Glycan dependent refolding activity of ER glucosyltransferase (UGGT)

In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virt...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 12; p. 129709
Main Authors Wang, Ning, Seko, Akira, Takeda, Yoichi, Ito, Yukishige
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed. We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate. HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase. HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition. Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control. [Display omitted] •The possibility that UGGT participates in the folding process of glycoprotein as a chaperone is yet to be addressed.•Human UGGT1 (HUGT1) accelerates the folding of the glycan modified RNase.•The refolding activity of HUGT1 is dependent on its glucose transfer activity.
AbstractList In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed.We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate.HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase.HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition.Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control.
In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed. We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate. HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase. HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition. Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control. [Display omitted] •The possibility that UGGT participates in the folding process of glycoprotein as a chaperone is yet to be addressed.•Human UGGT1 (HUGT1) accelerates the folding of the glycan modified RNase.•The refolding activity of HUGT1 is dependent on its glucose transfer activity.
In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the "folding sensor" by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed.BACKGROUNDIn the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the "folding sensor" by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed.We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate.METHODSWe prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate.HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase.RESULTSHUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase.HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition.CONCLUSIONSHUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition.Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control.GENERAL SIGNIFICANCEOur study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control.
In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the "folding sensor" by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed. We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate. HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase. HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition. Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control.
ArticleNumber 129709
Author Wang, Ning
Ito, Yukishige
Seko, Akira
Takeda, Yoichi
Author_xml – sequence: 1
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  organization: Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
– sequence: 2
  givenname: Akira
  surname: Seko
  fullname: Seko, Akira
  organization: Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
– sequence: 3
  givenname: Yoichi
  surname: Takeda
  fullname: Takeda, Yoichi
  email: yotakeda@fc.ritsumei.ac.jp
  organization: Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
– sequence: 4
  givenname: Yukishige
  surname: Ito
  fullname: Ito, Yukishige
  organization: Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32858085$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rGzEQxUVJaZy036CUPaaHdfXfqx4KJU3cQqBQkrPQjmaNzFpypXXA374ym1x6SOYyMLz3GH7vgpzFFJGQj4wuGWX6y3bZ926DcckpryduVtS8IQvWrXjbUarPyIIKKlvJtDonF6VsaR1l1DtyLninOtqpBfmxHo_gYuNxj9FjnJqMQxp9iJvGwRQew3Rs0tDc_Gk24wFSOY5TdrEMmF3B5uphvb7__J68HdxY8MPTviQPtzf31z_bu9_rX9ff71qQmk2t5BI1gDFCDyB6gBVbgQRfHxdeIzUe0CuvHYIZes0NetYZZYTQRnKuxCW5mnP3Of09YJnsLhTAcXQR06FYrhSnQmshX5dK0enOGH1K_fQkPfQ79Hafw87lo32GVAVfZwHkVErlYyFMbgopVhRhtIzaUyN2a-dG7KkROzdSzfI_83P-K7Zvsw0rz8eA2RYIGCugkBEm61N4OeAfVSKlBw
CitedBy_id crossref_primary_10_1002_cbic_202200444
crossref_primary_10_1002_chem_202004158
crossref_primary_10_1016_j_carres_2021_108273
crossref_primary_10_1016_j_str_2020_11_017
crossref_primary_10_1021_acs_jproteome_4c00378
crossref_primary_10_4052_tigg_2118_1J
crossref_primary_10_1016_j_jmb_2023_168418
crossref_primary_10_4052_tigg_2118_1E
crossref_primary_10_1016_j_bbadis_2024_167246
Cites_doi 10.1002/anie.200502723
10.1021/bi900717p
10.1016/j.semcdb.2014.12.001
10.1038/s41598-017-12283-w
10.1038/nrd1751
10.1074/jbc.M117.789495
10.1534/g3.119.400868
10.1021/bi00116a015
10.1038/srep07322
10.1016/j.ceb.2010.10.011
10.1002/anie.201309665
10.1016/j.semcdb.2009.12.014
10.1007/s10719-011-9362-1
10.1016/j.carres.2012.10.011
10.1091/mbc.e13-02-0101
10.1073/pnas.1703682114
10.1074/jbc.273.11.6009
10.1016/j.jasms.2008.11.012
10.1093/glycob/cww069
10.1002/cbic.201000242
10.1016/0008-6215(94)84015-6
10.1016/S0092-8674(00)81855-3
10.1093/glycob/cwt163
10.1074/jbc.R700048200
10.1021/jo8024708
10.1016/S0021-9258(19)50413-6
10.1371/journal.pone.0004658
10.1074/jbc.M009861200
10.1074/jbc.271.11.6241
10.1021/acs.chemrev.8b00532
10.1021/acs.biochem.5b00785
10.1016/j.bbrc.2017.04.139
10.1093/glycob/cwv043
10.1016/j.ymeth.2004.10.004
10.1093/nar/27.18.3696
10.1146/annurev.bi.54.070185.003215
10.1021/ja204831z
10.1074/jbc.M508685200
10.1016/j.bbrc.2010.11.027
10.1016/S1097-2765(02)00821-3
10.1038/nrd2804
10.1158/1940-6207.CAPR-10-0003
10.1016/j.cell.2008.11.047
10.1074/jbc.M305800200
10.1016/j.str.2017.07.010
10.1016/j.bbamcr.2013.09.022
10.1080/15216540601126694
10.1021/jacs.7b03277
10.1016/j.bbrc.2012.08.112
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129709
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 32858085
10_1016_j_bbagen_2020_129709
S030441652030221X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c461t-424e6cc9936fc3bcc717c4cd7093d6e09dced5d6aec9fb629ed18959336942253
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 10:37:04 EDT 2025
Mon Jul 21 09:35:55 EDT 2025
Wed Feb 19 02:30:29 EST 2025
Thu Apr 24 22:51:35 EDT 2025
Tue Jul 01 00:22:14 EDT 2025
Fri Feb 23 02:47:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Endoplasmic reticulum quality control
Glycoprotein folding
Glycoprotein glucosyltransferase
Ribonuclease
Oligomannose-type glycan
UDP-glucose
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-424e6cc9936fc3bcc717c4cd7093d6e09dced5d6aec9fb629ed18959336942253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32858085
PQID 2438689965
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552036634
proquest_miscellaneous_2438689965
pubmed_primary_32858085
crossref_citationtrail_10_1016_j_bbagen_2020_129709
crossref_primary_10_1016_j_bbagen_2020_129709
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Miyagawa, Totani, Matsuo, Ito (bb0175) 2010; 403
Labunskyy, Ferguson, Fomenko, Chelliah, Hatfield, Gladyshev (bb0185) 2005; 280
Calles-Garcia, Yang, Soya, Melero, Ménade, Ito, Vargas, Lukacs, Kollman, Kozlov, Gehring, Menade, Ito, Vargas, Lukacs, Kollman, Kozlov, Gehring, Ménade, Ito, Vargas, Lukacs, Kollman, Kozlov, Gehring (bb0125) 2017; 292
Aikawa, Matsuo, Ito (bb0160) 2012; 29
Arnold, Kaufman (bb0095) 2003; 278
Dedola, Izumi, Makimura, Seko, Kanamori, Sakono, Ito, Kajihara (bb0075) 2014; 53
Liang, Yamashita, Kobata (bb0240) 1980; 88
Noguchi, Tanaka, Gyakushi, Kobayashi, Shoda (bb0135) 2009; 74
Ruiz-Canada, Kelleher, Gilmore (bb0020) 2009; 136
Sakono, Seko, Takeda, Hachisu, Ito (bb0130) 2012; 426
Sousa, Ferrero-Garcia, Parodi (bb0225) 1992; 31
Whitley, Nilsson, von Heijne (bb0030) 1996; 271
Totani, Ihara, Matsuo, Koshino, Ito (bb0250) 2005; 44
Irons, Tsuji, Carlson, Ouyang, Yoo, Xu, Hatfield, Gladyshev, Davis (bb0115) 2010; 3
Jefferis (bb0015) 2009; 8
Zapun, Darby, Tessier, Michalak, Bergeron, Thomas (bb0035) 1998; 273
Zapun, Petrescu, Rudd, Dwek, Thomas, Bergeron (bb0060) 1997; 88
Caraballo, Buzzi, Modenutti, Acosta-Montalvo, Castro, Rossi (bb0085) 2020; 10
Satoh, Song, Zhu, Toshimori, Murata, Hayashi, Kamikubo, Uchihashi, Kato (bb0205) 2017; 7
Takeda, Seko, Fujikawa, Izumi, Kajihara, Ito (bb0105) 2016; 26
Kelemen, Klink, Behike, Eubanks, Leland, Raines (bb0165) 1999; 27
Marinko, Huang, Penn, Capra, Schlebach, Sanders (bb0220) 2019; 119
Takeda, Seko, Hachisu, Daikoku, Izumi, Koizumi, Fujikawa, Kajihara, Ito (bb0100) 2014; 24
Korotkov, Kumaraswamy, Zhou, Hatfield, Gladyshev (bb0110) 2001; 276
Caramelo, Parodi (bb0065) 2008; 283
Tannous, Pisoni, Hebert, Molinari (bb0070) 2015; 41
Wang, Seko, Takeda, Kikuma, Ito (bb0230) 2015; 25
Izumi, Kuruma, Okamoto, Seko, Ito, Kajihara (bb0080) 2017; 139
Makimura, Kiuchi, Izumi, Dedola, Ito, Kajihara (bb0140) 2012; 364
Trombetta, Parodi (bb0180) 2005; 35
Roversi, Marti, Caputo, Alonzi, Hill, Dent, Kumar, Levasseur, Lia, Waksman, Basu, Albrecht, Qian, McIvor, Lipp, Siliqi, Vasiljević, Mohammed, Lukacik, Walsh, Santino, Zitzmann, Vasiljevic, Mohammed, Lukacik, Walsh, Santino, Zitzmann, Vasiljević, Mohammed, Lukacik, Walsh, Santino, Zitzmann (bb0215) 2017; 114
Daniels, Kurowski, Johnson, Hebert (bb0005) 2003; 11
Dube, Bertozzi (bb0010) 2005; 4
Nakao, Seko, Ito, Sakono (bb0045) 2017; 487
D’Alessio, Caramelo, Parodi (bb0055) 2010; 21
Kornfeld, Kornfeld (bb0025) 1985; 54
Kozlov, Muñoz-Escobar, Castro, Gehring (bb0050) 2017; 25
Labunskyy, Hatfield, Gladyshev (bb0190) 2007; 59
Zhu, Satoh, Kato (bb0210) 2015; 4
Yin, Li, Shaw, Li, Song, Zhang, Xia, Zhang, Joachimiak, Zhang, Wang, Liu, Wang (bb0145) 2009; 4
Ohara, Takeda, Daikoku, Hachisu, Seko, Ito (bb0200) 2015; 54
Rutkevich, Williams (bb0040) 2011; 23
Amin, Huang, Mizanur, Wang (bb0155) 2011; 133
Ferris, Jaber, Molinari, Arvan, Kaufman (bb0120) 2013; 24
Trombetta, Parodi (bb0170) 1992; 267
Labunskyy, Yoo, Hatfield, Gladyshev (bb0195) 2009; 48
Prados, Caramelo, Miranda (bb0090) 2013; 1833
Huang, Yang, Umekawa, Yamamoto, Wang (bb0150) 2010; 11
Prien, Ashline, Lapadula, Zhang, Reinhold (bb0235) 2009; 20
Fu, Chen, O’Neill (bb0245) 1994; 261
Sousa (10.1016/j.bbagen.2020.129709_bb0225) 1992; 31
Caraballo (10.1016/j.bbagen.2020.129709_bb0085) 2020; 10
Dube (10.1016/j.bbagen.2020.129709_bb0010) 2005; 4
Izumi (10.1016/j.bbagen.2020.129709_bb0080) 2017; 139
Labunskyy (10.1016/j.bbagen.2020.129709_bb0195) 2009; 48
Zhu (10.1016/j.bbagen.2020.129709_bb0210) 2015; 4
Zapun (10.1016/j.bbagen.2020.129709_bb0035) 1998; 273
Irons (10.1016/j.bbagen.2020.129709_bb0115) 2010; 3
Aikawa (10.1016/j.bbagen.2020.129709_bb0160) 2012; 29
Roversi (10.1016/j.bbagen.2020.129709_bb0215) 2017; 114
Makimura (10.1016/j.bbagen.2020.129709_bb0140) 2012; 364
Satoh (10.1016/j.bbagen.2020.129709_bb0205) 2017; 7
Amin (10.1016/j.bbagen.2020.129709_bb0155) 2011; 133
Trombetta (10.1016/j.bbagen.2020.129709_bb0170) 1992; 267
Marinko (10.1016/j.bbagen.2020.129709_bb0220) 2019; 119
Noguchi (10.1016/j.bbagen.2020.129709_bb0135) 2009; 74
Takeda (10.1016/j.bbagen.2020.129709_bb0100) 2014; 24
Kelemen (10.1016/j.bbagen.2020.129709_bb0165) 1999; 27
Takeda (10.1016/j.bbagen.2020.129709_bb0105) 2016; 26
D’Alessio (10.1016/j.bbagen.2020.129709_bb0055) 2010; 21
Labunskyy (10.1016/j.bbagen.2020.129709_bb0190) 2007; 59
Prien (10.1016/j.bbagen.2020.129709_bb0235) 2009; 20
Arnold (10.1016/j.bbagen.2020.129709_bb0095) 2003; 278
Calles-Garcia (10.1016/j.bbagen.2020.129709_bb0125) 2017; 292
Korotkov (10.1016/j.bbagen.2020.129709_bb0110) 2001; 276
Labunskyy (10.1016/j.bbagen.2020.129709_bb0185) 2005; 280
Rutkevich (10.1016/j.bbagen.2020.129709_bb0040) 2011; 23
Nakao (10.1016/j.bbagen.2020.129709_bb0045) 2017; 487
Zapun (10.1016/j.bbagen.2020.129709_bb0060) 1997; 88
Kornfeld (10.1016/j.bbagen.2020.129709_bb0025) 1985; 54
Miyagawa (10.1016/j.bbagen.2020.129709_bb0175) 2010; 403
Trombetta (10.1016/j.bbagen.2020.129709_bb0180) 2005; 35
Wang (10.1016/j.bbagen.2020.129709_bb0230) 2015; 25
Daniels (10.1016/j.bbagen.2020.129709_bb0005) 2003; 11
Ferris (10.1016/j.bbagen.2020.129709_bb0120) 2013; 24
Fu (10.1016/j.bbagen.2020.129709_bb0245) 1994; 261
Prados (10.1016/j.bbagen.2020.129709_bb0090) 2013; 1833
Yin (10.1016/j.bbagen.2020.129709_bb0145) 2009; 4
Ohara (10.1016/j.bbagen.2020.129709_bb0200) 2015; 54
Whitley (10.1016/j.bbagen.2020.129709_bb0030) 1996; 271
Totani (10.1016/j.bbagen.2020.129709_bb0250) 2005; 44
Dedola (10.1016/j.bbagen.2020.129709_bb0075) 2014; 53
Kozlov (10.1016/j.bbagen.2020.129709_bb0050) 2017; 25
Caramelo (10.1016/j.bbagen.2020.129709_bb0065) 2008; 283
Liang (10.1016/j.bbagen.2020.129709_bb0240) 1980; 88
Jefferis (10.1016/j.bbagen.2020.129709_bb0015) 2009; 8
Tannous (10.1016/j.bbagen.2020.129709_bb0070) 2015; 41
Ruiz-Canada (10.1016/j.bbagen.2020.129709_bb0020) 2009; 136
Huang (10.1016/j.bbagen.2020.129709_bb0150) 2010; 11
Sakono (10.1016/j.bbagen.2020.129709_bb0130) 2012; 426
References_xml – volume: 54
  start-page: 4909
  year: 2015
  end-page: 4917
  ident: bb0200
  article-title: Profiling Aglycon-recognizing sites of UDP-glucose:glycoprotein glucosyltransferase by means of Squarate-mediated Labeling
  publication-title: Biochemistry.
– volume: 283
  start-page: 10221
  year: 2008
  end-page: 10225
  ident: bb0065
  article-title: Getting in and out from calnexin/calreticulin cycles
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 3696
  year: 1999
  end-page: 3701
  ident: bb0165
  article-title: Hypersensitive substrate for ribonucleases
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 344
  year: 2014
  end-page: 350
  ident: bb0100
  article-title: Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active
  publication-title: Glycobiology.
– volume: 35
  start-page: 328
  year: 2005
  end-page: 337
  ident: bb0180
  article-title: Glycoprotein reglucosylation
  publication-title: Methods.
– volume: 136
  start-page: 272
  year: 2009
  end-page: 283
  ident: bb0020
  article-title: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms
  publication-title: Cell.
– volume: 74
  start-page: 2210
  year: 2009
  end-page: 2212
  ident: bb0135
  article-title: Efficient synthesis of sugar oxazolines from unprotected N -Acetyl-2-amino sugars by using chloroformamidinium reagent in water
  publication-title: J. Org. Chem.
– volume: 88
  start-page: 51
  year: 1980
  end-page: 58
  ident: bb0240
  article-title: Structural study of the carbohydrate moiety of bovine pancreatic ribonuclease B
  publication-title: J. Biochem.
– volume: 133
  start-page: 14404
  year: 2011
  end-page: 14417
  ident: bb0155
  article-title: Convergent synthesis of homogeneous Glc 1 man 9 GlcNAc 2 -protein and derivatives as ligands of molecular chaperones in protein quality control
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 1090
  year: 2015
  end-page: 1099
  ident: bb0230
  article-title: Cooperative role of calnexin and TigA in Aspergillus oryzae glycoprotein folding
  publication-title: Glycobiology.
– volume: 364
  start-page: 41
  year: 2012
  end-page: 48
  ident: bb0140
  article-title: Efficient synthesis of glycopeptide-α-thioesters with a high-mannose type oligosaccharide by means of tert-Boc-solid phase peptide synthesis
  publication-title: Carbohydr. Res.
– volume: 48
  start-page: 8458
  year: 2009
  end-page: 8465
  ident: bb0195
  article-title: Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses
  publication-title: Biochemistry.
– volume: 24
  start-page: 2597
  year: 2013
  end-page: 2608
  ident: bb0120
  article-title: UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum
  publication-title: Mol. Biol. Cell
– volume: 278
  start-page: 43320
  year: 2003
  end-page: 43328
  ident: bb0095
  article-title: The noncatalytic portion of human UDP-glucose:glycoprotein glucosyltransferase I confers UDP-glucose binding and transferase function to the catalytic domain
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 35
  year: 2012
  end-page: 45
  ident: bb0160
  article-title: In vitro mannose trimming property of human ER α-1,2 mannosidase I
  publication-title: Glycoconj. J.
– volume: 25
  year: 2017
  ident: bb0050
  article-title: Mapping the ER interactome: the p domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones
  publication-title: Structure
– volume: 54
  start-page: 631
  year: 1985
  end-page: 664
  ident: bb0025
  article-title: Assembly of asparagine-linked oligosaccharides
  publication-title: Annu. Rev. Biochem.
– volume: 23
  start-page: 157
  year: 2011
  end-page: 166
  ident: bb0040
  article-title: Participation of lectin chaperones and thiol oxidoreductases in protein folding within the endoplasmic reticulum
  publication-title: Curr. Opin. Cell Biol.
– volume: 139
  start-page: 11421
  year: 2017
  end-page: 11426
  ident: bb0080
  article-title: Substrate recognition of glycoprotein folding sensor UGGT analyzed by site-specifically 15 N-Labeled Glycopeptide and small glycopeptide library prepared by parallel native chemical ligation
  publication-title: J. Am. Chem. Soc.
– volume: 273
  start-page: 6009
  year: 1998
  end-page: 6012
  ident: bb0035
  article-title: Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57
  publication-title: J. Biol. Chem.
– volume: 114
  start-page: 8544
  year: 2017
  end-page: 8549
  ident: bb0215
  article-title: Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint
  publication-title: Proc. Natl. Acad. Sci.
– volume: 487
  start-page: 763
  year: 2017
  end-page: 767
  ident: bb0045
  article-title: PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 426
  start-page: 504
  year: 2012
  end-page: 510
  ident: bb0130
  article-title: Biophysical properties of UDP-glucose:glycoprotein glucosyltransferase, a folding sensor enzyme in the ER, delineated by synthetic probes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 59
  start-page: 1
  year: 2007
  end-page: 5
  ident: bb0190
  article-title: The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum
  publication-title: IUBMB Life
– volume: 292
  start-page: 11499
  year: 2017
  end-page: 11507
  ident: bb0125
  article-title: Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins
  publication-title: J. Biol. Chem.
– volume: 119
  start-page: 5537
  year: 2019
  end-page: 5606
  ident: bb0220
  article-title: Folding and Misfolding of human membrane proteins in health and disease: from single molecules to cellular Proteostasis
  publication-title: Chem. Rev.
– volume: 41
  start-page: 79
  year: 2015
  end-page: 89
  ident: bb0070
  article-title: N-linked sugar-regulated protein folding and quality control in the ER
  publication-title: Semin. Cell Dev. Biol.
– volume: 1833
  start-page: 3368
  year: 2013
  end-page: 3374
  ident: bb0090
  article-title: Progesterone regulates the expression and activity of two mouse isoforms of the glycoprotein folding sensor UDP-Glc: glycoprotein glucosyltransferase (UGGT)
  publication-title: Biochim. Biophys. Acta - Mol. Cell Res.
– volume: 8
  start-page: 226
  year: 2009
  end-page: 234
  ident: bb0015
  article-title: Glycosylation as a strategy to improve antibody-based therapeutics
  publication-title: Nat. Rev. Drug Discov.
– volume: 11
  start-page: 1350
  year: 2010
  end-page: 1355
  ident: bb0150
  article-title: Arthrobacter endo-β-N-acetylglucosaminidase shows transglycosylation activity on complex-type N-glycan oxazolines: one-pot conversion of ribonuclease B to sialylated ribonuclease C
  publication-title: ChemBioChem.
– volume: 53
  start-page: 2883
  year: 2014
  end-page: 2887
  ident: bb0075
  article-title: Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme
  publication-title: Angew. Chemie Int. Ed.
– volume: 261
  start-page: 173
  year: 1994
  end-page: 186
  ident: bb0245
  article-title: A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry
  publication-title: Carbohydr. Res.
– volume: 403
  start-page: 322
  year: 2010
  end-page: 328
  ident: bb0175
  article-title: Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  start-page: 79
  year: 2003
  end-page: 90
  ident: bb0005
  article-title: N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin
  publication-title: Mol. Cell
– volume: 271
  start-page: 6241
  year: 1996
  end-page: 6244
  ident: bb0030
  article-title: A nascent secretory protein 5 traverse the ribosome/endoplasmic reticulum translocase complex as an extended chain
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 491
  year: 2010
  end-page: 499
  ident: bb0055
  article-title: UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control
  publication-title: Semin. Cell Dev. Biol.
– volume: 280
  start-page: 37839
  year: 2005
  end-page: 37845
  ident: bb0185
  article-title: A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase
  publication-title: J. Biol. Chem.
– volume: 4
  year: 2009
  ident: bb0145
  article-title: Structural basis and catalytic mechanism for the dual functional Endo-β-N-acetylglucosaminidase A
  publication-title: PLoS One
– volume: 267
  start-page: 9236
  year: 1992
  end-page: 9240
  ident: bb0170
  article-title: Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase
  publication-title: J. Biol. Chem.
– volume: 88
  start-page: 29
  year: 1997
  end-page: 38
  ident: bb0060
  article-title: Conformation-independent binding of monoglucosylated ribonuclease B to Calnexin
  publication-title: Cell.
– volume: 7
  start-page: 12142
  year: 2017
  ident: bb0205
  article-title: Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT
  publication-title: Sci. Rep.
– volume: 20
  start-page: 539
  year: 2009
  end-page: 556
  ident: bb0235
  article-title: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 276
  start-page: 15330
  year: 2001
  end-page: 15336
  ident: bb0110
  article-title: Association between the 15-kDa Selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 7322
  year: 2015
  ident: bb0210
  article-title: Structural insight into substrate recognition by the endoplasmic reticulum folding-sensor enzyme: crystal structure of third thioredoxin-like domain of UDP-glucose:glycoprotein glucosyltransferase
  publication-title: Sci. Rep.
– volume: 31
  start-page: 97
  year: 1992
  end-page: 105
  ident: bb0225
  article-title: Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase
  publication-title: Biochemistry.
– volume: 10
  start-page: 755
  year: 2020
  end-page: 768
  ident: bb0085
  article-title: Origin and evolution of two independently duplicated genes encoding UDP- glucose: glycoprotein glucosyltransferases in caenorhabditis and vertebrates
  publication-title: G3 Genes|Genomes|Genetics
– volume: 26
  start-page: 999
  year: 2016
  end-page: 1006
  ident: bb0105
  article-title: Effects of domain composition on catalytic activity of human UDP-glucose:glycoprotein glucosyltransferases
  publication-title: Glycobiology.
– volume: 3
  start-page: 630
  year: 2010
  end-page: 639
  ident: bb0115
  article-title: Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells
  publication-title: Cancer Prev. Res.
– volume: 4
  start-page: 477
  year: 2005
  end-page: 488
  ident: bb0010
  article-title: Glycans in cancer and inflammation — potential for therapeutics and diagnostics
  publication-title: Nat. Rev. Drug Discov.
– volume: 44
  start-page: 7950
  year: 2005
  end-page: 7954
  ident: bb0250
  article-title: Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase
  publication-title: Angew. Chemie Int. Ed.
– volume: 44
  start-page: 7950
  year: 2005
  ident: 10.1016/j.bbagen.2020.129709_bb0250
  article-title: Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.200502723
– volume: 48
  start-page: 8458
  year: 2009
  ident: 10.1016/j.bbagen.2020.129709_bb0195
  article-title: Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses
  publication-title: Biochemistry.
  doi: 10.1021/bi900717p
– volume: 41
  start-page: 79
  year: 2015
  ident: 10.1016/j.bbagen.2020.129709_bb0070
  article-title: N-linked sugar-regulated protein folding and quality control in the ER
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.12.001
– volume: 7
  start-page: 12142
  year: 2017
  ident: 10.1016/j.bbagen.2020.129709_bb0205
  article-title: Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12283-w
– volume: 4
  start-page: 477
  year: 2005
  ident: 10.1016/j.bbagen.2020.129709_bb0010
  article-title: Glycans in cancer and inflammation — potential for therapeutics and diagnostics
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1751
– volume: 292
  start-page: 11499
  year: 2017
  ident: 10.1016/j.bbagen.2020.129709_bb0125
  article-title: Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.789495
– volume: 10
  start-page: 755
  year: 2020
  ident: 10.1016/j.bbagen.2020.129709_bb0085
  article-title: Origin and evolution of two independently duplicated genes encoding UDP- glucose: glycoprotein glucosyltransferases in caenorhabditis and vertebrates
  publication-title: G3 Genes|Genomes|Genetics
  doi: 10.1534/g3.119.400868
– volume: 31
  start-page: 97
  year: 1992
  ident: 10.1016/j.bbagen.2020.129709_bb0225
  article-title: Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase
  publication-title: Biochemistry.
  doi: 10.1021/bi00116a015
– volume: 4
  start-page: 7322
  year: 2015
  ident: 10.1016/j.bbagen.2020.129709_bb0210
  article-title: Structural insight into substrate recognition by the endoplasmic reticulum folding-sensor enzyme: crystal structure of third thioredoxin-like domain of UDP-glucose:glycoprotein glucosyltransferase
  publication-title: Sci. Rep.
  doi: 10.1038/srep07322
– volume: 23
  start-page: 157
  year: 2011
  ident: 10.1016/j.bbagen.2020.129709_bb0040
  article-title: Participation of lectin chaperones and thiol oxidoreductases in protein folding within the endoplasmic reticulum
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2010.10.011
– volume: 53
  start-page: 2883
  year: 2014
  ident: 10.1016/j.bbagen.2020.129709_bb0075
  article-title: Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.201309665
– volume: 21
  start-page: 491
  year: 2010
  ident: 10.1016/j.bbagen.2020.129709_bb0055
  article-title: UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2009.12.014
– volume: 29
  start-page: 35
  year: 2012
  ident: 10.1016/j.bbagen.2020.129709_bb0160
  article-title: In vitro mannose trimming property of human ER α-1,2 mannosidase I
  publication-title: Glycoconj. J.
  doi: 10.1007/s10719-011-9362-1
– volume: 364
  start-page: 41
  year: 2012
  ident: 10.1016/j.bbagen.2020.129709_bb0140
  article-title: Efficient synthesis of glycopeptide-α-thioesters with a high-mannose type oligosaccharide by means of tert-Boc-solid phase peptide synthesis
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2012.10.011
– volume: 24
  start-page: 2597
  year: 2013
  ident: 10.1016/j.bbagen.2020.129709_bb0120
  article-title: UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-02-0101
– volume: 114
  start-page: 8544
  year: 2017
  ident: 10.1016/j.bbagen.2020.129709_bb0215
  article-title: Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1703682114
– volume: 273
  start-page: 6009
  year: 1998
  ident: 10.1016/j.bbagen.2020.129709_bb0035
  article-title: Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.11.6009
– volume: 20
  start-page: 539
  year: 2009
  ident: 10.1016/j.bbagen.2020.129709_bb0235
  article-title: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2008.11.012
– volume: 26
  start-page: 999
  year: 2016
  ident: 10.1016/j.bbagen.2020.129709_bb0105
  article-title: Effects of domain composition on catalytic activity of human UDP-glucose:glycoprotein glucosyltransferases
  publication-title: Glycobiology.
  doi: 10.1093/glycob/cww069
– volume: 11
  start-page: 1350
  year: 2010
  ident: 10.1016/j.bbagen.2020.129709_bb0150
  article-title: Arthrobacter endo-β-N-acetylglucosaminidase shows transglycosylation activity on complex-type N-glycan oxazolines: one-pot conversion of ribonuclease B to sialylated ribonuclease C
  publication-title: ChemBioChem.
  doi: 10.1002/cbic.201000242
– volume: 261
  start-page: 173
  year: 1994
  ident: 10.1016/j.bbagen.2020.129709_bb0245
  article-title: A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(94)84015-6
– volume: 88
  start-page: 29
  year: 1997
  ident: 10.1016/j.bbagen.2020.129709_bb0060
  article-title: Conformation-independent binding of monoglucosylated ribonuclease B to Calnexin
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)81855-3
– volume: 24
  start-page: 344
  year: 2014
  ident: 10.1016/j.bbagen.2020.129709_bb0100
  article-title: Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active
  publication-title: Glycobiology.
  doi: 10.1093/glycob/cwt163
– volume: 283
  start-page: 10221
  year: 2008
  ident: 10.1016/j.bbagen.2020.129709_bb0065
  article-title: Getting in and out from calnexin/calreticulin cycles
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700048200
– volume: 74
  start-page: 2210
  year: 2009
  ident: 10.1016/j.bbagen.2020.129709_bb0135
  article-title: Efficient synthesis of sugar oxazolines from unprotected N -Acetyl-2-amino sugars by using chloroformamidinium reagent in water
  publication-title: J. Org. Chem.
  doi: 10.1021/jo8024708
– volume: 267
  start-page: 9236
  year: 1992
  ident: 10.1016/j.bbagen.2020.129709_bb0170
  article-title: Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50413-6
– volume: 4
  year: 2009
  ident: 10.1016/j.bbagen.2020.129709_bb0145
  article-title: Structural basis and catalytic mechanism for the dual functional Endo-β-N-acetylglucosaminidase A
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004658
– volume: 276
  start-page: 15330
  year: 2001
  ident: 10.1016/j.bbagen.2020.129709_bb0110
  article-title: Association between the 15-kDa Selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M009861200
– volume: 271
  start-page: 6241
  year: 1996
  ident: 10.1016/j.bbagen.2020.129709_bb0030
  article-title: A nascent secretory protein 5 traverse the ribosome/endoplasmic reticulum translocase complex as an extended chain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.11.6241
– volume: 119
  start-page: 5537
  year: 2019
  ident: 10.1016/j.bbagen.2020.129709_bb0220
  article-title: Folding and Misfolding of human membrane proteins in health and disease: from single molecules to cellular Proteostasis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00532
– volume: 54
  start-page: 4909
  year: 2015
  ident: 10.1016/j.bbagen.2020.129709_bb0200
  article-title: Profiling Aglycon-recognizing sites of UDP-glucose:glycoprotein glucosyltransferase by means of Squarate-mediated Labeling
  publication-title: Biochemistry.
  doi: 10.1021/acs.biochem.5b00785
– volume: 487
  start-page: 763
  year: 2017
  ident: 10.1016/j.bbagen.2020.129709_bb0045
  article-title: PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.04.139
– volume: 25
  start-page: 1090
  year: 2015
  ident: 10.1016/j.bbagen.2020.129709_bb0230
  article-title: Cooperative role of calnexin and TigA in Aspergillus oryzae glycoprotein folding
  publication-title: Glycobiology.
  doi: 10.1093/glycob/cwv043
– volume: 35
  start-page: 328
  year: 2005
  ident: 10.1016/j.bbagen.2020.129709_bb0180
  article-title: Glycoprotein reglucosylation
  publication-title: Methods.
  doi: 10.1016/j.ymeth.2004.10.004
– volume: 27
  start-page: 3696
  year: 1999
  ident: 10.1016/j.bbagen.2020.129709_bb0165
  article-title: Hypersensitive substrate for ribonucleases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.18.3696
– volume: 54
  start-page: 631
  year: 1985
  ident: 10.1016/j.bbagen.2020.129709_bb0025
  article-title: Assembly of asparagine-linked oligosaccharides
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.54.070185.003215
– volume: 133
  start-page: 14404
  year: 2011
  ident: 10.1016/j.bbagen.2020.129709_bb0155
  article-title: Convergent synthesis of homogeneous Glc 1 man 9 GlcNAc 2 -protein and derivatives as ligands of molecular chaperones in protein quality control
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204831z
– volume: 280
  start-page: 37839
  year: 2005
  ident: 10.1016/j.bbagen.2020.129709_bb0185
  article-title: A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M508685200
– volume: 403
  start-page: 322
  year: 2010
  ident: 10.1016/j.bbagen.2020.129709_bb0175
  article-title: Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.11.027
– volume: 88
  start-page: 51
  year: 1980
  ident: 10.1016/j.bbagen.2020.129709_bb0240
  article-title: Structural study of the carbohydrate moiety of bovine pancreatic ribonuclease B
  publication-title: J. Biochem.
– volume: 11
  start-page: 79
  year: 2003
  ident: 10.1016/j.bbagen.2020.129709_bb0005
  article-title: N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00821-3
– volume: 8
  start-page: 226
  year: 2009
  ident: 10.1016/j.bbagen.2020.129709_bb0015
  article-title: Glycosylation as a strategy to improve antibody-based therapeutics
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2804
– volume: 3
  start-page: 630
  year: 2010
  ident: 10.1016/j.bbagen.2020.129709_bb0115
  article-title: Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-10-0003
– volume: 136
  start-page: 272
  year: 2009
  ident: 10.1016/j.bbagen.2020.129709_bb0020
  article-title: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms
  publication-title: Cell.
  doi: 10.1016/j.cell.2008.11.047
– volume: 278
  start-page: 43320
  year: 2003
  ident: 10.1016/j.bbagen.2020.129709_bb0095
  article-title: The noncatalytic portion of human UDP-glucose:glycoprotein glucosyltransferase I confers UDP-glucose binding and transferase function to the catalytic domain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305800200
– volume: 25
  year: 2017
  ident: 10.1016/j.bbagen.2020.129709_bb0050
  article-title: Mapping the ER interactome: the p domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones
  publication-title: Structure
  doi: 10.1016/j.str.2017.07.010
– volume: 1833
  start-page: 3368
  year: 2013
  ident: 10.1016/j.bbagen.2020.129709_bb0090
  article-title: Progesterone regulates the expression and activity of two mouse isoforms of the glycoprotein folding sensor UDP-Glc: glycoprotein glucosyltransferase (UGGT)
  publication-title: Biochim. Biophys. Acta - Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2013.09.022
– volume: 59
  start-page: 1
  year: 2007
  ident: 10.1016/j.bbagen.2020.129709_bb0190
  article-title: The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum
  publication-title: IUBMB Life
  doi: 10.1080/15216540601126694
– volume: 139
  start-page: 11421
  year: 2017
  ident: 10.1016/j.bbagen.2020.129709_bb0080
  article-title: Substrate recognition of glycoprotein folding sensor UGGT analyzed by site-specifically 15 N-Labeled Glycopeptide and small glycopeptide library prepared by parallel native chemical ligation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03277
– volume: 426
  start-page: 504
  year: 2012
  ident: 10.1016/j.bbagen.2020.129709_bb0130
  article-title: Biophysical properties of UDP-glucose:glycoprotein glucosyltransferase, a folding sensor enzyme in the ER, delineated by synthetic probes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.08.112
SSID ssj0000595
Score 2.3919015
Snippet In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129709
SubjectTerms endoplasmic reticulum
Endoplasmic reticulum quality control
Glucosyltransferases - metabolism
Glycoprotein folding
Glycoprotein glucosyltransferase
glycoproteins
Glycosylation
Humans
Mannose - metabolism
mutants
Oligomannose-type glycan
Polysaccharides - metabolism
Protein Denaturation
Protein Folding
Protein Refolding
quality control
Ribonuclease
ribonucleases
Ribonucleases - metabolism
RNA
Substrate Specificity
UDP-glucose
Title Glycan dependent refolding activity of ER glucosyltransferase (UGGT)
URI https://dx.doi.org/10.1016/j.bbagen.2020.129709
https://www.ncbi.nlm.nih.gov/pubmed/32858085
https://www.proquest.com/docview/2438689965
https://www.proquest.com/docview/2552036634
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CoIldJsbHKF_yJA7jYNr6K8kRFWi3aRyASr1Zie1IRVWLWDj0wt_Oe3ECQtqGtFsS2Ynz8_Pzz3pfAMd5T0odEsd1yDxXWiQ874mSezxtZFq4XpZS7PCvKzMaqx8TPVmBQRsLQ26Vje6POr3W1s2TboNm93467d6QUQ_phBZ4IUR_QhHsKiEpP316dfNA-qCjJUFxat2Gz9U-XkWBi5ayoApKs5Al5Jb45-3pb_Sz3oYuN-BTwx_ZWRziZ1gJ8034ECtKLjdhfdAWcNuC8-FsicCxts5txfBz0djEKJyBqkawRckurll0XF_OqprGhgfc2ti38XB4e7IN48uL28GIN0UTuFOmX3ElVDDOIe0wpZOFc3hec8p5_DfpTehlHpHV3uTBZWVhRBZ8P6XsxNJkChe33IHV-WIedoGJ0hkTdO4SOnT4fiG8dxrfIVNkSkXaAdliZV2TUZwKW8xs6zp2ZyPClhC2EeEO8Jde9zGjxjvtk3Ya7BvJsKj03-n5tZ01i9CTJSSfh8XjbyuUTA2eNI3-RxtNkoWETHXgS5zyl_FKkeoUyeref49tHz7SXXSMOYDV6uExHCK9qYqjWn6PYO3s-8_R1TNcgvbb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8CJsQu08bXuk9P2gEOpq2_khynDloYcBit1JuV2I5UVLUIwqEX_va9FydMk8aQdosSO3F-tp9_T-8L4Gvek1KHxHEdMs-VFgnPe6LkHrWNTAvXy1KKHb64NKOJOpvq6RoM2lgYcqtsZH-U6bW0bu50GzS7N7NZ94qMekgntMALIfrTdXihcPtSGYOjh99-HsgfdDQlKE7N2_i52smrKHDXUhpUQXkWsoT8Ev9-Pj3FP-tz6OQ1vGoIJPsWx_gG1sJiGzZjScnVNmwN2gpuO_B9OF8hcqwtdFsx_Fy0NjGKZ6CyEWxZsuOfLHqur-ZVzWPDLZ5t7GAyHI4Pd2FycjwejHhTNYE7ZfoVV0IF4xzyDlM6WTiHCptTzuO_SW9CL_MIrfYmDy4rCyOy4PsppSeWJlO4u-UebCyWi_AWmCidMUHnLiGtw_cL4b3T-A6ZIlUq0g7IFivrmpTiVNliblvfsWsbEbaEsI0Id4A_9rqJKTWeaZ-002D_WBoWpf4zPb-0s2YRejKF5IuwvL-zQsnUoKpp9D_aaFpayMhUB_bjlD-OV4pUp8hW3_332D7D1mh8cW7PTy9_vIeX9CR6yXyAjer2PnxErlMVn-q1_Av-yPhp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycan+dependent+refolding+activity+of+ER+glucosyltransferase+%28UGGT%29&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Wang%2C+Ning&rft.au=Seko%2C+Akira&rft.au=Takeda%2C+Yoichi&rft.au=Ito%2C+Yukishige&rft.date=2020-12-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=12+p.129709-&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon