Roles of protein arginine methyltransferase 1 (PRMT1) in brain development and disease
Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction. This review summarizes previous and recent studi...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 1; p. 129776 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction.
This review summarizes previous and recent studies on PRMT1 functions in major cell types of the central nervous system. We also discuss the potential involvement of PRMT1 in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. Also, we raise key questions that must be addressed in the future to more precisely understand the roles of PRMT1.
Recent studies revealed that PRMT1 is essential for the development of neurons, astrocytes, and oligodendrocytes, although further investigation using cell type-specific PRMT1-deficient animals is required. In addition, the relevance of PRMT1 in neurodegenerative diseases will continue to be a hot topic.
PRMT1 is important for neural development and neurodegenerative diseases.
•PRMT1 catalyzes asymmetric dimethylation of arginine residues of proteins.•PRMT1 in neural stem cells is essential for early brain development.•Arginine methylation by PRMT1 and 5 are indispensable for myelination.•Methylation reduces phase separation of neurodegeneration-causative factors.•Methyl-arginine-specific antibodies and chemical tools accelerate PRMT study. |
---|---|
AbstractList | Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction.This review summarizes previous and recent studies on PRMT1 functions in major cell types of the central nervous system. We also discuss the potential involvement of PRMT1 in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. Also, we raise key questions that must be addressed in the future to more precisely understand the roles of PRMT1.Recent studies revealed that PRMT1 is essential for the development of neurons, astrocytes, and oligodendrocytes, although further investigation using cell type-specific PRMT1-deficient animals is required. In addition, the relevance of PRMT1 in neurodegenerative diseases will continue to be a hot topic.PRMT1 is important for neural development and neurodegenerative diseases. Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction. This review summarizes previous and recent studies on PRMT1 functions in major cell types of the central nervous system. We also discuss the potential involvement of PRMT1 in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. Also, we raise key questions that must be addressed in the future to more precisely understand the roles of PRMT1. Recent studies revealed that PRMT1 is essential for the development of neurons, astrocytes, and oligodendrocytes, although further investigation using cell type-specific PRMT1-deficient animals is required. In addition, the relevance of PRMT1 in neurodegenerative diseases will continue to be a hot topic. PRMT1 is important for neural development and neurodegenerative diseases. •PRMT1 catalyzes asymmetric dimethylation of arginine residues of proteins.•PRMT1 in neural stem cells is essential for early brain development.•Arginine methylation by PRMT1 and 5 are indispensable for myelination.•Methylation reduces phase separation of neurodegeneration-causative factors.•Methyl-arginine-specific antibodies and chemical tools accelerate PRMT study. Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction.BACKGROUNDProtein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction.This review summarizes previous and recent studies on PRMT1 functions in major cell types of the central nervous system. We also discuss the potential involvement of PRMT1 in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. Also, we raise key questions that must be addressed in the future to more precisely understand the roles of PRMT1.SCOPE OF REVIEWThis review summarizes previous and recent studies on PRMT1 functions in major cell types of the central nervous system. We also discuss the potential involvement of PRMT1 in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. Also, we raise key questions that must be addressed in the future to more precisely understand the roles of PRMT1.Recent studies revealed that PRMT1 is essential for the development of neurons, astrocytes, and oligodendrocytes, although further investigation using cell type-specific PRMT1-deficient animals is required. In addition, the relevance of PRMT1 in neurodegenerative diseases will continue to be a hot topic.MAJOR CONCLUSIONSRecent studies revealed that PRMT1 is essential for the development of neurons, astrocytes, and oligodendrocytes, although further investigation using cell type-specific PRMT1-deficient animals is required. In addition, the relevance of PRMT1 in neurodegenerative diseases will continue to be a hot topic.PRMT1 is important for neural development and neurodegenerative diseases.GENERAL SIGNIFICANCEPRMT1 is important for neural development and neurodegenerative diseases. Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction. This review summarizes previous and recent studies on PRMT1 functions in major cell types of the central nervous system. We also discuss the potential involvement of PRMT1 in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. Also, we raise key questions that must be addressed in the future to more precisely understand the roles of PRMT1. Recent studies revealed that PRMT1 is essential for the development of neurons, astrocytes, and oligodendrocytes, although further investigation using cell type-specific PRMT1-deficient animals is required. In addition, the relevance of PRMT1 in neurodegenerative diseases will continue to be a hot topic. PRMT1 is important for neural development and neurodegenerative diseases. |
ArticleNumber | 129776 |
Author | Nakagawa, Tsutomu Fukamizu, Akiyoshi Kizuka, Yasuhiko Hashimoto, Misuzu |
Author_xml | – sequence: 1 givenname: Misuzu surname: Hashimoto fullname: Hashimoto, Misuzu email: misuzu3@gifu-u.ac.jp organization: Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan – sequence: 2 givenname: Akiyoshi surname: Fukamizu fullname: Fukamizu, Akiyoshi organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan – sequence: 3 givenname: Tsutomu surname: Nakagawa fullname: Nakagawa, Tsutomu organization: Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan – sequence: 4 givenname: Yasuhiko surname: Kizuka fullname: Kizuka, Yasuhiko email: kizuka@gifu-u.ac.jp organization: Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), and Gifu University, Gifu 501-1193, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33127433$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LPSEYxSWKur18gwiXtZibzug40yKI6P8CRRHVVtR5przM6E29Qd8-a2rTolwo6O8cfM7ZRuvOO0Bon5I5JbQ-Xsy1Vo_g5iUp81XZClGvoRltRFk0hNTraEYqwgpGa76FtmNckLx4yzfRVlXRUrCqmqGHWz9AxL7Hy-ATWIdVeLTOOsAjpKfXIQXlYg9BRcAUH97cXt3RI5w5HVTeO3iBwS9HcAkr1-HORsjoLtro1RBh7_PcQfd_Lu7O_xWX13__n59dFobVNBUMOPCWcCMY14z3VOdZRAukVZxwncfQjTZAKqj7RrWNzk-9YIyIvgXgTbWDDiff_PvnFcQkRxsNDINy4FdRlpzTNjsK8TvKeM1K0nygB5_oSo_QyWWwowqv8iu2DJxMgAk-xgC9NDapZL3LcdlBUiLfO5ILOXUk3zuSU0dZzL6Jv_x_kZ1OMsh5vlgIMhoLzkBnA5gkO29_NngDQ7uqlQ |
CitedBy_id | crossref_primary_10_1186_s12860_021_00346_w crossref_primary_10_3390_biom11020235 crossref_primary_10_1016_j_biopha_2023_115456 crossref_primary_10_1096_fj_202200238R crossref_primary_10_32604_biocell_2024_052205 crossref_primary_10_3390_ijms25168854 crossref_primary_10_1007_s12035_023_03465_x crossref_primary_10_1186_s13098_022_00869_y crossref_primary_10_3390_genes15040492 crossref_primary_10_3390_ijms22136718 crossref_primary_10_1111_1756_185X_14454 crossref_primary_10_1016_j_bbagrm_2023_194922 crossref_primary_10_1111_dom_15640 crossref_primary_10_1016_j_jbc_2022_102517 crossref_primary_10_1016_j_bcp_2023_116016 crossref_primary_10_1097_WNR_0000000000002001 crossref_primary_10_3390_genes13071133 crossref_primary_10_1139_bcb_2023_0212 crossref_primary_10_1016_j_fct_2022_112894 crossref_primary_10_3390_cells10051079 crossref_primary_10_1186_s12964_024_01506_z crossref_primary_10_3390_biology12091257 crossref_primary_10_1038_s41380_025_02937_x |
Cites_doi | 10.1091/mbc.E20-02-0100 10.1093/hmg/ddr448 10.1128/MCB.20.13.4859-4869.2000 10.1111/jnc.14123 10.1016/j.isci.2018.09.023 10.1038/emboj.2012.261 10.1038/nsmb.1568 10.1002/jnr.10123 10.1371/journal.pone.0049267 10.1016/j.brainres.2010.07.033 10.1016/j.bbagen.2019.129509 10.1002/ana.20895 10.1074/jbc.275.11.7723 10.1021/ja304782r 10.1074/jbc.M111.277046 10.1016/j.devcel.2018.03.007 10.1523/JNEUROSCI.1860-14.2014 10.1016/j.neulet.2008.08.065 10.1074/jbc.C200296200 10.1038/s41580-019-0155-x 10.1016/j.celrep.2020.107744 10.1101/gad.219899.113 10.1124/jpet.106.107185 10.1016/j.cell.2012.04.017 10.1016/j.cell.2018.03.004 10.1016/j.devcel.2018.06.025 10.1016/j.molcel.2017.12.022 10.1038/nrc3409 10.1073/pnas.1015328108 10.1126/science.1165942 10.1016/j.cell.2018.03.056 10.1074/mcp.O113.027870 10.1074/jbc.M115.684514 10.1038/s12276-019-0299-y 10.1371/journal.pone.0013807 10.1038/s41467-018-04863-9 10.1091/mbc.E14-01-0019 10.1039/C8CC03907K 10.1016/j.molcel.2008.12.013 10.1126/science.1060781 10.1002/stem.1894 10.7554/eLife.17159 10.1126/sciadv.1500615 10.1038/srep01311 10.5483/BMBRep.2012.45.8.022 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129776 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 33127433 10_1016_j_bbagen_2020_129776 S0304416520302877 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-4e5e5905c745b45f1b02079e09a505b800b8bce03e6f8a98b9e0f74407f9ee583 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 05:08:57 EDT 2025 Sun Aug 24 03:24:43 EDT 2025 Wed Feb 19 02:29:50 EST 2025 Thu Apr 24 22:53:14 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CNS Protein arginine methyltransferase 1 (PRMT1) PRMT1 Central nervous system (CNS) Arginine methylation NSC |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-4e5e5905c745b45f1b02079e09a505b800b8bce03e6f8a98b9e0f74407f9ee583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33127433 |
PQID | 2456420877 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551907977 proquest_miscellaneous_2456420877 pubmed_primary_33127433 crossref_citationtrail_10_1016_j_bbagen_2020_129776 crossref_primary_10_1016_j_bbagen_2020_129776 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ishimaru, Ishida, Kim, Mizukami, Hara, Hashimoto, Yagami, Sugiyama, Fukamizu (bb0025) 2017; 161 Cimato, Tang, Xu, Guarnaccia, Herschman, Pongor, Aletta (bb0115) 2002; 67 Yamaguchi, Kitajo (bb0165) 2012; 7 Sakamaki, Daitoku, Ueno, Hagiwara, Yamagata, Fukamizu (bb0200) 2011; 108 Kim, Jeong, Kim, Jung, Lee, Kim, Koh, Vuong, Jung, Yang (bb0135) 2016; 5 Ceccarelli, D’Andrea, Micheli, Tirone (bb0205) 2020; 10 Amano, Matsuzaki, Mori, Miyoshi, Han, Shikada, Takamura, Yoshimura, Katayama (bb0130) 2020; 31 Wang, Tan, Yang, Yin, Yuan, Qiang, Peng (bb0210) 2012; 45 Kim, Park, Ishida, Kako, Hamada, Kani, Takeuchi, Namiki, Fukui, Fukuhara (bb0140) 2015; 1 Pawlak, Scherer, Chen, Roshon, Ruley (bb0020) 2000; 20 Yamamoto, Oka, Inoue, Shimuta, Manabe, Takahashi, Miyamoto, Asano, Sakagami, Sudo (bb0145) 2002; 277 Dormann, Madl, Valori, Bentmann, Tahirovic, Abou-Ajram, Kremmer, Ansorge, Mackenzie, Neumann (bb0170) 2012; 31 Hou, Nemitz, Schopper, Nielsen, Kessels, Qualmann (bb0050) 2018; 45 Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei (bb0175) 2012; 149 Selvi, Swaminathan, Maheshwari, Nagabhushana, Mishra, Kundu (bb0100) 2015; 26 Qamar, Wang, Randle, Ruggeri, Varela, Lin, Phillips, Miyashita, Williams, Ströhl (bb0185) 2018; 173 Yang, Bedford (bb0195) 2013; 13 Huang, Vogel, Yu, Almazan, Richard (bb0040) 2011; 286 Bezzi, Teo, Muller, Mok, Sahu, Vardy, Bonday, Guccione (bb0090) 2013; 27 Scaglione, Patzig, Liang, Frawley, Bok, Mela, Yattah, Zhang, Teo, Zhou (bb0105) 2018; 9 Miyata, Mori, Tohyama (bb0035) 2010; 1352 Lo, Dong, Lyu, Lai (bb0060) 2020; 31 Ryan, Dignon, Zerze, Chabata, Silva, Conicella, Amaya, Burke, Mittal, Fawzi (bb0190) 2018; 69 Tradewell, Yu, Tibshirani, Boulanger, Durham, Richard (bb0160) 2012; 21 Honda, Nakashima, Katada (bb0045) 2017; 142 Lee, Vuong, Wen, Jeong, So, Kwon, Kang, Cho (bb0055) 2019; 51 Chittka (bb0080) 2010; 5 Sohtome, Shimazu, Barjau, Fujishiro, Akakabe, Terayama, Dodo, Ito, Yoshida, Shinkai (bb0235) 2018; 54 Tang, Frankel, Cook, Kim, Paik, Williams, Clarke, Herschman (bb0005) 2000; 275 Wang, Huang, Xia, Feng, Erdjument-Bromage, Strahl, Briggs, Allis, Wong, Tempst (bb0070) 2001; 293 Hashimoto, Hirata, Yonekawa, Takeichi, Fukamizu, Nakagawa, Kizuka (bb0150) 2020; 1864 Vance, Rogelj, Hortobágyi, De Vos, Nishimura, Sreedharan, Hu, Smith, Ruddy, Wright (bb0155) 2009; 323 Bothwell, Islam, Chen, Zheng, Blum, Deng, Luo (bb0230) 2012; 134 Bedford, Clarke (bb0010) 2009; 33 Guo, Gu, Zhou, Mulhern, Wang, Lee, Yang, Aguiar, Kornhauser, Jia, Ren, Beausoleil, Silva, Vemulapalli, Bedford, Comb (bb0225) 2014; 13 Fu, Zhu, Ni, Zhong, Tang, Re, Shi, Wan, Yang, Yuan (bb0220) 2006; 319 Miyata, Mori, Tohyama (bb0120) 2008; 445 Zhao, Rank, Tan, Li, Moritz, Simpson, Cerruti, Curtis, Patel, Allis (bb0075) 2009; 16 Calabretta, Vogel, Yu, Choquet, Darbelli, Nicholson, Kleinman, Richard (bb0110) 2018; 46 Hashimoto, Kumabe, Kim, Murata, Sekizar, Williams, Ishida, Nakagawa, Endo, Minami, Fukamizu (bb0095) 2020; 00 Zhang, Chen, Sloan, Bennett, Scholze, O'Keeffe, Phatnani, Guarnieri, Caneda, Ruderisch, Deng, Liddelow, Zhang, Daneman, Maniatis, Barres, Wu (bb0065) 2014; 34 Moreno, Hevia, Santamaria, Sepulcre, Muñoz, García-Trevijano, Berasain, Corrales, Avila, Villoslada (bb0215) 2006; 60 Murata, Lu, Hashimoto, Ono, Muratani, Nishikata, Kim, Ebihara, Ishida, Fukamizu (bb0030) 2018; 8 Hashimoto, Murata, Ishida, Kanou, Kasuya, Fukamizu (bb0085) 2016; 291 Hofweber, Hutten, Bourgeois, Spreitzer, Niedner-Boblenz, Schifferer, Ruepp, Simons, Niessing, Madl (bb0180) 2018; 173 Guccione, Richard (bb0015) 2019; 20 Simandi, Czipa, Horvath, Koszeghy, Bordas, Póliska, Juhász, Imre, Szabó, Dezso (bb0125) 2015; 33 Dhar, Vemulapalli, Patananan, Huang, Di Lorenzo, Richard, Comb, Guo, Clarke, Bedford (bb0240) 2013; 3 Pawlak (10.1016/j.bbagen.2020.129776_bb0020) 2000; 20 Kim (10.1016/j.bbagen.2020.129776_bb0135) 2016; 5 Zhang (10.1016/j.bbagen.2020.129776_bb0065) 2014; 34 Calabretta (10.1016/j.bbagen.2020.129776_bb0110) 2018; 46 Hashimoto (10.1016/j.bbagen.2020.129776_bb0150) 2020; 1864 Lo (10.1016/j.bbagen.2020.129776_bb0060) 2020; 31 Ryan (10.1016/j.bbagen.2020.129776_bb0190) 2018; 69 Murata (10.1016/j.bbagen.2020.129776_bb0030) 2018; 8 Honda (10.1016/j.bbagen.2020.129776_bb0045) 2017; 142 Sohtome (10.1016/j.bbagen.2020.129776_bb0235) 2018; 54 Wang (10.1016/j.bbagen.2020.129776_bb0210) 2012; 45 Kim (10.1016/j.bbagen.2020.129776_bb0140) 2015; 1 Qamar (10.1016/j.bbagen.2020.129776_bb0185) 2018; 173 Huang (10.1016/j.bbagen.2020.129776_bb0040) 2011; 286 Scaglione (10.1016/j.bbagen.2020.129776_bb0105) 2018; 9 Yang (10.1016/j.bbagen.2020.129776_bb0195) 2013; 13 Tradewell (10.1016/j.bbagen.2020.129776_bb0160) 2012; 21 Fu (10.1016/j.bbagen.2020.129776_bb0220) 2006; 319 Dormann (10.1016/j.bbagen.2020.129776_bb0170) 2012; 31 Kato (10.1016/j.bbagen.2020.129776_bb0175) 2012; 149 Guccione (10.1016/j.bbagen.2020.129776_bb0015) 2019; 20 Selvi (10.1016/j.bbagen.2020.129776_bb0100) 2015; 26 Yamamoto (10.1016/j.bbagen.2020.129776_bb0145) 2002; 277 Dhar (10.1016/j.bbagen.2020.129776_bb0240) 2013; 3 Tang (10.1016/j.bbagen.2020.129776_bb0005) 2000; 275 Zhao (10.1016/j.bbagen.2020.129776_bb0075) 2009; 16 Miyata (10.1016/j.bbagen.2020.129776_bb0035) 2010; 1352 Ishimaru (10.1016/j.bbagen.2020.129776_bb0025) 2017; 161 Amano (10.1016/j.bbagen.2020.129776_bb0130) 2020; 31 Simandi (10.1016/j.bbagen.2020.129776_bb0125) 2015; 33 Vance (10.1016/j.bbagen.2020.129776_bb0155) 2009; 323 Bedford (10.1016/j.bbagen.2020.129776_bb0010) 2009; 33 Guo (10.1016/j.bbagen.2020.129776_bb0225) 2014; 13 Hashimoto (10.1016/j.bbagen.2020.129776_bb0085) 2016; 291 Hashimoto (10.1016/j.bbagen.2020.129776_bb0095) 2020; 00 Lee (10.1016/j.bbagen.2020.129776_bb0055) 2019; 51 Cimato (10.1016/j.bbagen.2020.129776_bb0115) 2002; 67 Moreno (10.1016/j.bbagen.2020.129776_bb0215) 2006; 60 Hou (10.1016/j.bbagen.2020.129776_bb0050) 2018; 45 Sakamaki (10.1016/j.bbagen.2020.129776_bb0200) 2011; 108 Miyata (10.1016/j.bbagen.2020.129776_bb0120) 2008; 445 Bothwell (10.1016/j.bbagen.2020.129776_bb0230) 2012; 134 Bezzi (10.1016/j.bbagen.2020.129776_bb0090) 2013; 27 Wang (10.1016/j.bbagen.2020.129776_bb0070) 2001; 293 Chittka (10.1016/j.bbagen.2020.129776_bb0080) 2010; 5 Yamaguchi (10.1016/j.bbagen.2020.129776_bb0165) 2012; 7 Ceccarelli (10.1016/j.bbagen.2020.129776_bb0205) 2020; 10 Hofweber (10.1016/j.bbagen.2020.129776_bb0180) 2018; 173 |
References_xml | – volume: 173 year: 2018 ident: bb0185 article-title: FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions publication-title: Cell. – volume: 5 year: 2016 ident: bb0135 article-title: Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression publication-title: Elife. – volume: 323 start-page: 1208 year: 2009 end-page: 1211 ident: bb0155 article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 publication-title: Science. – volume: 7 year: 2012 ident: bb0165 article-title: The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS publication-title: PLoS One – volume: 1352 start-page: 11 year: 2010 end-page: 20 ident: bb0035 article-title: PRMT3 is essential for dendritic spine maturation in rat hippocampal neurons publication-title: Brain Res. – volume: 45 year: 2018 ident: bb0050 article-title: Arginine methylation by PRMT2 controls the functions of the actin nucleator Cobl publication-title: Dev. Cell – volume: 445 start-page: 162 year: 2008 end-page: 165 ident: bb0120 article-title: PRMT1 and Btg2 regulates neurite outgrowth of Neuro2a cells publication-title: Neurosci. Lett. – volume: 20 start-page: 4859 year: 2000 end-page: 4869 ident: bb0020 article-title: Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable publication-title: Mol. Cell. Biol. – volume: 00 start-page: 1 year: 2020 end-page: 14 ident: bb0095 article-title: (2020) loss of PRMT1 in the CNS induces reactive astrocytes and microglia during postnatal brain development publication-title: Neurochem. – volume: 26 start-page: 316 year: 2015 end-page: 326 ident: bb0100 article-title: CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a publication-title: Mol. Biol. Cell – volume: 20 start-page: 642 year: 2019 end-page: 657 ident: bb0015 article-title: The regulation, functions and clinical relevance of arginine methylation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 275 start-page: 7723 year: 2000 end-page: 7730 ident: bb0005 article-title: PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells publication-title: J. Biol. Chem. – volume: 142 start-page: 901 year: 2017 end-page: 907 ident: bb0045 article-title: PRMT 1 regulates astrocytic differentiation of embryonic neural stem/precursor cells publication-title: J. Neurochem. – volume: 60 start-page: 323 year: 2006 end-page: 334 ident: bb0215 article-title: Methylthioadenosine reverses brain autoimmune disease publication-title: Ann. Neurol. – volume: 173 year: 2018 ident: bb0180 article-title: Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation publication-title: Cell. – volume: 33 start-page: 1 year: 2009 end-page: 13 ident: bb0010 article-title: Protein arginine methylation in mammals: who, what, and why publication-title: Mol. Cell. – volume: 31 start-page: 4258 year: 2012 end-page: 4275 ident: bb0170 article-title: Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS publication-title: EMBO J. – volume: 9 start-page: 1 year: 2018 end-page: 14 ident: bb0105 article-title: PRMT5-mediated regulation of developmental myelination publication-title: Nat. Commun. – volume: 27 start-page: 1903 year: 2013 end-page: 1916 ident: bb0090 article-title: Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery publication-title: Genes Dev. – volume: 46 start-page: 426 year: 2018 end-page: 440. e5 ident: bb0110 article-title: Loss of PRMT5 promotes PDGFRα degradation during oligodendrocyte differentiation and myelination publication-title: Dev. Cell – volume: 51 start-page: 1 year: 2019 end-page: 14 ident: bb0055 article-title: Methylation determines the extracellular calcium sensitivity of the leak channel NALCN in hippocampal dentate granule cells publication-title: Exp. Mol. Med. – volume: 5 start-page: e13807 year: 2010 ident: bb0080 article-title: Dynamic distribution of histone H4 arginine 3 methylation marks in the developing murine cortex publication-title: PLoS One – volume: 54 start-page: 9202 year: 2018 end-page: 9205 ident: bb0235 article-title: Unveiling epidithiodiketopiperazine as a non-histone arginine methyltransferase inhibitor by chemical protein methylome analyses publication-title: Chem. Commun. – volume: 1 year: 2015 ident: bb0140 article-title: PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination publication-title: Sci. Adv. – volume: 16 start-page: 304 year: 2009 ident: bb0075 article-title: PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing publication-title: Nat. Struct. Mol. Biol. – volume: 67 start-page: 435 year: 2002 end-page: 442 ident: bb0115 article-title: Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1 publication-title: J. Neurosci. Res. – volume: 31 start-page: 1963 year: 2020 end-page: 2091 ident: bb0130 article-title: SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth via Golgi morphogenesis publication-title: Mol. Biol. Cell – volume: 33 start-page: 726 year: 2015 end-page: 741 ident: bb0125 article-title: PRMT1 and PRMT8 regulate retinoic acid-dependent neuronal differentiation with implications to neuropathology publication-title: Stem Cells – volume: 277 start-page: 27227 year: 2002 end-page: 27231 ident: bb0145 article-title: Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning publication-title: J. Biol. Chem. – volume: 13 start-page: 37 year: 2013 end-page: 50 ident: bb0195 article-title: Protein arginine methyltransferases and cancer publication-title: Nat. Rev. Cancer – volume: 31 year: 2020 ident: bb0060 article-title: The protein arginine methyltransferase PRMT8 and substrate G3BP1 control Rac1-PAK1 signaling and actin cytoskeleton for dendritic spine maturation publication-title: Cell Rep. – volume: 134 start-page: 14905 year: 2012 end-page: 14912 ident: bb0230 article-title: Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation publication-title: J. Am. Chem. Soc. – volume: 161 start-page: 255 year: 2017 end-page: 258 ident: bb0025 article-title: Angiodysplasia in embryo lacking protein arginine methyltransferase 1 in vascular endothelial cells publication-title: J. Biol. Chem. – volume: 3 start-page: 1311 year: 2013 ident: bb0240 article-title: Loss of the major type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs publication-title: Sci. Rep. – volume: 69 year: 2018 ident: bb0190 article-title: Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation publication-title: Mol. Cell – volume: 1864 year: 2020 ident: bb0150 article-title: Region-specific upregulation of HNK-1 glycan in the PRMT1-deficient brain publication-title: Biochim. Biophys. Acta (BBA). – volume: 45 start-page: 470 year: 2012 end-page: 475 ident: bb0210 article-title: The role of protein arginine-methyltransferase 1 in gliomagenesis publication-title: BMB Rep. – volume: 8 start-page: 200 year: 2018 end-page: 213 ident: bb0030 article-title: PRMT1 deficiency in mouse juvenile heart induces dilated cardiomyopathy and reveals cryptic alternative splicing products publication-title: iScience. – volume: 286 start-page: 44424 year: 2011 end-page: 44432 ident: bb0040 article-title: Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation publication-title: J. Biol. Chem. – volume: 291 start-page: 2237 year: 2016 end-page: 2245 ident: bb0085 article-title: Severe Hypomyelination and developmental defects are caused in mice lacking protein arginine Methyltransferase 1 (PRMT1) in the central nervous system publication-title: J. Biol. Chem. – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: bb0175 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell. – volume: 34 start-page: 11929 year: 2014 end-page: 11947 ident: bb0065 article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: J. Neurosci. – volume: 319 start-page: 799 year: 2006 end-page: 808 ident: bb0220 article-title: A reversible S-adenosyl-L-homocysteine hydrolase inhibitor ameliorates experimental autoimmune encephalomyelitis by inhibiting T cell activation publication-title: J. Pharmacol. Exp. Ther. – volume: 13 start-page: 372 year: 2014 end-page: 387 ident: bb0225 article-title: Immunoaffinity enrichment and mass spectrometry analysis of protein methylation publication-title: Mol. Cell. Proteomics – volume: 293 start-page: 853 year: 2001 end-page: 857 ident: bb0070 article-title: Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor publication-title: Science. – volume: 21 start-page: 136 year: 2012 end-page: 149 ident: bb0160 article-title: Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations publication-title: Hum. Mol. Genet. – volume: 10 year: 2020 ident: bb0205 article-title: Deletion of Btg1 induces Prmt1-dependent apoptosis and increased stemness in Shh-type medulloblastoma cells without affecting tumor frequency publication-title: Front. Oncol. – volume: 108 start-page: 6085 year: 2011 end-page: 6090 ident: bb0200 article-title: Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt publication-title: Proc. Natl. Acad. Sci. – volume: 10 issue: 226 year: 2020 ident: 10.1016/j.bbagen.2020.129776_bb0205 article-title: Deletion of Btg1 induces Prmt1-dependent apoptosis and increased stemness in Shh-type medulloblastoma cells without affecting tumor frequency publication-title: Front. Oncol. – volume: 161 start-page: 255 year: 2017 ident: 10.1016/j.bbagen.2020.129776_bb0025 article-title: Angiodysplasia in embryo lacking protein arginine methyltransferase 1 in vascular endothelial cells publication-title: J. Biol. Chem. – volume: 31 start-page: 1963 issue: 18 year: 2020 ident: 10.1016/j.bbagen.2020.129776_bb0130 article-title: SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth via Golgi morphogenesis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E20-02-0100 – volume: 21 start-page: 136 year: 2012 ident: 10.1016/j.bbagen.2020.129776_bb0160 article-title: Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr448 – volume: 20 start-page: 4859 year: 2000 ident: 10.1016/j.bbagen.2020.129776_bb0020 article-title: Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.13.4859-4869.2000 – volume: 142 start-page: 901 year: 2017 ident: 10.1016/j.bbagen.2020.129776_bb0045 article-title: PRMT 1 regulates astrocytic differentiation of embryonic neural stem/precursor cells publication-title: J. Neurochem. doi: 10.1111/jnc.14123 – volume: 8 start-page: 200 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0030 article-title: PRMT1 deficiency in mouse juvenile heart induces dilated cardiomyopathy and reveals cryptic alternative splicing products publication-title: iScience. doi: 10.1016/j.isci.2018.09.023 – volume: 00 start-page: 1 year: 2020 ident: 10.1016/j.bbagen.2020.129776_bb0095 article-title: (2020) loss of PRMT1 in the CNS induces reactive astrocytes and microglia during postnatal brain development J publication-title: Neurochem. – volume: 31 start-page: 4258 year: 2012 ident: 10.1016/j.bbagen.2020.129776_bb0170 article-title: Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS publication-title: EMBO J. doi: 10.1038/emboj.2012.261 – volume: 16 start-page: 304 year: 2009 ident: 10.1016/j.bbagen.2020.129776_bb0075 article-title: PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1568 – volume: 67 start-page: 435 year: 2002 ident: 10.1016/j.bbagen.2020.129776_bb0115 article-title: Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10123 – volume: 7 year: 2012 ident: 10.1016/j.bbagen.2020.129776_bb0165 article-title: The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS publication-title: PLoS One doi: 10.1371/journal.pone.0049267 – volume: 1352 start-page: 11 year: 2010 ident: 10.1016/j.bbagen.2020.129776_bb0035 article-title: PRMT3 is essential for dendritic spine maturation in rat hippocampal neurons publication-title: Brain Res. doi: 10.1016/j.brainres.2010.07.033 – volume: 1864 year: 2020 ident: 10.1016/j.bbagen.2020.129776_bb0150 article-title: Region-specific upregulation of HNK-1 glycan in the PRMT1-deficient brain publication-title: Biochim. Biophys. Acta (BBA). doi: 10.1016/j.bbagen.2019.129509 – volume: 60 start-page: 323 year: 2006 ident: 10.1016/j.bbagen.2020.129776_bb0215 article-title: Methylthioadenosine reverses brain autoimmune disease publication-title: Ann. Neurol. doi: 10.1002/ana.20895 – volume: 275 start-page: 7723 year: 2000 ident: 10.1016/j.bbagen.2020.129776_bb0005 article-title: PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.11.7723 – volume: 134 start-page: 14905 year: 2012 ident: 10.1016/j.bbagen.2020.129776_bb0230 article-title: Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304782r – volume: 286 start-page: 44424 year: 2011 ident: 10.1016/j.bbagen.2020.129776_bb0040 article-title: Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.277046 – volume: 45 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0050 article-title: Arginine methylation by PRMT2 controls the functions of the actin nucleator Cobl publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.03.007 – volume: 34 start-page: 11929 year: 2014 ident: 10.1016/j.bbagen.2020.129776_bb0065 article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1860-14.2014 – volume: 445 start-page: 162 year: 2008 ident: 10.1016/j.bbagen.2020.129776_bb0120 article-title: PRMT1 and Btg2 regulates neurite outgrowth of Neuro2a cells publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2008.08.065 – volume: 277 start-page: 27227 year: 2002 ident: 10.1016/j.bbagen.2020.129776_bb0145 article-title: Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning publication-title: J. Biol. Chem. doi: 10.1074/jbc.C200296200 – volume: 20 start-page: 642 year: 2019 ident: 10.1016/j.bbagen.2020.129776_bb0015 article-title: The regulation, functions and clinical relevance of arginine methylation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0155-x – volume: 31 year: 2020 ident: 10.1016/j.bbagen.2020.129776_bb0060 article-title: The protein arginine methyltransferase PRMT8 and substrate G3BP1 control Rac1-PAK1 signaling and actin cytoskeleton for dendritic spine maturation publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107744 – volume: 27 start-page: 1903 year: 2013 ident: 10.1016/j.bbagen.2020.129776_bb0090 article-title: Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery publication-title: Genes Dev. doi: 10.1101/gad.219899.113 – volume: 319 start-page: 799 year: 2006 ident: 10.1016/j.bbagen.2020.129776_bb0220 article-title: A reversible S-adenosyl-L-homocysteine hydrolase inhibitor ameliorates experimental autoimmune encephalomyelitis by inhibiting T cell activation publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.106.107185 – volume: 149 start-page: 753 year: 2012 ident: 10.1016/j.bbagen.2020.129776_bb0175 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell. doi: 10.1016/j.cell.2012.04.017 – volume: 173 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0180 article-title: Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation publication-title: Cell. doi: 10.1016/j.cell.2018.03.004 – volume: 46 start-page: 426 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0110 article-title: Loss of PRMT5 promotes PDGFRα degradation during oligodendrocyte differentiation and myelination publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.06.025 – volume: 69 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0190 article-title: Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.022 – volume: 13 start-page: 37 year: 2013 ident: 10.1016/j.bbagen.2020.129776_bb0195 article-title: Protein arginine methyltransferases and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3409 – volume: 108 start-page: 6085 year: 2011 ident: 10.1016/j.bbagen.2020.129776_bb0200 article-title: Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1015328108 – volume: 323 start-page: 1208 year: 2009 ident: 10.1016/j.bbagen.2020.129776_bb0155 article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 publication-title: Science. doi: 10.1126/science.1165942 – volume: 173 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0185 article-title: FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions publication-title: Cell. doi: 10.1016/j.cell.2018.03.056 – volume: 13 start-page: 372 year: 2014 ident: 10.1016/j.bbagen.2020.129776_bb0225 article-title: Immunoaffinity enrichment and mass spectrometry analysis of protein methylation publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O113.027870 – volume: 291 start-page: 2237 year: 2016 ident: 10.1016/j.bbagen.2020.129776_bb0085 article-title: Severe Hypomyelination and developmental defects are caused in mice lacking protein arginine Methyltransferase 1 (PRMT1) in the central nervous system publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.684514 – volume: 51 start-page: 1 year: 2019 ident: 10.1016/j.bbagen.2020.129776_bb0055 article-title: Methylation determines the extracellular calcium sensitivity of the leak channel NALCN in hippocampal dentate granule cells publication-title: Exp. Mol. Med. doi: 10.1038/s12276-019-0299-y – volume: 5 start-page: e13807 year: 2010 ident: 10.1016/j.bbagen.2020.129776_bb0080 article-title: Dynamic distribution of histone H4 arginine 3 methylation marks in the developing murine cortex publication-title: PLoS One doi: 10.1371/journal.pone.0013807 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0105 article-title: PRMT5-mediated regulation of developmental myelination publication-title: Nat. Commun. doi: 10.1038/s41467-018-04863-9 – volume: 26 start-page: 316 year: 2015 ident: 10.1016/j.bbagen.2020.129776_bb0100 article-title: CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-01-0019 – volume: 54 start-page: 9202 year: 2018 ident: 10.1016/j.bbagen.2020.129776_bb0235 article-title: Unveiling epidithiodiketopiperazine as a non-histone arginine methyltransferase inhibitor by chemical protein methylome analyses publication-title: Chem. Commun. doi: 10.1039/C8CC03907K – volume: 33 start-page: 1 year: 2009 ident: 10.1016/j.bbagen.2020.129776_bb0010 article-title: Protein arginine methylation in mammals: who, what, and why publication-title: Mol. Cell. doi: 10.1016/j.molcel.2008.12.013 – volume: 293 start-page: 853 year: 2001 ident: 10.1016/j.bbagen.2020.129776_bb0070 article-title: Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor publication-title: Science. doi: 10.1126/science.1060781 – volume: 33 start-page: 726 year: 2015 ident: 10.1016/j.bbagen.2020.129776_bb0125 article-title: PRMT1 and PRMT8 regulate retinoic acid-dependent neuronal differentiation with implications to neuropathology publication-title: Stem Cells doi: 10.1002/stem.1894 – volume: 5 year: 2016 ident: 10.1016/j.bbagen.2020.129776_bb0135 article-title: Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression publication-title: Elife. doi: 10.7554/eLife.17159 – volume: 1 year: 2015 ident: 10.1016/j.bbagen.2020.129776_bb0140 article-title: PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination publication-title: Sci. Adv. doi: 10.1126/sciadv.1500615 – volume: 3 start-page: 1311 year: 2013 ident: 10.1016/j.bbagen.2020.129776_bb0240 article-title: Loss of the major type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs publication-title: Sci. Rep. doi: 10.1038/srep01311 – volume: 45 start-page: 470 year: 2012 ident: 10.1016/j.bbagen.2020.129776_bb0210 article-title: The role of protein arginine-methyltransferase 1 in gliomagenesis publication-title: BMB Rep. doi: 10.5483/BMBRep.2012.45.8.022 |
SSID | ssj0000595 |
Score | 2.4572608 |
SecondaryResourceType | review_article |
Snippet | Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129776 |
SubjectTerms | amyotrophic lateral sclerosis Animals arginine Arginine - analogs & derivatives Arginine - genetics Arginine - metabolism Arginine methylation astrocytes brain Brain - growth & development Brain - metabolism Brain - pathology Central nervous system (CNS) dementia DNA damage Gene Expression Regulation, Developmental histones Humans Methylation Neural Stem Cells - metabolism Neural Stem Cells - pathology Neurodegenerative Diseases - genetics Neurodegenerative Diseases - metabolism Neurodegenerative Diseases - pathology neurodevelopment oligodendroglia Protein arginine methyltransferase 1 (PRMT1) Protein-Arginine N-Methyltransferases - genetics Protein-Arginine N-Methyltransferases - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism type I protein arginine methyltransferase |
Title | Roles of protein arginine methyltransferase 1 (PRMT1) in brain development and disease |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129776 https://www.ncbi.nlm.nih.gov/pubmed/33127433 https://www.proquest.com/docview/2456420877 https://www.proquest.com/docview/2551907977 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWl_1UVbwoIe1TXY3mz1KsVRFEW2ltyWbbqRS0lLrwYu_3Zk8LB6q4C0kE9jMTna-ZL6dj5BTnXAurWeZ8GLORBKELOQ8ZioUglsZS99mBNn7oNsXNwM5qJB2uRcGaZXF2p-v6dlqXZxpFt5sTkej5hMW9QBOSB8OAPfjjnIhFEb5xeeC5gHwQeaVBMHQutw-l3G8rIWXFrug-thmAaBQsCw9LYOfWRrqbJKNAj_Sy3yIW6Ti0hpZzRUlP2pkrV0KuG2T50ds1kQnCc2aMYxSGs1eUA_CUdSN_hjPM9DqZpDIqEfPHh7vet45BTuLuhF0uOAT0Sgd0qKWs0P6nateu8sKGQUWi8CbM-Gkk7olYyWkFTLxLDyu0q6lI4A_FhCjDS3KhrkgCSMdWriUYN9AlWjnZMh3STWdpG6f0NbQaWeVBtAiUKMjcrELYsjxQy_QWvp1wkvvmbjoMY5SF2NTksleTe5zgz43uc_rhH3fNc17bPxhr8qJMT9ixUAa-OPOk3IeDUwG1kai1E3e3wzWf5FpoNQvNoAuNXgObfbyIPgeL-cefN9zfvDvsR2SdR_5MtnvnSNSnc_e3TEAnrltZBHdICuX17fd-y8m8_vz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IHoR32-N4EEPcbdN0jRHWZT1iegq3kLTTWVl6cq6Hrz4253pQ_GggrfSTiCdPOZr58t8AHsmE0K5wHEZpILLLIp5LETKdSylcCpVoSsIsldR-06ePaiHMWjVZ2GIVlnt_eWeXuzW1Z1G5c3Gc6_XuKWkHsIJFeIF4n49DpMSly_JGBy-f_E8ED-oMpUgOZnX5-cKkpdzuGqpDGpIdRYQC0U_xaef8GcRh07mYLYCkOyo7OM8jPl8AaZKScm3BZhu1Qpui3B_Q9Wa2CBjRTWGXs6S4SMJQnhGwtFv_VGBWv0QIxkL2P71zWUnOGBo50g4gnW_CEUsybusSuYswd3JcafV5pWOAk9lFIy49Mor01SplspJlQUOX1cb3zQJ4h-HkNHFjnTDfJTFiYkdPsqocKDOjPcqFsswkQ9yvwqs2fXGO20QtUgS6Uh86qMUg3w3iIxR4RqI2ns2rYqMk9ZF39Zssidb-tySz23p8zXgn62eyyIbf9jremDst8liMQ780XK3HkeLg0HJkST3g9cXSwlgohpo_YsNwkuDniOblXISfPZXiAA_8IVY_3ffdmC63bm8sBenV-cbMBMSeab417MJE6Phq99C9DNy28Xs_gDg7f2B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roles+of+protein+arginine+methyltransferase+1+%28PRMT1%29+in+brain+development+and+disease&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Hashimoto%2C+Misuzu&rft.au=Fukamizu%2C+Akiyoshi&rft.au=Nakagawa%2C+Tsutomu&rft.au=Kizuka%2C+Yasuhiko&rft.date=2021-01-01&rft.issn=0304-4165&rft.volume=1865&rft.issue=1+p.129776-&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129776&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |