Glycan dependent refolding activity of ER glucosyltransferase (UGGT)
In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virt...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 12; p. 129709 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed.
We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate.
HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase.
HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition.
Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control.
[Display omitted]
•The possibility that UGGT participates in the folding process of glycoprotein as a chaperone is yet to be addressed.•Human UGGT1 (HUGT1) accelerates the folding of the glycan modified RNase.•The refolding activity of HUGT1 is dependent on its glucose transfer activity. |
---|---|
AbstractList | In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed.We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate.HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase.HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition.Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control. In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the “folding sensor” by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed. We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate. HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase. HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition. Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control. [Display omitted] •The possibility that UGGT participates in the folding process of glycoprotein as a chaperone is yet to be addressed.•Human UGGT1 (HUGT1) accelerates the folding of the glycan modified RNase.•The refolding activity of HUGT1 is dependent on its glucose transfer activity. In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the "folding sensor" by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed.BACKGROUNDIn the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the "folding sensor" by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed.We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate.METHODSWe prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate.HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase.RESULTSHUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase.HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition.CONCLUSIONSHUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition.Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control.GENERAL SIGNIFICANCEOur study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control. In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically functional structures. In this system, UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) plays an essential role as the "folding sensor" by virtue of its ability to discriminate folding states of client glycoproteins. However, besides its transferase activity, whether UGGT1 possesses any chaperone activity that facilitates protein folding is yet to be addressed. We prepared oligomannose-type glycan modified RNase (M9GN2-RNase) by chemoenzymatic means using M9GN-oxazoline and glycan truncated RNase B and analyzed the effect of human UGGT1 (HUGT1) for refolding of the denatured M9GN2-RNase. Refolding was evaluated based on the RNase activity which was measured by the cleavage of the RNA substrate. HUGT1 slightly accelerated the folding of M9GN2-RNase and non-glycosylated RNase A as the same extent. However, HUGT1 remarkably accelerated the folding of M9GN2-RNase in the presence of UDP-Glc. In contrast, neither UDP nor UDP-Gal was effective in enhancing the folding. Additionally, an HUGT1 mutant which lacks the glucosyltransferase activity did not accelerate the protein folding of M9GN2-RNase. HUGT1has the ability to promote the refolding of denatured protein and the effect would be enhanced when HUGT1 tightly interacts with the client protein via glycan recognition. Our study provides a possibility that HUGT1 play a role not only in sensing the misfolded glycoprotein but also in promoting folding of glycoproteins in the endoplasmic reticulum glycoprotein quality control. |
ArticleNumber | 129709 |
Author | Wang, Ning Ito, Yukishige Seko, Akira Takeda, Yoichi |
Author_xml | – sequence: 1 givenname: Ning surname: Wang fullname: Wang, Ning organization: Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan – sequence: 2 givenname: Akira surname: Seko fullname: Seko, Akira organization: Japan Science and Technology Agency (JST), ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan – sequence: 3 givenname: Yoichi surname: Takeda fullname: Takeda, Yoichi email: yotakeda@fc.ritsumei.ac.jp organization: Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan – sequence: 4 givenname: Yukishige surname: Ito fullname: Ito, Yukishige organization: Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32858085$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rGzEQxUVJaZy036CUPaaHdfXfqx4KJU3cQqBQkrPQjmaNzFpypXXA374ym1x6SOYyMLz3GH7vgpzFFJGQj4wuGWX6y3bZ926DcckpryduVtS8IQvWrXjbUarPyIIKKlvJtDonF6VsaR1l1DtyLninOtqpBfmxHo_gYuNxj9FjnJqMQxp9iJvGwRQew3Rs0tDc_Gk24wFSOY5TdrEMmF3B5uphvb7__J68HdxY8MPTviQPtzf31z_bu9_rX9ff71qQmk2t5BI1gDFCDyB6gBVbgQRfHxdeIzUe0CuvHYIZes0NetYZZYTQRnKuxCW5mnP3Of09YJnsLhTAcXQR06FYrhSnQmshX5dK0enOGH1K_fQkPfQ79Hafw87lo32GVAVfZwHkVErlYyFMbgopVhRhtIzaUyN2a-dG7KkROzdSzfI_83P-K7Zvsw0rz8eA2RYIGCugkBEm61N4OeAfVSKlBw |
CitedBy_id | crossref_primary_10_1002_cbic_202200444 crossref_primary_10_1002_chem_202004158 crossref_primary_10_1016_j_carres_2021_108273 crossref_primary_10_1016_j_str_2020_11_017 crossref_primary_10_1021_acs_jproteome_4c00378 crossref_primary_10_4052_tigg_2118_1J crossref_primary_10_1016_j_jmb_2023_168418 crossref_primary_10_4052_tigg_2118_1E crossref_primary_10_1016_j_bbadis_2024_167246 |
Cites_doi | 10.1002/anie.200502723 10.1021/bi900717p 10.1016/j.semcdb.2014.12.001 10.1038/s41598-017-12283-w 10.1038/nrd1751 10.1074/jbc.M117.789495 10.1534/g3.119.400868 10.1021/bi00116a015 10.1038/srep07322 10.1016/j.ceb.2010.10.011 10.1002/anie.201309665 10.1016/j.semcdb.2009.12.014 10.1007/s10719-011-9362-1 10.1016/j.carres.2012.10.011 10.1091/mbc.e13-02-0101 10.1073/pnas.1703682114 10.1074/jbc.273.11.6009 10.1016/j.jasms.2008.11.012 10.1093/glycob/cww069 10.1002/cbic.201000242 10.1016/0008-6215(94)84015-6 10.1016/S0092-8674(00)81855-3 10.1093/glycob/cwt163 10.1074/jbc.R700048200 10.1021/jo8024708 10.1016/S0021-9258(19)50413-6 10.1371/journal.pone.0004658 10.1074/jbc.M009861200 10.1074/jbc.271.11.6241 10.1021/acs.chemrev.8b00532 10.1021/acs.biochem.5b00785 10.1016/j.bbrc.2017.04.139 10.1093/glycob/cwv043 10.1016/j.ymeth.2004.10.004 10.1093/nar/27.18.3696 10.1146/annurev.bi.54.070185.003215 10.1021/ja204831z 10.1074/jbc.M508685200 10.1016/j.bbrc.2010.11.027 10.1016/S1097-2765(02)00821-3 10.1038/nrd2804 10.1158/1940-6207.CAPR-10-0003 10.1016/j.cell.2008.11.047 10.1074/jbc.M305800200 10.1016/j.str.2017.07.010 10.1016/j.bbamcr.2013.09.022 10.1080/15216540601126694 10.1021/jacs.7b03277 10.1016/j.bbrc.2012.08.112 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129709 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 32858085 10_1016_j_bbagen_2020_129709 S030441652030221X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-424e6cc9936fc3bcc717c4cd7093d6e09dced5d6aec9fb629ed18959336942253 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 10:37:04 EDT 2025 Mon Jul 21 09:35:55 EDT 2025 Wed Feb 19 02:30:29 EST 2025 Thu Apr 24 22:51:35 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Fri Feb 23 02:47:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Endoplasmic reticulum quality control Glycoprotein folding Glycoprotein glucosyltransferase Ribonuclease Oligomannose-type glycan UDP-glucose |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-424e6cc9936fc3bcc717c4cd7093d6e09dced5d6aec9fb629ed18959336942253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32858085 |
PQID | 2438689965 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2552036634 proquest_miscellaneous_2438689965 pubmed_primary_32858085 crossref_citationtrail_10_1016_j_bbagen_2020_129709 crossref_primary_10_1016_j_bbagen_2020_129709 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129709 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Miyagawa, Totani, Matsuo, Ito (bb0175) 2010; 403 Labunskyy, Ferguson, Fomenko, Chelliah, Hatfield, Gladyshev (bb0185) 2005; 280 Calles-Garcia, Yang, Soya, Melero, Ménade, Ito, Vargas, Lukacs, Kollman, Kozlov, Gehring, Menade, Ito, Vargas, Lukacs, Kollman, Kozlov, Gehring, Ménade, Ito, Vargas, Lukacs, Kollman, Kozlov, Gehring (bb0125) 2017; 292 Aikawa, Matsuo, Ito (bb0160) 2012; 29 Arnold, Kaufman (bb0095) 2003; 278 Dedola, Izumi, Makimura, Seko, Kanamori, Sakono, Ito, Kajihara (bb0075) 2014; 53 Liang, Yamashita, Kobata (bb0240) 1980; 88 Noguchi, Tanaka, Gyakushi, Kobayashi, Shoda (bb0135) 2009; 74 Ruiz-Canada, Kelleher, Gilmore (bb0020) 2009; 136 Sakono, Seko, Takeda, Hachisu, Ito (bb0130) 2012; 426 Sousa, Ferrero-Garcia, Parodi (bb0225) 1992; 31 Whitley, Nilsson, von Heijne (bb0030) 1996; 271 Totani, Ihara, Matsuo, Koshino, Ito (bb0250) 2005; 44 Irons, Tsuji, Carlson, Ouyang, Yoo, Xu, Hatfield, Gladyshev, Davis (bb0115) 2010; 3 Jefferis (bb0015) 2009; 8 Zapun, Darby, Tessier, Michalak, Bergeron, Thomas (bb0035) 1998; 273 Zapun, Petrescu, Rudd, Dwek, Thomas, Bergeron (bb0060) 1997; 88 Caraballo, Buzzi, Modenutti, Acosta-Montalvo, Castro, Rossi (bb0085) 2020; 10 Satoh, Song, Zhu, Toshimori, Murata, Hayashi, Kamikubo, Uchihashi, Kato (bb0205) 2017; 7 Takeda, Seko, Fujikawa, Izumi, Kajihara, Ito (bb0105) 2016; 26 Kelemen, Klink, Behike, Eubanks, Leland, Raines (bb0165) 1999; 27 Marinko, Huang, Penn, Capra, Schlebach, Sanders (bb0220) 2019; 119 Takeda, Seko, Hachisu, Daikoku, Izumi, Koizumi, Fujikawa, Kajihara, Ito (bb0100) 2014; 24 Korotkov, Kumaraswamy, Zhou, Hatfield, Gladyshev (bb0110) 2001; 276 Caramelo, Parodi (bb0065) 2008; 283 Tannous, Pisoni, Hebert, Molinari (bb0070) 2015; 41 Wang, Seko, Takeda, Kikuma, Ito (bb0230) 2015; 25 Izumi, Kuruma, Okamoto, Seko, Ito, Kajihara (bb0080) 2017; 139 Makimura, Kiuchi, Izumi, Dedola, Ito, Kajihara (bb0140) 2012; 364 Trombetta, Parodi (bb0180) 2005; 35 Roversi, Marti, Caputo, Alonzi, Hill, Dent, Kumar, Levasseur, Lia, Waksman, Basu, Albrecht, Qian, McIvor, Lipp, Siliqi, Vasiljević, Mohammed, Lukacik, Walsh, Santino, Zitzmann, Vasiljevic, Mohammed, Lukacik, Walsh, Santino, Zitzmann, Vasiljević, Mohammed, Lukacik, Walsh, Santino, Zitzmann (bb0215) 2017; 114 Daniels, Kurowski, Johnson, Hebert (bb0005) 2003; 11 Dube, Bertozzi (bb0010) 2005; 4 Nakao, Seko, Ito, Sakono (bb0045) 2017; 487 D’Alessio, Caramelo, Parodi (bb0055) 2010; 21 Kornfeld, Kornfeld (bb0025) 1985; 54 Kozlov, Muñoz-Escobar, Castro, Gehring (bb0050) 2017; 25 Labunskyy, Hatfield, Gladyshev (bb0190) 2007; 59 Zhu, Satoh, Kato (bb0210) 2015; 4 Yin, Li, Shaw, Li, Song, Zhang, Xia, Zhang, Joachimiak, Zhang, Wang, Liu, Wang (bb0145) 2009; 4 Ohara, Takeda, Daikoku, Hachisu, Seko, Ito (bb0200) 2015; 54 Rutkevich, Williams (bb0040) 2011; 23 Amin, Huang, Mizanur, Wang (bb0155) 2011; 133 Ferris, Jaber, Molinari, Arvan, Kaufman (bb0120) 2013; 24 Trombetta, Parodi (bb0170) 1992; 267 Labunskyy, Yoo, Hatfield, Gladyshev (bb0195) 2009; 48 Prados, Caramelo, Miranda (bb0090) 2013; 1833 Huang, Yang, Umekawa, Yamamoto, Wang (bb0150) 2010; 11 Prien, Ashline, Lapadula, Zhang, Reinhold (bb0235) 2009; 20 Fu, Chen, O’Neill (bb0245) 1994; 261 Sousa (10.1016/j.bbagen.2020.129709_bb0225) 1992; 31 Caraballo (10.1016/j.bbagen.2020.129709_bb0085) 2020; 10 Dube (10.1016/j.bbagen.2020.129709_bb0010) 2005; 4 Izumi (10.1016/j.bbagen.2020.129709_bb0080) 2017; 139 Labunskyy (10.1016/j.bbagen.2020.129709_bb0195) 2009; 48 Zhu (10.1016/j.bbagen.2020.129709_bb0210) 2015; 4 Zapun (10.1016/j.bbagen.2020.129709_bb0035) 1998; 273 Irons (10.1016/j.bbagen.2020.129709_bb0115) 2010; 3 Aikawa (10.1016/j.bbagen.2020.129709_bb0160) 2012; 29 Roversi (10.1016/j.bbagen.2020.129709_bb0215) 2017; 114 Makimura (10.1016/j.bbagen.2020.129709_bb0140) 2012; 364 Satoh (10.1016/j.bbagen.2020.129709_bb0205) 2017; 7 Amin (10.1016/j.bbagen.2020.129709_bb0155) 2011; 133 Trombetta (10.1016/j.bbagen.2020.129709_bb0170) 1992; 267 Marinko (10.1016/j.bbagen.2020.129709_bb0220) 2019; 119 Noguchi (10.1016/j.bbagen.2020.129709_bb0135) 2009; 74 Takeda (10.1016/j.bbagen.2020.129709_bb0100) 2014; 24 Kelemen (10.1016/j.bbagen.2020.129709_bb0165) 1999; 27 Takeda (10.1016/j.bbagen.2020.129709_bb0105) 2016; 26 D’Alessio (10.1016/j.bbagen.2020.129709_bb0055) 2010; 21 Labunskyy (10.1016/j.bbagen.2020.129709_bb0190) 2007; 59 Prien (10.1016/j.bbagen.2020.129709_bb0235) 2009; 20 Arnold (10.1016/j.bbagen.2020.129709_bb0095) 2003; 278 Calles-Garcia (10.1016/j.bbagen.2020.129709_bb0125) 2017; 292 Korotkov (10.1016/j.bbagen.2020.129709_bb0110) 2001; 276 Labunskyy (10.1016/j.bbagen.2020.129709_bb0185) 2005; 280 Rutkevich (10.1016/j.bbagen.2020.129709_bb0040) 2011; 23 Nakao (10.1016/j.bbagen.2020.129709_bb0045) 2017; 487 Zapun (10.1016/j.bbagen.2020.129709_bb0060) 1997; 88 Kornfeld (10.1016/j.bbagen.2020.129709_bb0025) 1985; 54 Miyagawa (10.1016/j.bbagen.2020.129709_bb0175) 2010; 403 Trombetta (10.1016/j.bbagen.2020.129709_bb0180) 2005; 35 Wang (10.1016/j.bbagen.2020.129709_bb0230) 2015; 25 Daniels (10.1016/j.bbagen.2020.129709_bb0005) 2003; 11 Ferris (10.1016/j.bbagen.2020.129709_bb0120) 2013; 24 Fu (10.1016/j.bbagen.2020.129709_bb0245) 1994; 261 Prados (10.1016/j.bbagen.2020.129709_bb0090) 2013; 1833 Yin (10.1016/j.bbagen.2020.129709_bb0145) 2009; 4 Ohara (10.1016/j.bbagen.2020.129709_bb0200) 2015; 54 Whitley (10.1016/j.bbagen.2020.129709_bb0030) 1996; 271 Totani (10.1016/j.bbagen.2020.129709_bb0250) 2005; 44 Dedola (10.1016/j.bbagen.2020.129709_bb0075) 2014; 53 Kozlov (10.1016/j.bbagen.2020.129709_bb0050) 2017; 25 Caramelo (10.1016/j.bbagen.2020.129709_bb0065) 2008; 283 Liang (10.1016/j.bbagen.2020.129709_bb0240) 1980; 88 Jefferis (10.1016/j.bbagen.2020.129709_bb0015) 2009; 8 Tannous (10.1016/j.bbagen.2020.129709_bb0070) 2015; 41 Ruiz-Canada (10.1016/j.bbagen.2020.129709_bb0020) 2009; 136 Huang (10.1016/j.bbagen.2020.129709_bb0150) 2010; 11 Sakono (10.1016/j.bbagen.2020.129709_bb0130) 2012; 426 |
References_xml | – volume: 54 start-page: 4909 year: 2015 end-page: 4917 ident: bb0200 article-title: Profiling Aglycon-recognizing sites of UDP-glucose:glycoprotein glucosyltransferase by means of Squarate-mediated Labeling publication-title: Biochemistry. – volume: 283 start-page: 10221 year: 2008 end-page: 10225 ident: bb0065 article-title: Getting in and out from calnexin/calreticulin cycles publication-title: J. Biol. Chem. – volume: 27 start-page: 3696 year: 1999 end-page: 3701 ident: bb0165 article-title: Hypersensitive substrate for ribonucleases publication-title: Nucleic Acids Res. – volume: 24 start-page: 344 year: 2014 end-page: 350 ident: bb0100 article-title: Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active publication-title: Glycobiology. – volume: 35 start-page: 328 year: 2005 end-page: 337 ident: bb0180 article-title: Glycoprotein reglucosylation publication-title: Methods. – volume: 136 start-page: 272 year: 2009 end-page: 283 ident: bb0020 article-title: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms publication-title: Cell. – volume: 74 start-page: 2210 year: 2009 end-page: 2212 ident: bb0135 article-title: Efficient synthesis of sugar oxazolines from unprotected N -Acetyl-2-amino sugars by using chloroformamidinium reagent in water publication-title: J. Org. Chem. – volume: 88 start-page: 51 year: 1980 end-page: 58 ident: bb0240 article-title: Structural study of the carbohydrate moiety of bovine pancreatic ribonuclease B publication-title: J. Biochem. – volume: 133 start-page: 14404 year: 2011 end-page: 14417 ident: bb0155 article-title: Convergent synthesis of homogeneous Glc 1 man 9 GlcNAc 2 -protein and derivatives as ligands of molecular chaperones in protein quality control publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 1090 year: 2015 end-page: 1099 ident: bb0230 article-title: Cooperative role of calnexin and TigA in Aspergillus oryzae glycoprotein folding publication-title: Glycobiology. – volume: 364 start-page: 41 year: 2012 end-page: 48 ident: bb0140 article-title: Efficient synthesis of glycopeptide-α-thioesters with a high-mannose type oligosaccharide by means of tert-Boc-solid phase peptide synthesis publication-title: Carbohydr. Res. – volume: 48 start-page: 8458 year: 2009 end-page: 8465 ident: bb0195 article-title: Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses publication-title: Biochemistry. – volume: 24 start-page: 2597 year: 2013 end-page: 2608 ident: bb0120 article-title: UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum publication-title: Mol. Biol. Cell – volume: 278 start-page: 43320 year: 2003 end-page: 43328 ident: bb0095 article-title: The noncatalytic portion of human UDP-glucose:glycoprotein glucosyltransferase I confers UDP-glucose binding and transferase function to the catalytic domain publication-title: J. Biol. Chem. – volume: 29 start-page: 35 year: 2012 end-page: 45 ident: bb0160 article-title: In vitro mannose trimming property of human ER α-1,2 mannosidase I publication-title: Glycoconj. J. – volume: 25 year: 2017 ident: bb0050 article-title: Mapping the ER interactome: the p domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones publication-title: Structure – volume: 54 start-page: 631 year: 1985 end-page: 664 ident: bb0025 article-title: Assembly of asparagine-linked oligosaccharides publication-title: Annu. Rev. Biochem. – volume: 23 start-page: 157 year: 2011 end-page: 166 ident: bb0040 article-title: Participation of lectin chaperones and thiol oxidoreductases in protein folding within the endoplasmic reticulum publication-title: Curr. Opin. Cell Biol. – volume: 139 start-page: 11421 year: 2017 end-page: 11426 ident: bb0080 article-title: Substrate recognition of glycoprotein folding sensor UGGT analyzed by site-specifically 15 N-Labeled Glycopeptide and small glycopeptide library prepared by parallel native chemical ligation publication-title: J. Am. Chem. Soc. – volume: 273 start-page: 6009 year: 1998 end-page: 6012 ident: bb0035 article-title: Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57 publication-title: J. Biol. Chem. – volume: 114 start-page: 8544 year: 2017 end-page: 8549 ident: bb0215 article-title: Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint publication-title: Proc. Natl. Acad. Sci. – volume: 487 start-page: 763 year: 2017 end-page: 767 ident: bb0045 article-title: PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin publication-title: Biochem. Biophys. Res. Commun. – volume: 426 start-page: 504 year: 2012 end-page: 510 ident: bb0130 article-title: Biophysical properties of UDP-glucose:glycoprotein glucosyltransferase, a folding sensor enzyme in the ER, delineated by synthetic probes publication-title: Biochem. Biophys. Res. Commun. – volume: 59 start-page: 1 year: 2007 end-page: 5 ident: bb0190 article-title: The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum publication-title: IUBMB Life – volume: 292 start-page: 11499 year: 2017 end-page: 11507 ident: bb0125 article-title: Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins publication-title: J. Biol. Chem. – volume: 119 start-page: 5537 year: 2019 end-page: 5606 ident: bb0220 article-title: Folding and Misfolding of human membrane proteins in health and disease: from single molecules to cellular Proteostasis publication-title: Chem. Rev. – volume: 41 start-page: 79 year: 2015 end-page: 89 ident: bb0070 article-title: N-linked sugar-regulated protein folding and quality control in the ER publication-title: Semin. Cell Dev. Biol. – volume: 1833 start-page: 3368 year: 2013 end-page: 3374 ident: bb0090 article-title: Progesterone regulates the expression and activity of two mouse isoforms of the glycoprotein folding sensor UDP-Glc: glycoprotein glucosyltransferase (UGGT) publication-title: Biochim. Biophys. Acta - Mol. Cell Res. – volume: 8 start-page: 226 year: 2009 end-page: 234 ident: bb0015 article-title: Glycosylation as a strategy to improve antibody-based therapeutics publication-title: Nat. Rev. Drug Discov. – volume: 11 start-page: 1350 year: 2010 end-page: 1355 ident: bb0150 article-title: Arthrobacter endo-β-N-acetylglucosaminidase shows transglycosylation activity on complex-type N-glycan oxazolines: one-pot conversion of ribonuclease B to sialylated ribonuclease C publication-title: ChemBioChem. – volume: 53 start-page: 2883 year: 2014 end-page: 2887 ident: bb0075 article-title: Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme publication-title: Angew. Chemie Int. Ed. – volume: 261 start-page: 173 year: 1994 end-page: 186 ident: bb0245 article-title: A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry publication-title: Carbohydr. Res. – volume: 403 start-page: 322 year: 2010 end-page: 328 ident: bb0175 article-title: Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT publication-title: Biochem. Biophys. Res. Commun. – volume: 11 start-page: 79 year: 2003 end-page: 90 ident: bb0005 article-title: N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin publication-title: Mol. Cell – volume: 271 start-page: 6241 year: 1996 end-page: 6244 ident: bb0030 article-title: A nascent secretory protein 5 traverse the ribosome/endoplasmic reticulum translocase complex as an extended chain publication-title: J. Biol. Chem. – volume: 21 start-page: 491 year: 2010 end-page: 499 ident: bb0055 article-title: UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control publication-title: Semin. Cell Dev. Biol. – volume: 280 start-page: 37839 year: 2005 end-page: 37845 ident: bb0185 article-title: A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase publication-title: J. Biol. Chem. – volume: 4 year: 2009 ident: bb0145 article-title: Structural basis and catalytic mechanism for the dual functional Endo-β-N-acetylglucosaminidase A publication-title: PLoS One – volume: 267 start-page: 9236 year: 1992 end-page: 9240 ident: bb0170 article-title: Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase publication-title: J. Biol. Chem. – volume: 88 start-page: 29 year: 1997 end-page: 38 ident: bb0060 article-title: Conformation-independent binding of monoglucosylated ribonuclease B to Calnexin publication-title: Cell. – volume: 7 start-page: 12142 year: 2017 ident: bb0205 article-title: Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT publication-title: Sci. Rep. – volume: 20 start-page: 539 year: 2009 end-page: 556 ident: bb0235 article-title: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS publication-title: J. Am. Soc. Mass Spectrom. – volume: 276 start-page: 15330 year: 2001 end-page: 15336 ident: bb0110 article-title: Association between the 15-kDa Selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells publication-title: J. Biol. Chem. – volume: 4 start-page: 7322 year: 2015 ident: bb0210 article-title: Structural insight into substrate recognition by the endoplasmic reticulum folding-sensor enzyme: crystal structure of third thioredoxin-like domain of UDP-glucose:glycoprotein glucosyltransferase publication-title: Sci. Rep. – volume: 31 start-page: 97 year: 1992 end-page: 105 ident: bb0225 article-title: Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase publication-title: Biochemistry. – volume: 10 start-page: 755 year: 2020 end-page: 768 ident: bb0085 article-title: Origin and evolution of two independently duplicated genes encoding UDP- glucose: glycoprotein glucosyltransferases in caenorhabditis and vertebrates publication-title: G3 Genes|Genomes|Genetics – volume: 26 start-page: 999 year: 2016 end-page: 1006 ident: bb0105 article-title: Effects of domain composition on catalytic activity of human UDP-glucose:glycoprotein glucosyltransferases publication-title: Glycobiology. – volume: 3 start-page: 630 year: 2010 end-page: 639 ident: bb0115 article-title: Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells publication-title: Cancer Prev. Res. – volume: 4 start-page: 477 year: 2005 end-page: 488 ident: bb0010 article-title: Glycans in cancer and inflammation — potential for therapeutics and diagnostics publication-title: Nat. Rev. Drug Discov. – volume: 44 start-page: 7950 year: 2005 end-page: 7954 ident: bb0250 article-title: Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase publication-title: Angew. Chemie Int. Ed. – volume: 44 start-page: 7950 year: 2005 ident: 10.1016/j.bbagen.2020.129709_bb0250 article-title: Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase publication-title: Angew. Chemie Int. Ed. doi: 10.1002/anie.200502723 – volume: 48 start-page: 8458 year: 2009 ident: 10.1016/j.bbagen.2020.129709_bb0195 article-title: Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses publication-title: Biochemistry. doi: 10.1021/bi900717p – volume: 41 start-page: 79 year: 2015 ident: 10.1016/j.bbagen.2020.129709_bb0070 article-title: N-linked sugar-regulated protein folding and quality control in the ER publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.12.001 – volume: 7 start-page: 12142 year: 2017 ident: 10.1016/j.bbagen.2020.129709_bb0205 article-title: Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT publication-title: Sci. Rep. doi: 10.1038/s41598-017-12283-w – volume: 4 start-page: 477 year: 2005 ident: 10.1016/j.bbagen.2020.129709_bb0010 article-title: Glycans in cancer and inflammation — potential for therapeutics and diagnostics publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1751 – volume: 292 start-page: 11499 year: 2017 ident: 10.1016/j.bbagen.2020.129709_bb0125 article-title: Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.789495 – volume: 10 start-page: 755 year: 2020 ident: 10.1016/j.bbagen.2020.129709_bb0085 article-title: Origin and evolution of two independently duplicated genes encoding UDP- glucose: glycoprotein glucosyltransferases in caenorhabditis and vertebrates publication-title: G3 Genes|Genomes|Genetics doi: 10.1534/g3.119.400868 – volume: 31 start-page: 97 year: 1992 ident: 10.1016/j.bbagen.2020.129709_bb0225 article-title: Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase publication-title: Biochemistry. doi: 10.1021/bi00116a015 – volume: 4 start-page: 7322 year: 2015 ident: 10.1016/j.bbagen.2020.129709_bb0210 article-title: Structural insight into substrate recognition by the endoplasmic reticulum folding-sensor enzyme: crystal structure of third thioredoxin-like domain of UDP-glucose:glycoprotein glucosyltransferase publication-title: Sci. Rep. doi: 10.1038/srep07322 – volume: 23 start-page: 157 year: 2011 ident: 10.1016/j.bbagen.2020.129709_bb0040 article-title: Participation of lectin chaperones and thiol oxidoreductases in protein folding within the endoplasmic reticulum publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2010.10.011 – volume: 53 start-page: 2883 year: 2014 ident: 10.1016/j.bbagen.2020.129709_bb0075 article-title: Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme publication-title: Angew. Chemie Int. Ed. doi: 10.1002/anie.201309665 – volume: 21 start-page: 491 year: 2010 ident: 10.1016/j.bbagen.2020.129709_bb0055 article-title: UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2009.12.014 – volume: 29 start-page: 35 year: 2012 ident: 10.1016/j.bbagen.2020.129709_bb0160 article-title: In vitro mannose trimming property of human ER α-1,2 mannosidase I publication-title: Glycoconj. J. doi: 10.1007/s10719-011-9362-1 – volume: 364 start-page: 41 year: 2012 ident: 10.1016/j.bbagen.2020.129709_bb0140 article-title: Efficient synthesis of glycopeptide-α-thioesters with a high-mannose type oligosaccharide by means of tert-Boc-solid phase peptide synthesis publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2012.10.011 – volume: 24 start-page: 2597 year: 2013 ident: 10.1016/j.bbagen.2020.129709_bb0120 article-title: UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e13-02-0101 – volume: 114 start-page: 8544 year: 2017 ident: 10.1016/j.bbagen.2020.129709_bb0215 article-title: Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1703682114 – volume: 273 start-page: 6009 year: 1998 ident: 10.1016/j.bbagen.2020.129709_bb0035 article-title: Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.11.6009 – volume: 20 start-page: 539 year: 2009 ident: 10.1016/j.bbagen.2020.129709_bb0235 article-title: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2008.11.012 – volume: 26 start-page: 999 year: 2016 ident: 10.1016/j.bbagen.2020.129709_bb0105 article-title: Effects of domain composition on catalytic activity of human UDP-glucose:glycoprotein glucosyltransferases publication-title: Glycobiology. doi: 10.1093/glycob/cww069 – volume: 11 start-page: 1350 year: 2010 ident: 10.1016/j.bbagen.2020.129709_bb0150 article-title: Arthrobacter endo-β-N-acetylglucosaminidase shows transglycosylation activity on complex-type N-glycan oxazolines: one-pot conversion of ribonuclease B to sialylated ribonuclease C publication-title: ChemBioChem. doi: 10.1002/cbic.201000242 – volume: 261 start-page: 173 year: 1994 ident: 10.1016/j.bbagen.2020.129709_bb0245 article-title: A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(94)84015-6 – volume: 88 start-page: 29 year: 1997 ident: 10.1016/j.bbagen.2020.129709_bb0060 article-title: Conformation-independent binding of monoglucosylated ribonuclease B to Calnexin publication-title: Cell. doi: 10.1016/S0092-8674(00)81855-3 – volume: 24 start-page: 344 year: 2014 ident: 10.1016/j.bbagen.2020.129709_bb0100 article-title: Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active publication-title: Glycobiology. doi: 10.1093/glycob/cwt163 – volume: 283 start-page: 10221 year: 2008 ident: 10.1016/j.bbagen.2020.129709_bb0065 article-title: Getting in and out from calnexin/calreticulin cycles publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700048200 – volume: 74 start-page: 2210 year: 2009 ident: 10.1016/j.bbagen.2020.129709_bb0135 article-title: Efficient synthesis of sugar oxazolines from unprotected N -Acetyl-2-amino sugars by using chloroformamidinium reagent in water publication-title: J. Org. Chem. doi: 10.1021/jo8024708 – volume: 267 start-page: 9236 year: 1992 ident: 10.1016/j.bbagen.2020.129709_bb0170 article-title: Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50413-6 – volume: 4 year: 2009 ident: 10.1016/j.bbagen.2020.129709_bb0145 article-title: Structural basis and catalytic mechanism for the dual functional Endo-β-N-acetylglucosaminidase A publication-title: PLoS One doi: 10.1371/journal.pone.0004658 – volume: 276 start-page: 15330 year: 2001 ident: 10.1016/j.bbagen.2020.129709_bb0110 article-title: Association between the 15-kDa Selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009861200 – volume: 271 start-page: 6241 year: 1996 ident: 10.1016/j.bbagen.2020.129709_bb0030 article-title: A nascent secretory protein 5 traverse the ribosome/endoplasmic reticulum translocase complex as an extended chain publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.11.6241 – volume: 119 start-page: 5537 year: 2019 ident: 10.1016/j.bbagen.2020.129709_bb0220 article-title: Folding and Misfolding of human membrane proteins in health and disease: from single molecules to cellular Proteostasis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00532 – volume: 54 start-page: 4909 year: 2015 ident: 10.1016/j.bbagen.2020.129709_bb0200 article-title: Profiling Aglycon-recognizing sites of UDP-glucose:glycoprotein glucosyltransferase by means of Squarate-mediated Labeling publication-title: Biochemistry. doi: 10.1021/acs.biochem.5b00785 – volume: 487 start-page: 763 year: 2017 ident: 10.1016/j.bbagen.2020.129709_bb0045 article-title: PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.04.139 – volume: 25 start-page: 1090 year: 2015 ident: 10.1016/j.bbagen.2020.129709_bb0230 article-title: Cooperative role of calnexin and TigA in Aspergillus oryzae glycoprotein folding publication-title: Glycobiology. doi: 10.1093/glycob/cwv043 – volume: 35 start-page: 328 year: 2005 ident: 10.1016/j.bbagen.2020.129709_bb0180 article-title: Glycoprotein reglucosylation publication-title: Methods. doi: 10.1016/j.ymeth.2004.10.004 – volume: 27 start-page: 3696 year: 1999 ident: 10.1016/j.bbagen.2020.129709_bb0165 article-title: Hypersensitive substrate for ribonucleases publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.18.3696 – volume: 54 start-page: 631 year: 1985 ident: 10.1016/j.bbagen.2020.129709_bb0025 article-title: Assembly of asparagine-linked oligosaccharides publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.54.070185.003215 – volume: 133 start-page: 14404 year: 2011 ident: 10.1016/j.bbagen.2020.129709_bb0155 article-title: Convergent synthesis of homogeneous Glc 1 man 9 GlcNAc 2 -protein and derivatives as ligands of molecular chaperones in protein quality control publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204831z – volume: 280 start-page: 37839 year: 2005 ident: 10.1016/j.bbagen.2020.129709_bb0185 article-title: A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M508685200 – volume: 403 start-page: 322 year: 2010 ident: 10.1016/j.bbagen.2020.129709_bb0175 article-title: Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.11.027 – volume: 88 start-page: 51 year: 1980 ident: 10.1016/j.bbagen.2020.129709_bb0240 article-title: Structural study of the carbohydrate moiety of bovine pancreatic ribonuclease B publication-title: J. Biochem. – volume: 11 start-page: 79 year: 2003 ident: 10.1016/j.bbagen.2020.129709_bb0005 article-title: N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00821-3 – volume: 8 start-page: 226 year: 2009 ident: 10.1016/j.bbagen.2020.129709_bb0015 article-title: Glycosylation as a strategy to improve antibody-based therapeutics publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2804 – volume: 3 start-page: 630 year: 2010 ident: 10.1016/j.bbagen.2020.129709_bb0115 article-title: Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-10-0003 – volume: 136 start-page: 272 year: 2009 ident: 10.1016/j.bbagen.2020.129709_bb0020 article-title: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms publication-title: Cell. doi: 10.1016/j.cell.2008.11.047 – volume: 278 start-page: 43320 year: 2003 ident: 10.1016/j.bbagen.2020.129709_bb0095 article-title: The noncatalytic portion of human UDP-glucose:glycoprotein glucosyltransferase I confers UDP-glucose binding and transferase function to the catalytic domain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305800200 – volume: 25 year: 2017 ident: 10.1016/j.bbagen.2020.129709_bb0050 article-title: Mapping the ER interactome: the p domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones publication-title: Structure doi: 10.1016/j.str.2017.07.010 – volume: 1833 start-page: 3368 year: 2013 ident: 10.1016/j.bbagen.2020.129709_bb0090 article-title: Progesterone regulates the expression and activity of two mouse isoforms of the glycoprotein folding sensor UDP-Glc: glycoprotein glucosyltransferase (UGGT) publication-title: Biochim. Biophys. Acta - Mol. Cell Res. doi: 10.1016/j.bbamcr.2013.09.022 – volume: 59 start-page: 1 year: 2007 ident: 10.1016/j.bbagen.2020.129709_bb0190 article-title: The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum publication-title: IUBMB Life doi: 10.1080/15216540601126694 – volume: 139 start-page: 11421 year: 2017 ident: 10.1016/j.bbagen.2020.129709_bb0080 article-title: Substrate recognition of glycoprotein folding sensor UGGT analyzed by site-specifically 15 N-Labeled Glycopeptide and small glycopeptide library prepared by parallel native chemical ligation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03277 – volume: 426 start-page: 504 year: 2012 ident: 10.1016/j.bbagen.2020.129709_bb0130 article-title: Biophysical properties of UDP-glucose:glycoprotein glucosyltransferase, a folding sensor enzyme in the ER, delineated by synthetic probes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.08.112 |
SSID | ssj0000595 |
Score | 2.3919015 |
Snippet | In the endoplasmic reticulum (ER), folding of glycoproteins is assisted by a combined action of enzymes and chaperones that leads them to biologically... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129709 |
SubjectTerms | endoplasmic reticulum Endoplasmic reticulum quality control Glucosyltransferases - metabolism Glycoprotein folding Glycoprotein glucosyltransferase glycoproteins Glycosylation Humans Mannose - metabolism mutants Oligomannose-type glycan Polysaccharides - metabolism Protein Denaturation Protein Folding Protein Refolding quality control Ribonuclease ribonucleases Ribonucleases - metabolism RNA Substrate Specificity UDP-glucose |
Title | Glycan dependent refolding activity of ER glucosyltransferase (UGGT) |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129709 https://www.ncbi.nlm.nih.gov/pubmed/32858085 https://www.proquest.com/docview/2438689965 https://www.proquest.com/docview/2552036634 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CoIldJsbHKF_yJA7jYNr6K8kRFWi3aRyASr1Zie1IRVWLWDj0wt_Oe3ECQtqGtFsS2Ynz8_Pzz3pfAMd5T0odEsd1yDxXWiQ874mSezxtZFq4XpZS7PCvKzMaqx8TPVmBQRsLQ26Vje6POr3W1s2TboNm93467d6QUQ_phBZ4IUR_QhHsKiEpP316dfNA-qCjJUFxat2Gz9U-XkWBi5ayoApKs5Al5Jb45-3pb_Sz3oYuN-BTwx_ZWRziZ1gJ8034ECtKLjdhfdAWcNuC8-FsicCxts5txfBz0djEKJyBqkawRckurll0XF_OqprGhgfc2ti38XB4e7IN48uL28GIN0UTuFOmX3ElVDDOIe0wpZOFc3hec8p5_DfpTehlHpHV3uTBZWVhRBZ8P6XsxNJkChe33IHV-WIedoGJ0hkTdO4SOnT4fiG8dxrfIVNkSkXaAdliZV2TUZwKW8xs6zp2ZyPClhC2EeEO8Jde9zGjxjvtk3Ya7BvJsKj03-n5tZ01i9CTJSSfh8XjbyuUTA2eNI3-RxtNkoWETHXgS5zyl_FKkeoUyeref49tHz7SXXSMOYDV6uExHCK9qYqjWn6PYO3s-8_R1TNcgvbb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8CJsQu08bXuk9P2gEOpq2_khynDloYcBit1JuV2I5UVLUIwqEX_va9FydMk8aQdosSO3F-tp9_T-8L4Gvek1KHxHEdMs-VFgnPe6LkHrWNTAvXy1KKHb64NKOJOpvq6RoM2lgYcqtsZH-U6bW0bu50GzS7N7NZ94qMekgntMALIfrTdXihcPtSGYOjh99-HsgfdDQlKE7N2_i52smrKHDXUhpUQXkWsoT8Ev9-Pj3FP-tz6OQ1vGoIJPsWx_gG1sJiGzZjScnVNmwN2gpuO_B9OF8hcqwtdFsx_Fy0NjGKZ6CyEWxZsuOfLHqur-ZVzWPDLZ5t7GAyHI4Pd2FycjwejHhTNYE7ZfoVV0IF4xzyDlM6WTiHCptTzuO_SW9CL_MIrfYmDy4rCyOy4PsppSeWJlO4u-UebCyWi_AWmCidMUHnLiGtw_cL4b3T-A6ZIlUq0g7IFivrmpTiVNliblvfsWsbEbaEsI0Id4A_9rqJKTWeaZ-002D_WBoWpf4zPb-0s2YRejKF5IuwvL-zQsnUoKpp9D_aaFpayMhUB_bjlD-OV4pUp8hW3_332D7D1mh8cW7PTy9_vIeX9CR6yXyAjer2PnxErlMVn-q1_Av-yPhp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycan+dependent+refolding+activity+of+ER+glucosyltransferase+%28UGGT%29&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Wang%2C+Ning&rft.au=Seko%2C+Akira&rft.au=Takeda%2C+Yoichi&rft.au=Ito%2C+Yukishige&rft.date=2020-12-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=12+p.129709-&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129709&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |