A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces

This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 25; no. 10; pp. 1746 - 1752
Main Authors Wang, Yijun, Chen, Xiaogang, Gao, Xiaorong, Gao, Shangkai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was 0.5π. For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.
AbstractList This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain– computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 nïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was [Formula Omitted]. For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html .
This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.
This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.
This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was 0.5π. For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.
Author Chen, Xiaogang
Gao, Xiaorong
Gao, Shangkai
Wang, Yijun
Author_xml – sequence: 1
  givenname: Yijun
  surname: Wang
  fullname: Wang, Yijun
  email: wangyj@semi.ac.cn
  organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Xiaogang
  surname: Chen
  fullname: Chen, Xiaogang
  email: chenxg@bme.cams.cn
  organization: Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Biomedical Engineering, Tianjin, China
– sequence: 3
  givenname: Xiaorong
  surname: Gao
  fullname: Gao, Xiaorong
  email: gxrdea@tsinghua.edu.cn
  organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Shangkai
  surname: Gao
  fullname: Gao, Shangkai
  email: gsk-dea@tsinghua.edu.cn
  organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27849543$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUQC1UBOXxAyChSCwsKb5-Z2CgpUAlBIgCq-Uktkhpk2InA3-PSwsDA4sf0jn21dlDvbqpLUJHgAcAODt_vp8-jQcEgxgQQSTnYgv1gXOVYgK4tzpTljJK8C7aC2GGMUjB5Q7aJVKxjDPaRxeXydDWxdvC-PfkyrQm2DZxjU-m09fxYzqM9zIZelPV6ahZLLvW-mRSx9WZwoYDtO3MPNjDzb6PXq7Hz6Pb9O7hZjK6vEsLJqCNIzgiBBE5GIkzYTIHglGFMTVU2JyXWU5yxUoHzqiM5UBJyTNJXM4YlhTTfXS2fnfpm4_OhlYvqlDY-dzUtumCBsUgSlhBRE__oLOm83WcTkPGBSNEShKpkw3V5Qtb6qWvYoFP_RMmAmQNFL4JwVv3iwDWq_r6u75e1deb-lFSf6Siak1bNXUbC87_V4_XamWt_f1LSoaVVPQLy52N_w
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3293421
crossref_primary_10_3390_s23146310
crossref_primary_10_3389_fnins_2024_1367932
crossref_primary_10_1007_s11227_024_06027_7
crossref_primary_10_1109_TNSRE_2021_3132162
crossref_primary_10_1109_TIM_2024_3476551
crossref_primary_10_1007_s13534_024_00438_4
crossref_primary_10_1088_1741_2552_ab2b7d
crossref_primary_10_1109_TNSRE_2023_3275547
crossref_primary_10_26599_BSA_2022_9050002
crossref_primary_10_1016_j_bspc_2021_103222
crossref_primary_10_3389_fnins_2020_568000
crossref_primary_10_1016_j_heares_2023_108897
crossref_primary_10_1115_1_4051596
crossref_primary_10_1016_j_bspc_2021_103459
crossref_primary_10_1109_TNNLS_2020_3027773
crossref_primary_10_1515_bams_2019_0053
crossref_primary_10_1093_cercor_bhad275
crossref_primary_10_1109_TBME_2021_3049853
crossref_primary_10_1016_j_measurement_2022_111188
crossref_primary_10_1088_1741_2552_acacca
crossref_primary_10_1007_s44275_024_00017_w
crossref_primary_10_1109_JBHI_2024_3439391
crossref_primary_10_1109_ACCESS_2021_3136774
crossref_primary_10_1109_TNSRE_2023_3276745
crossref_primary_10_1109_JSEN_2020_3017491
crossref_primary_10_1109_TNSRE_2022_3192543
crossref_primary_10_1109_TCSS_2024_3374455
crossref_primary_10_1088_1741_2552_acf242
crossref_primary_10_1007_s11517_024_03193_x
crossref_primary_10_1109_ACCESS_2019_2925078
crossref_primary_10_1109_TASE_2021_3054741
crossref_primary_10_1109_TIM_2022_3219497
crossref_primary_10_3389_fnins_2023_1161511
crossref_primary_10_3390_brainsci13030483
crossref_primary_10_1088_1741_2552_ac9861
crossref_primary_10_1016_j_inffus_2025_103069
crossref_primary_10_1109_TNSRE_2022_3175177
crossref_primary_10_1109_TNSRE_2024_3419013
crossref_primary_10_1109_TNSRE_2023_3309543
crossref_primary_10_1016_j_bspc_2024_107404
crossref_primary_10_1109_TBME_2019_2929745
crossref_primary_10_1109_TNSRE_2023_3288397
crossref_primary_10_1038_s41598_024_84534_6
crossref_primary_10_1109_TNSRE_2023_3266488
crossref_primary_10_1088_1741_2552_acbee0
crossref_primary_10_1109_TNSRE_2021_3104825
crossref_primary_10_1016_j_jneumeth_2024_110132
crossref_primary_10_1109_TNSRE_2023_3310883
crossref_primary_10_3390_brainsci13050780
crossref_primary_10_1080_10400435_2022_2084182
crossref_primary_10_1371_journal_pone_0226048
crossref_primary_10_1002_jdn_10166
crossref_primary_10_3390_s22207715
crossref_primary_10_1109_TNSRE_2022_3225878
crossref_primary_10_1088_1741_2552_ace380
crossref_primary_10_1109_TBME_2024_3455270
crossref_primary_10_2139_ssrn_4073630
crossref_primary_10_1016_j_irbm_2024_100830
crossref_primary_10_1109_TCDS_2022_3194603
crossref_primary_10_1186_s40708_023_00199_3
crossref_primary_10_1016_j_measurement_2022_111524
crossref_primary_10_1088_1741_2552_abaa9b
crossref_primary_10_3390_s20030891
crossref_primary_10_1109_TBME_2020_2975614
crossref_primary_10_1109_TNSRE_2020_3019276
crossref_primary_10_1016_j_bspc_2021_103345
crossref_primary_10_1080_27706710_2024_2418650
crossref_primary_10_3390_biomimetics10030171
crossref_primary_10_1016_j_rineng_2025_104203
crossref_primary_10_1109_JBHI_2024_3463737
crossref_primary_10_1016_j_eswa_2023_120177
crossref_primary_10_1088_1741_2552_ad7f89
crossref_primary_10_1109_TNSRE_2019_2941349
crossref_primary_10_1080_2326263X_2022_2134623
crossref_primary_10_1109_TNSRE_2021_3106876
crossref_primary_10_3390_info13040186
crossref_primary_10_1016_j_bspc_2024_106932
crossref_primary_10_1016_j_jneumeth_2024_110357
crossref_primary_10_1016_j_neunet_2024_106338
crossref_primary_10_1109_TNSRE_2023_3274121
crossref_primary_10_1109_TIM_2024_3374314
crossref_primary_10_1109_TNSRE_2022_3208717
crossref_primary_10_1016_j_neuroimage_2024_120548
crossref_primary_10_3390_brainsci11040450
crossref_primary_10_1088_1741_2552_ad0a02
crossref_primary_10_1142_S0218126625501075
crossref_primary_10_1016_j_bspc_2020_101888
crossref_primary_10_1109_TIM_2022_3209789
crossref_primary_10_1109_TNSRE_2023_3323351
crossref_primary_10_1016_j_bspc_2021_102797
crossref_primary_10_1109_TBME_2023_3333435
crossref_primary_10_1109_TNSRE_2022_3142736
crossref_primary_10_3390_s21041315
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_17780_ksujes_1175402
crossref_primary_10_1109_TIM_2022_3146950
crossref_primary_10_1016_j_jneumeth_2022_109535
crossref_primary_10_3390_mi14050976
crossref_primary_10_1016_j_neunet_2025_107133
crossref_primary_10_1109_ACCESS_2022_3205734
crossref_primary_10_1109_JSEN_2019_2958210
crossref_primary_10_1109_TNSRE_2024_3503772
crossref_primary_10_3389_fnhum_2021_675091
crossref_primary_10_1109_TNNLS_2021_3118468
crossref_primary_10_1016_j_aei_2020_101046
crossref_primary_10_1016_j_neucom_2020_03_048
crossref_primary_10_1109_JSEN_2022_3161743
crossref_primary_10_1109_JBHI_2022_3185587
crossref_primary_10_1109_TBME_2024_3458060
crossref_primary_10_1109_ACCESS_2023_3266306
crossref_primary_10_1016_j_eswa_2022_117180
crossref_primary_10_1088_1741_2552_ad775f
crossref_primary_10_1088_2057_1976_ac6300
crossref_primary_10_1088_2057_1976_ad2e36
crossref_primary_10_3390_s24217084
crossref_primary_10_1088_1741_2552_ab2373
crossref_primary_10_1109_TNSRE_2022_3217789
crossref_primary_10_1109_TNSRE_2023_3250953
crossref_primary_10_1088_1741_2552_ab5760
crossref_primary_10_1088_1741_2552_ac81ee
crossref_primary_10_1016_j_bspc_2020_102042
crossref_primary_10_1109_TNSRE_2020_2983275
crossref_primary_10_1088_1741_2552_ab4dc6
crossref_primary_10_3389_fnins_2023_1160040
crossref_primary_10_1016_j_bea_2021_100022
crossref_primary_10_1088_2057_1976_ad567f
crossref_primary_10_1109_JIOT_2024_3488957
crossref_primary_10_3390_s20154186
crossref_primary_10_1007_s11571_023_10035_3
crossref_primary_10_1109_TNSRE_2023_3235804
crossref_primary_10_1016_j_eswa_2022_117574
crossref_primary_10_1088_1741_2552_ac823e
crossref_primary_10_1093_gigascience_giz002
crossref_primary_10_1007_s42452_024_05816_2
crossref_primary_10_1038_s41598_019_41158_5
crossref_primary_10_1093_gigascience_giz133
crossref_primary_10_1109_JSEN_2023_3287983
crossref_primary_10_1109_TCDS_2021_3096812
crossref_primary_10_31083_j_jin2304073
crossref_primary_10_1109_TNSRE_2021_3114340
crossref_primary_10_3389_fnins_2021_651762
crossref_primary_10_3390_s23052425
crossref_primary_10_1016_j_jneumeth_2022_109688
crossref_primary_10_1109_ACCESS_2019_2911646
crossref_primary_10_1109_TBME_2024_3406603
crossref_primary_10_1080_27706710_2023_2181102
crossref_primary_10_1109_TBME_2020_2975552
crossref_primary_10_3390_electronics10050560
crossref_primary_10_1007_s11517_021_02345_7
crossref_primary_10_1088_1741_2552_ad8963
crossref_primary_10_1109_TBME_2021_3087177
crossref_primary_10_1038_s41597_022_01509_w
crossref_primary_10_3389_fnhum_2022_815163
crossref_primary_10_1007_s10586_024_04492_6
crossref_primary_10_1016_j_jneumeth_2024_110323
crossref_primary_10_1016_j_bspc_2023_104817
crossref_primary_10_3389_fnbot_2023_1146415
crossref_primary_10_1016_j_bspc_2022_103906
crossref_primary_10_3390_bios14040183
crossref_primary_10_1007_s11517_020_02310_w
crossref_primary_10_1016_j_artmed_2025_103100
crossref_primary_10_3389_fnhum_2019_00250
crossref_primary_10_3390_math13050802
crossref_primary_10_1088_1741_2552_ac9edd
crossref_primary_10_1016_j_bspc_2023_105466
crossref_primary_10_1016_j_bspc_2022_103482
crossref_primary_10_1109_JSEN_2024_3492198
crossref_primary_10_1016_j_bspc_2023_105220
crossref_primary_10_1049_tje2_12363
crossref_primary_10_1016_j_heares_2022_108670
crossref_primary_10_1016_j_bspc_2021_102542
crossref_primary_10_1109_TBME_2024_3458389
crossref_primary_10_3390_s21175746
crossref_primary_10_1109_TBME_2019_2961743
crossref_primary_10_1109_JBHI_2018_2878048
crossref_primary_10_1109_TNSRE_2024_3424410
crossref_primary_10_1016_j_bspc_2024_106282
crossref_primary_10_1016_j_eswa_2025_127208
crossref_primary_10_1016_j_measurement_2024_114959
crossref_primary_10_1049_el_2020_2532
crossref_primary_10_1016_j_bspc_2025_107554
crossref_primary_10_1007_s11571_024_10134_9
crossref_primary_10_1109_TNSRE_2023_3305202
crossref_primary_10_26599_BSA_2023_9050020
crossref_primary_10_3389_fnbot_2024_1502560
crossref_primary_10_1038_s41598_019_56962_2
crossref_primary_10_1109_TBME_2022_3227036
crossref_primary_10_1109_TNSRE_2022_3162029
crossref_primary_10_3390_s21041256
crossref_primary_10_1109_TBME_2021_3133594
crossref_primary_10_1109_TNSRE_2018_2848222
crossref_primary_10_1109_LSP_2024_3501274
crossref_primary_10_1142_S0129065720500203
crossref_primary_10_1088_1741_2552_abe7cf
crossref_primary_10_1109_ACCESS_2019_2946301
crossref_primary_10_1109_ACCESS_2021_3124238
crossref_primary_10_1088_1741_2552_aac605
crossref_primary_10_1088_1741_2552_ac6b57
crossref_primary_10_3390_electronics11244231
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1016_j_dsp_2023_103950
crossref_primary_10_1016_j_neunet_2024_106734
crossref_primary_10_1016_j_neunet_2023_04_045
crossref_primary_10_1016_j_bspc_2023_104629
crossref_primary_10_1007_s11571_022_09923_x
crossref_primary_10_1016_j_compbiomed_2023_107488
crossref_primary_10_1186_s12859_024_05838_y
crossref_primary_10_1109_TNSRE_2020_3038718
crossref_primary_10_1016_j_neunet_2019_07_007
crossref_primary_10_1016_j_eswa_2024_123492
crossref_primary_10_1109_TNSRE_2021_3057938
crossref_primary_10_1049_ell2_12540
crossref_primary_10_1109_JIOT_2024_3488745
crossref_primary_10_1109_TNNLS_2022_3190448
crossref_primary_10_1109_TNSRE_2020_2974272
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1016_j_measurement_2023_113861
crossref_primary_10_1109_TNSRE_2020_2974271
crossref_primary_10_1038_s41597_023_02841_5
crossref_primary_10_1038_s41597_022_01372_9
crossref_primary_10_1016_j_jneumeth_2022_109499
crossref_primary_10_3390_app15042176
crossref_primary_10_3389_fnbot_2022_855825
crossref_primary_10_1093_nsr_nwaa233
crossref_primary_10_1088_1741_2552_ad44d8
crossref_primary_10_1109_TBME_2024_3387469
crossref_primary_10_1007_s11571_023_10036_2
crossref_primary_10_1142_S0129065718500284
crossref_primary_10_1088_1741_2552_ab6cb7
crossref_primary_10_1109_TNSRE_2019_2904791
crossref_primary_10_1109_TNSRE_2021_3073165
crossref_primary_10_3389_fnins_2022_1057010
crossref_primary_10_1088_1741_2552_ad0b8f
crossref_primary_10_1038_s41597_024_03023_7
crossref_primary_10_1109_TIM_2023_3284952
crossref_primary_10_3389_fncom_2022_868642
crossref_primary_10_1007_s11432_022_3440_5
crossref_primary_10_1016_j_bspc_2024_106868
crossref_primary_10_1109_TBME_2021_3110440
crossref_primary_10_1016_j_knosys_2025_113074
crossref_primary_10_1016_j_compbiomed_2021_105042
crossref_primary_10_26599_JNR_2020_9040003
crossref_primary_10_1109_TNSRE_2018_2826541
crossref_primary_10_1088_1741_2552_ab914e
crossref_primary_10_3389_fnins_2023_1176344
crossref_primary_10_3390_electronics14061108
crossref_primary_10_1016_j_isci_2024_111030
crossref_primary_10_1016_j_bspc_2023_105931
crossref_primary_10_1109_TNSRE_2023_3324148
crossref_primary_10_1016_j_jrras_2024_100940
crossref_primary_10_1109_TNSRE_2019_2923060
crossref_primary_10_1088_1741_2552_ac0bfa
crossref_primary_10_3233_JIFS_201280
crossref_primary_10_1109_TNSRE_2023_3245654
crossref_primary_10_1109_TBME_2022_3198639
crossref_primary_10_1080_2326263X_2023_2166651
crossref_primary_10_1016_j_jnrt_2024_100122
crossref_primary_10_1088_1741_2552_ab13d1
crossref_primary_10_1109_JBHI_2024_3454158
crossref_primary_10_1088_1741_2552_ac8dc5
crossref_primary_10_1109_ACCESS_2024_3509275
Cites_doi 10.1371/journal.pone.0002967
10.1080/2326263X.2014.944469
10.1163/156856897X00357
10.1109/TBME.2006.889160
10.1155/ASP.2005.3156
10.1007/s002210100682
10.1016/j.tins.2006.07.004
10.1016/S0042-6989(99)00031-0
10.1088/1741-2560/6/4/046002
10.1016/j.jneumeth.2003.10.009
10.1016/S1388-2457(02)00057-3
10.1109/TBME.2004.826692
10.1109/MEMB.2008.923958
10.1088/1741-2560/9/4/045001
10.1088/1741-2560/10/3/036011
10.1016/j.jneumeth.2014.06.003
10.1109/TNSRE.2003.814453
10.1088/1741-2560/12/4/046008
10.1142/S0129065714500130
10.1073/pnas.1508080112
10.1109/JPROC.2015.2469106
10.1016/j.pneurobio.2009.11.005
10.1016/j.jneumeth.2013.07.018
10.1088/1741-2560/12/4/046006
10.3389/fnins.2012.00055
10.1088/1741-2560/11/2/026014
10.1109/TBME.2014.2300164
10.1109/TNSRE.2006.875642
10.1088/1741-2560/10/2/026012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2016.2627556
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1752
ExternalDocumentID 27849543
10_1109_TNSRE_2016_2627556
7740878
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Recruitment Program for Young Professionals, Young Talents Lift Project of Chinese Association of Science and Technology
  funderid: 10.13039/100010097
– fundername: National High-tech R&D Program (863) of China
  grantid: 2012AA011601
– fundername: PUMC Youth Fund
  grantid: 3332016101
– fundername: National Natural Science Foundation of China
  grantid: 61431007; 91220301; 91320202
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-43f26626b1a7096a9f16438003a36eb5d9b2b84df1fa894b132d5972fb4407303
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 20:52:43 EDT 2025
Fri Jul 25 07:24:22 EDT 2025
Wed Feb 19 02:40:38 EST 2025
Tue Jul 01 00:43:15 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-43f26626b1a7096a9f16438003a36eb5d9b2b84df1fa894b132d5972fb4407303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1109/TNSRE.2016.2627556
PMID 27849543
PQID 1956422772
PQPubID 85423
PageCount 7
ParticipantIDs pubmed_primary_27849543
crossref_citationtrail_10_1109_TNSRE_2016_2627556
ieee_primary_7740878
proquest_miscellaneous_1841132081
proquest_journals_1956422772
crossref_primary_10_1109_TNSRE_2016_2627556
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref17
ref16
gao (ref3) 2014; 61
ref19
ref18
(ref28) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
wolpaw (ref1) 2002; 113
References_xml – ident: ref30
  doi: 10.1371/journal.pone.0002967
– ident: ref19
  doi: 10.1080/2326263X.2014.944469
– ident: ref22
  doi: 10.1163/156856897X00357
– ident: ref14
  doi: 10.1109/TBME.2006.889160
– ident: ref18
  doi: 10.1155/ASP.2005.3156
– ident: ref25
  doi: 10.1007/s002210100682
– ident: ref2
  doi: 10.1016/j.tins.2006.07.004
– ident: ref26
  doi: 10.1016/S0042-6989(99)00031-0
– ident: ref15
  doi: 10.1088/1741-2560/6/4/046002
– ident: ref24
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 113
  start-page: 767
  year: 2002
  ident: ref1
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref5
  doi: 10.1109/TBME.2004.826692
– ident: ref8
  doi: 10.1109/MEMB.2008.923958
– ident: ref27
  doi: 10.1088/1741-2560/9/4/045001
– ident: ref23
  doi: 10.1088/1741-2560/10/3/036011
– ident: ref12
  doi: 10.1016/j.jneumeth.2014.06.003
– ident: ref4
  doi: 10.1109/TNSRE.2003.814453
– ident: ref20
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref16
  doi: 10.1142/S0129065714500130
– ident: ref21
  doi: 10.1073/pnas.1508080112
– ident: ref13
  doi: 10.1109/JPROC.2015.2469106
– ident: ref9
  doi: 10.1016/j.pneurobio.2009.11.005
– ident: ref17
  doi: 10.1016/j.jneumeth.2013.07.018
– ident: ref29
  doi: 10.1088/1741-2560/12/4/046006
– ident: ref7
  doi: 10.3389/fnins.2012.00055
– ident: ref10
  doi: 10.1088/1741-2560/11/2/026014
– year: 0
  ident: ref28
– volume: 61
  start-page: 1436
  year: 2014
  ident: ref3
  article-title: Visual and auditory brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– ident: ref6
  doi: 10.1109/TNSRE.2006.875642
– ident: ref11
  doi: 10.1088/1741-2560/10/2/026012
SSID ssj0017657
Score 2.6299582
Snippet This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The...
This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain– computer interface (BCI) speller. The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1746
SubjectTerms Adolescent
Adult
Algorithms
Benchmark testing
Benchmarking
Benchmarks
Brain
Brain-Computer Interfaces - statistics & numerical data
Brain–computer interface (BCI)
Communication Aids for Disabled
Computational neuroscience
Computer Simulation
Databases, Factual
Datasets
Downloading
EEG
Electric Stimulation
Electrodes
Electrodes, Implanted
electroencephalogram (EEG)
Electroencephalography
Encoding
Evoked Potentials, Somatosensory - physiology
Female
Frequency modulation
Healthy Volunteers
Humans
Identification methods
Indexes
Interfaces
joint frequency and phase modulation (JFPM)
Male
Neural coding
Phase modulation
public data set
Signal-To-Noise Ratio
steady-state visual evoked potential (SSVEP)
Stimulation
Target acquisition
Target recognition
Visual stimuli
Visualization
Young Adult
Title A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/7740878
https://www.ncbi.nlm.nih.gov/pubmed/27849543
https://www.proquest.com/docview/1956422772
https://www.proquest.com/docview/1841132081
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH4CTr1QKF3CUrkS9FI8ZHES-8CBgUEICVQxQ8UtshNblSgzCDIXfj3vOYsAFcQtUZzFfs_x9_ltANtSmpSQLrcoXi7yJOFSpznXUehElYdalt7L9zw7uRSnV-nVAuz2sTDWWu98Zgd06G351ayc01bZHkKVUOZyERaRuDWxWr3FIM98Vk-cwIKLJA67AJlQ7U3Oxxcj8uLKBjEl5U2pbhEZ3FQqkmfrkS-w8jrW9GvO8Uc46762cTW5HsxrMygfXiRyfG93VmC5BZ_soNGWVViw00-w8zTRMJs0WQbYT3bxLIf3GuwfsCGq9N8bfXfNjnSNy1_NEPKy8fjP6Dcf4nnFhlRxgnelIpjfb3Tk9fUZLo9Hk8MT3hZf4KXIohrH0OHaHWcm0jnSHK0cEqsE4WWik8yatFImNlJULnJaKmGQ1VZITmJnhKDfRvIFlqazqf0GTOVlpJVVrrTIxwQ-UqbCZtblEtGkSgOIOhEUZdsrKpDxr_AMJVSFl2BBEixaCQbwq7_ntsnL8WbrNRr-vmU78gFsdpIu2ql7X1AApYhjZB0B_Ogv46QjS4qe2tkc20gRUey5jAL42mhI_-xOsdb__84N-BATMvD-gJuwVN_N7Rbimtp89wr9CBAK7a8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAXaCmPlLa4EnABb-PETuxDD92y1VLaFepuq94iO7GFVNitSvbCr-_YeYgiQNwSxXFszzjzjecF8EZKIzzSpRbJS3meplRqkVPNYserPNayDF6-k2x8wU-uxNUKfOhjYay1wfnMDvxlsOVXi3Lpj8r2EarEMpcPYA3lvmBNtFZvM8izkNcTtzCnPE3iLkQmVvuzyfR85P24skHi0_IKX7nIm9yU4Ok9iRRKrPwdbQapc_wEzrrxNs4m14NlbQblz99SOf7vhNbhcQs_yWHDLxuwYudP4e2vqYbJrMkzQN6R83tZvDfh4JAMkam_fte31-SjrlEA1gRBL5lOL0df6BDvKzL0NSdoVyyChBNH5_2-nsHF8Wh2NKZt-QVa8ozVuIYOpXeSGaZzVHS0cqhapQgwU51m1ohKmcRIXjnmtFTcoF5boXqSOMO5_3Gkz2F1vpjbl0BUXjKtrHKlRY2MY5dScJtZl0vEk0pEwDoSFGU7K18i41sRdJRYFYGChadg0VIwgvf9OzdNZo5_tt70y9-3bFc-gu2O0kW7eX8UPoSSJwnqHRHs9Y9x23lbip7bxRLbSM589LlkEbxoOKTvu2OsrT9_8zU8HM_OTovTT5PPr-BR4nFC8A7chtX6dml3EOXUZjcw9x2gk_D4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Benchmark+Dataset+for+SSVEP-Based+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Yijun&rft.au=Chen%2C+Xiaogang&rft.au=Gao%2C+Xiaorong&rft.au=Gao%2C+Shangkai&rft.date=2017-10-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=25&rft.issue=10&rft.spage=1746&rft.epage=1752&rft_id=info:doi/10.1109%2FTNSRE.2016.2627556&rft_id=info%3Apmid%2F27849543&rft.externalDocID=7740878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon