Corrosion resistance for superwetting immiscible oil/water separation porous materials
In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZ...
Saved in:
Published in | RSC advances Vol. 9; no. 23; pp. 12854 - 12863 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
25.04.2019
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro-nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents.
Superwetting porous FZCF as immiscible oil/organic solvents separation material that possesses excellent corrosion resistance can be widely applied in many industrial fields such as oily wastewater treatment and marine oil spill accidents. |
---|---|
AbstractList | In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro-nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents.In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic-superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro-nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents. In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic–superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro–nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents. In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under water and the repeatable superwettability, and then mainly explore and analyze its corrosion resistance. The superhydrophobic–superoleophilic FZCF as an immiscible oil/organic solvent separation material shows high adsorption capacity and separation efficiency due to its heterogeneous micro–nano structures and low surface energy. It has excellent corrosion resistance under various pH conditions, and can serve as a corrosion protective barrier that prevents metal from contacting corrosive seawater in marine applications. Adsorbed oils also make superoleophilic FZCF keep its durability and stability after suffering attack in strong acid and alkali environments for a long time. Superwetting porous FZCF material that possesses outstanding excellent corrosion resistance demonstrates potential applications in many industrial fields such as oily wastewater treatment and marine oil spill accidents. Superwetting porous FZCF as immiscible oil/organic solvents separation material that possesses excellent corrosion resistance can be widely applied in many industrial fields such as oily wastewater treatment and marine oil spill accidents. |
Author | Chen, Weiping Liu, Xiaowei Rong, Wanting Zhang, Haifeng Tuo, Yanjing |
AuthorAffiliation | Harbin Institute of Technology Ministry of Education Key Laboratory of Micro-Systems and Micro-Structures Manufacturing MEMS Center State Key Laboratory of Urban Water Resource & Environment |
AuthorAffiliation_xml | – sequence: 0 name: Harbin Institute of Technology – sequence: 0 name: MEMS Center – sequence: 0 name: State Key Laboratory of Urban Water Resource & Environment – sequence: 0 name: Key Laboratory of Micro-Systems and Micro-Structures Manufacturing – sequence: 0 name: Ministry of Education |
Author_xml | – sequence: 1 givenname: Wanting surname: Rong fullname: Rong, Wanting – sequence: 2 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng – sequence: 3 givenname: Yanjing surname: Tuo fullname: Tuo, Yanjing – sequence: 4 givenname: Weiping surname: Chen fullname: Chen, Weiping – sequence: 5 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35520797$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1LHTEUxUOx1I-66d4y4EaEV_MxSSYbQR5qC4JQ2m5DXuaORmaSMcko_vfm-eyrSsFsbkh-93BPTrbRhg8eEPpC8DeCmTqyKhpMBKPwAW1RXIsZxUJtvNhvot2UbnBZghMqyCe0yTinWCq5hf7MQ4whueCrCMmlbLyFqguxStMI8R5ydv6qcsPgknWLHqrg-qN7k6EQMJpo8rJ3DDFMqRqW58706TP62JUCu891B_0-O_01_z67uDz_MT-5mNlakDyroZELISwjtJUKU2MMNUB43WLeYc47W9eNtA0XHQclu7Y1NWkI42ohQYBhO-h4pTtOiwFaCz5H0-sxusHEBx2M069vvLvWV-FOKyyYbGgROHgWiOF2gpT10ij0vfFQHGkqBMENlpK9j1LOKFOS4oLuv0FvwhR9eYlCESGVYg0v1NeXw6-n_ptOAQ5XgC0RpQjdGiFYL9PXc_Xz5Cn90wLjN7B1-SmdYtz1_2_ZW7XEZNfS_z4UewR907wf |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2019_144256 crossref_primary_10_1016_j_colsurfa_2020_125850 crossref_primary_10_1016_j_jwpe_2022_103125 |
Cites_doi | 10.1038/nature06599 10.1039/c3cc44003f 10.1039/c2ee21848h 10.1039/c2cc35844a 10.1038/ncomms3276 10.1002/adma.200801782 10.1039/c3cc43238f 10.1021/nn506633b 10.1039/C4CC01408A 10.1021/am200475b 10.1002/smll.201503685 10.1016/j.jcis.2017.08.061 10.1039/C1JM14327A 10.1016/j.apsusc.2006.01.026 10.1021/nn501851a 10.1002/anie.200353381 10.1039/C4CS00220B 10.1038/ncomms2027 10.1039/C5NR03670D 10.1039/C6TA07535E 10.1002/adma.201204520 10.1002/admi.201500234 10.1039/C5TA06314K 10.1002/adma.201601812 10.1021/acsami.5b07504 10.1021/am5091353 10.1021/nn4020533 10.1016/j.jhazmat.2015.07.002 10.1007/s10853-015-9057-2 10.1039/C4TA05075D 10.1002/smll.201500647 10.1021/la501804h 10.1016/j.cej.2009.06.041 10.1039/C4CC03045A 10.1016/j.apsusc.2013.09.051 10.1039/c2nr30813d 10.1038/nnano.2008.136 10.1016/j.cis.2016.05.008 10.1002/adfm.201702926 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/c9ra01632e |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 12863 |
ExternalDocumentID | PMC9063782 35520797 10_1039_C9RA01632E c9ra01632e |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2016TS 06 – fundername: ; grantid: 2012CB934100 – fundername: ; grantid: F201418 – fundername: ; grantid: 61474034 |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABGFH ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c461t-4e87b66c312d7902aaa2ae154d05f055fc4487c856f5e97fdda4181359b7e6ea3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 14:38:49 EDT 2025 Fri Jul 11 11:01:41 EDT 2025 Fri Jul 11 11:51:05 EDT 2025 Mon Jun 30 05:25:23 EDT 2025 Thu Jan 02 22:54:28 EST 2025 Tue Jul 01 04:24:50 EDT 2025 Thu Apr 24 22:50:27 EDT 2025 Tue Dec 17 21:00:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-4e87b66c312d7902aaa2ae154d05f055fc4487c856f5e97fdda4181359b7e6ea3 |
Notes | 10.1039/c9ra01632e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4917-746X 0000-0002-7257-5546 |
OpenAccessLink | http://dx.doi.org/10.1039/c9ra01632e |
PMID | 35520797 |
PQID | 2216799385 |
PQPubID | 2047525 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2253239720 proquest_journals_2216799385 proquest_miscellaneous_2661080773 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9063782 crossref_primary_10_1039_C9RA01632E rsc_primary_c9ra01632e crossref_citationtrail_10_1039_C9RA01632E pubmed_primary_35520797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-April-25 |
PublicationDateYYYYMMDD | 2019-04-25 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-April-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Korhonen (C9RA01632E-(cit20)/*[position()=1]) 2011; 3 Zhang (C9RA01632E-(cit34)/*[position()=1]) 2015; 50 Shannon (C9RA01632E-(cit1)/*[position()=1]) 2008; 452 Wang (C9RA01632E-(cit29)/*[position()=1]) 2015; 44 Feng (C9RA01632E-(cit4)/*[position()=1]) 2010; 43 Xu (C9RA01632E-(cit22)/*[position()=1]) 2013; 49 Li (C9RA01632E-(cit24)/*[position()=1]) 2013; 4 Yurt (C9RA01632E-(cit41)/*[position()=1]) 2006; 253 Chen (C9RA01632E-(cit17)/*[position()=1]) 2013; 7 Xu (C9RA01632E-(cit26)/*[position()=1]) 2015; 7 Khosravi (C9RA01632E-(cit10)/*[position()=1]) 2015; 7 Li (C9RA01632E-(cit33)/*[position()=1]) 2016; 4 Wu (C9RA01632E-(cit11)/*[position()=1]) 2015; 7 Jin (C9RA01632E-(cit32)/*[position()=1]) 2015; 300 Yang (C9RA01632E-(cit40)/*[position()=1]) 2017; 508 Zhang (C9RA01632E-(cit37)/*[position()=1]) 2012; 4 Zhang (C9RA01632E-(cit13)/*[position()=1]) 2013; 25 Luo (C9RA01632E-(cit25)/*[position()=1]) 2014; 30 Zhang (C9RA01632E-(cit38)/*[position()=1]) 2017; 4 Li (C9RA01632E-(cit9)/*[position()=1]) 2014; 50 Dong (C9RA01632E-(cit16)/*[position()=1]) 2012; 48 Nguyen (C9RA01632E-(cit31)/*[position()=1]) 2012; 5 Yuan (C9RA01632E-(cit3)/*[position()=1]) 2008; 3 Chen (C9RA01632E-(cit5)/*[position()=1]) 2017; 27 Liu (C9RA01632E-(cit7)/*[position()=1]) 2015; 3 Cao (C9RA01632E-(cit14)/*[position()=1]) 2014; 2 Si (C9RA01632E-(cit21)/*[position()=1]) 2015; 9 Cao (C9RA01632E-(cit8)/*[position()=1]) 2015; 11 Gao (C9RA01632E-(cit15)/*[position()=1]) 2014; 8 Ma (C9RA01632E-(cit28)/*[position()=1]) 2016; 12 Dong (C9RA01632E-(cit6)/*[position()=1]) 2014; 50 Zhang (C9RA01632E-(cit18)/*[position()=1]) 2013; 49 Kota (C9RA01632E-(cit12)/*[position()=1]) 2012; 3 Ge (C9RA01632E-(cit27)/*[position()=1]) 2016; 28 Liu (C9RA01632E-(cit39)/*[position()=1]) 2009; 21 Wang (C9RA01632E-(cit23)/*[position()=1]) 2015; 2 Yi (C9RA01632E-(cit2)/*[position()=1]) 2009; 155 Xu (C9RA01632E-(cit36)/*[position()=1]) 2013; 286 Zhang (C9RA01632E-(cit35)/*[position()=1]) 2011; 22 Yu (C9RA01632E-(cit30)/*[position()=1]) 2016; 235 Li (C9RA01632E-(cit19)/*[position()=1]) 2015; 2 |
References_xml | – volume: 452 start-page: 301 year: 2008 ident: C9RA01632E-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature06599 – volume: 49 start-page: 8752 year: 2013 ident: C9RA01632E-(cit22)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc44003f – volume: 5 start-page: 7908 year: 2012 ident: C9RA01632E-(cit31)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21848h – volume: 48 start-page: 10660 year: 2012 ident: C9RA01632E-(cit16)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc35844a – volume: 4 start-page: 2276 year: 2013 ident: C9RA01632E-(cit24)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3276 – volume: 21 start-page: 665 year: 2009 ident: C9RA01632E-(cit39)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200801782 – volume: 49 start-page: 11509 year: 2013 ident: C9RA01632E-(cit18)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc43238f – volume: 9 start-page: 3791 year: 2015 ident: C9RA01632E-(cit21)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506633b – volume: 50 start-page: 5586 year: 2014 ident: C9RA01632E-(cit6)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC01408A – volume: 3 start-page: 1813 year: 2011 ident: C9RA01632E-(cit20)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200475b – volume: 12 start-page: 2186 year: 2016 ident: C9RA01632E-(cit28)/*[position()=1] publication-title: Small doi: 10.1002/smll.201503685 – volume: 508 start-page: 254 year: 2017 ident: C9RA01632E-(cit40)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.08.061 – volume: 22 start-page: 799 year: 2011 ident: C9RA01632E-(cit35)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/C1JM14327A – volume: 253 start-page: 919 year: 2006 ident: C9RA01632E-(cit41)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.01.026 – volume: 2 start-page: 1570068 year: 2015 ident: C9RA01632E-(cit19)/*[position()=1] publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 6344 year: 2014 ident: C9RA01632E-(cit15)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501851a – volume: 43 start-page: 2012 year: 2010 ident: C9RA01632E-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353381 – volume: 44 start-page: 336 year: 2015 ident: C9RA01632E-(cit29)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00220B – volume: 3 start-page: 1025 year: 2012 ident: C9RA01632E-(cit12)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2027 – volume: 7 start-page: 13164 year: 2015 ident: C9RA01632E-(cit26)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR03670D – volume: 4 start-page: 15546 year: 2016 ident: C9RA01632E-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07535E – volume: 25 start-page: 2071 year: 2013 ident: C9RA01632E-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201204520 – volume: 2 start-page: 1500234 year: 2015 ident: C9RA01632E-(cit23)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500234 – volume: 4 start-page: 10294 year: 2017 ident: C9RA01632E-(cit38)/*[position()=1] publication-title: Adv. Mater. Interfaces – volume: 3 start-page: 20113 year: 2015 ident: C9RA01632E-(cit7)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06314K – volume: 28 start-page: 10459 year: 2016 ident: C9RA01632E-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601812 – volume: 7 start-page: 25326 year: 2015 ident: C9RA01632E-(cit10)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07504 – volume: 7 start-page: 4936 year: 2015 ident: C9RA01632E-(cit11)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5091353 – volume: 7 start-page: 6875 year: 2013 ident: C9RA01632E-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4020533 – volume: 300 start-page: 175 year: 2015 ident: C9RA01632E-(cit32)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.07.002 – volume: 50 start-page: 5371 year: 2015 ident: C9RA01632E-(cit34)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9057-2 – volume: 2 start-page: 20439 year: 2014 ident: C9RA01632E-(cit14)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05075D – volume: 11 start-page: 4379 year: 2015 ident: C9RA01632E-(cit8)/*[position()=1] publication-title: Small doi: 10.1002/smll.201500647 – volume: 30 start-page: 10002 year: 2014 ident: C9RA01632E-(cit25)/*[position()=1] publication-title: Langmuir doi: 10.1021/la501804h – volume: 155 start-page: 1 year: 2009 ident: C9RA01632E-(cit2)/*[position()=1] publication-title: Chem. Eng. doi: 10.1016/j.cej.2009.06.041 – volume: 50 start-page: 7831 year: 2014 ident: C9RA01632E-(cit9)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03045A – volume: 286 start-page: 220 year: 2013 ident: C9RA01632E-(cit36)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.09.051 – volume: 4 start-page: 4858 year: 2012 ident: C9RA01632E-(cit37)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr30813d – volume: 3 start-page: 332 year: 2008 ident: C9RA01632E-(cit3)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.136 – volume: 235 start-page: 46 year: 2016 ident: C9RA01632E-(cit30)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2016.05.008 – volume: 27 start-page: 1702926 year: 2017 ident: C9RA01632E-(cit5)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702926 |
SSID | ssj0000651261 |
Score | 2.2595634 |
Snippet | In this paper, we first fabricate a 3D porous FZCF (FAS-modified ZnO-grown copper foam) with robust superhydrophobicity in air and superoleophilicity under... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12854 |
SubjectTerms | Accidents adsorption air Chemistry copper corrosion Corrosion potential Corrosion resistance durability energy foams Hydrophobic surfaces Hydrophobicity Metal foams Miscibility Oil spills oils Porous materials porous media Seawater Separation solvents Surface energy Wastewater treatment Zinc oxide |
Title | Corrosion resistance for superwetting immiscible oil/water separation porous materials |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35520797 https://www.proquest.com/docview/2216799385 https://www.proquest.com/docview/2253239720 https://www.proquest.com/docview/2661080773 https://pubmed.ncbi.nlm.nih.gov/PMC9063782 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TYK9IG6DwJiC4IWHbIkdx_XjFG2qkIZQaXd5qhzXGUU0rXoREs_8cM6xcyudEOwlap3TNPL57Hzn5FwIea8V72ac8yDKuAniWCeB5N08EDkXmVRjFY_RULz4lPSG8cdrft3p_GpFLa1X2bH-eWdeyX20CmOgV8yS_Q_N1heFAfgM-oUjaBiO_6TjdLaAhxwqEIxmJIK4SjFucLmeY7yzi2meTKeYeospUjP0-J7_UFgZcWlc2W_4NXBwjISd4jjedZux9r-kVaBAExZfxvFeKdtnYsv53FOT3DTjg7X1x96o4ltLOi3zQq4Mts--bbsfIvsmxaUqH1cJbM7RUUWZ2iiSslede8jY3YyCIQ7Kc31Zqq1XthBGWWsfjTCxs_VQhu9uH9za8UOGBVO1XCggr4yathBoaz61ugdWRUPhIoH_qK_9-SKVwNOAKe2QPQrGBuyWe_3L4fVN7asDmhaBpVlVt2XypPm_ffKguvgmtdmyV7bDbncWVZcZy2YGj8mj0gzxTx2mnpCOKZ6Sh_WMPiOXNbb8Bls-YMtvY8tvsOUDtk4ssvwGWb5Dll8j6zkZnp8N0l5Q9uAIdJxEqyA2XZEliWYRHQsZUqUUVQZ49zjkech5rsG-F7rLk5wbKfIxrG4gjYzLTJjEKHZAdotZYV4Sn-lI5N04MzxncagT2BOwFlBuhADKpLRHPlTTN9JlgXrsk_J9ZAMlmBylsn9qZ_3MI-9q2bkry3Kn1GGlhVG5bJcjSvHNo2Rd7pG39WmcLAw3LAzMCshwRoGp0_AvMsBswdwSgnnkhVNsfSsVIjwiNlReC2BR980zxeSrLe5eYtEjBwCOWr7B26t7X_I12W8W8CHZXS3W5g0w6lV2ZD1RRyXsfwNXutV4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+resistance+for+superwetting+immiscible+oil%2Fwater+separation+porous+materials&rft.jtitle=RSC+advances&rft.au=Rong%2C+Wanting&rft.au=Zhang%2C+Haifeng&rft.au=Tuo%2C+Yanjing&rft.au=Chen%2C+Weiping&rft.date=2019-04-25&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=9&rft.issue=23&rft.spage=12854&rft.epage=12863&rft_id=info:doi/10.1039%2Fc9ra01632e&rft_id=info%3Apmid%2F35520797&rft.externalDocID=PMC9063782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |