Mechanisms of γ-glutamylcysteine ligase regulation
The principal objective of this study was to investigate the mechanisms regulating the activity of γ-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate limiting enzyme in glutathione biosynthesis. Two phylogenetically divergent species, mouse and the fruitfly, Drosophila melanogaster were used to t...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1760; no. 2; pp. 233 - 244 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The principal objective of this study was to investigate the mechanisms regulating the activity of γ-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate limiting enzyme in glutathione biosynthesis. Two phylogenetically divergent species, mouse and the fruitfly,
Drosophila melanogaster were used to test the hypothesis that reversible protein phosphorylation and pyridine dinucleotide phosphate dependent allostery regulate GCL activity. GCL was almost completely inhibited under phosphorylating conditions, involving preincubations with MgATP and endogenous protein kinases. Maximal GCL inhibitions of 94%, 77%, 85%, 87%, 83%, 95% and 89% occurred, respectively, in mouse cerebellum, hippocampus, brainstem, striatum, cortex and heart, and
Drosophila. These changes in GCL activity were detected using saturating levels of substrates, suggesting that
V
max was dramatically affected, whereas
K
m values showed no differences. In vitro activation of GCL, presumably due to dephosphorylation, was blocked by inhibitors of protein phosphatases, suggesting that GCL exists in vivo as a mixture of phosphorylated and dephosphorylated forms. The reversibility of the dephosphorylation-dependent activation was indicated by the time-dependent inactivation of the in vitro activated
Drosophila GCL, by preincubation with MgATP. NADPH increased maximal GCL activity by up to 93%, whereas several other nucleotide analogues did not, thereby demonstrating specificity. Kinetic analysis using Hanes–Woolf replots of initial velocity data suggested that the NADPH-dependent stimulation of GCL activity is brought about by a change in the maximal activity,
V
max, rather than changes in substrate affinity. Results of this study suggest that mechanisms of modulation of eukaryotic GCL enzymes may include specific binding of ligands such as pyridine dinucleotide phosphates and reversible protein phosphorylation. |
---|---|
AbstractList | The principal objective of this study was to investigate the mechanisms regulating the activity of γ-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate limiting enzyme in glutathione biosynthesis. Two phylogenetically divergent species, mouse and the fruitfly,
Drosophila melanogaster were used to test the hypothesis that reversible protein phosphorylation and pyridine dinucleotide phosphate dependent allostery regulate GCL activity. GCL was almost completely inhibited under phosphorylating conditions, involving preincubations with MgATP and endogenous protein kinases. Maximal GCL inhibitions of 94%, 77%, 85%, 87%, 83%, 95% and 89% occurred, respectively, in mouse cerebellum, hippocampus, brainstem, striatum, cortex and heart, and
Drosophila. These changes in GCL activity were detected using saturating levels of substrates, suggesting that
V
max was dramatically affected, whereas
K
m values showed no differences. In vitro activation of GCL, presumably due to dephosphorylation, was blocked by inhibitors of protein phosphatases, suggesting that GCL exists in vivo as a mixture of phosphorylated and dephosphorylated forms. The reversibility of the dephosphorylation-dependent activation was indicated by the time-dependent inactivation of the in vitro activated
Drosophila GCL, by preincubation with MgATP. NADPH increased maximal GCL activity by up to 93%, whereas several other nucleotide analogues did not, thereby demonstrating specificity. Kinetic analysis using Hanes–Woolf replots of initial velocity data suggested that the NADPH-dependent stimulation of GCL activity is brought about by a change in the maximal activity,
V
max, rather than changes in substrate affinity. Results of this study suggest that mechanisms of modulation of eukaryotic GCL enzymes may include specific binding of ligands such as pyridine dinucleotide phosphates and reversible protein phosphorylation. The principal objective of this study was to investigate the mechanisms regulating the activity of gamma-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate limiting enzyme in glutathione biosynthesis. Two phylogenetically divergent species, mouse and the fruitfly, Drosophila melanogaster were used to test the hypothesis that reversible protein phosphorylation and pyridine dinucleotide phosphate dependent allostery regulate GCL activity. GCL was almost completely inhibited under phosphorylating conditions, involving preincubations with MgATP and endogenous protein kinases. Maximal GCL inhibitions of 94%, 77%, 85%, 87%, 83%, 95% and 89% occurred, respectively, in mouse cerebellum, hippocampus, brainstem, striatum, cortex and heart, and Drosophila. These changes in GCL activity were detected using saturating levels of substrates, suggesting that V(max) was dramatically affected, whereas K(m) values showed no differences. In vitro activation of GCL, presumably due to dephosphorylation, was blocked by inhibitors of protein phosphatases, suggesting that GCL exists in vivo as a mixture of phosphorylated and dephosphorylated forms. The reversibility of the dephosphorylation-dependent activation was indicated by the time-dependent inactivation of the in vitro activated Drosophila GCL, by preincubation with MgATP. NADPH increased maximal GCL activity by up to 93%, whereas several other nucleotide analogues did not, thereby demonstrating specificity. Kinetic analysis using Hanes-Woolf replots of initial velocity data suggested that the NADPH-dependent stimulation of GCL activity is brought about by a change in the maximal activity, V(max), rather than changes in substrate affinity. Results of this study suggest that mechanisms of modulation of eukaryotic GCL enzymes may include specific binding of ligands such as pyridine dinucleotide phosphates and reversible protein phosphorylation.The principal objective of this study was to investigate the mechanisms regulating the activity of gamma-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate limiting enzyme in glutathione biosynthesis. Two phylogenetically divergent species, mouse and the fruitfly, Drosophila melanogaster were used to test the hypothesis that reversible protein phosphorylation and pyridine dinucleotide phosphate dependent allostery regulate GCL activity. GCL was almost completely inhibited under phosphorylating conditions, involving preincubations with MgATP and endogenous protein kinases. Maximal GCL inhibitions of 94%, 77%, 85%, 87%, 83%, 95% and 89% occurred, respectively, in mouse cerebellum, hippocampus, brainstem, striatum, cortex and heart, and Drosophila. These changes in GCL activity were detected using saturating levels of substrates, suggesting that V(max) was dramatically affected, whereas K(m) values showed no differences. In vitro activation of GCL, presumably due to dephosphorylation, was blocked by inhibitors of protein phosphatases, suggesting that GCL exists in vivo as a mixture of phosphorylated and dephosphorylated forms. The reversibility of the dephosphorylation-dependent activation was indicated by the time-dependent inactivation of the in vitro activated Drosophila GCL, by preincubation with MgATP. NADPH increased maximal GCL activity by up to 93%, whereas several other nucleotide analogues did not, thereby demonstrating specificity. Kinetic analysis using Hanes-Woolf replots of initial velocity data suggested that the NADPH-dependent stimulation of GCL activity is brought about by a change in the maximal activity, V(max), rather than changes in substrate affinity. Results of this study suggest that mechanisms of modulation of eukaryotic GCL enzymes may include specific binding of ligands such as pyridine dinucleotide phosphates and reversible protein phosphorylation. The principal objective of this study was to investigate the mechanisms regulating the activity of gamma-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate limiting enzyme in glutathione biosynthesis. Two phylogenetically divergent species, mouse and the fruitfly, Drosophila melanogaster were used to test the hypothesis that reversible protein phosphorylation and pyridine dinucleotide phosphate dependent allostery regulate GCL activity. GCL was almost completely inhibited under phosphorylating conditions, involving preincubations with MgATP and endogenous protein kinases. Maximal GCL inhibitions of 94%, 77%, 85%, 87%, 83%, 95% and 89% occurred, respectively, in mouse cerebellum, hippocampus, brainstem, striatum, cortex and heart, and Drosophila. These changes in GCL activity were detected using saturating levels of substrates, suggesting that V(max) was dramatically affected, whereas K(m) values showed no differences. In vitro activation of GCL, presumably due to dephosphorylation, was blocked by inhibitors of protein phosphatases, suggesting that GCL exists in vivo as a mixture of phosphorylated and dephosphorylated forms. The reversibility of the dephosphorylation-dependent activation was indicated by the time-dependent inactivation of the in vitro activated Drosophila GCL, by preincubation with MgATP. NADPH increased maximal GCL activity by up to 93%, whereas several other nucleotide analogues did not, thereby demonstrating specificity. Kinetic analysis using Hanes-Woolf replots of initial velocity data suggested that the NADPH-dependent stimulation of GCL activity is brought about by a change in the maximal activity, V(max), rather than changes in substrate affinity. Results of this study suggest that mechanisms of modulation of eukaryotic GCL enzymes may include specific binding of ligands such as pyridine dinucleotide phosphates and reversible protein phosphorylation. The principal objective of this study was to investigate the mechanisms regulating the activity of γ-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate limiting enzyme in glutathione biosynthesis. Two phylogenetically divergent species, mouse and the fruitfly, Drosophila melanogaster were used to test the hypothesis that reversible protein phosphorylation and pyridine dinucleotide phosphate dependent allostery regulate GCL activity. GCL was almost completely inhibited under phosphorylating conditions, involving preincubations with MgATP and endogenous protein kinases. Maximal GCL inhibitions of 94%, 77%, 85%, 87%, 83%, 95% and 89% occurred, respectively, in mouse cerebellum, hippocampus, brainstem, striatum, cortex and heart, and Drosophila . These changes in GCL activity were detected using saturating levels of substrates, suggesting that V max was dramatically affected, whereas K m values showed no differences. In vitro activation of GCL, presumably due to dephosphorylation, was blocked by inhibitors of protein phosphatases, suggesting that GCL exists in vivo as a mixture of phosphorylated and dephosphorylated forms. The reversibility of the dephosphorylation-dependent activation was indicated by the time-dependent inactivation of the in vitro activated Drosophila GCL, by preincubation with MgATP. NADPH increased maximal GCL activity by up to 93%, whereas several other nucleotide analogues did not, thereby demonstrating specificity. Kinetic analysis using Hanes–Woolf replots of initial velocity data suggested that the NADPH-dependent stimulation of GCL activity is brought about by a change in the maximal activity, V max , rather than changes in substrate affinity. Results of this study suggest that mechanisms of modulation of eukaryotic GCL enzymes may include specific binding of ligands such as pyridine dinucleotide phosphates and reversible protein phosphorylation. |
Author | Yarian, Connie S. Toroser, Dikran Sohal, Rajindar S. Orr, William C. |
AuthorAffiliation | b Department of Biological Sciences, Dedman Life Sciences Building, Southern Methodist University, Dallas, TX 75275, USA a Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA |
AuthorAffiliation_xml | – name: a Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA – name: b Department of Biological Sciences, Dedman Life Sciences Building, Southern Methodist University, Dallas, TX 75275, USA |
Author_xml | – sequence: 1 givenname: Dikran surname: Toroser fullname: Toroser, Dikran organization: Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA – sequence: 2 givenname: Connie S. surname: Yarian fullname: Yarian, Connie S. organization: Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA – sequence: 3 givenname: William C. surname: Orr fullname: Orr, William C. organization: Department of Biological Sciences, Dedman Life Sciences Building, Southern Methodist University, Dallas, TX 75275, USA – sequence: 4 givenname: Rajindar S. surname: Sohal fullname: Sohal, Rajindar S. email: sohal@usc.edu organization: Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16324789$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctO3DAUtSqqMkD_AFWzYpepnfgVFkgI0YdE1U1ZW7ZzEzxybGonSPNd_Y9-E57OFAEL7uZK1-chn3OEDkIMgNApwSuCCf-8XhmjBwirGmNWTitM8Du0IFLUlcSYH6AFbjCtKOHsEB3lvMZlWMs-oEPCm5oK2S5Q8wPsnQ4uj3kZ--XfP9Xg50mPG283eQIXYOndoDMsEwyz15OL4QS977XP8HG_j9Htl-tfV9-qm59fv19d3lSWcjJVtGO1tLIhkjHKeiMsM53U1FADuMfUiJZzQnUrwVAAkKbWxHDaUUJr0rXNMbrY6d7PZoTOQpiS9uo-uVGnjYraqZcvwd2pIT6oWjYCC1EEzvYCKf6eIU9qdNmC9zpAnLPiQpBWCl6An547PVn8z6kAzncAm2LOCXpl3fQvjGLsvCJYbUtRa7UrRW1L2V5LKYVMX5Gf9N-m7b8PJeMHB0ll6yBY6FwCO6kuurcFHgHJ6Kl3 |
CitedBy_id | crossref_primary_10_1007_s12035_018_1222_6 crossref_primary_10_2478_ahem_2021_0013 crossref_primary_10_1111_j_1474_9726_2011_00788_x crossref_primary_10_1016_j_aquatox_2012_02_018 crossref_primary_10_1007_s10930_017_9731_0 crossref_primary_10_1038_s41589_024_01689_z crossref_primary_10_1021_acs_jafc_2c01712 crossref_primary_10_1016_j_bcp_2007_02_003 crossref_primary_10_1016_j_ecoenv_2008_03_001 crossref_primary_10_1111_j_1471_4159_2009_05969_x crossref_primary_10_1177_1934578X221081368 crossref_primary_10_1016_j_dental_2011_01_002 crossref_primary_10_3109_15376516_2015_1044150 crossref_primary_10_1016_j_mam_2008_08_009 crossref_primary_10_1016_j_phanu_2015_04_001 crossref_primary_10_1007_s00244_010_9594_2 crossref_primary_10_1016_j_mrgentox_2014_04_016 crossref_primary_10_3390_ijms24032950 crossref_primary_10_1016_j_cbpc_2020_108740 crossref_primary_10_3390_antiox10071011 crossref_primary_10_1016_j_taap_2011_10_021 crossref_primary_10_3390_cancers14194881 crossref_primary_10_1016_j_chemosphere_2010_11_060 crossref_primary_10_1016_j_abb_2016_01_017 crossref_primary_10_1093_toxsci_kft002 crossref_primary_10_1002_biof_5520330101 crossref_primary_10_1016_j_addr_2008_06_001 crossref_primary_10_1016_j_theriogenology_2024_04_005 crossref_primary_10_1042_BJ20061868 crossref_primary_10_13102_sociobiology_v71i3_10453 crossref_primary_10_1016_j_jtbi_2016_12_021 crossref_primary_10_1016_j_envint_2009_10_010 crossref_primary_10_1111_iej_12232 crossref_primary_10_1021_acsomega_2c06768 crossref_primary_10_1038_s41586_019_1442_6 crossref_primary_10_1002_mnfr_201300753 crossref_primary_10_1016_j_freeradbiomed_2010_10_694 crossref_primary_10_3390_ijms19051537 crossref_primary_10_1074_jbc_M110_116210 crossref_primary_10_1016_j_ecoenv_2009_02_008 crossref_primary_10_3168_jds_2015_9787 crossref_primary_10_1016_j_tox_2019_03_010 crossref_primary_10_1016_j_arr_2023_102066 crossref_primary_10_1042_BCJ20190072 crossref_primary_10_3390_ijms16048397 |
Cites_doi | 10.1271/bbb.66.1500 10.1021/bi9903300 10.1016/S0891-5849(03)00388-5 10.1073/pnas.85.8.2464 10.1016/S0891-5849(02)00991-7 10.1182/blood.V77.9.2059.2059 10.1016/j.cbi.2003.12.004 10.1006/bbrc.1994.1199 10.1096/fj.00-0823hyp 10.1016/S0021-9258(18)66211-8 10.1016/0076-6879(95)51106-7 10.1016/S0021-9258(17)43127-9 10.1016/0005-2736(80)90393-4 10.1042/BJ20040506 10.1146/annurev.nutr.24.012003.132418 10.1006/abio.2001.5607 10.1016/S0021-9258(19)40785-0 10.1016/S0008-6363(00)00104-8 10.1006/abio.1999.4285 10.2174/1568026013394778 10.1016/0006-291X(85)91761-9 10.1128/MCB.14.9.5832 10.1006/bbrc.1999.1109 10.1172/JCI115286 10.1006/abbi.1998.0740 10.1093/jn/134.3.489 10.1016/j.bbrc.2004.11.066 10.1046/j.1365-2958.1996.6351340.x 10.1016/S1367-5931(99)80067-2 10.1042/BJ20051111 10.1016/j.tibs.2004.01.007 10.1107/S0907444901019886 10.1016/j.abb.2003.11.004 10.1677/joe.0.1560519 10.1016/S0278-5846(97)00011-0 10.1042/bj3200321 10.1006/abbi.1993.1054 10.1016/S0014-5793(98)01048-5 10.1074/jbc.M106683200 10.1042/bj1110309 10.1042/0264-6021:3510095 10.1002/(SICI)1097-4652(200002)182:2<163::AID-JCP4>3.0.CO;2-1 10.1016/S0021-9258(19)36569-X 10.1074/jbc.M504604200 10.1038/nrd773 10.1073/pnas.0403277101 10.1016/S0098-2997(03)00013-X 10.1023/B:MOLE.0000013505.12111.5b 10.1074/jbc.M308035200 10.1016/j.ejca.2004.02.029 10.1016/S0731-7085(01)00379-X 10.1016/S0021-9258(19)77815-6 10.1006/bbrc.2000.3830 10.1016/0076-6879(90)82008-P 10.1006/bbrc.2001.6274 10.1016/S0021-9258(20)80764-9 10.1161/01.RES.78.4.564 10.1016/j.freeradbiomed.2004.06.011 10.1016/S0009-2797(02)00017-0 10.1016/S0021-9258(19)41830-9 10.1096/fasebj.13.10.1169 |
ContentType | Journal Article |
Copyright | 2005 Elsevier B.V. |
Copyright_xml | – notice: 2005 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bbagen.2005.10.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 244 |
ExternalDocumentID | PMC2837077 16324789 10_1016_j_bbagen_2005_10_010 S0304416505003399 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG13563 – fundername: NIA NIH HHS grantid: R01 AG15122 – fundername: NIA NIH HHS grantid: R01 AG015122 – fundername: NIA NIH HHS grantid: R01 AG013563 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 5PM |
ID | FETCH-LOGICAL-c461t-4d528c83185545fb7c5bd8a4b4be0f04b796614a98eb4eee8b2a1b64d41421d93 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 13:46:16 EDT 2025 Fri Jul 11 12:16:20 EDT 2025 Fri May 30 11:00:36 EDT 2025 Tue Jul 01 00:21:51 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Fri Feb 23 02:32:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | GSSG γ-glutamylcysteine ligase Signal transduction Oxidative stress Phosphorylation ECD acivicin γ-GC l-BSO GSH HPLC Glutathione |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-4d528c83185545fb7c5bd8a4b4be0f04b796614a98eb4eee8b2a1b64d41421d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2837077 |
PMID | 16324789 |
PQID | 67719876 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2837077 proquest_miscellaneous_67719876 pubmed_primary_16324789 crossref_citationtrail_10_1016_j_bbagen_2005_10_010 crossref_primary_10_1016_j_bbagen_2005_10_010 elsevier_sciencedirect_doi_10_1016_j_bbagen_2005_10_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-02-01 |
PublicationDateYYYYMMDD | 2006-02-01 |
PublicationDate_xml | – month: 02 year: 2006 text: 2006-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2006 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Meister (bib3) 1988; 263 Krzywanski, Dickinson, Iles, Wigley, Franklin, Liu, Kavanagh, Forman (bib5) 2004; 423 Gschwendt, Muller, Kielbassa, Zang, Kittstein, Rincke, Marks (bib43) 1994; 199 Wu, Moye-Rowley (bib10) 1994; 14 Lu (bib20) 1999; 13 Kim, Park, Lim (bib7) 2004; 31 Kirsch, De Groot (bib25) 2001; 15 Cohen (bib46) 2002; 1 Gegg, Clark, Heales (bib31) 2002; 304 Scott, Zuo, Lubin, Chiu (bib60) 1991; 77 Wu, Tsai, Wang, Wu, Wang, Lee (bib64) 1996; 78 Jackson (bib28) 1969; 111 Adams, Klaidman, Chang, Yang (bib47) 2001; 1 Hibi, Hisada, Nakatsu, Kato, Oda (bib57) 2002; 58 Dickinson, Iles, Watanabe, Iwamoto, Zhang, Krzywanski, Forman (bib12) 2002; 33 Sun, Huang, Lu (bib22) 1996; 320 Davies, Reddy, Caivano, Cohen (bib42) 2000; 351 Huang, Chang, Anderson, Meister (bib14) 1993; 268 Rashba-Step, Turro, Cederbaum (bib26) 1993; 300 Grant, Collinson, Roe, Dawes (bib9) 1996; 21 Srivastava (bib44) 1985; 131 Huang, Anderson, Meister (bib18) 1993; 268 Rebrin, Bayne, Mockett, Orr, Sohal (bib35) 2004; 382 Wu, Fang, Yang, Lupton, Turner (bib1) 2004; 134 Dickinson, Levonen, Moellering, Arnold, Zhang, Darley-Usmar, Forman (bib8) 2004; 37 Lu, Kuhlenkamp, Garcia-Ruiz, Kaplowitz (bib21) 1991; 88 Yanari, Snoke, Bloch (bib30) 1953; 201 Toroser, Athwal, Huber (bib58) 1998; 435 Meister (bib19) 1995; 251 Moinova, Mulcahy (bib11) 1999; 261 Stipanuk (bib51) 2004; 24 Sekhar, Crooks, Sonar, Friedman, Chan, Meredith, Starnes, Kelton, Summar, Sasi, Freeman (bib23) 2003; 63 Berger, Ramirez-Hernandez, Ziegler (bib24) 2004; 29 Casabona (bib45) 1997; 21 Forman, Dickinson, Iles (bib55) 2003; 24 Hibi, Nii, Nakatsu, Kimura, Kato, Hiratake, Oda (bib59) 2004; 101 Fraser, Kansagra, Kotecki, Saunders, McLellan (bib15) 2003; 278 Toroser, Sohal (bib29) 2005; 326 Volohonsky, Tuby, Porat, Wellman-Rousseau, Visvikis, Leroy, Rashi, Steinberg, Stark (bib39) 2002; 140 Birago, Marchei, Pennino, Valvo (bib34) 2001; 25 Gast, Glokler, Hoxter, Kiess, Frank, Tegge (bib37) 1999; 276 Buchanan, Balmer (bib4) 2004; 3 Soltaninassab, Sekhar, Meredith, Freeman (bib6) 2000; 182 Seelig, Meister (bib38) 1984; 259 Toroser, Huber (bib56) 1998; 355 Weijl, Elsendoorn, Lentjes, Hopman, Wipkink-Bakker, Zwinderman, Cleton, Osanto (bib54) 2004; 40 Schaffer, Ahmed, Wetlaufer (bib32) 1975; 250 Andersen, le Maire, Moller (bib52) 1980; 603 Huang, Moore, Meister (bib33) 1988; 85 J.I. Lee, J. Kang, M.H. Stipanuk, Differential regulation of glutamate-cysteine ligase subunit expression and increased holoenzyme formation in response to cysteine deprivation, Biochem. J. (in press). Hiratake, Irie, Tokutake, Oda (bib53) 2002; 66 Divino Filho, Hazel, Furst, Bergstrom, Hall (bib49) 1998; 156 Richman, Meister (bib48) 1975; 250 Rinaldi, Aniya, Svensson, Eliasson, Swedmark, Shimoji, Morgenstern (bib27) 2004; 147 Chen, Shertzer, Schneider, Nebert, Dalton (bib17) 2005; 280 Stoscheck (bib36) 1990; 182 Cohen (bib41) 1999; 3 Pervaiz, Clement (bib63) 2002; 290 Fraser, Saunders, McLellan (bib16) 2002; 277 Danielson, Jiang, Hansson, Mannervik (bib61) 1999; 38 Goldberg (bib40) 1990; 1 Ceconi, Bernocchi, Boraso, Cargnoni, Pepi, Curello, Ferrari (bib62) 2000; 47 Zipper, Mulcahy (bib13) 2000; 278 Rebrin, Kamzalov, Sohal (bib2) 2003; 35 10.1016/j.bbagen.2005.10.010_bib50 Lu (10.1016/j.bbagen.2005.10.010_bib20) 1999; 13 Schaffer (10.1016/j.bbagen.2005.10.010_bib32) 1975; 250 Meister (10.1016/j.bbagen.2005.10.010_bib19) 1995; 251 Rebrin (10.1016/j.bbagen.2005.10.010_bib2) 2003; 35 Srivastava (10.1016/j.bbagen.2005.10.010_bib44) 1985; 131 Fraser (10.1016/j.bbagen.2005.10.010_bib16) 2002; 277 Krzywanski (10.1016/j.bbagen.2005.10.010_bib5) 2004; 423 Toroser (10.1016/j.bbagen.2005.10.010_bib58) 1998; 435 Yanari (10.1016/j.bbagen.2005.10.010_bib30) 1953; 201 Wu (10.1016/j.bbagen.2005.10.010_bib10) 1994; 14 Buchanan (10.1016/j.bbagen.2005.10.010_bib4) 2004; 3 Birago (10.1016/j.bbagen.2005.10.010_bib34) 2001; 25 Cohen (10.1016/j.bbagen.2005.10.010_bib41) 1999; 3 Huang (10.1016/j.bbagen.2005.10.010_bib18) 1993; 268 Casabona (10.1016/j.bbagen.2005.10.010_bib45) 1997; 21 Adams (10.1016/j.bbagen.2005.10.010_bib47) 2001; 1 Divino Filho (10.1016/j.bbagen.2005.10.010_bib49) 1998; 156 Pervaiz (10.1016/j.bbagen.2005.10.010_bib63) 2002; 290 Huang (10.1016/j.bbagen.2005.10.010_bib33) 1988; 85 Dickinson (10.1016/j.bbagen.2005.10.010_bib12) 2002; 33 Scott (10.1016/j.bbagen.2005.10.010_bib60) 1991; 77 Hibi (10.1016/j.bbagen.2005.10.010_bib57) 2002; 58 Wu (10.1016/j.bbagen.2005.10.010_bib64) 1996; 78 Toroser (10.1016/j.bbagen.2005.10.010_bib56) 1998; 355 Dickinson (10.1016/j.bbagen.2005.10.010_bib8) 2004; 37 Wu (10.1016/j.bbagen.2005.10.010_bib1) 2004; 134 Volohonsky (10.1016/j.bbagen.2005.10.010_bib39) 2002; 140 Hibi (10.1016/j.bbagen.2005.10.010_bib59) 2004; 101 Rebrin (10.1016/j.bbagen.2005.10.010_bib35) 2004; 382 Chen (10.1016/j.bbagen.2005.10.010_bib17) 2005; 280 Cohen (10.1016/j.bbagen.2005.10.010_bib46) 2002; 1 Rashba-Step (10.1016/j.bbagen.2005.10.010_bib26) 1993; 300 Berger (10.1016/j.bbagen.2005.10.010_bib24) 2004; 29 Soltaninassab (10.1016/j.bbagen.2005.10.010_bib6) 2000; 182 Fraser (10.1016/j.bbagen.2005.10.010_bib15) 2003; 278 Hiratake (10.1016/j.bbagen.2005.10.010_bib53) 2002; 66 Kim (10.1016/j.bbagen.2005.10.010_bib7) 2004; 31 Toroser (10.1016/j.bbagen.2005.10.010_bib29) 2005; 326 Meister (10.1016/j.bbagen.2005.10.010_bib3) 1988; 263 Ceconi (10.1016/j.bbagen.2005.10.010_bib62) 2000; 47 Huang (10.1016/j.bbagen.2005.10.010_bib14) 1993; 268 Gast (10.1016/j.bbagen.2005.10.010_bib37) 1999; 276 Zipper (10.1016/j.bbagen.2005.10.010_bib13) 2000; 278 Goldberg (10.1016/j.bbagen.2005.10.010_bib40) 1990; 1 Stipanuk (10.1016/j.bbagen.2005.10.010_bib51) 2004; 24 Stoscheck (10.1016/j.bbagen.2005.10.010_bib36) 1990; 182 Andersen (10.1016/j.bbagen.2005.10.010_bib52) 1980; 603 Weijl (10.1016/j.bbagen.2005.10.010_bib54) 2004; 40 Davies (10.1016/j.bbagen.2005.10.010_bib42) 2000; 351 Richman (10.1016/j.bbagen.2005.10.010_bib48) 1975; 250 Rinaldi (10.1016/j.bbagen.2005.10.010_bib27) 2004; 147 Kirsch (10.1016/j.bbagen.2005.10.010_bib25) 2001; 15 Danielson (10.1016/j.bbagen.2005.10.010_bib61) 1999; 38 Moinova (10.1016/j.bbagen.2005.10.010_bib11) 1999; 261 Jackson (10.1016/j.bbagen.2005.10.010_bib28) 1969; 111 Seelig (10.1016/j.bbagen.2005.10.010_bib38) 1984; 259 Sekhar (10.1016/j.bbagen.2005.10.010_bib23) 2003; 63 Gegg (10.1016/j.bbagen.2005.10.010_bib31) 2002; 304 Forman (10.1016/j.bbagen.2005.10.010_bib55) 2003; 24 Grant (10.1016/j.bbagen.2005.10.010_bib9) 1996; 21 Lu (10.1016/j.bbagen.2005.10.010_bib21) 1991; 88 Gschwendt (10.1016/j.bbagen.2005.10.010_bib43) 1994; 199 Sun (10.1016/j.bbagen.2005.10.010_bib22) 1996; 320 |
References_xml | – volume: 182 start-page: 163 year: 2000 end-page: 170 ident: bib6 article-title: Multi-faceted regulation of γ-glutamylcysteine synthetase publication-title: J. Cell. Physiol. – volume: 85 start-page: 2464 year: 1988 end-page: 2468 ident: bib33 article-title: On the active site thiol of γ-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 156 start-page: 519 year: 1998 end-page: 527 ident: bib49 article-title: Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis publication-title: J. Endocrinol. – volume: 78 start-page: 564 year: 1996 end-page: 572 ident: bib64 article-title: Mechanism of hydrogen peroxide and hydroxyl free radical-induced intracellular acidification in cultured rat cardiac myoblasts publication-title: Circ. Res. – volume: 140 start-page: 49 year: 2002 end-page: 65 ident: bib39 article-title: A spectrophotometric assay of γ-glutamylcysteine synthetase and glutathione synthetase in crude extracts from tissues and cultured mammalian cells publication-title: Chem.-Biol. Interact. – volume: 603 start-page: 84 year: 1980 end-page: 100 ident: bib52 article-title: Properties of detergent-solubilized and membranous (Ca publication-title: Biochim. Biophys. Acta – volume: 276 start-page: 227 year: 1999 end-page: 241 ident: bib37 article-title: Method for determining protein kinase substrate specificities by the phosphorylation of peptide libraries on beads, phosphate-specific staining, automated sorting, and sequencing publication-title: Anal. Biochem. – volume: 24 start-page: 539 year: 2004 end-page: 577 ident: bib51 article-title: Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine publication-title: Annu. Rev. Nutr. – volume: 268 start-page: 20578 year: 1993 end-page: 20583 ident: bib18 article-title: Amino acid sequence and function of the light subunit of rat kidney γ-glutamylcysteine synthetase publication-title: J. Biol. Chem. – volume: 47 start-page: 586 year: 2000 end-page: 594 ident: bib62 article-title: New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage publication-title: Cardiovasc. Res. – volume: 300 start-page: 401 year: 1993 end-page: 408 ident: bib26 article-title: Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment publication-title: Arch. Biochem. Biophys. – volume: 63 start-page: 5636 year: 2003 end-page: 5645 ident: bib23 article-title: NADPH oxidase activity is essential for Keap1/Nrf2-mediated induction of GCLC in response to 2-indol-3-yl-methylenequinuclidin-3-ols publication-title: Cancer Res. – volume: 382 start-page: 131 year: 2004 end-page: 136 ident: bib35 article-title: Free aminothiols, glutathione redox state and protein mixed disulphides in aging publication-title: Biochem. J. – volume: 355 start-page: 291 year: 1998 end-page: 300 ident: bib56 article-title: 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca publication-title: Arch. Biochem. Biophys. – volume: 66 start-page: 1500 year: 2002 end-page: 1514 ident: bib53 article-title: Recognition of a cysteine substrate by publication-title: Biosci. Biotechnol. Biochem. – volume: 250 start-page: 8483 year: 1975 end-page: 8486 ident: bib32 article-title: Salt effects in the glutathione-facilitated reactivation of reduced bovine pancreatic ribonuclease publication-title: J. Biol. Chem. – volume: 263 start-page: 17205 year: 1988 end-page: 17208 ident: bib3 article-title: Glutathione metabolism and its selective modification publication-title: J. Biol. Chem. – volume: 423 start-page: 116 year: 2004 end-page: 125 ident: bib5 article-title: Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress publication-title: Arch. Biochem. Biophys. – volume: 38 start-page: 9254 year: 1999 end-page: 9263 ident: bib61 article-title: Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site publication-title: Biochemistry – volume: 14 start-page: 5832 year: 1994 end-page: 5839 ident: bib10 article-title: GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation publication-title: Mol. Cell. Biol. – volume: 261 start-page: 661 year: 1999 end-page: 668 ident: bib11 article-title: Up-regulation of the human γ-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element publication-title: Biochem. Biophys. Res. Commun. – volume: 278 start-page: 46369 year: 2003 end-page: 46377 ident: bib15 article-title: The modifier subunit of Drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione homeostasis in vivo publication-title: J. Biol. Chem. – volume: 304 start-page: 26 year: 2002 end-page: 32 ident: bib31 article-title: Determination of glutamate-cysteine ligase (γ-glutamylcysteine synthetase) activity by high-performance liquid chromatography and electrochemical detection publication-title: Anal. Biochem. – volume: 29 start-page: 111 year: 2004 end-page: 118 ident: bib24 article-title: The new life of a centenarian: signalling functions of NAD(P) publication-title: Trends Biochem. Sci. – volume: 24 start-page: 189 year: 2003 end-page: 194 ident: bib55 article-title: HNE-signaling pathways leading to its elimination publication-title: Mol. Aspects Med. – volume: 15 start-page: 1569 year: 2001 end-page: 1574 ident: bib25 article-title: NAD(P)H, a directly operating antioxidant? publication-title: FASEB J. – volume: 290 start-page: 1145 year: 2002 end-page: 1150 ident: bib63 article-title: A permissive apoptotic environment: function of a decrease in intracellular superoxide anion and cytosolic acidification publication-title: Biochem. Biophys. Res. Commun. – volume: 199 start-page: 93 year: 1994 end-page: 98 ident: bib43 article-title: Rottlerin, a novel protein kinase inhibitor publication-title: Biochem. Biophys. Res. Commun. – volume: 259 start-page: 3534 year: 1984 end-page: 3538 ident: bib38 article-title: γ-glutamylcysteine synthetase. Interactions of an essential sulfhydryl group publication-title: J. Biol. Chem. – volume: 58 start-page: 316 year: 2002 end-page: 318 ident: bib57 publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. – volume: 1 start-page: 309 year: 2002 end-page: 315 ident: bib46 article-title: Protein kinases—The major drug targets of the twenty-first century? publication-title: Nat. Rev., Drug Discov. – volume: 33 start-page: 974 year: 2002 end-page: 987 ident: bib12 article-title: 4-hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells publication-title: Free Radic. Biol. Med. – volume: 147 start-page: 163 year: 2004 end-page: 172 ident: bib27 article-title: NADPH dependent activation of microsomal glutathione transferase 1 publication-title: Chem.-Biol. Interact. – volume: 280 start-page: 33766 year: 2005 end-page: 33774 ident: bib17 article-title: Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels publication-title: J. Biol. Chem. – volume: 21 start-page: 407 year: 1997 end-page: 425 ident: bib45 article-title: Intracellular signal modulation: a pivotal role for protein kinase C publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry – volume: 31 start-page: 23 year: 2004 end-page: 30 ident: bib7 article-title: Stress-dependent regulation of the gene encoding γ-glutamylcysteine synthetase from the fission yeast publication-title: Mol. Biol. Rep. – volume: 182 start-page: 50 year: 1990 end-page: 68 ident: bib36 article-title: Quantitation of protein publication-title: Methods Enzymol. – volume: 435 start-page: 110 year: 1998 end-page: 114 ident: bib58 article-title: Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins publication-title: FEBS Lett. – volume: 13 start-page: 1169 year: 1999 end-page: 1183 ident: bib20 article-title: Regulation of hepatic glutathione synthesis: current concepts and controversies publication-title: FASEB J. – volume: 111 start-page: 309 year: 1969 end-page: 315 ident: bib28 article-title: Studies in the enzymology of glutathione metabolism in human erythrocytes publication-title: Biochem. J. – volume: 1 start-page: 423 year: 1990 end-page: 432 ident: bib40 article-title: ATP-dependent proteases in prokaryotic and eukaryotic cells publication-title: Semin. Cell Biol. – volume: 77 start-page: 2059 year: 1991 end-page: 2064 ident: bib60 article-title: NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes publication-title: Blood – volume: 250 start-page: 1422 year: 1975 end-page: 1426 ident: bib48 article-title: Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione publication-title: J. Biol. Chem. – volume: 320 start-page: 321 year: 1996 end-page: 328 ident: bib22 article-title: Regulation of γ-glutamylcysteine synthetase by protein phosphorylation publication-title: Biochem. J. – volume: 277 start-page: 1158 year: 2002 end-page: 1165 ident: bib16 publication-title: J. Biol. Chem. – volume: 101 start-page: 15052 year: 2004 end-page: 15057 ident: bib59 article-title: Crystal structure of γ-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 251 start-page: 3 year: 1995 end-page: 7 ident: bib19 article-title: Glutathione metabolism publication-title: Methods Enzymol. – volume: 37 start-page: 1152 year: 2004 end-page: 1159 ident: bib8 article-title: Human glutamate cysteine ligase gene regulation through the electrophile response element publication-title: Free Radic. Biol. Med. – volume: 88 start-page: 260 year: 1991 end-page: 269 ident: bib21 article-title: Hormone-mediated down-regulation of hepatic glutathione synthesis in the rat publication-title: J. Clin. Invest. – volume: 25 start-page: 759 year: 2001 end-page: 765 ident: bib34 article-title: Assay of γ-glutamylcysteine synthetase activity in publication-title: J. Pharm. Biomed. Anal. – volume: 134 start-page: 489 year: 2004 end-page: 492 ident: bib1 article-title: Glutathione metabolism and its implications for health publication-title: J. Nutr. – volume: 278 start-page: 484 year: 2000 end-page: 492 ident: bib13 article-title: Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes publication-title: Biochem. Biophys. Res. Commun. – volume: 201 start-page: 561 year: 1953 end-page: 571 ident: bib30 article-title: Energy sources in glutathione synthesis publication-title: J. Biol. Chem. – volume: 3 start-page: 459 year: 1999 end-page: 465 ident: bib41 article-title: The development and therapeutic potential of protein kinase inhibitors publication-title: Curr. Opin. Chem. Biol. – volume: 326 start-page: 586 year: 2005 end-page: 593 ident: bib29 article-title: Kinetic characteristics of native γ-glutamylcysteine ligase in the aging housefly, publication-title: Biochem. Biophys. Res. Commun. – volume: 35 start-page: 626 year: 2003 end-page: 635 ident: bib2 article-title: Effects of age and caloric restriction on glutathione redox state in mice publication-title: Free Radic. Biol. Med. – volume: 131 start-page: 1 year: 1985 end-page: 5 ident: bib44 article-title: Inhibition of phosphorylase kinase, and tyrosine protein kinase activities by quercetin publication-title: Biochem. Biophys. Res. Commun. – volume: 40 start-page: 1713 year: 2004 end-page: 1723 ident: bib54 article-title: Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study publication-title: Eur. J. Cancer – reference: J.I. Lee, J. Kang, M.H. Stipanuk, Differential regulation of glutamate-cysteine ligase subunit expression and increased holoenzyme formation in response to cysteine deprivation, Biochem. J. (in press). – volume: 3 start-page: 3 year: 2004 ident: bib4 article-title: Redox regulation: a broadening horizon publication-title: Annu. Rev. Plant Biol. – volume: 268 start-page: 19675 year: 1993 end-page: 19680 ident: bib14 article-title: Catalytic and regulatory properties of the heavy subunit of rat kidney γ-glutamylcysteine synthetase publication-title: J. Biol. Chem. – volume: 1 start-page: 473 year: 2001 end-page: 482 ident: bib47 article-title: Brain oxidative stress—Analytical chemistry and thermodynamics of glutathione and NADPH publication-title: Curr. Top. Med. Chem. – volume: 351 start-page: 95 year: 2000 end-page: 105 ident: bib42 article-title: Specificity and mechanism of action of some commonly used protein kinase inhibitors publication-title: Biochem. J. – volume: 21 start-page: 171 year: 1996 end-page: 179 ident: bib9 article-title: Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation publication-title: Mol. Microbiol. – volume: 1 start-page: 423 year: 1990 ident: 10.1016/j.bbagen.2005.10.010_bib40 article-title: ATP-dependent proteases in prokaryotic and eukaryotic cells publication-title: Semin. Cell Biol. – volume: 66 start-page: 1500 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib53 article-title: Recognition of a cysteine substrate by E. coli γ-glutamylcysteine synthetase probed by sulfoximine-based transition-state analogue inhibitors publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.66.1500 – volume: 38 start-page: 9254 year: 1999 ident: 10.1016/j.bbagen.2005.10.010_bib61 article-title: Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site publication-title: Biochemistry doi: 10.1021/bi9903300 – volume: 35 start-page: 626 year: 2003 ident: 10.1016/j.bbagen.2005.10.010_bib2 article-title: Effects of age and caloric restriction on glutathione redox state in mice publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(03)00388-5 – volume: 85 start-page: 2464 year: 1988 ident: 10.1016/j.bbagen.2005.10.010_bib33 article-title: On the active site thiol of γ-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.85.8.2464 – volume: 33 start-page: 974 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib12 article-title: 4-hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(02)00991-7 – volume: 77 start-page: 2059 year: 1991 ident: 10.1016/j.bbagen.2005.10.010_bib60 article-title: NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes publication-title: Blood doi: 10.1182/blood.V77.9.2059.2059 – volume: 147 start-page: 163 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib27 article-title: NADPH dependent activation of microsomal glutathione transferase 1 publication-title: Chem.-Biol. Interact. doi: 10.1016/j.cbi.2003.12.004 – volume: 199 start-page: 93 year: 1994 ident: 10.1016/j.bbagen.2005.10.010_bib43 article-title: Rottlerin, a novel protein kinase inhibitor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1994.1199 – volume: 15 start-page: 1569 year: 2001 ident: 10.1016/j.bbagen.2005.10.010_bib25 article-title: NAD(P)H, a directly operating antioxidant? publication-title: FASEB J. doi: 10.1096/fj.00-0823hyp – volume: 201 start-page: 561 year: 1953 ident: 10.1016/j.bbagen.2005.10.010_bib30 article-title: Energy sources in glutathione synthesis publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66211-8 – volume: 251 start-page: 3 year: 1995 ident: 10.1016/j.bbagen.2005.10.010_bib19 article-title: Glutathione metabolism publication-title: Methods Enzymol. doi: 10.1016/0076-6879(95)51106-7 – volume: 259 start-page: 3534 year: 1984 ident: 10.1016/j.bbagen.2005.10.010_bib38 article-title: γ-glutamylcysteine synthetase. Interactions of an essential sulfhydryl group publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)43127-9 – volume: 603 start-page: 84 year: 1980 ident: 10.1016/j.bbagen.2005.10.010_bib52 article-title: Properties of detergent-solubilized and membranous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum as studied by sulfhydryl reactivity and ESR spectroscopy. Effect of protein–protein interactions publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(80)90393-4 – volume: 382 start-page: 131 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib35 article-title: Free aminothiols, glutathione redox state and protein mixed disulphides in aging Drosophila melanogaster publication-title: Biochem. J. doi: 10.1042/BJ20040506 – volume: 24 start-page: 539 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib51 article-title: Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.24.012003.132418 – volume: 304 start-page: 26 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib31 article-title: Determination of glutamate-cysteine ligase (γ-glutamylcysteine synthetase) activity by high-performance liquid chromatography and electrochemical detection publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5607 – volume: 250 start-page: 8483 year: 1975 ident: 10.1016/j.bbagen.2005.10.010_bib32 article-title: Salt effects in the glutathione-facilitated reactivation of reduced bovine pancreatic ribonuclease publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)40785-0 – volume: 63 start-page: 5636 year: 2003 ident: 10.1016/j.bbagen.2005.10.010_bib23 article-title: NADPH oxidase activity is essential for Keap1/Nrf2-mediated induction of GCLC in response to 2-indol-3-yl-methylenequinuclidin-3-ols publication-title: Cancer Res. – volume: 47 start-page: 586 year: 2000 ident: 10.1016/j.bbagen.2005.10.010_bib62 article-title: New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(00)00104-8 – volume: 276 start-page: 227 year: 1999 ident: 10.1016/j.bbagen.2005.10.010_bib37 article-title: Method for determining protein kinase substrate specificities by the phosphorylation of peptide libraries on beads, phosphate-specific staining, automated sorting, and sequencing publication-title: Anal. Biochem. doi: 10.1006/abio.1999.4285 – volume: 1 start-page: 473 year: 2001 ident: 10.1016/j.bbagen.2005.10.010_bib47 article-title: Brain oxidative stress—Analytical chemistry and thermodynamics of glutathione and NADPH publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026013394778 – volume: 131 start-page: 1 year: 1985 ident: 10.1016/j.bbagen.2005.10.010_bib44 article-title: Inhibition of phosphorylase kinase, and tyrosine protein kinase activities by quercetin publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(85)91761-9 – volume: 14 start-page: 5832 year: 1994 ident: 10.1016/j.bbagen.2005.10.010_bib10 article-title: GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.14.9.5832 – volume: 261 start-page: 661 year: 1999 ident: 10.1016/j.bbagen.2005.10.010_bib11 article-title: Up-regulation of the human γ-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1999.1109 – volume: 88 start-page: 260 year: 1991 ident: 10.1016/j.bbagen.2005.10.010_bib21 article-title: Hormone-mediated down-regulation of hepatic glutathione synthesis in the rat publication-title: J. Clin. Invest. doi: 10.1172/JCI115286 – volume: 355 start-page: 291 year: 1998 ident: 10.1016/j.bbagen.2005.10.010_bib56 article-title: 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1998.0740 – volume: 134 start-page: 489 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib1 article-title: Glutathione metabolism and its implications for health publication-title: J. Nutr. doi: 10.1093/jn/134.3.489 – volume: 326 start-page: 586 year: 2005 ident: 10.1016/j.bbagen.2005.10.010_bib29 article-title: Kinetic characteristics of native γ-glutamylcysteine ligase in the aging housefly, Musca domestica L publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.11.066 – volume: 21 start-page: 171 year: 1996 ident: 10.1016/j.bbagen.2005.10.010_bib9 article-title: Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1996.6351340.x – volume: 3 start-page: 459 year: 1999 ident: 10.1016/j.bbagen.2005.10.010_bib41 article-title: The development and therapeutic potential of protein kinase inhibitors publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(99)80067-2 – ident: 10.1016/j.bbagen.2005.10.010_bib50 doi: 10.1042/BJ20051111 – volume: 29 start-page: 111 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib24 article-title: The new life of a centenarian: signalling functions of NAD(P) publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2004.01.007 – volume: 58 start-page: 316 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib57 article-title: Escherichia coli B γ-glutamylcysteine synthetase: modification, purification, crystallization and preliminary crystallographic analysis publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. doi: 10.1107/S0907444901019886 – volume: 423 start-page: 116 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib5 article-title: Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2003.11.004 – volume: 156 start-page: 519 year: 1998 ident: 10.1016/j.bbagen.2005.10.010_bib49 article-title: Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis publication-title: J. Endocrinol. doi: 10.1677/joe.0.1560519 – volume: 21 start-page: 407 year: 1997 ident: 10.1016/j.bbagen.2005.10.010_bib45 article-title: Intracellular signal modulation: a pivotal role for protein kinase C publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/S0278-5846(97)00011-0 – volume: 320 start-page: 321 year: 1996 ident: 10.1016/j.bbagen.2005.10.010_bib22 article-title: Regulation of γ-glutamylcysteine synthetase by protein phosphorylation publication-title: Biochem. J. doi: 10.1042/bj3200321 – volume: 300 start-page: 401 year: 1993 ident: 10.1016/j.bbagen.2005.10.010_bib26 article-title: Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1993.1054 – volume: 435 start-page: 110 year: 1998 ident: 10.1016/j.bbagen.2005.10.010_bib58 article-title: Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)01048-5 – volume: 277 start-page: 1158 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib16 article-title: Drosophila melanogaster glutamate-cysteine ligase activity is regulated by a modifier subunit with a mechanism of action similar to that of the mammalian form publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106683200 – volume: 111 start-page: 309 year: 1969 ident: 10.1016/j.bbagen.2005.10.010_bib28 article-title: Studies in the enzymology of glutathione metabolism in human erythrocytes publication-title: Biochem. J. doi: 10.1042/bj1110309 – volume: 351 start-page: 95 year: 2000 ident: 10.1016/j.bbagen.2005.10.010_bib42 article-title: Specificity and mechanism of action of some commonly used protein kinase inhibitors publication-title: Biochem. J. doi: 10.1042/0264-6021:3510095 – volume: 182 start-page: 163 year: 2000 ident: 10.1016/j.bbagen.2005.10.010_bib6 article-title: Multi-faceted regulation of γ-glutamylcysteine synthetase publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(200002)182:2<163::AID-JCP4>3.0.CO;2-1 – volume: 268 start-page: 19675 year: 1993 ident: 10.1016/j.bbagen.2005.10.010_bib14 article-title: Catalytic and regulatory properties of the heavy subunit of rat kidney γ-glutamylcysteine synthetase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36569-X – volume: 280 start-page: 33766 year: 2005 ident: 10.1016/j.bbagen.2005.10.010_bib17 article-title: Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504604200 – volume: 1 start-page: 309 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib46 article-title: Protein kinases—The major drug targets of the twenty-first century? publication-title: Nat. Rev., Drug Discov. doi: 10.1038/nrd773 – volume: 101 start-page: 15052 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib59 article-title: Crystal structure of γ-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0403277101 – volume: 24 start-page: 189 year: 2003 ident: 10.1016/j.bbagen.2005.10.010_bib55 article-title: HNE-signaling pathways leading to its elimination publication-title: Mol. Aspects Med. doi: 10.1016/S0098-2997(03)00013-X – volume: 31 start-page: 23 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib7 article-title: Stress-dependent regulation of the gene encoding γ-glutamylcysteine synthetase from the fission yeast publication-title: Mol. Biol. Rep. doi: 10.1023/B:MOLE.0000013505.12111.5b – volume: 278 start-page: 46369 year: 2003 ident: 10.1016/j.bbagen.2005.10.010_bib15 article-title: The modifier subunit of Drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione homeostasis in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308035200 – volume: 40 start-page: 1713 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib54 article-title: Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2004.02.029 – volume: 25 start-page: 759 year: 2001 ident: 10.1016/j.bbagen.2005.10.010_bib34 article-title: Assay of γ-glutamylcysteine synthetase activity in Plasmodium berghei by liquid chromatography with electrochemical detection publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(01)00379-X – volume: 263 start-page: 17205 year: 1988 ident: 10.1016/j.bbagen.2005.10.010_bib3 article-title: Glutathione metabolism and its selective modification publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)77815-6 – volume: 278 start-page: 484 year: 2000 ident: 10.1016/j.bbagen.2005.10.010_bib13 article-title: Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3830 – volume: 182 start-page: 50 year: 1990 ident: 10.1016/j.bbagen.2005.10.010_bib36 article-title: Quantitation of protein publication-title: Methods Enzymol. doi: 10.1016/0076-6879(90)82008-P – volume: 290 start-page: 1145 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib63 article-title: A permissive apoptotic environment: function of a decrease in intracellular superoxide anion and cytosolic acidification publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.6274 – volume: 268 start-page: 20578 year: 1993 ident: 10.1016/j.bbagen.2005.10.010_bib18 article-title: Amino acid sequence and function of the light subunit of rat kidney γ-glutamylcysteine synthetase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)80764-9 – volume: 78 start-page: 564 year: 1996 ident: 10.1016/j.bbagen.2005.10.010_bib64 article-title: Mechanism of hydrogen peroxide and hydroxyl free radical-induced intracellular acidification in cultured rat cardiac myoblasts publication-title: Circ. Res. doi: 10.1161/01.RES.78.4.564 – volume: 3 start-page: 3 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib4 article-title: Redox regulation: a broadening horizon publication-title: Annu. Rev. Plant Biol. – volume: 37 start-page: 1152 year: 2004 ident: 10.1016/j.bbagen.2005.10.010_bib8 article-title: Human glutamate cysteine ligase gene regulation through the electrophile response element publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.06.011 – volume: 140 start-page: 49 year: 2002 ident: 10.1016/j.bbagen.2005.10.010_bib39 article-title: A spectrophotometric assay of γ-glutamylcysteine synthetase and glutathione synthetase in crude extracts from tissues and cultured mammalian cells publication-title: Chem.-Biol. Interact. doi: 10.1016/S0009-2797(02)00017-0 – volume: 250 start-page: 1422 year: 1975 ident: 10.1016/j.bbagen.2005.10.010_bib48 article-title: Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)41830-9 – volume: 13 start-page: 1169 year: 1999 ident: 10.1016/j.bbagen.2005.10.010_bib20 article-title: Regulation of hepatic glutathione synthesis: current concepts and controversies publication-title: FASEB J. doi: 10.1096/fasebj.13.10.1169 |
SSID | ssj0000595 ssj0025309 |
Score | 2.0410995 |
Snippet | The principal objective of this study was to investigate the mechanisms regulating the activity of γ-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate... The principal objective of this study was to investigate the mechanisms regulating the activity of gamma-glutamylcysteine ligase (GCL; EC 6.3.2.2), the rate... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 233 |
SubjectTerms | Adenosine Triphosphate - pharmacology Allosteric Regulation Animals Brain - enzymology Buthionine Sulfoximine - pharmacology Chromatography, High Pressure Liquid Drosophila melanogaster Enzyme Activation Glutamate-Cysteine Ligase - antagonists & inhibitors Glutamate-Cysteine Ligase - metabolism Glutathione Hydrogen-Ion Concentration Kinetics Liver - enzymology Male Mice Mice, Inbred C57BL Myocardium - enzymology NADP - metabolism Oxidative stress Phosphorylation Protein Kinase Inhibitors - pharmacology Rats Rats, Inbred F344 Signal Transduction γ-glutamylcysteine ligase |
Title | Mechanisms of γ-glutamylcysteine ligase regulation |
URI | https://dx.doi.org/10.1016/j.bbagen.2005.10.010 https://www.ncbi.nlm.nih.gov/pubmed/16324789 https://www.proquest.com/docview/67719876 https://pubmed.ncbi.nlm.nih.gov/PMC2837077 |
Volume | 1760 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYmEIILgvEazx64dlvXtEmPaAINJnbgIXarkjaFotGhPQ5c-FP8D34TdtMOBkhInCq1jhrZqf01sf0BHCeS4nQgbSVVgD8ovmsL9JB2lGhcUBRQc67Dy57fuWUXfa9fgXZZC0NplYXvNz4999bFnUahzcZzmjau6VAP4QSGcCIkC6iIjzFOq7z--pnmgfDBMycJzCbpsnwuz_FSCj9a0wW1TjleVEf7e3j6CT-_Z1F-CUtna7Ba4EnrxEx5HSo6q8KSYZh8qcJyuyR02wD3UlOZbzp-GlvDxHp_o3z1iXx6GUTUzhnhpjVI7zGqWSNDUI8m24Tbs9ObdscuOBPsiPnOxGax1xKRoJpoxEaJ4pGnYiGZYko3kyZTPKCILAOhFdNaC9WSjvJZzBzWcuLA3YKFbJjpHbBc5ipPi6YUGmGdRElHqQQRYisWcSybNXBLVYVR0VCceC0GYZk59hgaBRPXpUd3UcE1sGejnk1DjT_keWmFcG5hhOjz_xh5VBotRE3TQYjM9HA6Dn3Oaa_Fr8G2MeHnTKh7PRcBvnXOuDMB6sY9_yRLH_Ku3HkbIc53_z3fPVgx-zuUK7MPC5PRVB8g4pmow3xJH8LiyXm306Nr9-qu-wGmZQJO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4CI0L4s14rQeu3dY1bdMjmpgGbLvApN2qpE2haHRojwMX_hT_g9-E3bQbAyQkrq2jRnZif01sfwAXsaA47QtTCunjD4prmxw9pBnGChcUBdSM67Dbc9t9djNwBivQLGphKK0y9_3ap2feOn9Sy7VZe0mS2h1d6iGcwBBOhGS-vwrrDLcv0RhU3xZ5HogfHH2VwEwSL-rnsiQvKXHX6jaoVUryokLa3-PTT_z5PY3yS1xqbcNWDiiNSz3nHVhR6S5saIrJ110oNQtGtz2wu4rqfJPJ88QYxcbHOyWsT8Xz6zCkfs6IN41h8oBhzRhrhnq02T70W1f3zbaZkyaYIXOtqckip8FDTkXRCI5i6YWOjLhgkklVj-tMej6FZOFzJZlSisuGsKTLImaxhhX59gGspaNUHYFhM1s6itcFV4jrBEpaUsYIERsRjyJRL4NdqCoI847iRGwxDIrUsadAK5jILh16igougzkf9aI7avwh7xVWCJZWRoBO_4-RlcJoAWqabkJEqkazSeB6Hh22uGU41CZczITa13vcx68uGXcuQO24l9-kyWPWljvrI-R5x_-ebwVK7ftuJ-hc925PYFMf9lDizCmsTcczdYbwZyrPs-X9CWguAjk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+gamma-glutamylcysteine+ligase+regulation&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Toroser%2C+Dikran&rft.au=Yarian%2C+Connie+S&rft.au=Orr%2C+William+C&rft.au=Sohal%2C+Rajindar+S&rft.date=2006-02-01&rft.issn=0006-3002&rft.volume=1760&rft.issue=2&rft.spage=233&rft_id=info:doi/10.1016%2Fj.bbagen.2005.10.010&rft_id=info%3Apmid%2F16324789&rft.externalDocID=16324789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |