
Chen (C9RA01632E-(cit5)/*[position()=1]) 2017; 27
Liu (C9RA01632E-(cit7)/*[position()=1]) 2015; 3
Cao (C9RA01632E-(cit14)/*[position()=1]) 2014; 2
Si (C9RA01632E-(cit21)/*[position()=1]) 2015; 9
Cao (C9RA01632E-(cit8)/*[position()=1]) 2015; 11
Gao (C9RA01632E-(cit15)/*[position()=1]) 2014; 8
Ma (C9RA01632E-(cit28)/*[position()=1]) 2016; 12
Dong (C9RA01632E-(cit6)/*[position()=1]) 2014; 50
Zhang (C9RA01632E-(cit18)/*[position()=1]) 2013; 49
Kota (C9RA01632E-(cit12)/*[position()=1]) 2012; 3
Ge (C9RA01632E-(cit27)/*[position()=1]) 2016; 28
Liu (C9RA01632E-(cit39)/*[position()=1]) 2009; 21
Wang (C9RA01632E-(cit23)/*[position()=1]) 2015; 2
Yi (C9RA01632E-(cit2)/*[position()=1]) 2009; 155
Xu (C9RA01632E-(cit36)/*[position()=1]) 2013; 286
Zhang (C9RA01632E-(cit35)/*[position()=1]) 2011; 22
Yu (C9RA01632E-(cit30)/*[position()=1]) 2016; 235
Li (C9RA01632E-(cit19)/*[position()=1]) 2015; 2
References_xml – volume: 452
  start-page: 301
  year: 2008
  ident: C9RA01632E-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06599
– volume: 49
  start-page: 8752
  year: 2013
  ident: C9RA01632E-(cit22)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc44003f
– volume: 5
  start-page: 7908
  year: 2012
  ident: C9RA01632E-(cit31)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21848h
– volume: 48
  start-page: 10660
  year: 2012
  ident: C9RA01632E-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc35844a
– volume: 4
  start-page: 2276
  year: 2013
  ident: C9RA01632E-(cit24)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3276
– volume: 21
  start-page: 665
  year: 2009
  ident: C9RA01632E-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801782
– volume: 49
  start-page: 11509
  year: 2013
  ident: C9RA01632E-(cit18)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43238f
– volume: 9
  start-page: 3791
  year: 2015
  ident: C9RA01632E-(cit21)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn506633b
– volume: 50
  start-page: 5586
  year: 2014
  ident: C9RA01632E-(cit6)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01408A
– volume: 3
  start-page: 1813
  year: 2011
  ident: C9RA01632E-(cit20)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200475b
– volume: 12
  start-page: 2186
  year: 2016
  ident: C9RA01632E-(cit28)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503685
– volume: 508
  start-page: 254
  year: 2017
  ident: C9RA01632E-(cit40)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.08.061
– volume: 22
  start-page: 799
  year: 2011
  ident: C9RA01632E-(cit35)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14327A
– volume: 253
  start-page: 919
  year: 2006
  ident: C9RA01632E-(cit41)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.01.026
– volume: 2
  start-page: 1570068
  year: 2015
  ident: C9RA01632E-(cit19)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 6344
  year: 2014
  ident: C9RA01632E-(cit15)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501851a
– volume: 43
  start-page: 2012
  year: 2010
  ident: C9RA01632E-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200353381
– volume: 44
  start-page: 336
  year: 2015
  ident: C9RA01632E-(cit29)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00220B
– volume: 3
  start-page: 1025
  year: 2012
  ident: C9RA01632E-(cit12)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2027
– volume: 7
  start-page: 13164
  year: 2015
  ident: C9RA01632E-(cit26)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR03670D
– volume: 4
  start-page: 15546
  year: 2016
  ident: C9RA01632E-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07535E
– volume: 25
  start-page: 2071
  year: 2013
  ident: C9RA01632E-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204520
– volume: 2
  start-page: 1500234
  year: 2015
  ident: C9RA01632E-(cit23)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500234
– volume: 4
  start-page: 10294
  year: 2017
  ident: C9RA01632E-(cit38)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
– volume: 3
  start-page: 20113
  year: 2015
  ident: C9RA01632E-(cit7)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06314K
– volume: 28
  start-page: 10459
  year: 2016
  ident: C9RA01632E-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601812
– volume: 7
  start-page: 25326
  year: 2015
  ident: C9RA01632E-(cit10)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07504
– volume: 7
  start-page: 4936
  year: 2015
  ident: C9RA01632E-(cit11)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5091353
– volume: 7
  start-page: 6875
  year: 2013
  ident: C9RA01632E-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4020533
– volume: 300
  start-page: 175
  year: 2015
  ident: C9RA01632E-(cit32)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.07.002
– volume: 50
  start-page: 5371
  year: 2015
  ident: C9RA01632E-(cit34)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9057-2
– volume: 2
  start-page: 20439
  year: 2014
  ident: C9RA01632E-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05075D
– volume: 11
  start-page: 4379
  year: 2015
  ident: C9RA01632E-(cit8)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201500647
– volume: 30
  start-page: 10002
  year: 2014
  ident: C9RA01632E-(cit25)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la501804h
– volume: 155
  start-page: 1
  year: 2009
  ident: C9RA01632E-(cit2)/*[position()=1]
  publication-title: Chem. Eng.
  doi: 10.1016/j.cej.2009.06.041
– volume: 50
  start-page: 7831
  year: 2014
  ident: C9RA01632E-(cit9)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03045A
– volume: 286
  start-page: 220
  year: 2013
  ident: C9RA01632E-(cit36)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.09.051
– volume: 4
  start-page: 4858
  year: 2012
  ident: C9RA01632E-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr30813d
– volume: 3
  start-page: 332
  year: 2008
  ident: C9RA01632E-(cit3)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.136
– volume: 235
  start-page: 46
  year: 2016
  ident: C9RA01632E-(cit30)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2016.05.008
– volume: 27
  start-page: 1702926
  year: 2017
  ident: C9RA01632E-(cit5)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702926
SSID ssj0000651261
Score 2.2595634
Snippet In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12854
SubjectTerms Accidents
adsorption
air
Chemistry
copper
corrosion
Corrosion potential
Corrosion resistance
durability
energy
foams
Hydrophobic surfaces
Hydrophobicity
Metal foams
Miscibility
Oil spills
oils
Porous materials
porous media
Seawater
Separation
solvents
Surface energy
Wastewater treatment
Zinc oxide
Title Corrosion resistance for superwetting immiscible oil/water separation porous materials
URI https://www.ncbi.nlm.nih.gov/pubmed/35520797
https://www.proquest.com/docview/2216799385
https://www.proquest.com/docview/2253239720
https://www.proquest.com/docview/2661080773
https://pubmed.ncbi.nlm.nih.gov/PMC9063782
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TYK9IG6DwJiC4IWHbIkdx_XjFG2qkIZQaXd5qhzXGUU0rXoREs_8cM6xcyudEOwlap3TNPL57Hzn5FwIea8V72ac8yDKuAniWCeB5N08EDkXmVRjFY_RULz4lPSG8cdrft3p_GpFLa1X2bH-eWdeyX20CmOgV8yS_Q_N1heFAfgM-oUjaBiO_6TjdLaAhxwqEIxmJIK4SjFucLmeY7yzi2meTKeYeospUjP0-J7_UFgZcWlc2W_4NXBwjISd4jjedZux9r-kVaBAExZfxvFeKdtnYsv53FOT3DTjg7X1x96o4ltLOi3zQq4Mts--bbsfIvsmxaUqH1cJbM7RUUWZ2iiSslede8jY3YyCIQ7Kc31Zqq1XthBGWWsfjTCxs_VQhu9uH9za8UOGBVO1XCggr4yathBoaz61ugdWRUPhIoH_qK_9-SKVwNOAKe2QPQrGBuyWe_3L4fVN7asDmhaBpVlVt2XypPm_ffKguvgmtdmyV7bDbncWVZcZy2YGj8mj0gzxTx2mnpCOKZ6Sh_WMPiOXNbb8Bls-YMtvY8tvsOUDtk4ssvwGWb5Dll8j6zkZnp8N0l5Q9uAIdJxEqyA2XZEliWYRHQsZUqUUVQZ49zjkech5rsG-F7rLk5wbKfIxrG4gjYzLTJjEKHZAdotZYV4Sn-lI5N04MzxncagT2BOwFlBuhADKpLRHPlTTN9JlgXrsk_J9ZAMlmBylsn9qZ_3MI-9q2bkry3Kn1GGlhVG5bJcjSvHNo2Rd7pG39WmcLAw3LAzMCshwRoGp0_AvMsBswdwSgnnkhVNsfSsVIjwiNlReC2BR980zxeSrLe5eYtEjBwCOWr7B26t7X_I12W8W8CHZXS3W5g0w6lV2ZD1RRyXsfwNXutV4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+resistance+for+superwetting+immiscible+oil%2Fwater+separation+porous+materials&rft.jtitle=RSC+advances&rft.au=Rong%2C+Wanting&rft.au=Zhang%2C+Haifeng&rft.au=Tuo%2C+Yanjing&rft.au=Chen%2C+Weiping&rft.date=2019-04-25&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=9&rft.issue=23&rft.spage=12854&rft.epage=12863&rft_id=info:doi/10.1039%2Fc9ra01632e&rft_id=info%3Apmid%2F35520797&rft.externalDocID=PMC9063782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon