Structural properties of the peroxiredoxin AhpC2 from the hyperthermophilic eubacterium Aquifex aeolicus
Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H2O2 in eukaryotic cells. The genome of Aquifex aeolicus, a micr...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 12; pp. 2797 - 2805 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2018.08.017 |
Cover
Loading…
Abstract | Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H2O2 in eukaryotic cells. The genome of Aquifex aeolicus, a microaerophilic, hyperthermophilic eubacterium, encodes four Prxs, among them an alkyl hydroperoxide reductase AhpC2 which was found to be closely related to archaeal 1-Cys peroxiredoxins. We determined the crystal structure of AhpC2 at 1.8 Å resolution and investigated its oligomeric state in solution by electron microscopy. AhpC2 is arranged as a toroid-shaped dodecamer instead of the typically observed decamer. The basic folding topology and the active site structure are conserved and possess a high structural similarity to other 1-Cys Prxs. However, the C-terminal region adopts an opposite orientation. AhpC2 contains three cysteines, Cys49, Cys212, and Cys218. The peroxidatic cysteine CP49 was found to be hyperoxidized to the sulfonic acid (SO3H) form, while Cys212 forms an intra-monomer disulfide bond with Cys218. Mutagenesis experiments indicate that Cys212 and Cys218 play important roles in the oligomerization of AhpC2. Based on these structural characteristics, we proposed the catalytic mechanism of AhpC2. This study provides novel insights into the structure and reaction mechanism of 1-Cys peroxiredoxins.
•AhpC2 is arranged as a circular dodecamer both in crystals and in solution.•Tube-like higher-order assemblies in solution were observed.•Peroxidatic Cys49 was hyperoxidized.•Cys212 and Cys218 form an intramonomeric disulfide bond.•The C-terminal domain of AhpC2 adopts an opposite orientation. |
---|---|
AbstractList | Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H2O2 in eukaryotic cells. The genome of Aquifex aeolicus, a microaerophilic, hyperthermophilic eubacterium, encodes four Prxs, among them an alkyl hydroperoxide reductase AhpC2 which was found to be closely related to archaeal 1-Cys peroxiredoxins. We determined the crystal structure of AhpC2 at 1.8 Å resolution and investigated its oligomeric state in solution by electron microscopy. AhpC2 is arranged as a toroid-shaped dodecamer instead of the typically observed decamer. The basic folding topology and the active site structure are conserved and possess a high structural similarity to other 1-Cys Prxs. However, the C-terminal region adopts an opposite orientation. AhpC2 contains three cysteines, Cys49, Cys212, and Cys218. The peroxidatic cysteine CP49 was found to be hyperoxidized to the sulfonic acid (SO3H) form, while Cys212 forms an intra-monomer disulfide bond with Cys218. Mutagenesis experiments indicate that Cys212 and Cys218 play important roles in the oligomerization of AhpC2. Based on these structural characteristics, we proposed the catalytic mechanism of AhpC2. This study provides novel insights into the structure and reaction mechanism of 1-Cys peroxiredoxins.
•AhpC2 is arranged as a circular dodecamer both in crystals and in solution.•Tube-like higher-order assemblies in solution were observed.•Peroxidatic Cys49 was hyperoxidized.•Cys212 and Cys218 form an intramonomeric disulfide bond.•The C-terminal domain of AhpC2 adopts an opposite orientation. Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H2O2 in eukaryotic cells. The genome of Aquifex aeolicus, a microaerophilic, hyperthermophilic eubacterium, encodes four Prxs, among them an alkyl hydroperoxide reductase AhpC2 which was found to be closely related to archaeal 1-Cys peroxiredoxins. We determined the crystal structure of AhpC2 at 1.8 Å resolution and investigated its oligomeric state in solution by electron microscopy. AhpC2 is arranged as a toroid-shaped dodecamer instead of the typically observed decamer. The basic folding topology and the active site structure are conserved and possess a high structural similarity to other 1-Cys Prxs. However, the C-terminal region adopts an opposite orientation. AhpC2 contains three cysteines, Cys49, Cys212, and Cys218. The peroxidatic cysteine CP49 was found to be hyperoxidized to the sulfonic acid (SO3H) form, while Cys212 forms an intra-monomer disulfide bond with Cys218. Mutagenesis experiments indicate that Cys212 and Cys218 play important roles in the oligomerization of AhpC2. Based on these structural characteristics, we proposed the catalytic mechanism of AhpC2. This study provides novel insights into the structure and reaction mechanism of 1-Cys peroxiredoxins.Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H2O2 in eukaryotic cells. The genome of Aquifex aeolicus, a microaerophilic, hyperthermophilic eubacterium, encodes four Prxs, among them an alkyl hydroperoxide reductase AhpC2 which was found to be closely related to archaeal 1-Cys peroxiredoxins. We determined the crystal structure of AhpC2 at 1.8 Å resolution and investigated its oligomeric state in solution by electron microscopy. AhpC2 is arranged as a toroid-shaped dodecamer instead of the typically observed decamer. The basic folding topology and the active site structure are conserved and possess a high structural similarity to other 1-Cys Prxs. However, the C-terminal region adopts an opposite orientation. AhpC2 contains three cysteines, Cys49, Cys212, and Cys218. The peroxidatic cysteine CP49 was found to be hyperoxidized to the sulfonic acid (SO3H) form, while Cys212 forms an intra-monomer disulfide bond with Cys218. Mutagenesis experiments indicate that Cys212 and Cys218 play important roles in the oligomerization of AhpC2. Based on these structural characteristics, we proposed the catalytic mechanism of AhpC2. This study provides novel insights into the structure and reaction mechanism of 1-Cys peroxiredoxins. Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H₂O₂), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H₂O₂ in eukaryotic cells. The genome of Aquifex aeolicus, a microaerophilic, hyperthermophilic eubacterium, encodes four Prxs, among them an alkyl hydroperoxide reductase AhpC2 which was found to be closely related to archaeal 1-Cys peroxiredoxins. We determined the crystal structure of AhpC2 at 1.8 Å resolution and investigated its oligomeric state in solution by electron microscopy. AhpC2 is arranged as a toroid-shaped dodecamer instead of the typically observed decamer. The basic folding topology and the active site structure are conserved and possess a high structural similarity to other 1-Cys Prxs. However, the C-terminal region adopts an opposite orientation. AhpC2 contains three cysteines, Cys⁴⁹, Cys²¹², and Cys²¹⁸. The peroxidatic cysteine CP⁴⁹ was found to be hyperoxidized to the sulfonic acid (SO₃H) form, while Cys²¹² forms an intra-monomer disulfide bond with Cys²¹⁸. Mutagenesis experiments indicate that Cys²¹² and Cys²¹⁸ play important roles in the oligomerization of AhpC2. Based on these structural characteristics, we proposed the catalytic mechanism of AhpC2. This study provides novel insights into the structure and reaction mechanism of 1-Cys peroxiredoxins. Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H O ), alkyl hydroperoxides and peroxinitrite. They also function as chaperones and are involved in signal transduction by H O in eukaryotic cells. The genome of Aquifex aeolicus, a microaerophilic, hyperthermophilic eubacterium, encodes four Prxs, among them an alkyl hydroperoxide reductase AhpC2 which was found to be closely related to archaeal 1-Cys peroxiredoxins. We determined the crystal structure of AhpC2 at 1.8 Å resolution and investigated its oligomeric state in solution by electron microscopy. AhpC2 is arranged as a toroid-shaped dodecamer instead of the typically observed decamer. The basic folding topology and the active site structure are conserved and possess a high structural similarity to other 1-Cys Prxs. However, the C-terminal region adopts an opposite orientation. AhpC2 contains three cysteines, Cys , Cys , and Cys . The peroxidatic cysteine C was found to be hyperoxidized to the sulfonic acid (SO H) form, while Cys forms an intra-monomer disulfide bond with Cys . Mutagenesis experiments indicate that Cys and Cys play important roles in the oligomerization of AhpC2. Based on these structural characteristics, we proposed the catalytic mechanism of AhpC2. This study provides novel insights into the structure and reaction mechanism of 1-Cys peroxiredoxins. |
Author | Liu, Wenxia Rao, Zihe Liu, Aijun Wang, Limin Michel, Hartmut Warkentin, Eberhard Gao, Hailong Wang, Quan Peng, Guohong |
Author_xml | – sequence: 1 givenname: Wenxia surname: Liu fullname: Liu, Wenxia organization: Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany – sequence: 2 givenname: Aijun surname: Liu fullname: Liu, Aijun organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Macromoleculers, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China – sequence: 3 givenname: Hailong surname: Gao fullname: Gao, Hailong organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Macromoleculers, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China – sequence: 4 givenname: Quan surname: Wang fullname: Wang, Quan organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Macromoleculers, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China – sequence: 5 givenname: Limin surname: Wang fullname: Wang, Limin organization: Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China – sequence: 6 givenname: Eberhard surname: Warkentin fullname: Warkentin, Eberhard organization: Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany – sequence: 7 givenname: Zihe surname: Rao fullname: Rao, Zihe organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Macromoleculers, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China – sequence: 8 givenname: Hartmut surname: Michel fullname: Michel, Hartmut email: hartmut.michel@biophys.mpg.de organization: Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany – sequence: 9 givenname: Guohong surname: Peng fullname: Peng, Guohong email: guohong.peng@biophys.mpg.de organization: Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30251668$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFDEUhYOMOD2j_0AkSzfV5lGVVFwITeMLBlyo65BK31hpqio1ecjMvzdtz2xcOOGSEO53Dtx7rtDFEhZA6DUlW0qoeHfcDoP5BcuWEdpvSS0qn6EN7SVrekLEBdoQTtqmpaK7RFcpHUk9nepeoEtOWEeF6Ddo_J5jsblEM-E1hhVi9pBwcDiPgOs33PkIh3oveDeue4ZdDPPf5nh_okeIc1hHP3mLoQzGZoi-zHh3W7yDO2wg1FZJL9FzZ6YErx7ea_Tz08cf-y_NzbfPX_e7m8a2guamVUBcK-1gjXVd23PFBm6Iob2ldjDSSdsJ10HLgQtVp-FK9g4EGaSivaL8Gr09-9ZpbgukrGefLEyTWSCUpBljlBCpJH8apZRVT9apir55QMsww0Gv0c8m3uvHRVbg_RmwMaQUwWnrs8k-LDkaP2lK9Ck1fdTn1PQpNU1qUVnF7T_iR_8nZB_OMqj7_O0h6mQ9LBYONTKb9SH4_xv8AaNws_M |
CitedBy_id | crossref_primary_10_1039_D3OB00179B crossref_primary_10_1002_pro_3837 crossref_primary_10_1016_j_str_2021_04_007 |
Cites_doi | 10.1074/jbc.M206626200 10.1016/j.str.2015.03.019 10.1016/j.str.2016.04.013 10.1107/S0021889807021206 10.1038/32831 10.1016/S0968-0004(02)00003-8 10.1074/jbc.M112.425876 10.1074/jbc.M001943200 10.1074/jbc.M300618200 10.1016/j.jsb.2006.05.009 10.1016/j.febslet.2009.05.029 10.1038/35025109 10.1111/j.1742-4658.2009.06985.x 10.1093/jb/mvx045 10.1016/j.jsb.2012.09.006 10.1073/pnas.0709822105 10.1089/ars.2012.4739 10.1016/S0021-9258(18)86980-0 10.1107/S1744309113014036 10.1016/j.abb.2008.04.036 10.1038/nchembio.85 10.1016/S0021-9258(18)68840-4 10.1107/S0907444911001314 10.1126/science.1080405 10.1093/nar/gkq1060 10.1073/pnas.91.15.7017 10.1016/S1047-8477(03)00069-8 10.1107/S0907444910007493 10.1038/nature02075 10.1021/bi9713658 10.1038/nature11088 10.1113/jphysiol.2003.049478 10.1089/ars.2011.4404 10.1002/prot.20796 10.1007/s10969-011-9118-y 10.1107/S205225251701750X 10.1021/bi012173m 10.1074/jbc.M004161200 10.1074/jbc.M804087200 10.1126/science.1095569 10.1093/jb/mvh157 10.1016/j.jmb.2005.09.006 10.1016/j.jmb.2007.05.022 10.1038/nsb0598-400 10.1016/j.bbrc.2016.06.125 10.1107/S0907444909052925 10.1016/j.jmb.2004.12.022 10.1089/ars.2010.3584 10.1146/annurev.bi.44.070175.001051 10.1155/2012/936486 10.1021/bi951887s 10.1146/annurev.arplant.55.031903.141701 10.1074/jbc.M503076200 10.1515/BC.2002.040 10.1093/nar/gkw357 10.1016/S1096-4959(03)00290-2 10.1016/0014-5793(73)80755-0 10.1016/j.str.2016.07.012 10.1006/jmbi.2001.4853 10.1038/nature02046 10.1073/pnas.81.14.4343 10.1089/ars.2010.3624 10.1107/S0021889893005588 10.1016/j.str.2005.07.021 10.1016/j.bbrc.2018.02.093 10.1021/bi048947r |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2018.08.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 2805 |
ExternalDocumentID | 30251668 10_1016_j_bbagen_2018_08_017 S0304416518302836 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-49e0f47cbcacf548392b3a0a18c1cba7f7c56f5e43e3695953978fe60b7918913 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Sun Aug 24 04:06:04 EDT 2025 Tue Aug 05 09:40:13 EDT 2025 Mon Jul 21 05:59:10 EDT 2025 Tue Jul 01 00:22:11 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Oligomerization C-terminal region AhpC Peroxidase Prxs AhpC2 Sulfonic acid form 1-Cys peroxiredoxins CP Tpx Bcp |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-49e0f47cbcacf548392b3a0a18c1cba7f7c56f5e43e3695953978fe60b7918913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30251668 |
PQID | 2112189259 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2221007973 proquest_miscellaneous_2112189259 pubmed_primary_30251668 crossref_citationtrail_10_1016_j_bbagen_2018_08_017 crossref_primary_10_1016_j_bbagen_2018_08_017 elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_08_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cao, Roszak, Gourlay, Lindsay, Isaacs (bb0290) 2005; 13 Gretes, Poole, Karplus (bb0080) 2012; 17 Kawakami, Sakuraba, Kamohara, Goda, Kawarabayasi, Ohshima (bb0140) 2004; 136 Emsley, Lohkamp, Scott, Cowtan (bb0255) 2010; 66 Krissinel, Henrick (bb0265) 2007; 372 Scheres (bb0220) 2012; 180 Budanov, Sablina, Feinstein, Koonin, Chumakov (bb0330) 2004; 304 Apel, Hirt (bb0010) 2004; 55 Mindell, Grigorieff (bb0215) 2003; 142 Nakamura, Mori, Niiyama, Matsumura, Tokuyama, Morita, Uegaki, Inoue (bb0240) 2013; 69 Kabsch (bb0230) 1993; 26 Murshudov, Skubak, Lebedev, Pannu, Steiner, Nicholls, Winn, Long, Vagin (bb0245) 2011; 67 Chae, Robison, Poole, Church, Storz, Rhee (bb0085) 1994; 91 Jeon, Ishikawa (bb0135) 2003; 278 Wood, Schroder, Harris, Poole (bb0100) 2003; 28 Kim, Kim, Lee, Rhee, Stadtman (bb0055) 1988; 263 Deckert, Warren, Gaasterland, Young, Lenox, Graham, Overbeek, Snead, Keller, Aujay, Huber, Feldman, Short, Olsen, Swanson (bb0190) 1998; 392 Leyens, Donnay, Knoops (bb0070) 2003; 136 Holm, Laakso (bb0270) 2016; 44 Yewdall, Peskin, Hampton, Goldstone, Pearce, Gerrard (bb0295) 2018; 497 Couturier, Prosper, Winger, Hecker, Hirasawa, Knaff, Gans, Jacquot, Navaza, Haouz, Rouhier (bb0185) 2013; 18 Hall, Karplus, Poole (bb0155) 2009; 276 Ellis, Poole (bb0090) 1997; 36 Barranco-Medina, Lazaro, Dietz (bb0175) 2009; 583 Adams, Afonine, Bunkoczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve, McCoy, Moriarty, Oeffner, Read, Richardson, Richardson, Terwilliger, Zwart (bb0250) 2010; 66 Tartaglia, Storz, Brodsky, Lai, Ames (bb0060) 1990; 265 Brieger, Schiavone, Miller, Krause (bb0015) 2012; 142 Tang, Peng, Baldwin, Mann, Jiang, Rees, Ludtke (bb0210) 2007; 157 Flohe, Gunzler, Schock (bb0035) 1973; 32 Wood, Poole, Karplus (bb0115) 2003; 300 Logan, Mayhew (bb0180) 2000; 275 Jin, Jeang (bb0195) 2000 Kim, Lee, Kim (bb0285) 2016; 477 Sarma, Nickel, Rahlfs, Fischer, Becker, Karplus (bb0260) 2005; 346 Nakamura, Yamamoto, Inoue, Matsumura, Kobayashi, Hagihara, Uegaki, Ataka, Kai, Ishikawa (bb0275) 2006; 62 Seo, Kang, Kim, Baines, Lee, Rhee (bb0345) 2000; 275 Lim, Choi, Park, Nam, Woo, Kwon, Kim, Rhee, Kim, Chae (bb0120) 2008; 283 Nakamura, Oshima, Yasuda, Shimamura, Morita, Uegaki (bb0320) 2017; 162 Guimaraes, Souchon, Honore, Saint-Joanis, Brosch, Shepard, Cole, Alzari (bb0310) 2005; 280 Copley, Novak, Babbitt (bb0170) 2004; 43 Cao, McGow, Shepherd, Lindsay (bb0305) 2015; 10 Nakamura, Yamamoto, Abe, Matsumura, Hagihara, Goto, Yamaguchi, Inoue (bb0280) 2008; 105 Choi, Kang, Yang, Rhee, Ryu (bb0150) 1998; 5 Wilkins, Gasteiger, Bairoch, Sanchez, Williams, Appel, Hochstrasser (bb0200) 1999; 112 Hofmann, Hecht, Flohe (bb0040) 2002; 383 Soito, Williamson, Knutson, Fetrow, Poole, Nelson (bb0130) 2011; 39 Bazan, Mileykovskaya, Mallampalli, Heacock, Sparagna, Dowhan (bb0205) 2013; 288 Kirkman, Gaetani (bb0030) 1984; 81 Turrens (bb0005) 2003; 552 Radjainia, Venugopal, Desfosses, Phillips, Yewdall, Hampton, Gerrard, Mitra (bb0315) 2015; 23 Hall, Nelson, Poole, Karplus (bb0105) 2011; 15 Bryk, Griffin, Nathan (bb0050) 2000; 407 Ghaemmaghami, Huh, Bower, Howson, Belle, Dephoure, O'Shea, Weissman (bb0065) 2003; 425 Poole, Ellis (bb0045) 1996; 35 Yang, Kang, Woo, Hwang, Chae, Kim, Rhee (bb0110) 2002; 277 Winterbourn (bb0075) 2008; 4 Knoops, Goemaere, Van der Eecken, Declercq (bb0340) 2011; 15 Fridovich (bb0025) 1975; 44 Yewdall, Venugopal, Desfosses, Abrishami, Yosaatmadja, Hampton, Gerrard, Goldstone, Mitra, Radjainia (bb0300) 2016; 24 Smeets, Marchand, Linard, Knoops, Declercq (bb0350) 2008; 477 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bb0235) 2007; 40 Wood, Poole, Hantgan, Karplus (bb0095) 2002; 41 Declercq, Evrard, Clippe, Vander Stricht, Bernard, Knoops (bb0335) 2001; 311 Ahn, Jang, Jo, Nurhasni, Lim, Yoo, Choi, Ha (bb0165) 2018; 5 Thielmann, Koepke, Michel (bb0225) 2012; 13 Alfadda, Sallam (bb0020) 2012; 2012 Edgar, Green, Zhao, van Ooijen, Olmedo, Qin, Xu, Pan, Valekunja, Feeney, Maywood, Hastings, Baliga, Merrow, Millar, Johnson, Kyriacou, O'Neill, Reddy (bb0125) 2012; 485 Mizohata, Sakai, Fusatomi, Terada, Murayama, Shirouzu, Yokoyama (bb0145) 2005; 354 Perkins, Parsonage, Nelson, Ogba, Cheong, Poole, Karplus (bb0160) 2016; 24 Biteau, Labarre, Toledano (bb0325) 2003; 425 Logan (10.1016/j.bbagen.2018.08.017_bb0180) 2000; 275 Ellis (10.1016/j.bbagen.2018.08.017_bb0090) 1997; 36 Adams (10.1016/j.bbagen.2018.08.017_bb0250) 2010; 66 Poole (10.1016/j.bbagen.2018.08.017_bb0045) 1996; 35 Kim (10.1016/j.bbagen.2018.08.017_bb0055) 1988; 263 Fridovich (10.1016/j.bbagen.2018.08.017_bb0025) 1975; 44 Nakamura (10.1016/j.bbagen.2018.08.017_bb0275) 2006; 62 Smeets (10.1016/j.bbagen.2018.08.017_bb0350) 2008; 477 Barranco-Medina (10.1016/j.bbagen.2018.08.017_bb0175) 2009; 583 Declercq (10.1016/j.bbagen.2018.08.017_bb0335) 2001; 311 Sarma (10.1016/j.bbagen.2018.08.017_bb0260) 2005; 346 Radjainia (10.1016/j.bbagen.2018.08.017_bb0315) 2015; 23 Biteau (10.1016/j.bbagen.2018.08.017_bb0325) 2003; 425 Alfadda (10.1016/j.bbagen.2018.08.017_bb0020) 2012; 2012 Knoops (10.1016/j.bbagen.2018.08.017_bb0340) 2011; 15 Turrens (10.1016/j.bbagen.2018.08.017_bb0005) 2003; 552 Chae (10.1016/j.bbagen.2018.08.017_bb0085) 1994; 91 Yewdall (10.1016/j.bbagen.2018.08.017_bb0295) 2018; 497 Ghaemmaghami (10.1016/j.bbagen.2018.08.017_bb0065) 2003; 425 Perkins (10.1016/j.bbagen.2018.08.017_bb0160) 2016; 24 Seo (10.1016/j.bbagen.2018.08.017_bb0345) 2000; 275 Bryk (10.1016/j.bbagen.2018.08.017_bb0050) 2000; 407 Yewdall (10.1016/j.bbagen.2018.08.017_bb0300) 2016; 24 Tartaglia (10.1016/j.bbagen.2018.08.017_bb0060) 1990; 265 Tang (10.1016/j.bbagen.2018.08.017_bb0210) 2007; 157 Yang (10.1016/j.bbagen.2018.08.017_bb0110) 2002; 277 Scheres (10.1016/j.bbagen.2018.08.017_bb0220) 2012; 180 Couturier (10.1016/j.bbagen.2018.08.017_bb0185) 2013; 18 Flohe (10.1016/j.bbagen.2018.08.017_bb0035) 1973; 32 Mizohata (10.1016/j.bbagen.2018.08.017_bb0145) 2005; 354 Wood (10.1016/j.bbagen.2018.08.017_bb0115) 2003; 300 Hall (10.1016/j.bbagen.2018.08.017_bb0105) 2011; 15 Kawakami (10.1016/j.bbagen.2018.08.017_bb0140) 2004; 136 Kabsch (10.1016/j.bbagen.2018.08.017_bb0230) 1993; 26 Brieger (10.1016/j.bbagen.2018.08.017_bb0015) 2012; 142 Holm (10.1016/j.bbagen.2018.08.017_bb0270) 2016; 44 Thielmann (10.1016/j.bbagen.2018.08.017_bb0225) 2012; 13 Gretes (10.1016/j.bbagen.2018.08.017_bb0080) 2012; 17 Nakamura (10.1016/j.bbagen.2018.08.017_bb0240) 2013; 69 Leyens (10.1016/j.bbagen.2018.08.017_bb0070) 2003; 136 Cao (10.1016/j.bbagen.2018.08.017_bb0305) 2015; 10 Murshudov (10.1016/j.bbagen.2018.08.017_bb0245) 2011; 67 Deckert (10.1016/j.bbagen.2018.08.017_bb0190) 1998; 392 Apel (10.1016/j.bbagen.2018.08.017_bb0010) 2004; 55 Mindell (10.1016/j.bbagen.2018.08.017_bb0215) 2003; 142 Kim (10.1016/j.bbagen.2018.08.017_bb0285) 2016; 477 Ahn (10.1016/j.bbagen.2018.08.017_bb0165) 2018; 5 Choi (10.1016/j.bbagen.2018.08.017_bb0150) 1998; 5 Bazan (10.1016/j.bbagen.2018.08.017_bb0205) 2013; 288 Wilkins (10.1016/j.bbagen.2018.08.017_bb0200) 1999; 112 Lim (10.1016/j.bbagen.2018.08.017_bb0120) 2008; 283 McCoy (10.1016/j.bbagen.2018.08.017_bb0235) 2007; 40 Copley (10.1016/j.bbagen.2018.08.017_bb0170) 2004; 43 Kirkman (10.1016/j.bbagen.2018.08.017_bb0030) 1984; 81 Guimaraes (10.1016/j.bbagen.2018.08.017_bb0310) 2005; 280 Budanov (10.1016/j.bbagen.2018.08.017_bb0330) 2004; 304 Cao (10.1016/j.bbagen.2018.08.017_bb0290) 2005; 13 Hall (10.1016/j.bbagen.2018.08.017_bb0155) 2009; 276 Nakamura (10.1016/j.bbagen.2018.08.017_bb0280) 2008; 105 Krissinel (10.1016/j.bbagen.2018.08.017_bb0265) 2007; 372 Edgar (10.1016/j.bbagen.2018.08.017_bb0125) 2012; 485 Wood (10.1016/j.bbagen.2018.08.017_bb0095) 2002; 41 Emsley (10.1016/j.bbagen.2018.08.017_bb0255) 2010; 66 Winterbourn (10.1016/j.bbagen.2018.08.017_bb0075) 2008; 4 Wood (10.1016/j.bbagen.2018.08.017_bb0100) 2003; 28 Jin (10.1016/j.bbagen.2018.08.017_bb0195) 2000 Nakamura (10.1016/j.bbagen.2018.08.017_bb0320) 2017; 162 Jeon (10.1016/j.bbagen.2018.08.017_bb0135) 2003; 278 Hofmann (10.1016/j.bbagen.2018.08.017_bb0040) 2002; 383 Soito (10.1016/j.bbagen.2018.08.017_bb0130) 2011; 39 |
References_xml | – volume: 283 start-page: 28873 year: 2008 end-page: 28880 ident: bb0120 article-title: Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity publication-title: J. Biol. Chem. – volume: 69 start-page: 719 year: 2013 end-page: 722 ident: bb0240 article-title: Structure of peroxiredoxin from the anaerobic hyperthermophilic archaeon publication-title: Acta Crystallogr. Sect. F – volume: 32 start-page: 132 year: 1973 end-page: 134 ident: bb0035 article-title: Glutathione peroxidase: a selenoenzyme publication-title: FEBS Lett. – volume: 44 start-page: W351 year: 2016 end-page: W355 ident: bb0270 article-title: Dali server update publication-title: Nucleic Acids Res. – volume: 136 start-page: 943 year: 2003 end-page: 955 ident: bb0070 article-title: Cloning of bovine peroxiredoxins - gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins publication-title: Comp Biochem Phys B – volume: 485 start-page: 459 year: 2012 end-page: 464 ident: bb0125 article-title: Peroxiredoxins are conserved markers of circadian rhythms publication-title: Nature – volume: 44 start-page: 147 year: 1975 end-page: 159 ident: bb0025 article-title: Superoxide dismutases publication-title: Annu. Rev. Biochem. – volume: 36 start-page: 13349 year: 1997 end-page: 13356 ident: bb0090 article-title: Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from publication-title: Biochemistry – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bb0255 article-title: Features and development of Coot publication-title: Acta Crystallogr. Sect. D – volume: 142 start-page: w13659 year: 2012 ident: bb0015 article-title: Reactive oxygen species: from health to disease publication-title: Swiss Med. Wkly. – volume: 26 start-page: 795 year: 1993 end-page: 800 ident: bb0230 article-title: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants publication-title: J. Appl. Crystallogr. – volume: 10 year: 2015 ident: bb0305 article-title: Improved catenated structures of bovine peroxiredoxin III F190L reveal details of ring-ring interactions and a novel conformational state publication-title: PLoS One – volume: 157 start-page: 38 year: 2007 end-page: 46 ident: bb0210 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. – volume: 13 start-page: 63 year: 2012 end-page: 69 ident: bb0225 article-title: The ESFRI Instruct Core Centre Frankfurt: automated high-throughput crystallization suited for membrane proteins and more publication-title: J. Struct. Funct. Genom. – volume: 13 start-page: 1661 year: 2005 end-page: 1664 ident: bb0290 article-title: Bovine mitochondrial peroxiredoxin III forms a two-ring catenane publication-title: Structure – volume: 55 start-page: 373 year: 2004 end-page: 399 ident: bb0010 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. – volume: 425 start-page: 737 year: 2003 end-page: 741 ident: bb0065 article-title: Global analysis of protein expression in yeast publication-title: Nature – volume: 275 start-page: 30019 year: 2000 end-page: 30028 ident: bb0180 article-title: Cloning, overexpression, and characterization of peroxiredoxin and NADH peroxiredoxin reductase from publication-title: J. Biol. Chem. – volume: 162 start-page: 415 year: 2017 end-page: 422 ident: bb0320 article-title: Alteration of molecular assembly of peroxiredoxins from hyperthermophilic archaea publication-title: J. Biochem. – volume: 39 start-page: D332 year: 2011 end-page: D337 ident: bb0130 article-title: PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family publication-title: Nucleic Acids Res. – volume: 383 start-page: 347 year: 2002 end-page: 364 ident: bb0040 article-title: Peroxiredoxins publication-title: Biol. Chem. – volume: 35 start-page: 56 year: 1996 end-page: 64 ident: bb0045 article-title: Flavin-dependent alkyl hydroperoxide reductase from publication-title: Biochemistry – volume: 392 start-page: 353 year: 1998 end-page: 358 ident: bb0190 article-title: The complete genome of the hyperthermophilic bacterium publication-title: Nature – volume: 81 start-page: 4343 year: 1984 end-page: 4347 ident: bb0030 article-title: Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: bb0265 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – volume: 583 start-page: 1809 year: 2009 end-page: 1816 ident: bb0175 article-title: The oligomeric conformation of peroxiredoxins links redox state to function publication-title: FEBS Lett. – volume: 477 start-page: 98 year: 2008 end-page: 104 ident: bb0350 article-title: The crystal structures of oxidized forms of human peroxiredoxin 5 with an intramolecular disulfide bond confirm the proposed enzymatic mechanism for atypical 2-Cys peroxiredoxins publication-title: Arch. Biochem. Biophys. – volume: 67 start-page: 355 year: 2011 end-page: 367 ident: bb0245 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. Sect. D – volume: 142 start-page: 334 year: 2003 end-page: 347 ident: bb0215 article-title: Accurate determination of local defocus and specimen tilt in electron microscopy publication-title: J. Struct. Biol. – volume: 15 start-page: 795 year: 2011 end-page: 815 ident: bb0105 article-title: Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins publication-title: Antioxid Redox Sign – volume: 311 start-page: 751 year: 2001 end-page: 759 ident: bb0335 article-title: Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 angstrom resolution publication-title: J. Mol. Biol. – volume: 346 start-page: 1021 year: 2005 end-page: 1034 ident: bb0260 article-title: Crystal structure of a novel publication-title: J. Mol. Biol. – volume: 41 start-page: 5493 year: 2002 end-page: 5504 ident: bb0095 article-title: Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins publication-title: Biochemistry – volume: 280 start-page: 25735 year: 2005 end-page: 25742 ident: bb0310 article-title: Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the publication-title: J. Biol. Chem. – volume: 91 start-page: 7017 year: 1994 end-page: 7021 ident: bb0085 article-title: Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes publication-title: P Natl Acad Sci USA – volume: 43 start-page: 13981 year: 2004 end-page: 13995 ident: bb0170 article-title: Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor publication-title: Biochemistry – volume: 277 start-page: 38029 year: 2002 end-page: 38036 ident: bb0110 article-title: Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid publication-title: J. Biol. Chem. – volume: 105 start-page: 6238 year: 2008 end-page: 6242 ident: bb0280 article-title: Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate publication-title: P Natl Acad Sci USA – volume: 24 start-page: 1668 year: 2016 end-page: 1678 ident: bb0160 article-title: Peroxiredoxin Catalysis at Atomic Resolution publication-title: Structure – volume: 5 start-page: 82 year: 2018 end-page: 92 ident: bb0165 article-title: Crystal structure of peroxiredoxin 3 from publication-title: IUCrJ – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: bb0235 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. – volume: 24 start-page: 1120 year: 2016 end-page: 1129 ident: bb0300 article-title: Structures of human peroxiredoxin 3 suggest self-chaperoning assembly that maintains catalytic state publication-title: Structure – volume: 112 start-page: 531 year: 1999 end-page: 552 ident: bb0200 article-title: Protein identification and analysis tools in the ExPASy server publication-title: Methods in Molecular Biology (Clifton, N.J.) – volume: 425 start-page: 980 year: 2003 end-page: 984 ident: bb0325 article-title: ATP-dependent reduction of cysteine-sulphinic acid by publication-title: Nature – volume: 18 start-page: 1613 year: 2013 end-page: 1622 ident: bb0185 article-title: In the absence of thioredoxins, what are the reductants for peroxiredoxins in publication-title: Antioxid. Redox Signal. – volume: 263 start-page: 4704 year: 1988 end-page: 4711 ident: bb0055 article-title: The isolation and purification of a specific protector protein which inhibits enzyme inactivation by a Thiol/Fe(Iii)/O-2 mixed-function oxidation system publication-title: J. Biol. Chem. – volume: 477 start-page: 717 year: 2016 end-page: 722 ident: bb0285 article-title: Crystal structures of human peroxiredoxin 6 in different oxidation states publication-title: Biochem Bioph Res Co – volume: 2012 year: 2012 ident: bb0020 article-title: Reactive oxygen species in health and disease publication-title: J Biomed Biotechnol – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: bb0220 article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 4 start-page: 278 year: 2008 end-page: 286 ident: bb0075 article-title: Reconciling the chemistry and biology of reactive oxygen species publication-title: Nat. Chem. Biol. – volume: 17 start-page: 608 year: 2012 end-page: 633 ident: bb0080 article-title: Peroxiredoxins in parasites publication-title: Antioxid Redox Sign – volume: 136 start-page: 541 year: 2004 end-page: 547 ident: bb0140 article-title: Oxidative stress response in an anaerobic hyperthermophilic archaeon: presence of a functional peroxiredoxin in publication-title: J. Biochem. – volume: 28 start-page: 32 year: 2003 end-page: 40 ident: bb0100 article-title: Structure, mechanism and regulation of peroxiredoxins publication-title: Trends Biochem. Sci. – volume: 300 start-page: 650 year: 2003 end-page: 653 ident: bb0115 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science – volume: 288 start-page: 401 year: 2013 end-page: 411 ident: bb0205 article-title: Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified publication-title: J. Biol. Chem. – volume: 354 start-page: 317 year: 2005 end-page: 329 ident: bb0145 article-title: Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon publication-title: J. Mol. Biol. – volume: 497 start-page: 558 year: 2018 end-page: 563 ident: bb0295 article-title: Quaternary structure influences the peroxidase activity of peroxiredoxin 3 publication-title: Biochem. Biophys. Res. Commun. – volume: 304 start-page: 596 year: 2004 end-page: 600 ident: bb0330 article-title: Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD publication-title: Science – volume: 278 start-page: 24174 year: 2003 end-page: 24180 ident: bb0135 article-title: Characterization of novel hexadecameric thioredoxin peroxidase from publication-title: J. Biol. Chem. – volume: 15 start-page: 817 year: 2011 end-page: 829 ident: bb0340 article-title: Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin publication-title: Antioxid. Redox Signal. – volume: 407 start-page: 211 year: 2000 end-page: 215 ident: bb0050 article-title: Peroxynitrite reductase activity of bacterial peroxiredoxins publication-title: Nature – volume: 275 start-page: 20346 year: 2000 end-page: 20354 ident: bb0345 article-title: Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate publication-title: J. Biol. Chem. – volume: 276 start-page: 2469 year: 2009 end-page: 2477 ident: bb0155 article-title: Typical 2-Cys peroxiredoxins—structures, mechanisms and functions publication-title: FEBS J. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bb0250 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 552 start-page: 335 year: 2003 end-page: 344 ident: bb0005 article-title: Mitochondrial formation of reactive oxygen species publication-title: J. Physiol. – start-page: 381 year: 2000 end-page: 407 ident: bb0195 article-title: 17 - peroxiredoxins in cell signaling and HIV infection A2 - Sen, Chandan K publication-title: Antioxidant and Redox Regulation of Genes – volume: 265 start-page: 10535 year: 1990 end-page: 10540 ident: bb0060 article-title: Alkyl hydroperoxide reductase from publication-title: J. Biol. Chem. – volume: 62 start-page: 822 year: 2006 end-page: 826 ident: bb0275 article-title: Crystal structure of thioredoxin peroxidase from aerobic hyperthermophilic archaeon publication-title: Proteins – volume: 5 start-page: 400 year: 1998 end-page: 406 ident: bb0150 article-title: Crystal structure of a novel human peroxidase enzyme at 2.0 angstrom resolution publication-title: Nat. Struct. Biol. – volume: 23 start-page: 912 year: 2015 end-page: 920 ident: bb0315 article-title: Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone publication-title: Structure – volume: 277 start-page: 38029 year: 2002 ident: 10.1016/j.bbagen.2018.08.017_bb0110 article-title: Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206626200 – volume: 23 start-page: 912 year: 2015 ident: 10.1016/j.bbagen.2018.08.017_bb0315 article-title: Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone publication-title: Structure doi: 10.1016/j.str.2015.03.019 – volume: 24 start-page: 1120 year: 2016 ident: 10.1016/j.bbagen.2018.08.017_bb0300 article-title: Structures of human peroxiredoxin 3 suggest self-chaperoning assembly that maintains catalytic state publication-title: Structure doi: 10.1016/j.str.2016.04.013 – volume: 40 start-page: 658 year: 2007 ident: 10.1016/j.bbagen.2018.08.017_bb0235 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807021206 – volume: 392 start-page: 353 year: 1998 ident: 10.1016/j.bbagen.2018.08.017_bb0190 article-title: The complete genome of the hyperthermophilic bacterium Aquifex aeolicus publication-title: Nature doi: 10.1038/32831 – volume: 28 start-page: 32 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0100 article-title: Structure, mechanism and regulation of peroxiredoxins publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(02)00003-8 – volume: 288 start-page: 401 year: 2013 ident: 10.1016/j.bbagen.2018.08.017_bb0205 article-title: Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.425876 – volume: 275 start-page: 20346 year: 2000 ident: 10.1016/j.bbagen.2018.08.017_bb0345 article-title: Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate publication-title: J. Biol. Chem. doi: 10.1074/jbc.M001943200 – volume: 278 start-page: 24174 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0135 article-title: Characterization of novel hexadecameric thioredoxin peroxidase from Aeropyrum pernix K1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300618200 – volume: 157 start-page: 38 year: 2007 ident: 10.1016/j.bbagen.2018.08.017_bb0210 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.05.009 – volume: 10 year: 2015 ident: 10.1016/j.bbagen.2018.08.017_bb0305 article-title: Improved catenated structures of bovine peroxiredoxin III F190L reveal details of ring-ring interactions and a novel conformational state publication-title: PLoS One – volume: 583 start-page: 1809 year: 2009 ident: 10.1016/j.bbagen.2018.08.017_bb0175 article-title: The oligomeric conformation of peroxiredoxins links redox state to function publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.05.029 – volume: 407 start-page: 211 year: 2000 ident: 10.1016/j.bbagen.2018.08.017_bb0050 article-title: Peroxynitrite reductase activity of bacterial peroxiredoxins publication-title: Nature doi: 10.1038/35025109 – volume: 276 start-page: 2469 year: 2009 ident: 10.1016/j.bbagen.2018.08.017_bb0155 article-title: Typical 2-Cys peroxiredoxins—structures, mechanisms and functions publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.06985.x – volume: 162 start-page: 415 year: 2017 ident: 10.1016/j.bbagen.2018.08.017_bb0320 article-title: Alteration of molecular assembly of peroxiredoxins from hyperthermophilic archaea publication-title: J. Biochem. doi: 10.1093/jb/mvx045 – volume: 180 start-page: 519 year: 2012 ident: 10.1016/j.bbagen.2018.08.017_bb0220 article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 105 start-page: 6238 year: 2008 ident: 10.1016/j.bbagen.2018.08.017_bb0280 article-title: Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.0709822105 – volume: 18 start-page: 1613 year: 2013 ident: 10.1016/j.bbagen.2018.08.017_bb0185 article-title: In the absence of thioredoxins, what are the reductants for peroxiredoxins in Thermotoga maritima? publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4739 – volume: 265 start-page: 10535 year: 1990 ident: 10.1016/j.bbagen.2018.08.017_bb0060 article-title: Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)86980-0 – volume: 69 start-page: 719 year: 2013 ident: 10.1016/j.bbagen.2018.08.017_bb0240 article-title: Structure of peroxiredoxin from the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii publication-title: Acta Crystallogr. Sect. F doi: 10.1107/S1744309113014036 – volume: 477 start-page: 98 year: 2008 ident: 10.1016/j.bbagen.2018.08.017_bb0350 article-title: The crystal structures of oxidized forms of human peroxiredoxin 5 with an intramolecular disulfide bond confirm the proposed enzymatic mechanism for atypical 2-Cys peroxiredoxins publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.04.036 – volume: 4 start-page: 278 year: 2008 ident: 10.1016/j.bbagen.2018.08.017_bb0075 article-title: Reconciling the chemistry and biology of reactive oxygen species publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.85 – volume: 263 start-page: 4704 year: 1988 ident: 10.1016/j.bbagen.2018.08.017_bb0055 article-title: The isolation and purification of a specific protector protein which inhibits enzyme inactivation by a Thiol/Fe(Iii)/O-2 mixed-function oxidation system publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)68840-4 – volume: 67 start-page: 355 year: 2011 ident: 10.1016/j.bbagen.2018.08.017_bb0245 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. Sect. D doi: 10.1107/S0907444911001314 – volume: 300 start-page: 650 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0115 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science doi: 10.1126/science.1080405 – volume: 39 start-page: D332 year: 2011 ident: 10.1016/j.bbagen.2018.08.017_bb0130 article-title: PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1060 – volume: 91 start-page: 7017 year: 1994 ident: 10.1016/j.bbagen.2018.08.017_bb0085 article-title: Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.91.15.7017 – volume: 142 start-page: 334 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0215 article-title: Accurate determination of local defocus and specimen tilt in electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/S1047-8477(03)00069-8 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.bbagen.2018.08.017_bb0255 article-title: Features and development of Coot publication-title: Acta Crystallogr. Sect. D doi: 10.1107/S0907444910007493 – volume: 425 start-page: 980 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0325 article-title: ATP-dependent reduction of cysteine-sulphinic acid by S-cerevisiae sulphiredoxin publication-title: Nature doi: 10.1038/nature02075 – volume: 36 start-page: 13349 year: 1997 ident: 10.1016/j.bbagen.2018.08.017_bb0090 article-title: Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium publication-title: Biochemistry doi: 10.1021/bi9713658 – volume: 485 start-page: 459 year: 2012 ident: 10.1016/j.bbagen.2018.08.017_bb0125 article-title: Peroxiredoxins are conserved markers of circadian rhythms publication-title: Nature doi: 10.1038/nature11088 – volume: 552 start-page: 335 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0005 article-title: Mitochondrial formation of reactive oxygen species publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.049478 – volume: 17 start-page: 608 year: 2012 ident: 10.1016/j.bbagen.2018.08.017_bb0080 article-title: Peroxiredoxins in parasites publication-title: Antioxid Redox Sign doi: 10.1089/ars.2011.4404 – volume: 62 start-page: 822 year: 2006 ident: 10.1016/j.bbagen.2018.08.017_bb0275 article-title: Crystal structure of thioredoxin peroxidase from aerobic hyperthermophilic archaeon Aeropyrum pernix K1 publication-title: Proteins doi: 10.1002/prot.20796 – volume: 13 start-page: 63 year: 2012 ident: 10.1016/j.bbagen.2018.08.017_bb0225 article-title: The ESFRI Instruct Core Centre Frankfurt: automated high-throughput crystallization suited for membrane proteins and more publication-title: J. Struct. Funct. Genom. doi: 10.1007/s10969-011-9118-y – volume: 5 start-page: 82 year: 2018 ident: 10.1016/j.bbagen.2018.08.017_bb0165 article-title: Crystal structure of peroxiredoxin 3 from Vibrio vulnificus and its implications for scavenging peroxides and nitric oxide publication-title: IUCrJ doi: 10.1107/S205225251701750X – volume: 41 start-page: 5493 year: 2002 ident: 10.1016/j.bbagen.2018.08.017_bb0095 article-title: Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins publication-title: Biochemistry doi: 10.1021/bi012173m – volume: 275 start-page: 30019 year: 2000 ident: 10.1016/j.bbagen.2018.08.017_bb0180 article-title: Cloning, overexpression, and characterization of peroxiredoxin and NADH peroxiredoxin reductase from Thermus aquaticus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004161200 – volume: 283 start-page: 28873 year: 2008 ident: 10.1016/j.bbagen.2018.08.017_bb0120 article-title: Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804087200 – volume: 304 start-page: 596 year: 2004 ident: 10.1016/j.bbagen.2018.08.017_bb0330 article-title: Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD publication-title: Science doi: 10.1126/science.1095569 – volume: 136 start-page: 541 year: 2004 ident: 10.1016/j.bbagen.2018.08.017_bb0140 article-title: Oxidative stress response in an anaerobic hyperthermophilic archaeon: presence of a functional peroxiredoxin in Pyrococcus horikoshii publication-title: J. Biochem. doi: 10.1093/jb/mvh157 – start-page: 381 year: 2000 ident: 10.1016/j.bbagen.2018.08.017_bb0195 article-title: 17 - peroxiredoxins in cell signaling and HIV infection A2 - Sen, Chandan K – volume: 354 start-page: 317 year: 2005 ident: 10.1016/j.bbagen.2018.08.017_bb0145 article-title: Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.09.006 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.bbagen.2018.08.017_bb0265 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 5 start-page: 400 year: 1998 ident: 10.1016/j.bbagen.2018.08.017_bb0150 article-title: Crystal structure of a novel human peroxidase enzyme at 2.0 angstrom resolution publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0598-400 – volume: 477 start-page: 717 year: 2016 ident: 10.1016/j.bbagen.2018.08.017_bb0285 article-title: Crystal structures of human peroxiredoxin 6 in different oxidation states publication-title: Biochem Bioph Res Co doi: 10.1016/j.bbrc.2016.06.125 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.bbagen.2018.08.017_bb0250 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 346 start-page: 1021 year: 2005 ident: 10.1016/j.bbagen.2018.08.017_bb0260 article-title: Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.12.022 – volume: 15 start-page: 817 year: 2011 ident: 10.1016/j.bbagen.2018.08.017_bb0340 article-title: Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3584 – volume: 142 start-page: w13659 year: 2012 ident: 10.1016/j.bbagen.2018.08.017_bb0015 article-title: Reactive oxygen species: from health to disease publication-title: Swiss Med. Wkly. – volume: 44 start-page: 147 year: 1975 ident: 10.1016/j.bbagen.2018.08.017_bb0025 article-title: Superoxide dismutases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.44.070175.001051 – volume: 2012 year: 2012 ident: 10.1016/j.bbagen.2018.08.017_bb0020 article-title: Reactive oxygen species in health and disease publication-title: J Biomed Biotechnol doi: 10.1155/2012/936486 – volume: 35 start-page: 56 year: 1996 ident: 10.1016/j.bbagen.2018.08.017_bb0045 article-title: Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins publication-title: Biochemistry doi: 10.1021/bi951887s – volume: 55 start-page: 373 year: 2004 ident: 10.1016/j.bbagen.2018.08.017_bb0010 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 280 start-page: 25735 year: 2005 ident: 10.1016/j.bbagen.2018.08.017_bb0310 article-title: Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M503076200 – volume: 112 start-page: 531 year: 1999 ident: 10.1016/j.bbagen.2018.08.017_bb0200 article-title: Protein identification and analysis tools in the ExPASy server publication-title: Methods in Molecular Biology (Clifton, N.J.) – volume: 383 start-page: 347 year: 2002 ident: 10.1016/j.bbagen.2018.08.017_bb0040 article-title: Peroxiredoxins publication-title: Biol. Chem. doi: 10.1515/BC.2002.040 – volume: 44 start-page: W351 year: 2016 ident: 10.1016/j.bbagen.2018.08.017_bb0270 article-title: Dali server update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw357 – volume: 136 start-page: 943 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0070 article-title: Cloning of bovine peroxiredoxins - gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins publication-title: Comp Biochem Phys B doi: 10.1016/S1096-4959(03)00290-2 – volume: 32 start-page: 132 year: 1973 ident: 10.1016/j.bbagen.2018.08.017_bb0035 article-title: Glutathione peroxidase: a selenoenzyme publication-title: FEBS Lett. doi: 10.1016/0014-5793(73)80755-0 – volume: 24 start-page: 1668 year: 2016 ident: 10.1016/j.bbagen.2018.08.017_bb0160 article-title: Peroxiredoxin Catalysis at Atomic Resolution publication-title: Structure doi: 10.1016/j.str.2016.07.012 – volume: 311 start-page: 751 year: 2001 ident: 10.1016/j.bbagen.2018.08.017_bb0335 article-title: Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 angstrom resolution publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4853 – volume: 425 start-page: 737 year: 2003 ident: 10.1016/j.bbagen.2018.08.017_bb0065 article-title: Global analysis of protein expression in yeast publication-title: Nature doi: 10.1038/nature02046 – volume: 81 start-page: 4343 year: 1984 ident: 10.1016/j.bbagen.2018.08.017_bb0030 article-title: Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.81.14.4343 – volume: 15 start-page: 795 year: 2011 ident: 10.1016/j.bbagen.2018.08.017_bb0105 article-title: Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins publication-title: Antioxid Redox Sign doi: 10.1089/ars.2010.3624 – volume: 26 start-page: 795 year: 1993 ident: 10.1016/j.bbagen.2018.08.017_bb0230 article-title: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889893005588 – volume: 13 start-page: 1661 year: 2005 ident: 10.1016/j.bbagen.2018.08.017_bb0290 article-title: Bovine mitochondrial peroxiredoxin III forms a two-ring catenane publication-title: Structure doi: 10.1016/j.str.2005.07.021 – volume: 497 start-page: 558 year: 2018 ident: 10.1016/j.bbagen.2018.08.017_bb0295 article-title: Quaternary structure influences the peroxidase activity of peroxiredoxin 3 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.02.093 – volume: 43 start-page: 13981 year: 2004 ident: 10.1016/j.bbagen.2018.08.017_bb0170 article-title: Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor publication-title: Biochemistry doi: 10.1021/bi048947r |
SSID | ssj0000595 |
Score | 2.2802072 |
Snippet | Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxinitrite.... Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H O ), alkyl hydroperoxides and peroxinitrite.... Peroxiredoxins (Prxs) are thiol peroxidases that scavenge various peroxide substrates such as hydrogen peroxide (H₂O₂), alkyl hydroperoxides and peroxinitrite.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2797 |
SubjectTerms | 1-Cys peroxiredoxins active sites AhpC2 Aquifex Archaea C-terminal region Catalysis Catalytic Domain crystal structure cysteine disulfide bonds Disulfides - chemistry electron microscopy Eubacterium - chemistry eukaryotic cells genome hydrogen peroxide hydroperoxides mutagenesis Oligomerization Oxidation-Reduction Peroxidase peroxiredoxin Peroxiredoxins - chemistry Peroxiredoxins - genetics Peroxiredoxins - isolation & purification Polymerization Protein Conformation reaction mechanisms signal transduction Solutions Sulfonic acid form sulfonic acids thiols topology |
Title | Structural properties of the peroxiredoxin AhpC2 from the hyperthermophilic eubacterium Aquifex aeolicus |
URI | https://dx.doi.org/10.1016/j.bbagen.2018.08.017 https://www.ncbi.nlm.nih.gov/pubmed/30251668 https://www.proquest.com/docview/2112189259 https://www.proquest.com/docview/2221007973 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbSXkqSPbJMGFXpV11rJsn1cloZNQnJJA7kJSSuxLo3XeRg2l_72zkh2SqBtIEfbIxCaseYbzegbQr4YJXNrSsvEQi2YDLlkduIV404GjlZgIuPN6ZmaX8jjy_xyg8yGuzBYVtnv_WlPj7t1_2bcr-a4revxOSb1AE7kHCmsSoG021IWyJ__9defMg-AD3nKJEiG0sP1uVjjZS38tMiCystI5Bnblv3VPf0LfkY3dLhF3vT4kU7TFLfJhm92yMvUUfJ-h7yaDQ3c3pLleeSGRV4N2uKZ-w2Sp9JVoAD6KBKEr2ukC13XDZ0u29mE4l2T-HF5j9KgzqtViycujvrOJl7n7opOr7s6-DU1HkmFu9t35OLw2_fZnPWNFZiTit8xWfksyMJZZxxoBzGSFSYzvHTcWVOEwuUq5F4KL1QFCwigpQxeZbaoOOY135PNZtX4XULB-5ssVA7CHggVubQu80IqpxZ5ZhRXIyKG9dSuZx3H5hc_9VBe9kMnLWjUgsaemLwYEfYwqk2sG0_IF4Oq9CPr0eAYnhj5edCsBvVgtsQ0ftXdaoiMAf5UEB7-R2YywSqTqhAj8iGZxcN8BUZvSpUfnz23PfIan1LxzD7ZBKPxnwAC3dmDaOMH5MX06GR-9hvpjQWm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-sUuxLsba1188U-hpuc8lmdx-Po3JWvRcVfAtJLuG21L21unD-953ZD0uhVejrZgIhMzv5TTLzG4AvVqvU2dxxudRLrmKquJsEzYVXUZAV2Jbx5nSh5xfq22V6uQWzoRaG0ip739_59NZb91_G_W6O67Icn9GjHsKJVBCFVS71E9ghdio09p3p0fF88dshp23zFZLnNGGooGvTvJzD_5aIUEXecnm2ncv-ekL9C4G2J9HhHjzvISSbdqt8AVuh2oenXVPJu33YnQ093F7C6qylhyVqDVbTtftP4k9l68gQ9zHiCN-UxBi6KSs2XdWzCaNyk3ZwdUfSqNGrdU2XLp6FxnXUzs0Vm143ZQwbZgPxCjc3r-Di8Ov5bM773grcKy1uuSpCElXmnbceFUQwyUmbWJF74Z3NYuZTHdOgZJC6wA1E3JLHoBOXFYKeNl_DdrWuwhtgCABsEguPkQ9Gi0I5nwSptNfLNLFa6BHIYT-N74nHqf_FDzNkmH03nRYMacFQW0yRjYDfz6o74o1H5LNBVeYPAzJ4Njwy8_OgWYPqoQcTW4V1c2MwOEYEVGCE-IDMZEKJJkUmR3DQmcX9eiUFcFrnb_97bZ9gd35-emJOjhbH7-AZjXS5NO9hGw0ofEBEdOs-9hb_C9jTCFc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+properties+of+the+peroxiredoxin+AhpC2+from+the+hyperthermophilic+eubacterium+Aquifex+aeolicus&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Liu%2C+Wenxia&rft.au=Liu%2C+Aijun&rft.au=Gao%2C+Hailong&rft.au=Wang%2C+Quan&rft.date=2018-12-01&rft.issn=0304-4165&rft.volume=1862&rft.issue=12+p.2797-2805&rft.spage=2797&rft.epage=2805&rft_id=info:doi/10.1016%2Fj.bbagen.2018.08.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |