A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces
This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 25; no. 10; pp. 1746 - 1752 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was 0.5π. For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html. |
---|---|
AbstractList | This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain– computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 nïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was [Formula Omitted]. For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html . This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html. This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html. This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was 0.5π. For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html. |
Author | Chen, Xiaogang Gao, Xiaorong Gao, Shangkai Wang, Yijun |
Author_xml | – sequence: 1 givenname: Yijun surname: Wang fullname: Wang, Yijun email: wangyj@semi.ac.cn organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Xiaogang surname: Chen fullname: Chen, Xiaogang email: chenxg@bme.cams.cn organization: Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, China – sequence: 3 givenname: Xiaorong surname: Gao fullname: Gao, Xiaorong email: gxrdea@tsinghua.edu.cn organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Shangkai surname: Gao fullname: Gao, Shangkai email: gsk-dea@tsinghua.edu.cn organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27849543$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kLtOwzAUQC1UBOXxAyChSCwsKb5-Z2CgpUAlBIgCq-Uktkhpk2InA3-PSwsDA4sf0jn21dlDvbqpLUJHgAcAODt_vp8-jQcEgxgQQSTnYgv1gXOVYgK4tzpTljJK8C7aC2GGMUjB5Q7aJVKxjDPaRxeXydDWxdvC-PfkyrQm2DZxjU-m09fxYzqM9zIZelPV6ahZLLvW-mRSx9WZwoYDtO3MPNjDzb6PXq7Hz6Pb9O7hZjK6vEsLJqCNIzgiBBE5GIkzYTIHglGFMTVU2JyXWU5yxUoHzqiM5UBJyTNJXM4YlhTTfXS2fnfpm4_OhlYvqlDY-dzUtumCBsUgSlhBRE__oLOm83WcTkPGBSNEShKpkw3V5Qtb6qWvYoFP_RMmAmQNFL4JwVv3iwDWq_r6u75e1deb-lFSf6Siak1bNXUbC87_V4_XamWt_f1LSoaVVPQLy52N_w |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3293421 crossref_primary_10_3390_s23146310 crossref_primary_10_3389_fnins_2024_1367932 crossref_primary_10_1007_s11227_024_06027_7 crossref_primary_10_1109_TNSRE_2021_3132162 crossref_primary_10_1109_TIM_2024_3476551 crossref_primary_10_1007_s13534_024_00438_4 crossref_primary_10_1088_1741_2552_ab2b7d crossref_primary_10_1109_TNSRE_2023_3275547 crossref_primary_10_26599_BSA_2022_9050002 crossref_primary_10_1016_j_bspc_2021_103222 crossref_primary_10_3389_fnins_2020_568000 crossref_primary_10_1016_j_heares_2023_108897 crossref_primary_10_1115_1_4051596 crossref_primary_10_1016_j_bspc_2021_103459 crossref_primary_10_1109_TNNLS_2020_3027773 crossref_primary_10_1515_bams_2019_0053 crossref_primary_10_1093_cercor_bhad275 crossref_primary_10_1109_TBME_2021_3049853 crossref_primary_10_1016_j_measurement_2022_111188 crossref_primary_10_1088_1741_2552_acacca crossref_primary_10_1007_s44275_024_00017_w crossref_primary_10_1109_JBHI_2024_3439391 crossref_primary_10_1109_ACCESS_2021_3136774 crossref_primary_10_1109_TNSRE_2023_3276745 crossref_primary_10_1109_JSEN_2020_3017491 crossref_primary_10_1109_TNSRE_2022_3192543 crossref_primary_10_1109_TCSS_2024_3374455 crossref_primary_10_1088_1741_2552_acf242 crossref_primary_10_1007_s11517_024_03193_x crossref_primary_10_1109_ACCESS_2019_2925078 crossref_primary_10_1109_TASE_2021_3054741 crossref_primary_10_1109_TIM_2022_3219497 crossref_primary_10_3389_fnins_2023_1161511 crossref_primary_10_3390_brainsci13030483 crossref_primary_10_1088_1741_2552_ac9861 crossref_primary_10_1016_j_inffus_2025_103069 crossref_primary_10_1109_TNSRE_2022_3175177 crossref_primary_10_1109_TNSRE_2024_3419013 crossref_primary_10_1109_TNSRE_2023_3309543 crossref_primary_10_1016_j_bspc_2024_107404 crossref_primary_10_1109_TBME_2019_2929745 crossref_primary_10_1109_TNSRE_2023_3288397 crossref_primary_10_1038_s41598_024_84534_6 crossref_primary_10_1109_TNSRE_2023_3266488 crossref_primary_10_1088_1741_2552_acbee0 crossref_primary_10_1109_TNSRE_2021_3104825 crossref_primary_10_1016_j_jneumeth_2024_110132 crossref_primary_10_1109_TNSRE_2023_3310883 crossref_primary_10_3390_brainsci13050780 crossref_primary_10_1080_10400435_2022_2084182 crossref_primary_10_1371_journal_pone_0226048 crossref_primary_10_1002_jdn_10166 crossref_primary_10_3390_s22207715 crossref_primary_10_1109_TNSRE_2022_3225878 crossref_primary_10_1088_1741_2552_ace380 crossref_primary_10_1109_TBME_2024_3455270 crossref_primary_10_2139_ssrn_4073630 crossref_primary_10_1016_j_irbm_2024_100830 crossref_primary_10_1109_TCDS_2022_3194603 crossref_primary_10_1186_s40708_023_00199_3 crossref_primary_10_1016_j_measurement_2022_111524 crossref_primary_10_1088_1741_2552_abaa9b crossref_primary_10_3390_s20030891 crossref_primary_10_1109_TBME_2020_2975614 crossref_primary_10_1109_TNSRE_2020_3019276 crossref_primary_10_1016_j_bspc_2021_103345 crossref_primary_10_1080_27706710_2024_2418650 crossref_primary_10_3390_biomimetics10030171 crossref_primary_10_1016_j_rineng_2025_104203 crossref_primary_10_1109_JBHI_2024_3463737 crossref_primary_10_1016_j_eswa_2023_120177 crossref_primary_10_1088_1741_2552_ad7f89 crossref_primary_10_1109_TNSRE_2019_2941349 crossref_primary_10_1080_2326263X_2022_2134623 crossref_primary_10_1109_TNSRE_2021_3106876 crossref_primary_10_3390_info13040186 crossref_primary_10_1016_j_bspc_2024_106932 crossref_primary_10_1016_j_jneumeth_2024_110357 crossref_primary_10_1016_j_neunet_2024_106338 crossref_primary_10_1109_TNSRE_2023_3274121 crossref_primary_10_1109_TIM_2024_3374314 crossref_primary_10_1109_TNSRE_2022_3208717 crossref_primary_10_1016_j_neuroimage_2024_120548 crossref_primary_10_3390_brainsci11040450 crossref_primary_10_1088_1741_2552_ad0a02 crossref_primary_10_1142_S0218126625501075 crossref_primary_10_1016_j_bspc_2020_101888 crossref_primary_10_1109_TIM_2022_3209789 crossref_primary_10_1109_TNSRE_2023_3323351 crossref_primary_10_1016_j_bspc_2021_102797 crossref_primary_10_1109_TBME_2023_3333435 crossref_primary_10_1109_TNSRE_2022_3142736 crossref_primary_10_3390_s21041315 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_17780_ksujes_1175402 crossref_primary_10_1109_TIM_2022_3146950 crossref_primary_10_1016_j_jneumeth_2022_109535 crossref_primary_10_3390_mi14050976 crossref_primary_10_1016_j_neunet_2025_107133 crossref_primary_10_1109_ACCESS_2022_3205734 crossref_primary_10_1109_JSEN_2019_2958210 crossref_primary_10_1109_TNSRE_2024_3503772 crossref_primary_10_3389_fnhum_2021_675091 crossref_primary_10_1109_TNNLS_2021_3118468 crossref_primary_10_1016_j_aei_2020_101046 crossref_primary_10_1016_j_neucom_2020_03_048 crossref_primary_10_1109_JSEN_2022_3161743 crossref_primary_10_1109_JBHI_2022_3185587 crossref_primary_10_1109_TBME_2024_3458060 crossref_primary_10_1109_ACCESS_2023_3266306 crossref_primary_10_1016_j_eswa_2022_117180 crossref_primary_10_1088_1741_2552_ad775f crossref_primary_10_1088_2057_1976_ac6300 crossref_primary_10_1088_2057_1976_ad2e36 crossref_primary_10_3390_s24217084 crossref_primary_10_1088_1741_2552_ab2373 crossref_primary_10_1109_TNSRE_2022_3217789 crossref_primary_10_1109_TNSRE_2023_3250953 crossref_primary_10_1088_1741_2552_ab5760 crossref_primary_10_1088_1741_2552_ac81ee crossref_primary_10_1016_j_bspc_2020_102042 crossref_primary_10_1109_TNSRE_2020_2983275 crossref_primary_10_1088_1741_2552_ab4dc6 crossref_primary_10_3389_fnins_2023_1160040 crossref_primary_10_1016_j_bea_2021_100022 crossref_primary_10_1088_2057_1976_ad567f crossref_primary_10_1109_JIOT_2024_3488957 crossref_primary_10_3390_s20154186 crossref_primary_10_1007_s11571_023_10035_3 crossref_primary_10_1109_TNSRE_2023_3235804 crossref_primary_10_1016_j_eswa_2022_117574 crossref_primary_10_1088_1741_2552_ac823e crossref_primary_10_1093_gigascience_giz002 crossref_primary_10_1007_s42452_024_05816_2 crossref_primary_10_1038_s41598_019_41158_5 crossref_primary_10_1093_gigascience_giz133 crossref_primary_10_1109_JSEN_2023_3287983 crossref_primary_10_1109_TCDS_2021_3096812 crossref_primary_10_31083_j_jin2304073 crossref_primary_10_1109_TNSRE_2021_3114340 crossref_primary_10_3389_fnins_2021_651762 crossref_primary_10_3390_s23052425 crossref_primary_10_1016_j_jneumeth_2022_109688 crossref_primary_10_1109_ACCESS_2019_2911646 crossref_primary_10_1109_TBME_2024_3406603 crossref_primary_10_1080_27706710_2023_2181102 crossref_primary_10_1109_TBME_2020_2975552 crossref_primary_10_3390_electronics10050560 crossref_primary_10_1007_s11517_021_02345_7 crossref_primary_10_1088_1741_2552_ad8963 crossref_primary_10_1109_TBME_2021_3087177 crossref_primary_10_1038_s41597_022_01509_w crossref_primary_10_3389_fnhum_2022_815163 crossref_primary_10_1007_s10586_024_04492_6 crossref_primary_10_1016_j_jneumeth_2024_110323 crossref_primary_10_1016_j_bspc_2023_104817 crossref_primary_10_3389_fnbot_2023_1146415 crossref_primary_10_1016_j_bspc_2022_103906 crossref_primary_10_3390_bios14040183 crossref_primary_10_1007_s11517_020_02310_w crossref_primary_10_1016_j_artmed_2025_103100 crossref_primary_10_3389_fnhum_2019_00250 crossref_primary_10_3390_math13050802 crossref_primary_10_1088_1741_2552_ac9edd crossref_primary_10_1016_j_bspc_2023_105466 crossref_primary_10_1016_j_bspc_2022_103482 crossref_primary_10_1109_JSEN_2024_3492198 crossref_primary_10_1016_j_bspc_2023_105220 crossref_primary_10_1049_tje2_12363 crossref_primary_10_1016_j_heares_2022_108670 crossref_primary_10_1016_j_bspc_2021_102542 crossref_primary_10_1109_TBME_2024_3458389 crossref_primary_10_3390_s21175746 crossref_primary_10_1109_TBME_2019_2961743 crossref_primary_10_1109_JBHI_2018_2878048 crossref_primary_10_1109_TNSRE_2024_3424410 crossref_primary_10_1016_j_bspc_2024_106282 crossref_primary_10_1016_j_eswa_2025_127208 crossref_primary_10_1016_j_measurement_2024_114959 crossref_primary_10_1049_el_2020_2532 crossref_primary_10_1016_j_bspc_2025_107554 crossref_primary_10_1007_s11571_024_10134_9 crossref_primary_10_1109_TNSRE_2023_3305202 crossref_primary_10_26599_BSA_2023_9050020 crossref_primary_10_3389_fnbot_2024_1502560 crossref_primary_10_1038_s41598_019_56962_2 crossref_primary_10_1109_TBME_2022_3227036 crossref_primary_10_1109_TNSRE_2022_3162029 crossref_primary_10_3390_s21041256 crossref_primary_10_1109_TBME_2021_3133594 crossref_primary_10_1109_TNSRE_2018_2848222 crossref_primary_10_1109_LSP_2024_3501274 crossref_primary_10_1142_S0129065720500203 crossref_primary_10_1088_1741_2552_abe7cf crossref_primary_10_1109_ACCESS_2019_2946301 crossref_primary_10_1109_ACCESS_2021_3124238 crossref_primary_10_1088_1741_2552_aac605 crossref_primary_10_1088_1741_2552_ac6b57 crossref_primary_10_3390_electronics11244231 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1016_j_dsp_2023_103950 crossref_primary_10_1016_j_neunet_2024_106734 crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_1016_j_bspc_2023_104629 crossref_primary_10_1007_s11571_022_09923_x crossref_primary_10_1016_j_compbiomed_2023_107488 crossref_primary_10_1186_s12859_024_05838_y crossref_primary_10_1109_TNSRE_2020_3038718 crossref_primary_10_1016_j_neunet_2019_07_007 crossref_primary_10_1016_j_eswa_2024_123492 crossref_primary_10_1109_TNSRE_2021_3057938 crossref_primary_10_1049_ell2_12540 crossref_primary_10_1109_JIOT_2024_3488745 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_1109_TNSRE_2020_2974272 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1016_j_measurement_2023_113861 crossref_primary_10_1109_TNSRE_2020_2974271 crossref_primary_10_1038_s41597_023_02841_5 crossref_primary_10_1038_s41597_022_01372_9 crossref_primary_10_1016_j_jneumeth_2022_109499 crossref_primary_10_3390_app15042176 crossref_primary_10_3389_fnbot_2022_855825 crossref_primary_10_1093_nsr_nwaa233 crossref_primary_10_1088_1741_2552_ad44d8 crossref_primary_10_1109_TBME_2024_3387469 crossref_primary_10_1007_s11571_023_10036_2 crossref_primary_10_1142_S0129065718500284 crossref_primary_10_1088_1741_2552_ab6cb7 crossref_primary_10_1109_TNSRE_2019_2904791 crossref_primary_10_1109_TNSRE_2021_3073165 crossref_primary_10_3389_fnins_2022_1057010 crossref_primary_10_1088_1741_2552_ad0b8f crossref_primary_10_1038_s41597_024_03023_7 crossref_primary_10_1109_TIM_2023_3284952 crossref_primary_10_3389_fncom_2022_868642 crossref_primary_10_1007_s11432_022_3440_5 crossref_primary_10_1016_j_bspc_2024_106868 crossref_primary_10_1109_TBME_2021_3110440 crossref_primary_10_1016_j_knosys_2025_113074 crossref_primary_10_1016_j_compbiomed_2021_105042 crossref_primary_10_26599_JNR_2020_9040003 crossref_primary_10_1109_TNSRE_2018_2826541 crossref_primary_10_1088_1741_2552_ab914e crossref_primary_10_3389_fnins_2023_1176344 crossref_primary_10_3390_electronics14061108 crossref_primary_10_1016_j_isci_2024_111030 crossref_primary_10_1016_j_bspc_2023_105931 crossref_primary_10_1109_TNSRE_2023_3324148 crossref_primary_10_1016_j_jrras_2024_100940 crossref_primary_10_1109_TNSRE_2019_2923060 crossref_primary_10_1088_1741_2552_ac0bfa crossref_primary_10_3233_JIFS_201280 crossref_primary_10_1109_TNSRE_2023_3245654 crossref_primary_10_1109_TBME_2022_3198639 crossref_primary_10_1080_2326263X_2023_2166651 crossref_primary_10_1016_j_jnrt_2024_100122 crossref_primary_10_1088_1741_2552_ab13d1 crossref_primary_10_1109_JBHI_2024_3454158 crossref_primary_10_1088_1741_2552_ac8dc5 crossref_primary_10_1109_ACCESS_2024_3509275 |
Cites_doi | 10.1371/journal.pone.0002967 10.1080/2326263X.2014.944469 10.1163/156856897X00357 10.1109/TBME.2006.889160 10.1155/ASP.2005.3156 10.1007/s002210100682 10.1016/j.tins.2006.07.004 10.1016/S0042-6989(99)00031-0 10.1088/1741-2560/6/4/046002 10.1016/j.jneumeth.2003.10.009 10.1016/S1388-2457(02)00057-3 10.1109/TBME.2004.826692 10.1109/MEMB.2008.923958 10.1088/1741-2560/9/4/045001 10.1088/1741-2560/10/3/036011 10.1016/j.jneumeth.2014.06.003 10.1109/TNSRE.2003.814453 10.1088/1741-2560/12/4/046008 10.1142/S0129065714500130 10.1073/pnas.1508080112 10.1109/JPROC.2015.2469106 10.1016/j.pneurobio.2009.11.005 10.1016/j.jneumeth.2013.07.018 10.1088/1741-2560/12/4/046006 10.3389/fnins.2012.00055 10.1088/1741-2560/11/2/026014 10.1109/TBME.2014.2300164 10.1109/TNSRE.2006.875642 10.1088/1741-2560/10/2/026012 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2016.2627556 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1752 |
ExternalDocumentID | 27849543 10_1109_TNSRE_2016_2627556 7740878 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Recruitment Program for Young Professionals, Young Talents Lift Project of Chinese Association of Science and Technology funderid: 10.13039/100010097 – fundername: National High-tech R&D Program (863) of China grantid: 2012AA011601 – fundername: PUMC Youth Fund grantid: 3332016101 – fundername: National Natural Science Foundation of China grantid: 61431007; 91220301; 91320202 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c461t-43f26626b1a7096a9f16438003a36eb5d9b2b84df1fa894b132d5972fb4407303 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 20:52:43 EDT 2025 Fri Jul 25 07:24:22 EDT 2025 Wed Feb 19 02:40:38 EST 2025 Tue Jul 01 00:43:15 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-43f26626b1a7096a9f16438003a36eb5d9b2b84df1fa894b132d5972fb4407303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1109/TNSRE.2016.2627556 |
PMID | 27849543 |
PQID | 1956422772 |
PQPubID | 85423 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_27849543 crossref_citationtrail_10_1109_TNSRE_2016_2627556 ieee_primary_7740878 proquest_miscellaneous_1841132081 proquest_journals_1956422772 crossref_primary_10_1109_TNSRE_2016_2627556 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref17 ref16 gao (ref3) 2014; 61 ref19 ref18 (ref28) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 wolpaw (ref1) 2002; 113 |
References_xml | – ident: ref30 doi: 10.1371/journal.pone.0002967 – ident: ref19 doi: 10.1080/2326263X.2014.944469 – ident: ref22 doi: 10.1163/156856897X00357 – ident: ref14 doi: 10.1109/TBME.2006.889160 – ident: ref18 doi: 10.1155/ASP.2005.3156 – ident: ref25 doi: 10.1007/s002210100682 – ident: ref2 doi: 10.1016/j.tins.2006.07.004 – ident: ref26 doi: 10.1016/S0042-6989(99)00031-0 – ident: ref15 doi: 10.1088/1741-2560/6/4/046002 – ident: ref24 doi: 10.1016/j.jneumeth.2003.10.009 – volume: 113 start-page: 767 year: 2002 ident: ref1 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: ref5 doi: 10.1109/TBME.2004.826692 – ident: ref8 doi: 10.1109/MEMB.2008.923958 – ident: ref27 doi: 10.1088/1741-2560/9/4/045001 – ident: ref23 doi: 10.1088/1741-2560/10/3/036011 – ident: ref12 doi: 10.1016/j.jneumeth.2014.06.003 – ident: ref4 doi: 10.1109/TNSRE.2003.814453 – ident: ref20 doi: 10.1088/1741-2560/12/4/046008 – ident: ref16 doi: 10.1142/S0129065714500130 – ident: ref21 doi: 10.1073/pnas.1508080112 – ident: ref13 doi: 10.1109/JPROC.2015.2469106 – ident: ref9 doi: 10.1016/j.pneurobio.2009.11.005 – ident: ref17 doi: 10.1016/j.jneumeth.2013.07.018 – ident: ref29 doi: 10.1088/1741-2560/12/4/046006 – ident: ref7 doi: 10.3389/fnins.2012.00055 – ident: ref10 doi: 10.1088/1741-2560/11/2/026014 – year: 0 ident: ref28 – volume: 61 start-page: 1436 year: 2014 ident: ref3 article-title: Visual and auditory brain-computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – ident: ref6 doi: 10.1109/TNSRE.2006.875642 – ident: ref11 doi: 10.1088/1741-2560/10/2/026012 |
SSID | ssj0017657 |
Score | 2.6299582 |
Snippet | This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The... This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain– computer interface (BCI) speller. The... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1746 |
SubjectTerms | Adolescent Adult Algorithms Benchmark testing Benchmarking Benchmarks Brain Brain-Computer Interfaces - statistics & numerical data Brain–computer interface (BCI) Communication Aids for Disabled Computational neuroscience Computer Simulation Databases, Factual Datasets Downloading EEG Electric Stimulation Electrodes Electrodes, Implanted electroencephalogram (EEG) Electroencephalography Encoding Evoked Potentials, Somatosensory - physiology Female Frequency modulation Healthy Volunteers Humans Identification methods Indexes Interfaces joint frequency and phase modulation (JFPM) Male Neural coding Phase modulation public data set Signal-To-Noise Ratio steady-state visual evoked potential (SSVEP) Stimulation Target acquisition Target recognition Visual stimuli Visualization Young Adult |
Title | A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/7740878 https://www.ncbi.nlm.nih.gov/pubmed/27849543 https://www.proquest.com/docview/1956422772 https://www.proquest.com/docview/1841132081 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH4CTr1QKF3CUrkS9FI8ZHES-8CBgUEICVQxQ8UtshNblSgzCDIXfj3vOYsAFcQtUZzFfs_x9_ltANtSmpSQLrcoXi7yJOFSpznXUehElYdalt7L9zw7uRSnV-nVAuz2sTDWWu98Zgd06G351ayc01bZHkKVUOZyERaRuDWxWr3FIM98Vk-cwIKLJA67AJlQ7U3Oxxcj8uLKBjEl5U2pbhEZ3FQqkmfrkS-w8jrW9GvO8Uc46762cTW5HsxrMygfXiRyfG93VmC5BZ_soNGWVViw00-w8zTRMJs0WQbYT3bxLIf3GuwfsCGq9N8bfXfNjnSNy1_NEPKy8fjP6Dcf4nnFhlRxgnelIpjfb3Tk9fUZLo9Hk8MT3hZf4KXIohrH0OHaHWcm0jnSHK0cEqsE4WWik8yatFImNlJULnJaKmGQ1VZITmJnhKDfRvIFlqazqf0GTOVlpJVVrrTIxwQ-UqbCZtblEtGkSgOIOhEUZdsrKpDxr_AMJVSFl2BBEixaCQbwq7_ntsnL8WbrNRr-vmU78gFsdpIu2ql7X1AApYhjZB0B_Ogv46QjS4qe2tkc20gRUey5jAL42mhI_-xOsdb__84N-BATMvD-gJuwVN_N7Rbimtp89wr9CBAK7a8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAXaCmPlLa4EnABb-PETuxDD92y1VLaFepuq94iO7GFVNitSvbCr-_YeYgiQNwSxXFszzjzjecF8EZKIzzSpRbJS3meplRqkVPNYserPNayDF6-k2x8wU-uxNUKfOhjYay1wfnMDvxlsOVXi3Lpj8r2EarEMpcPYA3lvmBNtFZvM8izkNcTtzCnPE3iLkQmVvuzyfR85P24skHi0_IKX7nIm9yU4Ok9iRRKrPwdbQapc_wEzrrxNs4m14NlbQblz99SOf7vhNbhcQs_yWHDLxuwYudP4e2vqYbJrMkzQN6R83tZvDfh4JAMkam_fte31-SjrlEA1gRBL5lOL0df6BDvKzL0NSdoVyyChBNH5_2-nsHF8Wh2NKZt-QVa8ozVuIYOpXeSGaZzVHS0cqhapQgwU51m1ohKmcRIXjnmtFTcoF5boXqSOMO5_3Gkz2F1vpjbl0BUXjKtrHKlRY2MY5dScJtZl0vEk0pEwDoSFGU7K18i41sRdJRYFYGChadg0VIwgvf9OzdNZo5_tt70y9-3bFc-gu2O0kW7eX8UPoSSJwnqHRHs9Y9x23lbip7bxRLbSM589LlkEbxoOKTvu2OsrT9_8zU8HM_OTovTT5PPr-BR4nFC8A7chtX6dml3EOXUZjcw9x2gk_D4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Benchmark+Dataset+for+SSVEP-Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Yijun&rft.au=Chen%2C+Xiaogang&rft.au=Gao%2C+Xiaorong&rft.au=Gao%2C+Shangkai&rft.date=2017-10-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=25&rft.issue=10&rft.spage=1746&rft.epage=1752&rft_id=info:doi/10.1109%2FTNSRE.2016.2627556&rft_id=info%3Apmid%2F27849543&rft.externalDocID=7740878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |