Red wine-inspired tannic acid-KH561 copolymer: its adhesive properties and its application in wound healing

Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid-KH561 (TA561) copolymer was fabricated by phenol-silanol reaction and polycondensation of...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 9; pp. 5182 - 5191
Main Authors Chen, Chen, Yang, Xiao, Li, Shu-jing, Ma, Feng-jun, Yan, Xiao, Ma, Yu-ning, Ma, Yu-xia, Ma, Qing-hai, Gao, Shu-zhong, Huang, Xiao-jun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 27.01.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid-KH561 (TA561) copolymer was fabricated by phenol-silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol-gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag + or Au 3+ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations. Inspired by the coating properties of red wine on various surfaces, tannic acid hardened KH561 (TA561) copolymer was fabricated for wound dressings. The synthetic route was facile, robust and the related raw material was low-cost.
AbstractList Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid-KH561 (TA561) copolymer was fabricated by phenol-silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol-gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag+ or Au3+ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations.Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid-KH561 (TA561) copolymer was fabricated by phenol-silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol-gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag+ or Au3+ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations.
Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid–KH561 (TA561) copolymer was fabricated by phenol–silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol–gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag + or Au 3+ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations. Inspired by the coating properties of red wine on various surfaces, tannic acid hardened KH561 (TA561) copolymer was fabricated for wound dressings. The synthetic route was facile, robust and the related raw material was low-cost.
Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid–KH561 (TA561) copolymer was fabricated by phenol–silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol–gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag⁺ or Au³⁺ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations.
Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid–KH561 (TA561) copolymer was fabricated by phenol–silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol–gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag + or Au 3+ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations.
Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid-KH561 (TA561) copolymer was fabricated by phenol-silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol-gel transition continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag or Au ions to form the corresponding nanoparticles. An antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations.
Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin care effect of pyrogallol-rich red wine, tannic acid–KH561 (TA561) copolymer was fabricated by phenol–silanol reaction and polycondensation of silane in an aqueous medium under mild conditions. This copolymer could undergo sol–gel transition via continuous heating or when simply placed at room temperature, during which liquid TA561 oligomers connected with each other to form solid TA561 as a bulk resin or thin film. Combining the advantages of the polyphenols and polysiloxane, TA561 can be used as an adhesive for multiple surfaces, including wood, polytetrafluoroethylene, poly(vinyl chloride), aluminum chips and silicon rubber. Furthermore, TA561 also possessed reducing activity towards Ag+ or Au3+ ions to form the corresponding nanoparticles. An in vivo antimicrobial ability test indicated that TA561 could promote wound healing and showed resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection in comparison with KH561. Indeed, TA561 has the potential to be utilized as a low-cost, green bioadhesive material for skin preparations.
Author Ma, Yu-xia
Chen, Chen
Li, Shu-jing
Yan, Xiao
Ma, Feng-jun
Gao, Shu-zhong
Ma, Yu-ning
Huang, Xiao-jun
Ma, Qing-hai
Yang, Xiao
AuthorAffiliation Department of Polymer Science and Engineering
Shandong University of Traditional Chinese Medicine
The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital)
Key Laboratory of New Material Research Institute
Department of Acupuncture-Moxibustion and Tuina
Zhejiang University
MOE Key Laboratory of Macromolecular Synthesis and Functionalization
AuthorAffiliation_xml – name: Shandong University of Traditional Chinese Medicine
– name: The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital)
– name: MOE Key Laboratory of Macromolecular Synthesis and Functionalization
– name: Department of Acupuncture-Moxibustion and Tuina
– name: Department of Polymer Science and Engineering
– name: Key Laboratory of New Material Research Institute
– name: Zhejiang University
Author_xml – sequence: 1
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 2
  givenname: Xiao
  surname: Yang
  fullname: Yang, Xiao
– sequence: 3
  givenname: Shu-jing
  surname: Li
  fullname: Li, Shu-jing
– sequence: 4
  givenname: Feng-jun
  surname: Ma
  fullname: Ma, Feng-jun
– sequence: 5
  givenname: Xiao
  surname: Yan
  fullname: Yan, Xiao
– sequence: 6
  givenname: Yu-ning
  surname: Ma
  fullname: Ma, Yu-ning
– sequence: 7
  givenname: Yu-xia
  surname: Ma
  fullname: Ma, Yu-xia
– sequence: 8
  givenname: Qing-hai
  surname: Ma
  fullname: Ma, Qing-hai
– sequence: 9
  givenname: Shu-zhong
  surname: Gao
  fullname: Gao, Shu-zhong
– sequence: 10
  givenname: Xiao-jun
  surname: Huang
  fullname: Huang, Xiao-jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35424430$$D View this record in MEDLINE/PubMed
BookMark eNqFksFPFTEQxhuDEUQu3jWbcDEmq91pt6_1QEIeKkYSE6LnptvO8or72rXdhfDfU3mASEzspZ3Ob75Mv85zshViQEJeNvRdQ5l672gydME42CdkBygXNVChth6ct8lezue0LNE2IJpnZJu1HDhndIf8PEVXXfqAtQ959KlEkwnB28pY7-qvx61oKhvHOFytMX2o_JQr41aY_QVWY4ojpsljuQtukxvHwVsz-RgqH6rLOJfECs3gw9kL8rQ3Q8a9232X_Pj08fvyuD759vnL8vCktlw0U81Vqww1shfKonJKGgpdC7IH4AjWdgZoh51UjIEzpu-6hVNoe-bQMIbAdsnBRnecuzU6i2FKZtBj8muTrnQ0Xv-dCX6lz-KFlkJxwVgReHMrkOKvGfOk1z5bHAYTMM5ZQzFSSNnwxf_RFji0SraqoPuP0PM4p1Cc0MAlCJAtbQr1-mHz913ffVkB6AawKeacsNfWTzeGl7f4QTdU_x4MfURPD28GY1lK3j4quVP9J_xqA6ds77k_U8auARICwuY
CitedBy_id crossref_primary_10_1002_adma_202300840
crossref_primary_10_1016_j_apsusc_2023_159126
crossref_primary_10_1039_D2SM00058J
crossref_primary_10_1039_D1TA09678H
crossref_primary_10_1007_s10570_023_05340_3
crossref_primary_10_1016_j_cis_2025_103425
crossref_primary_10_1039_D1RA07657D
crossref_primary_10_1016_j_jddst_2024_105568
Cites_doi 10.1021/acsmacrolett.9b00091
10.1038/415389a
10.1016/j.jece.2018.08.009
10.1093/jac/dkv367
10.1039/c3ra46342g
10.1002/anie.201310509
10.1097/SLA.0b013e318176c4b3
10.1016/j.envint.2018.12.065
10.1002/smll.201902440
10.1016/j.reactfunctpolym.2019.02.001
10.1016/j.foodres.2018.07.019
10.1002/adfm.201809110
10.1007/s00114-004-0501-4
10.1007/s10965-018-1616-1
10.1007/s00289-016-1868-z
10.1038/nmat4635
10.1016/j.pmatsci.2017.06.003
10.1021/acsabm.9b00353
10.32725/jab.2008.015
10.1039/C6NJ00185H
10.1038/nrdp.2018.33
10.1039/C9CS00285E
10.1016/j.compscitech.2019.04.016
10.1021/acsami.9b14538
10.1021/acs.jafc.9b03947
10.1160/TH12-08-0543
10.1016/j.cis.2018.06.001
10.1016/j.carbpol.2011.09.059
10.1021/acsbiomaterials.9b00130
10.2147/IJN.S124442
10.1002/adma.201503565
10.1002/pola.29028
10.1016/j.dyepig.2008.05.008
10.1021/acsami.8b03569
10.2174/1568026615666150414142209
10.1128/mBio.00880-19
10.1016/j.jallcom.2009.07.094
10.1128/CMR.19.2.403-434.2006
10.1111/j.1601-183X.2006.00249.x
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d0ra07342c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 5191
ExternalDocumentID PMC8694633
35424430
10_1039_D0RA07342C
d0ra07342c
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 81373721
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
-JG
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c461t-4959a0a8f69ce9d98a02b528f224e2ccba20beb89332daafbb7d9ecf3dea33e23
ISSN 2046-2069
IngestDate Thu Aug 21 14:10:48 EDT 2025
Fri Jul 11 05:32:44 EDT 2025
Fri Jul 11 06:20:54 EDT 2025
Mon Jun 30 05:30:42 EDT 2025
Thu Jan 02 22:37:11 EST 2025
Tue Jul 01 04:05:40 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Sat Jan 08 03:52:01 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-4959a0a8f69ce9d98a02b528f224e2ccba20beb89332daafbb7d9ecf3dea33e23
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0ra07342c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4435-1174
0000-0003-3718-7588
OpenAccessLink http://dx.doi.org/10.1039/d0ra07342c
PMID 35424430
PQID 2482628501
PQPubID 2047525
PageCount 1
ParticipantIDs pubmed_primary_35424430
proquest_miscellaneous_2524259859
proquest_miscellaneous_2651688147
rsc_primary_d0ra07342c
proquest_journals_2482628501
crossref_citationtrail_10_1039_D0RA07342C
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694633
crossref_primary_10_1039_D0RA07342C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-27
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Zhao (D0RA07342C-(cit24)/*[position()=1]) 2018; 25
Ge (D0RA07342C-(cit33)/*[position()=1]) 2019; 67
Guo (D0RA07342C-(cit20)/*[position()=1]) 2014; 53
Gao (D0RA07342C-(cit35)/*[position()=1]) 2018; 10
Jeschke (D0RA07342C-(cit2)/*[position()=1]) 2008; 248
He (D0RA07342C-(cit25)/*[position()=1]) 2019; 137
Penders (D0RA07342C-(cit32)/*[position()=1]) 2017; 12
Moghaddam (D0RA07342C-(cit17)/*[position()=1]) 2014; 4
Reitzer (D0RA07342C-(cit15)/*[position()=1]) 2018; 257
Korey (D0RA07342C-(cit38)/*[position()=1]) 2018; 56
Du (D0RA07342C-(cit22)/*[position()=1]) 2019; 5
Barthelemy (D0RA07342C-(cit36)/*[position()=1]) 2004; 91
Deng (D0RA07342C-(cit13)/*[position()=1]) 2019; 29
Meziane (D0RA07342C-(cit37)/*[position()=1]) 2007; 6
Xu (D0RA07342C-(cit39)/*[position()=1]) 2012; 87
Wang (D0RA07342C-(cit21)/*[position()=1]) 2019; 11
Chang (D0RA07342C-(cit29)/*[position()=1]) 2016; 71
Xu (D0RA07342C-(cit10)/*[position()=1]) 2019; 2
Zhu (D0RA07342C-(cit18)/*[position()=1]) 2019; 15
Szymanska-Chargot (D0RA07342C-(cit34)/*[position()=1]) 2009; 486
Burkinshaw (D0RA07342C-(cit19)/*[position()=1]) 2009; 80
Kumar (D0RA07342C-(cit7)/*[position()=1]) 2019; 124
Khatoon (D0RA07342C-(cit30)/*[position()=1]) 2018; 6
Nash (D0RA07342C-(cit14)/*[position()=1]) 2018; 113
Lee (D0RA07342C-(cit6)/*[position()=1]) 2017; 89
Franks (D0RA07342C-(cit28)/*[position()=1]) 2013; 109
Panyala (D0RA07342C-(cit8)/*[position()=1]) 2008; 6
Marin (D0RA07342C-(cit11)/*[position()=1]) 2015; 15
Zheng (D0RA07342C-(cit9)/*[position()=1]) 2019; 8
Church (D0RA07342C-(cit3)/*[position()=1]) 2006; 19
Lee (D0RA07342C-(cit4)/*[position()=1]) 2018; 4
Zasloff (D0RA07342C-(cit12)/*[position()=1]) 2002; 415
Yang (D0RA07342C-(cit23)/*[position()=1]) 2019; 177
Shang (D0RA07342C-(cit27)/*[position()=1]) 2019; 10
Castleberry (D0RA07342C-(cit5)/*[position()=1]) 2015; 28
Liu (D0RA07342C-(cit31)/*[position()=1]) 2016; 40
Hong (D0RA07342C-(cit26)/*[position()=1]) 2017; 74
Yu (D0RA07342C-(cit1)/*[position()=1]) 2016; 15
Zhang (D0RA07342C-(cit16)/*[position()=1]) 2020; 49
References_xml – volume: 8
  start-page: 326
  year: 2019
  ident: D0RA07342C-(cit9)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b00091
– volume: 415
  start-page: 389
  year: 2002
  ident: D0RA07342C-(cit12)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/415389a
– volume: 6
  start-page: 5837
  year: 2018
  ident: D0RA07342C-(cit30)/*[position()=1]
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.08.009
– volume: 71
  start-page: 449
  year: 2016
  ident: D0RA07342C-(cit29)/*[position()=1]
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkv367
– volume: 4
  start-page: 8711
  year: 2014
  ident: D0RA07342C-(cit17)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c3ra46342g
– volume: 53
  start-page: 1
  year: 2014
  ident: D0RA07342C-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310509
– volume: 248
  start-page: 387
  year: 2008
  ident: D0RA07342C-(cit2)/*[position()=1]
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0b013e318176c4b3
– volume: 124
  start-page: 448
  year: 2019
  ident: D0RA07342C-(cit7)/*[position()=1]
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.12.065
– volume: 15
  start-page: 1902440
  year: 2019
  ident: D0RA07342C-(cit18)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201902440
– volume: 137
  start-page: 104
  year: 2019
  ident: D0RA07342C-(cit25)/*[position()=1]
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2019.02.001
– volume: 113
  start-page: 277
  year: 2018
  ident: D0RA07342C-(cit14)/*[position()=1]
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2018.07.019
– volume: 29
  start-page: 1809110
  year: 2019
  ident: D0RA07342C-(cit13)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201809110
– volume: 91
  start-page: 135
  year: 2004
  ident: D0RA07342C-(cit36)/*[position()=1]
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-004-0501-4
– volume: 25
  start-page: 225
  year: 2018
  ident: D0RA07342C-(cit24)/*[position()=1]
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-018-1616-1
– volume: 74
  start-page: 2861
  year: 2017
  ident: D0RA07342C-(cit26)/*[position()=1]
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-016-1868-z
– volume: 15
  start-page: 911
  year: 2016
  ident: D0RA07342C-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4635
– volume: 89
  start-page: 392
  year: 2017
  ident: D0RA07342C-(cit6)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.06.003
– volume: 2
  start-page: 3329
  year: 2019
  ident: D0RA07342C-(cit10)/*[position()=1]
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b00353
– volume: 6
  start-page: 117
  year: 2008
  ident: D0RA07342C-(cit8)/*[position()=1]
  publication-title: J. Appl. Biomed.
  doi: 10.32725/jab.2008.015
– volume: 40
  start-page: 6332
  year: 2016
  ident: D0RA07342C-(cit31)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ00185H
– volume: 4
  start-page: 18033
  year: 2018
  ident: D0RA07342C-(cit4)/*[position()=1]
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2018.33
– volume: 49
  start-page: 433
  year: 2020
  ident: D0RA07342C-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00285E
– volume: 177
  start-page: 18
  year: 2019
  ident: D0RA07342C-(cit23)/*[position()=1]
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.04.016
– volume: 11
  start-page: 37502
  year: 2019
  ident: D0RA07342C-(cit21)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14538
– volume: 67
  start-page: 11489
  year: 2019
  ident: D0RA07342C-(cit33)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b03947
– volume: 109
  start-page: 684
  year: 2013
  ident: D0RA07342C-(cit28)/*[position()=1]
  publication-title: Thromb. Haemostasis
  doi: 10.1160/TH12-08-0543
– volume: 257
  start-page: 31
  year: 2018
  ident: D0RA07342C-(cit15)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2018.06.001
– volume: 87
  start-page: 1589
  year: 2012
  ident: D0RA07342C-(cit39)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.09.059
– volume: 5
  start-page: 2610
  year: 2019
  ident: D0RA07342C-(cit22)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00130
– volume: 12
  start-page: 2457
  year: 2017
  ident: D0RA07342C-(cit32)/*[position()=1]
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S124442
– volume: 28
  start-page: 1809
  year: 2015
  ident: D0RA07342C-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503565
– volume: 56
  start-page: 1468
  year: 2018
  ident: D0RA07342C-(cit38)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.29028
– volume: 80
  start-page: 53
  year: 2009
  ident: D0RA07342C-(cit19)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2008.05.008
– volume: 10
  start-page: 17352
  year: 2018
  ident: D0RA07342C-(cit35)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03569
– volume: 15
  start-page: 1596
  year: 2015
  ident: D0RA07342C-(cit11)/*[position()=1]
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026615666150414142209
– volume: 10
  start-page: e00880
  year: 2019
  ident: D0RA07342C-(cit27)/*[position()=1]
  publication-title: mBio
  doi: 10.1128/mBio.00880-19
– volume: 486
  start-page: 66
  year: 2009
  ident: D0RA07342C-(cit34)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.07.094
– volume: 19
  start-page: 403
  year: 2006
  ident: D0RA07342C-(cit3)/*[position()=1]
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.19.2.403-434.2006
– volume: 6
  start-page: 192
  year: 2007
  ident: D0RA07342C-(cit37)/*[position()=1]
  publication-title: Genes, Brain Behav.
  doi: 10.1111/j.1601-183X.2006.00249.x
SSID ssj0000651261
Score 2.3499365
Snippet Damaged tissue with an open wound is one of the daily injuries and can have different levels of severity. Inspired by the textile dyeing, coloration and skin...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5182
SubjectTerms Ability tests
Aluminum
ambient temperature
Antiinfectives and antibacterials
Aqueous solutions
bioadhesives
Chemistry
color
composite polymers
condensation reactions
Copolymers
dyeing
fabrics
films (materials)
heat
In vivo methods and tests
liquids
methicillin-resistant Staphylococcus aureus
Nanoparticles
Oligomers
Polyphenols
Polytetrafluoroethylene
red wines
Room temperature
rubber
silane
silicon
siloxanes
Skin preparations
Sol-gel processes
Staphylococcus infections
Tannic acid
Thin films
Vinyl chloride
wood
Wound healing
Title Red wine-inspired tannic acid-KH561 copolymer: its adhesive properties and its application in wound healing
URI https://www.ncbi.nlm.nih.gov/pubmed/35424430
https://www.proquest.com/docview/2482628501
https://www.proquest.com/docview/2524259859
https://www.proquest.com/docview/2651688147
https://pubmed.ncbi.nlm.nih.gov/PMC8694633
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l5QAXxF_BUNAiuKDKYO_ajpdbFFpFUIpUEik3a__cpAKnCgkITrwDb8iTMLterx01qoCLE9sjy_Z83vlmdnYGoeeqL0iZMxWyiKowKYkOWZllYZYrRTNtbKqJQ74_yUaT5O00nfZ6XztZS-uVeCl_bF1X8j9ahWOgV7NK9h806y8KB-A_6Be2oGHY_pWOT23ueKXDeWUmzGFvZVoQyQMu4V5cGgN9NwL2ciBNN4TvplcKHdjZAq5m2uauX5h4_NIUVvUzCZ1pbRMQ-WZ6L1lO2Ri6pqT3x2GTReC5-dCt9zC_fkxxUenpnC98TGe2Ds9dR5XjeUtJq7PwfF1nGPNuTIKYgERYL_F3yUwm8tGkndq0Ete8rrY6dngj4JmDNutGLX4sjjuYY52BNY3rHkXOSAPvjLcagIia-qkqWnIYuxIiWzPXTO2ffCiOJsfHxfhwOt5B1wi4F6TjitcWHGhQFjfVbCl71V5wk79cckou59buLJtWMpayjG-hm87XwIMaOLdRT1d30HX_lu6izwAgvAEgXAMIGwD9_vnLQgd76LzGAA7cAAe3wMEAnPpcCxw8r7AFDnbAuYcmR4fj4Sh0_TdCmWTxKgTfmfGI52XGpGaK5TwiIiV5CbRPEykFJ5HQAhgvJYrzUoi-YlqWVGlOqSZ0D-1Wi0o_QDiJWZ7yksaxANokBaMg2wdrI4CuJzIP0IvmrRbSFac3PVI-FTZJgrLiTXQ6sBoYBuiZl72oS7JsldpvlFO4T_ZLQRLwpkmeRnGAnvrT8NLNLBmv9GINMqnxwuF22RUyAJAsz-OkH6D7tb79rcDzAGWmUYD6G0jwAqag--aZaj6zhd3zjCUZpQHaA8x4-RZ7D69-pkfoRvsx7qPd1XKtHwNlXoknFt9_AAUgxtM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red+wine-inspired+tannic+acid%E2%80%93KH561+copolymer%3A+its+adhesive+properties+and+its+application+in+wound+healing&rft.jtitle=RSC+advances&rft.au=Chen%2C+Chen&rft.au=Yang%2C+Xiao&rft.au=Shu-jing%2C+Li&rft.au=Feng-jun%2C+Ma&rft.date=2021-01-27&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=11&rft.issue=9&rft.spage=5182&rft.epage=5191&rft_id=info:doi/10.1039%2Fd0ra07342c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon