Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil

Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes co...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 277; p. 116758
Main Authors Wang, Xia, Fang, Linchuan, Beiyuan, Jingzi, Cui, Yongxing, Peng, Qi, Zhu, Shilei, Wang, Man, Zhang, Xingchang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement. [Display omitted] •Co-inoculation maximized the plant resistance to Cd stress.•Alpha diversity of rhizosphere bacteria and fungi reversely responded to inoculation.•Bacterial taxa change induced by inoculation determined plant resistance improvement.•Bacterial indicator species in rhizosphere regulated plant to take up nutrients. Rhizobia and AMF co-inoculation can alter key bacterial taxa of rhizosphere soil and enhance alfalfa to uptake nutrients, which improves plant resistance to Cd stress.
AbstractList Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.
Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement. [Display omitted] •Co-inoculation maximized the plant resistance to Cd stress.•Alpha diversity of rhizosphere bacteria and fungi reversely responded to inoculation.•Bacterial taxa change induced by inoculation determined plant resistance improvement.•Bacterial indicator species in rhizosphere regulated plant to take up nutrients. Rhizobia and AMF co-inoculation can alter key bacterial taxa of rhizosphere soil and enhance alfalfa to uptake nutrients, which improves plant resistance to Cd stress.
Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa' ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa' ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa' ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa' ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.
ArticleNumber 116758
Author Peng, Qi
Wang, Man
Fang, Linchuan
Zhang, Xingchang
Wang, Xia
Zhu, Shilei
Beiyuan, Jingzi
Cui, Yongxing
Author_xml – sequence: 1
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 2
  givenname: Linchuan
  surname: Fang
  fullname: Fang, Linchuan
  email: flinc629@hotmail.com
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 3
  givenname: Jingzi
  orcidid: 0000-0001-5846-6071
  surname: Beiyuan
  fullname: Beiyuan, Jingzi
  organization: School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China
– sequence: 4
  givenname: Yongxing
  surname: Cui
  fullname: Cui, Yongxing
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 5
  givenname: Qi
  surname: Peng
  fullname: Peng, Qi
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
– sequence: 6
  givenname: Shilei
  surname: Zhu
  fullname: Zhu, Shilei
  organization: College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
– sequence: 7
  givenname: Man
  surname: Wang
  fullname: Wang, Man
  organization: East China Mineral Exploration and Development Bureau, Nanjing, Jiangsu Province, 210007, China
– sequence: 8
  givenname: Xingchang
  surname: Zhang
  fullname: Zhang, Xingchang
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33652182$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2KFDEUhYOMOD2jbyCSpZtq898pF4I0jg4MuNF1SKVudaepStok1TC-gi9tanpm40KFQCD3nO-Sc67QRYgBEHpNyZoSqt4d1hBOxziuGWF0TanaSP0Mraje8EYJJi7QijDVNhvR0kt0lfOBECI45y_QJedKMqrZCv26nY4pnmCCUHAcsB2H5eAE2edigwNsd9aHXPC2x7nU94zLPsV5t8dp73_GzltsQ49t6ubs5tEmPN27mJahxcMcdh672PgQl2HxMWAfKqxxMRQ7-WALVHL040v0vC7P8Orxvkbfbz59235p7r5-vt1-vGucULQ0XFHJOm31RnacES1pq8ByJayUjPXQE0n6QQ5EQ0tkL6x2HW85VUNPhqET_Bq9PXPrz3_MkIuZfHYwjjZAnLNhlUOo1u1_SEWrmJCtbKv0zaN07ibozTH5yaZ785R1Fbw_C1yKOScYjPPlIZCSrB8NJWYp1hzMuVizFGvOxVaz-MP8xP-H7cPZBjXPk4dksvNQW-19AldMH_3fAb8ByHjA_w
CitedBy_id crossref_primary_10_1007_s11104_024_06954_7
crossref_primary_10_1016_j_stress_2024_100391
crossref_primary_10_1016_j_ecoenv_2024_117288
crossref_primary_10_1016_j_scitotenv_2023_168397
crossref_primary_10_1016_j_jwpe_2024_105360
crossref_primary_10_3390_plants11192554
crossref_primary_10_1016_j_envpol_2024_125224
crossref_primary_10_1007_s00253_024_13153_y
crossref_primary_10_3390_f14040731
crossref_primary_10_1016_j_jhazmat_2023_130982
crossref_primary_10_1021_acsagscitech_2c00273
crossref_primary_10_1016_j_jes_2024_08_026
crossref_primary_10_3390_f14071492
crossref_primary_10_1007_s42729_024_02112_1
crossref_primary_10_1002_advs_202306389
crossref_primary_10_1016_j_envres_2022_113749
crossref_primary_10_1016_j_apsoil_2024_105375
crossref_primary_10_1007_s42729_024_01667_3
crossref_primary_10_1016_j_scitotenv_2022_154136
crossref_primary_10_1016_j_chemosphere_2021_131567
crossref_primary_10_1016_j_envpol_2024_123456
crossref_primary_10_3389_fmicb_2021_781831
crossref_primary_10_1016_j_jhazmat_2022_128829
crossref_primary_10_1016_j_jenvman_2023_119284
crossref_primary_10_1016_j_jhazmat_2024_134370
crossref_primary_10_1007_s42832_023_0203_5
crossref_primary_10_1007_s42729_024_01874_y
crossref_primary_10_1007_s11104_024_06913_2
crossref_primary_10_3390_pr11051523
crossref_primary_10_1007_s11356_022_21818_2
crossref_primary_10_1016_j_ecoenv_2024_116418
crossref_primary_10_1016_j_scitotenv_2022_160324
crossref_primary_10_3390_agronomy14091913
crossref_primary_10_1186_s12866_022_02488_z
crossref_primary_10_1016_j_bcab_2022_102332
crossref_primary_10_1016_j_scienta_2024_112879
crossref_primary_10_1016_j_scienta_2024_113328
crossref_primary_10_1007_s10653_024_01956_x
crossref_primary_10_1016_j_agwat_2022_107925
crossref_primary_10_1016_j_scitotenv_2022_160736
crossref_primary_10_32604_phyton_2024_050759
crossref_primary_10_1186_s12866_024_03252_1
crossref_primary_10_1128_msystems_01049_22
crossref_primary_10_3389_fpls_2024_1458342
crossref_primary_10_3390_plants12091750
crossref_primary_10_3389_fmicb_2023_1302775
crossref_primary_10_1038_s41598_025_93244_6
crossref_primary_10_3390_ijms23095031
crossref_primary_10_1007_s10532_024_10080_7
crossref_primary_10_1016_j_envexpbot_2021_104669
crossref_primary_10_1016_j_eti_2024_103936
crossref_primary_10_3390_f14050862
crossref_primary_10_1016_j_scitotenv_2023_168994
crossref_primary_10_1016_j_ecoenv_2024_116313
crossref_primary_10_1016_j_jhazmat_2024_134581
crossref_primary_10_1016_j_jhazmat_2023_132280
crossref_primary_10_1016_j_scitotenv_2022_155671
crossref_primary_10_1007_s11104_023_06407_7
crossref_primary_10_1111_ppl_14205
crossref_primary_10_1016_j_plaphy_2023_02_007
crossref_primary_10_1093_hr_uhae018
crossref_primary_10_1016_j_catena_2021_106002
crossref_primary_10_1016_j_scitotenv_2023_166056
crossref_primary_10_1016_j_jhazmat_2022_130425
crossref_primary_10_1016_j_rhisph_2022_100599
crossref_primary_10_1016_j_apsoil_2024_105735
crossref_primary_10_1016_j_apsoil_2023_104901
crossref_primary_10_1007_s10653_025_02438_4
crossref_primary_10_3389_fenvs_2022_1059800
crossref_primary_10_3389_fmicb_2022_868312
crossref_primary_10_1007_s11356_022_19165_3
crossref_primary_10_1007_s11104_024_06836_y
crossref_primary_10_3389_fsufs_2021_817932
crossref_primary_10_1016_j_chemosphere_2022_133577
crossref_primary_10_1016_j_envpol_2024_124979
crossref_primary_10_1016_j_jhazmat_2022_130376
crossref_primary_10_1016_j_chemosphere_2024_141349
crossref_primary_10_1016_j_rhisph_2023_100802
crossref_primary_10_1016_j_sajb_2023_12_045
crossref_primary_10_3390_microorganisms11010069
crossref_primary_10_1016_j_chemosphere_2021_132209
crossref_primary_10_1016_j_jenvman_2024_122206
crossref_primary_10_3390_plants11162161
crossref_primary_10_1016_j_scitotenv_2021_150282
crossref_primary_10_1007_s11104_024_07047_1
crossref_primary_10_1002_saj2_20528
crossref_primary_10_1016_j_chemosphere_2023_138517
crossref_primary_10_1007_s11270_023_06314_8
crossref_primary_10_1016_j_jhazmat_2024_133556
crossref_primary_10_1016_j_scitotenv_2021_151802
crossref_primary_10_1007_s10653_024_02141_w
crossref_primary_10_1007_s42729_024_02207_9
crossref_primary_10_1007_s00344_024_11550_1
crossref_primary_10_3389_fpls_2023_1064732
crossref_primary_10_1016_j_eti_2024_103924
crossref_primary_10_3389_fmicb_2022_1008451
crossref_primary_10_1016_j_apsoil_2023_104842
crossref_primary_10_1007_s11356_024_33182_4
crossref_primary_10_3389_fmicb_2022_1106254
crossref_primary_10_1016_j_sajb_2023_11_023
crossref_primary_10_1016_j_scitotenv_2022_160542
crossref_primary_10_3390_agronomy13020504
crossref_primary_10_1016_j_jhazmat_2023_131866
crossref_primary_10_1007_s11356_021_16076_7
crossref_primary_10_3390_jof10030182
crossref_primary_10_1016_j_rhisph_2023_100669
crossref_primary_10_1016_j_chemosphere_2024_142737
Cites_doi 10.1080/00103620009370485
10.1038/s41579-018-0024-1
10.1146/annurev-arplant-050312-120106
10.1016/j.apsoil.2015.10.016
10.1007/BF00007874
10.1016/j.chemosphere.2016.12.093
10.1071/AR9770639
10.1111/mpp.12393
10.1016/j.soilbio.2013.04.005
10.1007/s00344-017-9750-2
10.1016/j.biotechadv.2012.04.011
10.1007/s10653-008-9150-4
10.1016/j.jhazmat.2020.123919
10.3389/fmicb.2016.00341
10.1007/s11368-019-02304-8
10.1016/j.ecoenv.2018.10.016
10.1128/mBio.01790-16
10.1016/j.ecoenv.2019.109504
10.1016/j.chemosphere.2018.01.102
10.1038/nprot.2007.141
10.1016/j.chemosphere.2011.01.041
10.1007/s11356-017-9029-y
10.1016/j.apsoil.2019.103450
10.1007/s11104-016-2893-2
10.1086/286117
10.1016/j.tplants.2012.04.001
10.1007/BF00007878
10.1016/j.geoderma.2018.11.047
10.1016/j.ecoenv.2018.07.047
10.1007/s00244-005-5076-3
10.1034/j.1399-3054.1991.820407.x
10.1016/S0734-9750(03)00055-7
10.1080/10643389.2017.1400853
10.1016/j.soilbio.2005.08.012
10.1016/j.phytochem.2006.09.023
10.1007/s11738-009-0436-7
10.3390/microorganisms8111695
10.1007/s11104-019-04032-x
10.1016/j.ecoenv.2018.03.015
10.1093/jxb/erj073
10.1111/j.1365-294X.1993.tb00005.x
10.1111/j.1461-0248.2009.01388.x
10.1186/s40168-016-0220-z
10.1016/j.soilbio.2016.08.021
10.1139/w11-044
10.1371/journal.pgen.1000255
10.1111/j.1469-8137.1987.tb04685.x
10.7717/peerj.6875
10.1016/j.soilbio.2020.107817
10.1007/s13313-018-0543-2
10.1016/j.scitotenv.2018.10.185
10.1016/j.envpol.2007.10.015
10.1139/er-2018-0023
10.1016/j.jhazmat.2009.12.035
10.3390/genes9110542
10.3389/fpls.2015.00863
10.1007/s11104-015-2410-z
10.1007/s10311-010-0297-8
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2021.116758
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 33652182
10_1016_j_envpol_2021_116758
S0269749121003389
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-36152b8a875b32085196ea364a5522ded050df5f08e905d4a8cb39316fd0ffb43
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Jul 10 19:16:06 EDT 2025
Fri Jul 11 08:16:49 EDT 2025
Wed Feb 19 02:27:56 EST 2025
Thu Apr 24 23:16:01 EDT 2025
Tue Jul 01 03:15:07 EDT 2025
Fri Feb 23 02:46:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rhizosphere
Soil heavy metal
Microbial community
Symbiotic microbes
Co-inoculation
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-36152b8a875b32085196ea364a5522ded050df5f08e905d4a8cb39316fd0ffb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5846-6071
PMID 33652182
PQID 2496245959
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552018894
proquest_miscellaneous_2496245959
pubmed_primary_33652182
crossref_citationtrail_10_1016_j_envpol_2021_116758
crossref_primary_10_1016_j_envpol_2021_116758
elsevier_sciencedirect_doi_10_1016_j_envpol_2021_116758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sharma, Dietz (bib61) 2006; 57
Mnasri, Janoušková, Rydlová, Abdelly, Ghnaya (bib50) 2017; 171
Houba, Lexmond, Novozamsky, Lee (bib33) 1996; 178
Glick (bib27) 2003; 21
Zhang, He, Chen, Wang, Qian, Sheng (bib71) 2011; 83
Solans, Vobis, Jozsa, Wall (bib64) 2016
Huse, Dethlefsen, Huber, Welch, Relman, Sogin (bib37) 2008; 4
Ahmad, Zahir, Asghar, Asghar (bib2) 2011; 57
Pajuelo, Rodríguez, Dary, Palomares (bib54) 2008; 154
Kaur, Garg (bib43) 2018; 37
Hillebrand, Matthiessen (bib32) 2009; 12
Ashraf, Hussain, Rasheed, Iqbal, Riaz, Arif (bib3) 2017; 198
Li, Guo, Sun, Li, Gao, Xu, Li (bib48) 2019; 19
Duan, Fang, Yang, Chen, Cui, Li (bib16) 2018; 156
Reed, Simon (bib58) 1991; 59
Fang, Ju, Yang, Jin, Liu, Li, Yu, Zhao, Zhang (bib22) 2020; 114744
Smilde, Luit, Driel (bib63) 1992; 143
Wood, Tang, Franks (bib70) 2016; 103
Hartman, Ga, Roussely, Walser, Schlaeppi (bib29) 2017; 5
Cui, Bing, Fang, Wu, Yu, Shen, Jiang, Wang, Zhang (bib12) 2019; 338
Ghnaya, Mnassri, Ghabriche, Wali, Poschenrieder, Lutts, Abdelly (bib26) 2015; 6
Quadros, Zhalnina, Davis, Jennifer, Fátima, Flávio, De, Eric (bib56) 2016; 98
Violante, Cozzolino, Perelomov, Caporale, Pigna (bib68) 2010; 10
Fuentes, Almonacid, Ocampo, Arriagada (bib23) 2016; 407
Zhang, Wang, Liu, Song, Fang (bib72) 2019; 439
Gardes, Bruns (bib25) 1993; 2
Ju, Jin, Liu, Shen, Zhao, Duan, Fang (bib41) 2020; 150
Lam, Lai (bib46) 2018; 162
Banerjee, Schlaeppi, Vand (bib5) 2018; 16
Jian, Bai, Zhang, Song, Li (bib38) 2019; 7
Kereszt, Li, Indrasumunar, Nguyen, Nontachaiyapoom, Kinkema, Gresshoff (bib44) 2007; 2
Huang, Wang, Wang, Li, He, Yang (bib36) 2019; 651
Hu, Wei, Friman, Gu, Wang, Eisenhauer, Yang, Ma, Shen, Xu, Jousset (bib35) 2016; 7
Wang (bib69) 2017; 47
Thijs, Wouter, Francois, Nele, Jaco (bib66) 2016; 7
Hildebrandt, Regvar, Bothe (bib31) 2007; 68
Tang, Shi, Zhong, Shen, Chen (bib65) 2018; 215
Fang, Wang, Cai, Cang (bib20) 2017; 24
Riffat, Masood (bib60) 2005; 346
Gao, Guo, Li, Duan (bib24) 2018; 47
Ben-Laouane, Baslam, Ait-El-Mokhtar, Anli, Boutasknit, Ait-Rahou, Meddich (bib6) 2020; 8
Ouzounidou, Moustakas, Symeonidis, Karataglis (bib53) 2006; 50
Hrynkiewicz, Złoch, Kowalkowski, Baum, Buszewski (bib34) 2018; 26
Colpaert, Assche (bib11) 1992; 143
Kong, Wu, Glick, He, Huang, Wu (bib45) 2019; 183
Baker (bib4) 1987; 106
Ju, Liu, Fang, Cui, Duan, Wu (bib40) 2019; 167
(bib67) 1998
Fan, Xiao, Guo, Zhang, Wang, Chen, Li, Wei (bib19) 2018; 197
Shen, Yang, Xiao, Zhou (bib62) 2020
Fagorzi, Checcucci, DiCenzo, Debiec, Dziewit, Pini, Mengoni (bib17) 2018; 9
Doak, Bigger, Harding, Marvier, O’malley, Thomson (bib15) 1998; 151
Bulgarelli, Schlaeppi, Spaepen, Van, Schulze-Lefert (bib9) 2013; 64
Nagajyoti, Lee, Sreekanth (bib51) 2010; 8
De Vos, Schat, De, Vooijs, Ernst (bib14) 1991; 82
Lu, Li, He, Zhao, Liu, Cui, Pan, Tan (bib49) 2010; 32
Riaz, Kamran, Fang, Wang, Cao, Yang, Wang (bib59) 2020; 402
Fan, Hu, Huang, Huang, Li, Palta (bib18) 2015; 390
Berendsen, Pieterse, Bakker (bib7) 2012; 17
Chanclud, Morel (bib10) 2016; 17
Bremner, Mulvaney (bib8) 1982
Dary, Chamber-Perez, Palomares, Pajuelo (bib13) 2010; 177
Gomez, Jumpponen, Gonzales, Cusicanquid, Valdiviae, Motavallif, Hermanb, Garrett (bib28) 2013; 65
Olsen, Sommers (bib52) 1982
Rajkumar, Sandhya, Prasad, Freitas (bib57) 2012; 30
Kachurina, Zhang, Raun, Krenzer (bib42) 2000; 31
Jones, Willett (bib39) 2006; 38
Abbott, Robson (bib1) 1977; 28
Hernandez, Pastor (bib30) 2008; 30
Glick (10.1016/j.envpol.2021.116758_bib27) 2003; 21
Gao (10.1016/j.envpol.2021.116758_bib24) 2018; 47
Sharma (10.1016/j.envpol.2021.116758_bib61) 2006; 57
Fagorzi (10.1016/j.envpol.2021.116758_bib17) 2018; 9
Tang (10.1016/j.envpol.2021.116758_bib65) 2018; 215
Ju (10.1016/j.envpol.2021.116758_bib40) 2019; 167
Fan (10.1016/j.envpol.2021.116758_bib18) 2015; 390
Pajuelo (10.1016/j.envpol.2021.116758_bib54) 2008; 154
Solans (10.1016/j.envpol.2021.116758_bib64) 2016
Violante (10.1016/j.envpol.2021.116758_bib68) 2010; 10
Hildebrandt (10.1016/j.envpol.2021.116758_bib31) 2007; 68
Mnasri (10.1016/j.envpol.2021.116758_bib50) 2017; 171
Hrynkiewicz (10.1016/j.envpol.2021.116758_bib34) 2018; 26
Hu (10.1016/j.envpol.2021.116758_bib35) 2016; 7
Thijs (10.1016/j.envpol.2021.116758_bib66) 2016; 7
Olsen (10.1016/j.envpol.2021.116758_bib52) 1982
Ben-Laouane (10.1016/j.envpol.2021.116758_bib6) 2020; 8
Berendsen (10.1016/j.envpol.2021.116758_bib7) 2012; 17
Smilde (10.1016/j.envpol.2021.116758_bib63) 1992; 143
Fan (10.1016/j.envpol.2021.116758_bib19) 2018; 197
Lam (10.1016/j.envpol.2021.116758_bib46) 2018; 162
Riffat (10.1016/j.envpol.2021.116758_bib60) 2005; 346
Bulgarelli (10.1016/j.envpol.2021.116758_bib9) 2013; 64
Ghnaya (10.1016/j.envpol.2021.116758_bib26) 2015; 6
Nagajyoti (10.1016/j.envpol.2021.116758_bib51) 2010; 8
(10.1016/j.envpol.2021.116758_bib67) 1998
Zhang (10.1016/j.envpol.2021.116758_bib72) 2019; 439
Ahmad (10.1016/j.envpol.2021.116758_bib2) 2011; 57
Fuentes (10.1016/j.envpol.2021.116758_bib23) 2016; 407
Li (10.1016/j.envpol.2021.116758_bib48) 2019; 19
Kaur (10.1016/j.envpol.2021.116758_bib43) 2018; 37
Abbott (10.1016/j.envpol.2021.116758_bib1) 1977; 28
Hartman (10.1016/j.envpol.2021.116758_bib29) 2017; 5
Dary (10.1016/j.envpol.2021.116758_bib13) 2010; 177
Hillebrand (10.1016/j.envpol.2021.116758_bib32) 2009; 12
Duan (10.1016/j.envpol.2021.116758_bib16) 2018; 156
Bremner (10.1016/j.envpol.2021.116758_bib8) 1982
Ju (10.1016/j.envpol.2021.116758_bib41) 2020; 150
Riaz (10.1016/j.envpol.2021.116758_bib59) 2020; 402
Ouzounidou (10.1016/j.envpol.2021.116758_bib53) 2006; 50
Huang (10.1016/j.envpol.2021.116758_bib36) 2019; 651
Wood (10.1016/j.envpol.2021.116758_bib70) 2016; 103
Fang (10.1016/j.envpol.2021.116758_bib20) 2017; 24
Zhang (10.1016/j.envpol.2021.116758_bib71) 2011; 83
Lu (10.1016/j.envpol.2021.116758_bib49) 2010; 32
Rajkumar (10.1016/j.envpol.2021.116758_bib57) 2012; 30
Chanclud (10.1016/j.envpol.2021.116758_bib10) 2016; 17
Shen (10.1016/j.envpol.2021.116758_bib62) 2020
Fang (10.1016/j.envpol.2021.116758_bib22) 2020; 114744
Hernandez (10.1016/j.envpol.2021.116758_bib30) 2008; 30
Baker (10.1016/j.envpol.2021.116758_bib4) 1987; 106
Huse (10.1016/j.envpol.2021.116758_bib37) 2008; 4
Houba (10.1016/j.envpol.2021.116758_bib33) 1996; 178
Colpaert (10.1016/j.envpol.2021.116758_bib11) 1992; 143
Ashraf (10.1016/j.envpol.2021.116758_bib3) 2017; 198
Banerjee (10.1016/j.envpol.2021.116758_bib5) 2018; 16
Wang (10.1016/j.envpol.2021.116758_bib69) 2017; 47
Kereszt (10.1016/j.envpol.2021.116758_bib44) 2007; 2
Quadros (10.1016/j.envpol.2021.116758_bib56) 2016; 98
Doak (10.1016/j.envpol.2021.116758_bib15) 1998; 151
Gomez (10.1016/j.envpol.2021.116758_bib28) 2013; 65
Reed (10.1016/j.envpol.2021.116758_bib58) 1991; 59
Jian (10.1016/j.envpol.2021.116758_bib38) 2019; 7
Gardes (10.1016/j.envpol.2021.116758_bib25) 1993; 2
De Vos (10.1016/j.envpol.2021.116758_bib14) 1991; 82
Jones (10.1016/j.envpol.2021.116758_bib39) 2006; 38
Kachurina (10.1016/j.envpol.2021.116758_bib42) 2000; 31
Kong (10.1016/j.envpol.2021.116758_bib45) 2019; 183
Cui (10.1016/j.envpol.2021.116758_bib12) 2019; 338
References_xml – volume: 177
  start-page: 323
  year: 2010
  end-page: 330
  ident: bib13
  article-title: “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria
  publication-title: J. Hazard Mater.
– volume: 2
  start-page: 948
  year: 2007
  end-page: 952
  ident: bib44
  article-title: Agrobacterium rhizogenes-mediated transformation of soybean to study root biology
  publication-title: Nat. Protoc.
– volume: 197
  start-page: 729
  year: 2018
  end-page: 740
  ident: bib19
  article-title: Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function
  publication-title: Chemosphere
– volume: 346
  start-page: 256
  year: 2005
  end-page: 273
  ident: bib60
  article-title: Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 113
  year: 1993
  end-page: 118
  ident: bib25
  article-title: ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts
  publication-title: Mol. Ecol.
– volume: 26
  start-page: 316
  year: 2018
  end-page: 332
  ident: bib34
  article-title: Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils
  publication-title: Environ. Rev.
– volume: 28
  start-page: 639
  year: 1977
  end-page: 649
  ident: bib1
  article-title: Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas
  publication-title: Aust. J. Agric. Res.
– volume: 65
  start-page: 50
  year: 2013
  end-page: 59
  ident: bib28
  article-title: Do bacterial and fungal communities in soils of the Bolivian Altiplano change under shorter fallow periods?
  publication-title: Soil Biol. Biochem.
– volume: 50
  start-page: 346
  year: 2006
  end-page: 352
  ident: bib53
  article-title: Response of wheat seedlings to Ni stress: effects of supplemental calcium
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 7
  year: 2016
  ident: bib35
  article-title: Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression
  publication-title: mBio
– volume: 30
  start-page: 127
  year: 2008
  end-page: 133
  ident: bib30
  article-title: Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine
  publication-title: Environ. Geochem. Health.
– volume: 338
  start-page: 118
  year: 2019
  end-page: 127
  ident: bib12
  article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau
  publication-title: Geoderma
– volume: 651
  start-page: 3034
  year: 2019
  end-page: 3042
  ident: bib36
  article-title: Current status of agricultural soil pollution by heavy metals in China: a meta-analysis
  publication-title: Sci. Total Environ.
– volume: 154
  start-page: 203
  year: 2008
  end-page: 211
  ident: bib54
  article-title: Toxic effects of arsenic on Sinorhizobiume Medicago sativa symbiotic interaction
  publication-title: Environ. Pollut.
– volume: 83
  start-page: 57
  year: 2011
  end-page: 62
  ident: bib71
  article-title: Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus
  publication-title: Chemosphere
– start-page: 595
  year: 1982
  end-page: 624
  ident: bib8
  article-title: Nitrogen-total
  publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties
– volume: 5
  start-page: 2
  year: 2017
  ident: bib29
  article-title: Deciphering composition and function of the root microbiome of a legume plant
  publication-title: Microbiome
– volume: 68
  start-page: 139
  year: 2007
  end-page: 146
  ident: bib31
  article-title: Arbuscular mycorrhiza and heavy metal tolerance
  publication-title: Phytochemistry
– volume: 4
  year: 2008
  ident: bib37
  article-title: Exploring microbial diversity and taxonomy using ssu rrna hypervariable tag sequencing
  publication-title: PLoS Genet.
– volume: 47
  start-page: 1901
  year: 2017
  end-page: 1957
  ident: bib69
  article-title: Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 171
  start-page: 476
  year: 2017
  end-page: 484
  ident: bib50
  article-title: Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network
  publication-title: Chemosphere
– volume: 183
  start-page: 109504
  year: 2019
  ident: bib45
  article-title: Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils
  publication-title: Ecotoxiol. Environ. Safe.
– volume: 32
  start-page: 583
  year: 2010
  end-page: 590
  ident: bib49
  article-title: Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (
  publication-title: Acta Physiol. Plant.
– volume: 64
  start-page: 807
  year: 2013
  end-page: 838
  ident: bib9
  article-title: Structure and functions of the bacterial microbiota of plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 10
  start-page: 268
  year: 2010
  end-page: 292
  ident: bib68
  article-title: Mobility and bioavailability of heavy metals and metalloids in soil environments
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 106
  start-page: 93
  year: 1987
  end-page: 111
  ident: bib4
  article-title: Metal tolerance
  publication-title: New Phytol.
– volume: 57
  start-page: 711
  year: 2006
  end-page: 726
  ident: bib61
  article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress
  publication-title: J. Exp. Bot.
– volume: 9
  start-page: 542
  year: 2018
  ident: bib17
  article-title: Harnessing rhizobia to improve heavy-metal phytoremediation by legumes
  publication-title: Genes
– volume: 402
  start-page: 123919
  year: 2020
  ident: bib59
  article-title: Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review
  publication-title: J. Hazard Mater.
– volume: 6
  start-page: 863
  year: 2015
  ident: bib26
  article-title: Nodulation by
  publication-title: Front. Plant Sci.
– volume: 198
  start-page: 132
  year: 2017
  end-page: 143
  ident: bib3
  article-title: Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review
  publication-title: J. Environ. Manag.
– volume: 407
  start-page: 355
  year: 2016
  end-page: 366
  ident: bib23
  article-title: Synergistic interactions between a saprophytic fungal consortium and rhizophagus irregularisalleviate oxidative stress in plants grown in heavy metal contaminated soil
  publication-title: Plant Soil
– volume: 7
  start-page: e6875
  year: 2019
  ident: bib38
  article-title: Promotion of growth and metal accumulation of alfalfa by co-inoculation with
  publication-title: PeerJ
– year: 2016
  ident: bib64
  article-title: Synergy of Actinomycete Co-inoculation. Plant Growth Promoting Actinobacteria
– volume: 103
  start-page: 131
  year: 2016
  end-page: 137
  ident: bib70
  article-title: Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils
  publication-title: Soil Biol. Biochem.
– volume: 143
  start-page: 233
  year: 1992
  end-page: 238
  ident: bib63
  article-title: The extraction by soil and absorption by plants of applied zinc and cadmium
  publication-title: Plant Soil
– volume: 215
  year: 2018
  ident: bib65
  article-title: Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals
  publication-title: Chemosphere
– volume: 37
  start-page: 680
  year: 2018
  end-page: 693
  ident: bib43
  article-title: Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants
  publication-title: J. Plant Growth Regul.
– volume: 59
  start-page: 81
  year: 1991
  end-page: 94
  ident: bib58
  article-title: Soil heavy metal concentrations and erosion damage in upland grasslands in the pennines, england
  publication-title: Water, Air, Soil Pollut.
– year: 2020
  ident: bib62
  article-title: Increased contribution of root exudates to soil carbon input during grassland degradation
  publication-title: Soil Biol. Biochem.
– volume: 178
  start-page: 28
  year: 1996
  ident: bib33
  article-title: State of the art and future developments in soil analysis for bioavailability assessment
  publication-title: Sci. Total Environ.
– volume: 21
  start-page: 383
  year: 2003
  end-page: 393
  ident: bib27
  article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment
  publication-title: Biotechnol. Adv.
– volume: 16
  start-page: 567
  year: 2018
  end-page: 576
  ident: bib5
  article-title: Keystone taxa as drivers of microbiome structure and functioning
  publication-title: Nat. Rev. Microbiol.
– volume: 82
  start-page: 523
  year: 1991
  end-page: 528
  ident: bib14
  article-title: Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus
  publication-title: Physiol. Plantarum
– volume: 8
  start-page: 1695
  year: 2020
  ident: bib6
  article-title: Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity
  publication-title: Microorganisms
– volume: 31
  start-page: 893
  year: 2000
  end-page: 903
  ident: bib42
  article-title: Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1Mpotassiumchloride extraction
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 19
  start-page: 3008
  year: 2019
  end-page: 3017
  ident: bib48
  article-title: Detoxification effect of single inoculation and co-inoculation of
  publication-title: J. Soils Sediments
– volume: 7
  start-page: 341
  year: 2016
  ident: bib66
  article-title: Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism
  publication-title: Front. Microbiol.
– volume: 98
  start-page: 195
  year: 2016
  end-page: 203
  ident: bib56
  article-title: Coal mining practices reduce the microbial biomass, richness and diversity of soil
  publication-title: Appl. Soil Ecol.
– volume: 57
  start-page: 578
  year: 2011
  end-page: 589
  ident: bib2
  article-title: Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Can. J. Microbiol.
– volume: 17
  start-page: 478
  year: 2012
  end-page: 486
  ident: bib7
  article-title: The rhizosphere microbiome and plant health
  publication-title: Trends Plant Sci.
– volume: 24
  start-page: 14627
  year: 2017
  end-page: 14636
  ident: bib20
  article-title: Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 156
  start-page: 106
  year: 2018
  end-page: 115
  ident: bib16
  article-title: Reveal the response of enzyme activities to heavy metals through in situ zymography
  publication-title: Ecotoxiol. Environ. Safe.
– volume: 47
  start-page: 195
  year: 2018
  end-page: 203
  ident: bib24
  article-title: Effects of dual inoculation of AMF and rhizobium on alfalfa (Medicago sativa) root rot caused by
  publication-title: Australas. Plant Pathol.
– volume: 167
  start-page: 218
  year: 2019
  end-page: 226
  ident: bib40
  article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil
  publication-title: Ecotoxiol. Environ. Safe.
– volume: 390
  start-page: 337
  year: 2015
  end-page: 349
  ident: bib18
  article-title: Soil inoculation with
  publication-title: Plant Soil
– start-page: 403
  year: 1982
  end-page: 430
  ident: bib52
  article-title: Phosphorous
  publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties
– volume: 38
  start-page: 991
  year: 2006
  end-page: 999
  ident: bib39
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
– volume: 12
  start-page: 1405
  year: 2009
  end-page: 1419
  ident: bib32
  article-title: Biodiversity in a complex world: consolidation and progress in functional biodiversity research
  publication-title: Ecol. Lett.
– volume: 17
  start-page: 1289
  year: 2016
  end-page: 1297
  ident: bib10
  article-title: Plant hormones: a fungal point of view
  publication-title: Mol. Plant Pathol.
– volume: 162
  start-page: 563
  year: 2018
  end-page: 570
  ident: bib46
  article-title: Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.)
  publication-title: Ecotoxiol. Environ. Safe.
– volume: 439
  start-page: 505
  year: 2019
  end-page: 523
  ident: bib72
  article-title: Impact of soil leachate on microbial biomass and diversity affected by plant diversity
  publication-title: Plant Soil
– volume: 30
  start-page: 1562
  year: 2012
  end-page: 1574
  ident: bib57
  article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation
  publication-title: Biotechnol. Adv.
– volume: 150
  year: 2020
  ident: bib41
  article-title: Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere
  publication-title: Appl. Soil Ecol.
– year: 1998
  ident: bib67
  article-title: Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. SW-846: Test Methods for Evaluation of Solid Waste Physical and Chemical Methods
– volume: 143
  start-page: 201
  year: 1992
  end-page: 211
  ident: bib11
  article-title: Zinc toxicity in ectomycorrhizalpinus sylvestris
  publication-title: Plant Soil
– volume: 151
  start-page: 264
  year: 1998
  end-page: 276
  ident: bib15
  article-title: The statistical inevitability of stability-diversity relationships in community ecology
  publication-title: Am. Nat.
– volume: 114744
  year: 2020
  ident: bib22
  article-title: Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils
  publication-title: Environ. Pollut.
– volume: 8
  start-page: 199
  year: 2010
  end-page: 216
  ident: bib51
  article-title: Heavy metals, occurrence and toxicity for plants: a review
  publication-title: Environ. Chem. Lett.
– volume: 31
  start-page: 893
  year: 2000
  ident: 10.1016/j.envpol.2021.116758_bib42
  article-title: Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1Mpotassiumchloride extraction
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620009370485
– volume: 16
  start-page: 567
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib5
  article-title: Keystone taxa as drivers of microbiome structure and functioning
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0024-1
– volume: 64
  start-page: 807
  issue: 1
  year: 2013
  ident: 10.1016/j.envpol.2021.116758_bib9
  article-title: Structure and functions of the bacterial microbiota of plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120106
– volume: 98
  start-page: 195
  year: 2016
  ident: 10.1016/j.envpol.2021.116758_bib56
  article-title: Coal mining practices reduce the microbial biomass, richness and diversity of soil
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.10.016
– volume: 143
  start-page: 201
  issue: 2
  year: 1992
  ident: 10.1016/j.envpol.2021.116758_bib11
  article-title: Zinc toxicity in ectomycorrhizalpinus sylvestris
  publication-title: Plant Soil
  doi: 10.1007/BF00007874
– year: 1998
  ident: 10.1016/j.envpol.2021.116758_bib67
– volume: 171
  start-page: 476
  year: 2017
  ident: 10.1016/j.envpol.2021.116758_bib50
  article-title: Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.093
– volume: 28
  start-page: 639
  year: 1977
  ident: 10.1016/j.envpol.2021.116758_bib1
  article-title: Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR9770639
– volume: 17
  start-page: 1289
  issue: 8
  year: 2016
  ident: 10.1016/j.envpol.2021.116758_bib10
  article-title: Plant hormones: a fungal point of view
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12393
– volume: 65
  start-page: 50
  issue: 5
  year: 2013
  ident: 10.1016/j.envpol.2021.116758_bib28
  article-title: Do bacterial and fungal communities in soils of the Bolivian Altiplano change under shorter fallow periods?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.04.005
– volume: 37
  start-page: 680
  issue: 2
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib43
  article-title: Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-017-9750-2
– volume: 30
  start-page: 1562
  issue: 6
  year: 2012
  ident: 10.1016/j.envpol.2021.116758_bib57
  article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2012.04.011
– volume: 30
  start-page: 127
  issue: 2
  year: 2008
  ident: 10.1016/j.envpol.2021.116758_bib30
  article-title: Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine
  publication-title: Environ. Geochem. Health.
  doi: 10.1007/s10653-008-9150-4
– volume: 10
  start-page: 268
  year: 2010
  ident: 10.1016/j.envpol.2021.116758_bib68
  article-title: Mobility and bioavailability of heavy metals and metalloids in soil environments
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 402
  start-page: 123919
  year: 2020
  ident: 10.1016/j.envpol.2021.116758_bib59
  article-title: Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123919
– volume: 7
  start-page: 341
  year: 2016
  ident: 10.1016/j.envpol.2021.116758_bib66
  article-title: Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00341
– volume: 19
  start-page: 3008
  issue: 7
  year: 2019
  ident: 10.1016/j.envpol.2021.116758_bib48
  article-title: Detoxification effect of single inoculation and co-inoculation of oudemansiella radicata and serratia marcescens on Pb and fluoranthene co-contaminated soil
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-019-02304-8
– volume: 167
  start-page: 218
  year: 2019
  ident: 10.1016/j.envpol.2021.116758_bib40
  article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil
  publication-title: Ecotoxiol. Environ. Safe.
  doi: 10.1016/j.ecoenv.2018.10.016
– volume: 7
  issue: 6
  year: 2016
  ident: 10.1016/j.envpol.2021.116758_bib35
  article-title: Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression
  publication-title: mBio
  doi: 10.1128/mBio.01790-16
– volume: 178
  start-page: 28
  issue: 1–3
  year: 1996
  ident: 10.1016/j.envpol.2021.116758_bib33
  article-title: State of the art and future developments in soil analysis for bioavailability assessment
  publication-title: Sci. Total Environ.
– volume: 183
  start-page: 109504
  year: 2019
  ident: 10.1016/j.envpol.2021.116758_bib45
  article-title: Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils
  publication-title: Ecotoxiol. Environ. Safe.
  doi: 10.1016/j.ecoenv.2019.109504
– volume: 197
  start-page: 729
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib19
  article-title: Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.102
– start-page: 595
  year: 1982
  ident: 10.1016/j.envpol.2021.116758_bib8
  article-title: Nitrogen-total
– volume: 2
  start-page: 948
  year: 2007
  ident: 10.1016/j.envpol.2021.116758_bib44
  article-title: Agrobacterium rhizogenes-mediated transformation of soybean to study root biology
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.141
– volume: 215
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib65
  article-title: Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals
  publication-title: Chemosphere
– volume: 83
  start-page: 57
  issue: 1
  year: 2011
  ident: 10.1016/j.envpol.2021.116758_bib71
  article-title: Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.01.041
– volume: 24
  start-page: 14627
  year: 2017
  ident: 10.1016/j.envpol.2021.116758_bib20
  article-title: Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-017-9029-y
– volume: 150
  year: 2020
  ident: 10.1016/j.envpol.2021.116758_bib41
  article-title: Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.103450
– volume: 407
  start-page: 355
  issue: 1–2
  year: 2016
  ident: 10.1016/j.envpol.2021.116758_bib23
  article-title: Synergistic interactions between a saprophytic fungal consortium and rhizophagus irregularisalleviate oxidative stress in plants grown in heavy metal contaminated soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2893-2
– volume: 151
  start-page: 264
  issue: 3
  year: 1998
  ident: 10.1016/j.envpol.2021.116758_bib15
  article-title: The statistical inevitability of stability-diversity relationships in community ecology
  publication-title: Am. Nat.
  doi: 10.1086/286117
– volume: 17
  start-page: 478
  year: 2012
  ident: 10.1016/j.envpol.2021.116758_bib7
  article-title: The rhizosphere microbiome and plant health
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.04.001
– volume: 143
  start-page: 233
  issue: 2
  year: 1992
  ident: 10.1016/j.envpol.2021.116758_bib63
  article-title: The extraction by soil and absorption by plants of applied zinc and cadmium
  publication-title: Plant Soil
  doi: 10.1007/BF00007878
– volume: 338
  start-page: 118
  year: 2019
  ident: 10.1016/j.envpol.2021.116758_bib12
  article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.047
– volume: 162
  start-page: 563
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib46
  article-title: Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.)
  publication-title: Ecotoxiol. Environ. Safe.
  doi: 10.1016/j.ecoenv.2018.07.047
– volume: 50
  start-page: 346
  issue: 3
  year: 2006
  ident: 10.1016/j.envpol.2021.116758_bib53
  article-title: Response of wheat seedlings to Ni stress: effects of supplemental calcium
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/s00244-005-5076-3
– volume: 82
  start-page: 523
  issue: 4
  year: 1991
  ident: 10.1016/j.envpol.2021.116758_bib14
  article-title: Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus
  publication-title: Physiol. Plantarum
  doi: 10.1034/j.1399-3054.1991.820407.x
– volume: 21
  start-page: 383
  issue: 5
  year: 2003
  ident: 10.1016/j.envpol.2021.116758_bib27
  article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(03)00055-7
– volume: 47
  start-page: 1901
  issue: 20
  year: 2017
  ident: 10.1016/j.envpol.2021.116758_bib69
  article-title: Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2017.1400853
– volume: 38
  start-page: 991
  issue: 5
  year: 2006
  ident: 10.1016/j.envpol.2021.116758_bib39
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.08.012
– start-page: 403
  year: 1982
  ident: 10.1016/j.envpol.2021.116758_bib52
  article-title: Phosphorous
– volume: 68
  start-page: 139
  issue: 1
  year: 2007
  ident: 10.1016/j.envpol.2021.116758_bib31
  article-title: Arbuscular mycorrhiza and heavy metal tolerance
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2006.09.023
– volume: 32
  start-page: 583
  issue: 3
  year: 2010
  ident: 10.1016/j.envpol.2021.116758_bib49
  article-title: Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-009-0436-7
– volume: 8
  start-page: 1695
  issue: 11
  year: 2020
  ident: 10.1016/j.envpol.2021.116758_bib6
  article-title: Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8111695
– volume: 439
  start-page: 505
  issue: 1–2
  year: 2019
  ident: 10.1016/j.envpol.2021.116758_bib72
  article-title: Impact of soil leachate on microbial biomass and diversity affected by plant diversity
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04032-x
– volume: 156
  start-page: 106
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib16
  article-title: Reveal the response of enzyme activities to heavy metals through in situ zymography
  publication-title: Ecotoxiol. Environ. Safe.
  doi: 10.1016/j.ecoenv.2018.03.015
– volume: 57
  start-page: 711
  issue: 4
  year: 2006
  ident: 10.1016/j.envpol.2021.116758_bib61
  article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj073
– volume: 59
  start-page: 81
  issue: 1–2
  year: 1991
  ident: 10.1016/j.envpol.2021.116758_bib58
  article-title: Soil heavy metal concentrations and erosion damage in upland grasslands in the pennines, england
  publication-title: Water, Air, Soil Pollut.
– volume: 2
  start-page: 113
  year: 1993
  ident: 10.1016/j.envpol.2021.116758_bib25
  article-title: ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.1993.tb00005.x
– volume: 12
  start-page: 1405
  year: 2009
  ident: 10.1016/j.envpol.2021.116758_bib32
  article-title: Biodiversity in a complex world: consolidation and progress in functional biodiversity research
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2009.01388.x
– volume: 198
  start-page: 132
  year: 2017
  ident: 10.1016/j.envpol.2021.116758_bib3
  article-title: Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review
  publication-title: J. Environ. Manag.
– volume: 5
  start-page: 2
  issue: 1
  year: 2017
  ident: 10.1016/j.envpol.2021.116758_bib29
  article-title: Deciphering composition and function of the root microbiome of a legume plant
  publication-title: Microbiome
  doi: 10.1186/s40168-016-0220-z
– volume: 103
  start-page: 131
  year: 2016
  ident: 10.1016/j.envpol.2021.116758_bib70
  article-title: Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.08.021
– volume: 57
  start-page: 578
  issue: 7
  year: 2011
  ident: 10.1016/j.envpol.2021.116758_bib2
  article-title: Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w11-044
– volume: 4
  issue: 11
  year: 2008
  ident: 10.1016/j.envpol.2021.116758_bib37
  article-title: Exploring microbial diversity and taxonomy using ssu rrna hypervariable tag sequencing
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000255
– year: 2016
  ident: 10.1016/j.envpol.2021.116758_bib64
– volume: 106
  start-page: 93
  issue: s1
  year: 1987
  ident: 10.1016/j.envpol.2021.116758_bib4
  article-title: Metal tolerance
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1987.tb04685.x
– volume: 7
  start-page: e6875
  year: 2019
  ident: 10.1016/j.envpol.2021.116758_bib38
  article-title: Promotion of growth and metal accumulation of alfalfa by co-inoculation with Sinorhizobium and Agrobacterium under copper and zinc stress
  publication-title: PeerJ
  doi: 10.7717/peerj.6875
– year: 2020
  ident: 10.1016/j.envpol.2021.116758_bib62
  article-title: Increased contribution of root exudates to soil carbon input during grassland degradation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107817
– volume: 47
  start-page: 195
  issue: 2
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib24
  article-title: Effects of dual inoculation of AMF and rhizobium on alfalfa (Medicago sativa) root rot caused by Microdochium tabacinum
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-018-0543-2
– volume: 651
  start-page: 3034
  issue: PT.2
  year: 2019
  ident: 10.1016/j.envpol.2021.116758_bib36
  article-title: Current status of agricultural soil pollution by heavy metals in China: a meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.185
– volume: 154
  start-page: 203
  year: 2008
  ident: 10.1016/j.envpol.2021.116758_bib54
  article-title: Toxic effects of arsenic on Sinorhizobiume Medicago sativa symbiotic interaction
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.10.015
– volume: 26
  start-page: 316
  issue: 3
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib34
  article-title: Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils
  publication-title: Environ. Rev.
  doi: 10.1139/er-2018-0023
– volume: 177
  start-page: 323
  year: 2010
  ident: 10.1016/j.envpol.2021.116758_bib13
  article-title: “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.12.035
– volume: 9
  start-page: 542
  issue: 11
  year: 2018
  ident: 10.1016/j.envpol.2021.116758_bib17
  article-title: Harnessing rhizobia to improve heavy-metal phytoremediation by legumes
  publication-title: Genes
  doi: 10.3390/genes9110542
– volume: 6
  start-page: 863
  year: 2015
  ident: 10.1016/j.envpol.2021.116758_bib26
  article-title: Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00863
– volume: 114744
  year: 2020
  ident: 10.1016/j.envpol.2021.116758_bib22
  article-title: Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils
  publication-title: Environ. Pollut.
– volume: 390
  start-page: 337
  year: 2015
  ident: 10.1016/j.envpol.2021.116758_bib18
  article-title: Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2410-z
– volume: 8
  start-page: 199
  issue: 3
  year: 2010
  ident: 10.1016/j.envpol.2021.116758_bib51
  article-title: Heavy metals, occurrence and toxicity for plants: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-010-0297-8
– volume: 346
  start-page: 256
  issue: 1–3
  year: 2005
  ident: 10.1016/j.envpol.2021.116758_bib60
  article-title: Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater
  publication-title: Sci. Total Environ.
SSID ssj0004333
Score 2.6333914
Snippet Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116758
SubjectTerms Acidobacteria
Actinobacteria
alfalfa
antioxidant enzymes
bacterial communities
Cadmium - toxicity
carbon
Chloroflexi
Co-inoculation
community structure
fungal communities
Fungi
lipid peroxidation
Medicago sativa
Microbial community
microbiome
Mycorrhizae - chemistry
Plant Roots - chemistry
pollution
Proteobacteria
reactive oxygen species
Rhizobium
Rhizosphere
Soil
Soil heavy metal
Soil Microbiology
Soil Pollutants - analysis
Soil Pollutants - toxicity
Symbiotic microbes
vesicular arbuscular mycorrhizae
Title Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil
URI https://dx.doi.org/10.1016/j.envpol.2021.116758
https://www.ncbi.nlm.nih.gov/pubmed/33652182
https://www.proquest.com/docview/2496245959
https://www.proquest.com/docview/2552018894
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELam8TIeEHQMOmC6SYg3r0lsp8ljVW0qQ-wFJu3NcmJ7CuqSau2Q9sIf4E9zFzsbSMCkSXlpeoms3Nn3nf3dHWPvc-lM7nzKXVY7jv5acGON5L7CoLnMvHGScoc_n-WLc3l6oS622HzIhSFaZVz7w5rer9bxziR-zcmqaSZfMHpAMFxSBawEAy1K4pNySlZ-9OOe5iFFaCePwpykh_S5nuPl2u-rjg4gsvSIDiSo8fvf3dO_4Gfvhk6es2cRP8IsDPEF23LtiO3OWoydr27hA_SMzn6rfMSe_lZscMT2ju9z2vANcVKvd9nPsLHQ7xNC58EsPV2AgTiBSxQCc2kaxJEwtxCSSyD294Fr4uxVjQHTWjCookBshatbDGvpTwPoOi8bqDvetF0du4VB0-LLOBHlDZFxEPfCumuWL9n5yfHX-YLHHg28lnm64QIRUVYVBsOeSlC_T5zRzohcGoXIzjqbqMR65ZPClYmy0hR1JUqR5t4m3ldS7LHttmvdawaqSJwtszpDs8GVxBsq9je1orbSIkjxYyYG1eg6FjCnPhpLPTDVvumgUE0K1UGhY8bvnlqFAh4PyE8Hres_DFGjj3ngycPBSDTOUTp4Ma3rbtYaQ9w8k6pU5X9k8HslaVGUcsxeBQu7G68QuaJK-_uPHtsbtkO_iPaQqrdse3N9494hmtpUB_10OWBPZh8_Lc5-ARByIlk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOCLa0LL9GAm7uJrGdJgcOVWm1pT8XWqk348R2FbRNVt0taC-8AI_DCzKTOC1IQCWkSnvaOJblmcx8Y38zA_A6lc6kzsfcJaXj6K8FN9ZI7gsMmvPEGycpd_jgMB0fyw8n6mQJfvS5MESrDLa_s-mttQ7_jMJujqZVNfqI0QOC4ZwqYEUYaOWBWbnnFl8xbpu9232PQn6TJDvbR1tjHloL8FKm8ZwLdORJkRlE64WgNpWoiM6IVBqFgMQ6G6nIeuWjzOWRstJkZSFyEafeRt4XUuC8t-C2RHNBbRPWv13xSqTo-tfj6jgtr8_Xa0llrv4ybejGI4nX6QaEOs3_2R_-De-2fm_nAdwPgJVtdnvyEJZcPYCVzRqD9bMFe8taCml7Nj-Ae79UNxzA6vZVEh3OEKzIbAW-dycZ7cEkazwzE08_hpE_oVkcxMypqRC4si3LumwWFhoKsXMiCRaVYaa2zKBOdExadrbAOJoeGoa--rRiZcOruilDezJW1TgZJ2a-IfYPAm02a6rJIzi-EcmtwnLd1O4xMJVFzuZJmaCeounyhqoLblhRWmkRFfkhiF40ugwV06lxx0T31LjPuhOoJoHqTqBD4JdvTbuKIdeM3-ilrn_TfI1O7Zo3X_VKotEo0E2PqV1zMdMYU6eJVLnK_zEG9yuKsyyXQ1jrNOxyvUKkikr7P_nvtb2EO-Ojg329v3u49xTu0hPiXMTqGSzPzy_cc4Ry8-JF--kw-HTT3-pPhmpc8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+alfalfa+resistance+against+Cd+stress+through+rhizobia+and+arbuscular+mycorrhiza+fungi+co-inoculation+in+Cd-contaminated+soil&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Wang%2C+Xia&rft.au=Fang%2C+Linchuan&rft.au=Beiyuan%2C+Jingzi&rft.au=Cui%2C+Yongxing&rft.date=2021-05-15&rft.issn=0269-7491&rft.volume=277&rft.spage=116758&rft_id=info:doi/10.1016%2Fj.envpol.2021.116758&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2021_116758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon