Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil
Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes co...
Saved in:
Published in | Environmental pollution (1987) Vol. 277; p. 116758 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.
[Display omitted]
•Co-inoculation maximized the plant resistance to Cd stress.•Alpha diversity of rhizosphere bacteria and fungi reversely responded to inoculation.•Bacterial taxa change induced by inoculation determined plant resistance improvement.•Bacterial indicator species in rhizosphere regulated plant to take up nutrients.
Rhizobia and AMF co-inoculation can alter key bacterial taxa of rhizosphere soil and enhance alfalfa to uptake nutrients, which improves plant resistance to Cd stress. |
---|---|
AbstractList | Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement. Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement. [Display omitted] •Co-inoculation maximized the plant resistance to Cd stress.•Alpha diversity of rhizosphere bacteria and fungi reversely responded to inoculation.•Bacterial taxa change induced by inoculation determined plant resistance improvement.•Bacterial indicator species in rhizosphere regulated plant to take up nutrients. Rhizobia and AMF co-inoculation can alter key bacterial taxa of rhizosphere soil and enhance alfalfa to uptake nutrients, which improves plant resistance to Cd stress. Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa' ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa' ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa' ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa' ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement. |
ArticleNumber | 116758 |
Author | Peng, Qi Wang, Man Fang, Linchuan Zhang, Xingchang Wang, Xia Zhu, Shilei Beiyuan, Jingzi Cui, Yongxing |
Author_xml | – sequence: 1 givenname: Xia surname: Wang fullname: Wang, Xia organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China – sequence: 2 givenname: Linchuan surname: Fang fullname: Fang, Linchuan email: flinc629@hotmail.com organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China – sequence: 3 givenname: Jingzi orcidid: 0000-0001-5846-6071 surname: Beiyuan fullname: Beiyuan, Jingzi organization: School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China – sequence: 4 givenname: Yongxing surname: Cui fullname: Cui, Yongxing organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China – sequence: 5 givenname: Qi surname: Peng fullname: Peng, Qi organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China – sequence: 6 givenname: Shilei surname: Zhu fullname: Zhu, Shilei organization: College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China – sequence: 7 givenname: Man surname: Wang fullname: Wang, Man organization: East China Mineral Exploration and Development Bureau, Nanjing, Jiangsu Province, 210007, China – sequence: 8 givenname: Xingchang surname: Zhang fullname: Zhang, Xingchang organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33652182$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2KFDEUhYOMOD2jbyCSpZtq898pF4I0jg4MuNF1SKVudaepStok1TC-gi9tanpm40KFQCD3nO-Sc67QRYgBEHpNyZoSqt4d1hBOxziuGWF0TanaSP0Mraje8EYJJi7QijDVNhvR0kt0lfOBECI45y_QJedKMqrZCv26nY4pnmCCUHAcsB2H5eAE2edigwNsd9aHXPC2x7nU94zLPsV5t8dp73_GzltsQ49t6ubs5tEmPN27mJahxcMcdh672PgQl2HxMWAfKqxxMRQ7-WALVHL040v0vC7P8Orxvkbfbz59235p7r5-vt1-vGucULQ0XFHJOm31RnacES1pq8ByJayUjPXQE0n6QQ5EQ0tkL6x2HW85VUNPhqET_Bq9PXPrz3_MkIuZfHYwjjZAnLNhlUOo1u1_SEWrmJCtbKv0zaN07ibozTH5yaZ785R1Fbw_C1yKOScYjPPlIZCSrB8NJWYp1hzMuVizFGvOxVaz-MP8xP-H7cPZBjXPk4dksvNQW-19AldMH_3fAb8ByHjA_w |
CitedBy_id | crossref_primary_10_1007_s11104_024_06954_7 crossref_primary_10_1016_j_stress_2024_100391 crossref_primary_10_1016_j_ecoenv_2024_117288 crossref_primary_10_1016_j_scitotenv_2023_168397 crossref_primary_10_1016_j_jwpe_2024_105360 crossref_primary_10_3390_plants11192554 crossref_primary_10_1016_j_envpol_2024_125224 crossref_primary_10_1007_s00253_024_13153_y crossref_primary_10_3390_f14040731 crossref_primary_10_1016_j_jhazmat_2023_130982 crossref_primary_10_1021_acsagscitech_2c00273 crossref_primary_10_1016_j_jes_2024_08_026 crossref_primary_10_3390_f14071492 crossref_primary_10_1007_s42729_024_02112_1 crossref_primary_10_1002_advs_202306389 crossref_primary_10_1016_j_envres_2022_113749 crossref_primary_10_1016_j_apsoil_2024_105375 crossref_primary_10_1007_s42729_024_01667_3 crossref_primary_10_1016_j_scitotenv_2022_154136 crossref_primary_10_1016_j_chemosphere_2021_131567 crossref_primary_10_1016_j_envpol_2024_123456 crossref_primary_10_3389_fmicb_2021_781831 crossref_primary_10_1016_j_jhazmat_2022_128829 crossref_primary_10_1016_j_jenvman_2023_119284 crossref_primary_10_1016_j_jhazmat_2024_134370 crossref_primary_10_1007_s42832_023_0203_5 crossref_primary_10_1007_s42729_024_01874_y crossref_primary_10_1007_s11104_024_06913_2 crossref_primary_10_3390_pr11051523 crossref_primary_10_1007_s11356_022_21818_2 crossref_primary_10_1016_j_ecoenv_2024_116418 crossref_primary_10_1016_j_scitotenv_2022_160324 crossref_primary_10_3390_agronomy14091913 crossref_primary_10_1186_s12866_022_02488_z crossref_primary_10_1016_j_bcab_2022_102332 crossref_primary_10_1016_j_scienta_2024_112879 crossref_primary_10_1016_j_scienta_2024_113328 crossref_primary_10_1007_s10653_024_01956_x crossref_primary_10_1016_j_agwat_2022_107925 crossref_primary_10_1016_j_scitotenv_2022_160736 crossref_primary_10_32604_phyton_2024_050759 crossref_primary_10_1186_s12866_024_03252_1 crossref_primary_10_1128_msystems_01049_22 crossref_primary_10_3389_fpls_2024_1458342 crossref_primary_10_3390_plants12091750 crossref_primary_10_3389_fmicb_2023_1302775 crossref_primary_10_1038_s41598_025_93244_6 crossref_primary_10_3390_ijms23095031 crossref_primary_10_1007_s10532_024_10080_7 crossref_primary_10_1016_j_envexpbot_2021_104669 crossref_primary_10_1016_j_eti_2024_103936 crossref_primary_10_3390_f14050862 crossref_primary_10_1016_j_scitotenv_2023_168994 crossref_primary_10_1016_j_ecoenv_2024_116313 crossref_primary_10_1016_j_jhazmat_2024_134581 crossref_primary_10_1016_j_jhazmat_2023_132280 crossref_primary_10_1016_j_scitotenv_2022_155671 crossref_primary_10_1007_s11104_023_06407_7 crossref_primary_10_1111_ppl_14205 crossref_primary_10_1016_j_plaphy_2023_02_007 crossref_primary_10_1093_hr_uhae018 crossref_primary_10_1016_j_catena_2021_106002 crossref_primary_10_1016_j_scitotenv_2023_166056 crossref_primary_10_1016_j_jhazmat_2022_130425 crossref_primary_10_1016_j_rhisph_2022_100599 crossref_primary_10_1016_j_apsoil_2024_105735 crossref_primary_10_1016_j_apsoil_2023_104901 crossref_primary_10_1007_s10653_025_02438_4 crossref_primary_10_3389_fenvs_2022_1059800 crossref_primary_10_3389_fmicb_2022_868312 crossref_primary_10_1007_s11356_022_19165_3 crossref_primary_10_1007_s11104_024_06836_y crossref_primary_10_3389_fsufs_2021_817932 crossref_primary_10_1016_j_chemosphere_2022_133577 crossref_primary_10_1016_j_envpol_2024_124979 crossref_primary_10_1016_j_jhazmat_2022_130376 crossref_primary_10_1016_j_chemosphere_2024_141349 crossref_primary_10_1016_j_rhisph_2023_100802 crossref_primary_10_1016_j_sajb_2023_12_045 crossref_primary_10_3390_microorganisms11010069 crossref_primary_10_1016_j_chemosphere_2021_132209 crossref_primary_10_1016_j_jenvman_2024_122206 crossref_primary_10_3390_plants11162161 crossref_primary_10_1016_j_scitotenv_2021_150282 crossref_primary_10_1007_s11104_024_07047_1 crossref_primary_10_1002_saj2_20528 crossref_primary_10_1016_j_chemosphere_2023_138517 crossref_primary_10_1007_s11270_023_06314_8 crossref_primary_10_1016_j_jhazmat_2024_133556 crossref_primary_10_1016_j_scitotenv_2021_151802 crossref_primary_10_1007_s10653_024_02141_w crossref_primary_10_1007_s42729_024_02207_9 crossref_primary_10_1007_s00344_024_11550_1 crossref_primary_10_3389_fpls_2023_1064732 crossref_primary_10_1016_j_eti_2024_103924 crossref_primary_10_3389_fmicb_2022_1008451 crossref_primary_10_1016_j_apsoil_2023_104842 crossref_primary_10_1007_s11356_024_33182_4 crossref_primary_10_3389_fmicb_2022_1106254 crossref_primary_10_1016_j_sajb_2023_11_023 crossref_primary_10_1016_j_scitotenv_2022_160542 crossref_primary_10_3390_agronomy13020504 crossref_primary_10_1016_j_jhazmat_2023_131866 crossref_primary_10_1007_s11356_021_16076_7 crossref_primary_10_3390_jof10030182 crossref_primary_10_1016_j_rhisph_2023_100669 crossref_primary_10_1016_j_chemosphere_2024_142737 |
Cites_doi | 10.1080/00103620009370485 10.1038/s41579-018-0024-1 10.1146/annurev-arplant-050312-120106 10.1016/j.apsoil.2015.10.016 10.1007/BF00007874 10.1016/j.chemosphere.2016.12.093 10.1071/AR9770639 10.1111/mpp.12393 10.1016/j.soilbio.2013.04.005 10.1007/s00344-017-9750-2 10.1016/j.biotechadv.2012.04.011 10.1007/s10653-008-9150-4 10.1016/j.jhazmat.2020.123919 10.3389/fmicb.2016.00341 10.1007/s11368-019-02304-8 10.1016/j.ecoenv.2018.10.016 10.1128/mBio.01790-16 10.1016/j.ecoenv.2019.109504 10.1016/j.chemosphere.2018.01.102 10.1038/nprot.2007.141 10.1016/j.chemosphere.2011.01.041 10.1007/s11356-017-9029-y 10.1016/j.apsoil.2019.103450 10.1007/s11104-016-2893-2 10.1086/286117 10.1016/j.tplants.2012.04.001 10.1007/BF00007878 10.1016/j.geoderma.2018.11.047 10.1016/j.ecoenv.2018.07.047 10.1007/s00244-005-5076-3 10.1034/j.1399-3054.1991.820407.x 10.1016/S0734-9750(03)00055-7 10.1080/10643389.2017.1400853 10.1016/j.soilbio.2005.08.012 10.1016/j.phytochem.2006.09.023 10.1007/s11738-009-0436-7 10.3390/microorganisms8111695 10.1007/s11104-019-04032-x 10.1016/j.ecoenv.2018.03.015 10.1093/jxb/erj073 10.1111/j.1365-294X.1993.tb00005.x 10.1111/j.1461-0248.2009.01388.x 10.1186/s40168-016-0220-z 10.1016/j.soilbio.2016.08.021 10.1139/w11-044 10.1371/journal.pgen.1000255 10.1111/j.1469-8137.1987.tb04685.x 10.7717/peerj.6875 10.1016/j.soilbio.2020.107817 10.1007/s13313-018-0543-2 10.1016/j.scitotenv.2018.10.185 10.1016/j.envpol.2007.10.015 10.1139/er-2018-0023 10.1016/j.jhazmat.2009.12.035 10.3390/genes9110542 10.3389/fpls.2015.00863 10.1007/s11104-015-2410-z 10.1007/s10311-010-0297-8 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2021.116758 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 33652182 10_1016_j_envpol_2021_116758 S0269749121003389 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW SSH VH1 WUQ XJT XOL CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-36152b8a875b32085196ea364a5522ded050df5f08e905d4a8cb39316fd0ffb43 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Jul 10 19:16:06 EDT 2025 Fri Jul 11 08:16:49 EDT 2025 Wed Feb 19 02:27:56 EST 2025 Thu Apr 24 23:16:01 EDT 2025 Tue Jul 01 03:15:07 EDT 2025 Fri Feb 23 02:46:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rhizosphere Soil heavy metal Microbial community Symbiotic microbes Co-inoculation |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-36152b8a875b32085196ea364a5522ded050df5f08e905d4a8cb39316fd0ffb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5846-6071 |
PMID | 33652182 |
PQID | 2496245959 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2552018894 proquest_miscellaneous_2496245959 pubmed_primary_33652182 crossref_citationtrail_10_1016_j_envpol_2021_116758 crossref_primary_10_1016_j_envpol_2021_116758 elsevier_sciencedirect_doi_10_1016_j_envpol_2021_116758 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sharma, Dietz (bib61) 2006; 57 Mnasri, Janoušková, Rydlová, Abdelly, Ghnaya (bib50) 2017; 171 Houba, Lexmond, Novozamsky, Lee (bib33) 1996; 178 Glick (bib27) 2003; 21 Zhang, He, Chen, Wang, Qian, Sheng (bib71) 2011; 83 Solans, Vobis, Jozsa, Wall (bib64) 2016 Huse, Dethlefsen, Huber, Welch, Relman, Sogin (bib37) 2008; 4 Ahmad, Zahir, Asghar, Asghar (bib2) 2011; 57 Pajuelo, Rodríguez, Dary, Palomares (bib54) 2008; 154 Kaur, Garg (bib43) 2018; 37 Hillebrand, Matthiessen (bib32) 2009; 12 Ashraf, Hussain, Rasheed, Iqbal, Riaz, Arif (bib3) 2017; 198 Li, Guo, Sun, Li, Gao, Xu, Li (bib48) 2019; 19 Duan, Fang, Yang, Chen, Cui, Li (bib16) 2018; 156 Reed, Simon (bib58) 1991; 59 Fang, Ju, Yang, Jin, Liu, Li, Yu, Zhao, Zhang (bib22) 2020; 114744 Smilde, Luit, Driel (bib63) 1992; 143 Wood, Tang, Franks (bib70) 2016; 103 Hartman, Ga, Roussely, Walser, Schlaeppi (bib29) 2017; 5 Cui, Bing, Fang, Wu, Yu, Shen, Jiang, Wang, Zhang (bib12) 2019; 338 Ghnaya, Mnassri, Ghabriche, Wali, Poschenrieder, Lutts, Abdelly (bib26) 2015; 6 Quadros, Zhalnina, Davis, Jennifer, Fátima, Flávio, De, Eric (bib56) 2016; 98 Violante, Cozzolino, Perelomov, Caporale, Pigna (bib68) 2010; 10 Fuentes, Almonacid, Ocampo, Arriagada (bib23) 2016; 407 Zhang, Wang, Liu, Song, Fang (bib72) 2019; 439 Gardes, Bruns (bib25) 1993; 2 Ju, Jin, Liu, Shen, Zhao, Duan, Fang (bib41) 2020; 150 Lam, Lai (bib46) 2018; 162 Banerjee, Schlaeppi, Vand (bib5) 2018; 16 Jian, Bai, Zhang, Song, Li (bib38) 2019; 7 Kereszt, Li, Indrasumunar, Nguyen, Nontachaiyapoom, Kinkema, Gresshoff (bib44) 2007; 2 Huang, Wang, Wang, Li, He, Yang (bib36) 2019; 651 Hu, Wei, Friman, Gu, Wang, Eisenhauer, Yang, Ma, Shen, Xu, Jousset (bib35) 2016; 7 Wang (bib69) 2017; 47 Thijs, Wouter, Francois, Nele, Jaco (bib66) 2016; 7 Hildebrandt, Regvar, Bothe (bib31) 2007; 68 Tang, Shi, Zhong, Shen, Chen (bib65) 2018; 215 Fang, Wang, Cai, Cang (bib20) 2017; 24 Riffat, Masood (bib60) 2005; 346 Gao, Guo, Li, Duan (bib24) 2018; 47 Ben-Laouane, Baslam, Ait-El-Mokhtar, Anli, Boutasknit, Ait-Rahou, Meddich (bib6) 2020; 8 Ouzounidou, Moustakas, Symeonidis, Karataglis (bib53) 2006; 50 Hrynkiewicz, Złoch, Kowalkowski, Baum, Buszewski (bib34) 2018; 26 Colpaert, Assche (bib11) 1992; 143 Kong, Wu, Glick, He, Huang, Wu (bib45) 2019; 183 Baker (bib4) 1987; 106 Ju, Liu, Fang, Cui, Duan, Wu (bib40) 2019; 167 (bib67) 1998 Fan, Xiao, Guo, Zhang, Wang, Chen, Li, Wei (bib19) 2018; 197 Shen, Yang, Xiao, Zhou (bib62) 2020 Fagorzi, Checcucci, DiCenzo, Debiec, Dziewit, Pini, Mengoni (bib17) 2018; 9 Doak, Bigger, Harding, Marvier, O’malley, Thomson (bib15) 1998; 151 Bulgarelli, Schlaeppi, Spaepen, Van, Schulze-Lefert (bib9) 2013; 64 Nagajyoti, Lee, Sreekanth (bib51) 2010; 8 De Vos, Schat, De, Vooijs, Ernst (bib14) 1991; 82 Lu, Li, He, Zhao, Liu, Cui, Pan, Tan (bib49) 2010; 32 Riaz, Kamran, Fang, Wang, Cao, Yang, Wang (bib59) 2020; 402 Fan, Hu, Huang, Huang, Li, Palta (bib18) 2015; 390 Berendsen, Pieterse, Bakker (bib7) 2012; 17 Chanclud, Morel (bib10) 2016; 17 Bremner, Mulvaney (bib8) 1982 Dary, Chamber-Perez, Palomares, Pajuelo (bib13) 2010; 177 Gomez, Jumpponen, Gonzales, Cusicanquid, Valdiviae, Motavallif, Hermanb, Garrett (bib28) 2013; 65 Olsen, Sommers (bib52) 1982 Rajkumar, Sandhya, Prasad, Freitas (bib57) 2012; 30 Kachurina, Zhang, Raun, Krenzer (bib42) 2000; 31 Jones, Willett (bib39) 2006; 38 Abbott, Robson (bib1) 1977; 28 Hernandez, Pastor (bib30) 2008; 30 Glick (10.1016/j.envpol.2021.116758_bib27) 2003; 21 Gao (10.1016/j.envpol.2021.116758_bib24) 2018; 47 Sharma (10.1016/j.envpol.2021.116758_bib61) 2006; 57 Fagorzi (10.1016/j.envpol.2021.116758_bib17) 2018; 9 Tang (10.1016/j.envpol.2021.116758_bib65) 2018; 215 Ju (10.1016/j.envpol.2021.116758_bib40) 2019; 167 Fan (10.1016/j.envpol.2021.116758_bib18) 2015; 390 Pajuelo (10.1016/j.envpol.2021.116758_bib54) 2008; 154 Solans (10.1016/j.envpol.2021.116758_bib64) 2016 Violante (10.1016/j.envpol.2021.116758_bib68) 2010; 10 Hildebrandt (10.1016/j.envpol.2021.116758_bib31) 2007; 68 Mnasri (10.1016/j.envpol.2021.116758_bib50) 2017; 171 Hrynkiewicz (10.1016/j.envpol.2021.116758_bib34) 2018; 26 Hu (10.1016/j.envpol.2021.116758_bib35) 2016; 7 Thijs (10.1016/j.envpol.2021.116758_bib66) 2016; 7 Olsen (10.1016/j.envpol.2021.116758_bib52) 1982 Ben-Laouane (10.1016/j.envpol.2021.116758_bib6) 2020; 8 Berendsen (10.1016/j.envpol.2021.116758_bib7) 2012; 17 Smilde (10.1016/j.envpol.2021.116758_bib63) 1992; 143 Fan (10.1016/j.envpol.2021.116758_bib19) 2018; 197 Lam (10.1016/j.envpol.2021.116758_bib46) 2018; 162 Riffat (10.1016/j.envpol.2021.116758_bib60) 2005; 346 Bulgarelli (10.1016/j.envpol.2021.116758_bib9) 2013; 64 Ghnaya (10.1016/j.envpol.2021.116758_bib26) 2015; 6 Nagajyoti (10.1016/j.envpol.2021.116758_bib51) 2010; 8 (10.1016/j.envpol.2021.116758_bib67) 1998 Zhang (10.1016/j.envpol.2021.116758_bib72) 2019; 439 Ahmad (10.1016/j.envpol.2021.116758_bib2) 2011; 57 Fuentes (10.1016/j.envpol.2021.116758_bib23) 2016; 407 Li (10.1016/j.envpol.2021.116758_bib48) 2019; 19 Kaur (10.1016/j.envpol.2021.116758_bib43) 2018; 37 Abbott (10.1016/j.envpol.2021.116758_bib1) 1977; 28 Hartman (10.1016/j.envpol.2021.116758_bib29) 2017; 5 Dary (10.1016/j.envpol.2021.116758_bib13) 2010; 177 Hillebrand (10.1016/j.envpol.2021.116758_bib32) 2009; 12 Duan (10.1016/j.envpol.2021.116758_bib16) 2018; 156 Bremner (10.1016/j.envpol.2021.116758_bib8) 1982 Ju (10.1016/j.envpol.2021.116758_bib41) 2020; 150 Riaz (10.1016/j.envpol.2021.116758_bib59) 2020; 402 Ouzounidou (10.1016/j.envpol.2021.116758_bib53) 2006; 50 Huang (10.1016/j.envpol.2021.116758_bib36) 2019; 651 Wood (10.1016/j.envpol.2021.116758_bib70) 2016; 103 Fang (10.1016/j.envpol.2021.116758_bib20) 2017; 24 Zhang (10.1016/j.envpol.2021.116758_bib71) 2011; 83 Lu (10.1016/j.envpol.2021.116758_bib49) 2010; 32 Rajkumar (10.1016/j.envpol.2021.116758_bib57) 2012; 30 Chanclud (10.1016/j.envpol.2021.116758_bib10) 2016; 17 Shen (10.1016/j.envpol.2021.116758_bib62) 2020 Fang (10.1016/j.envpol.2021.116758_bib22) 2020; 114744 Hernandez (10.1016/j.envpol.2021.116758_bib30) 2008; 30 Baker (10.1016/j.envpol.2021.116758_bib4) 1987; 106 Huse (10.1016/j.envpol.2021.116758_bib37) 2008; 4 Houba (10.1016/j.envpol.2021.116758_bib33) 1996; 178 Colpaert (10.1016/j.envpol.2021.116758_bib11) 1992; 143 Ashraf (10.1016/j.envpol.2021.116758_bib3) 2017; 198 Banerjee (10.1016/j.envpol.2021.116758_bib5) 2018; 16 Wang (10.1016/j.envpol.2021.116758_bib69) 2017; 47 Kereszt (10.1016/j.envpol.2021.116758_bib44) 2007; 2 Quadros (10.1016/j.envpol.2021.116758_bib56) 2016; 98 Doak (10.1016/j.envpol.2021.116758_bib15) 1998; 151 Gomez (10.1016/j.envpol.2021.116758_bib28) 2013; 65 Reed (10.1016/j.envpol.2021.116758_bib58) 1991; 59 Jian (10.1016/j.envpol.2021.116758_bib38) 2019; 7 Gardes (10.1016/j.envpol.2021.116758_bib25) 1993; 2 De Vos (10.1016/j.envpol.2021.116758_bib14) 1991; 82 Jones (10.1016/j.envpol.2021.116758_bib39) 2006; 38 Kachurina (10.1016/j.envpol.2021.116758_bib42) 2000; 31 Kong (10.1016/j.envpol.2021.116758_bib45) 2019; 183 Cui (10.1016/j.envpol.2021.116758_bib12) 2019; 338 |
References_xml | – volume: 177 start-page: 323 year: 2010 end-page: 330 ident: bib13 article-title: “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria publication-title: J. Hazard Mater. – volume: 2 start-page: 948 year: 2007 end-page: 952 ident: bib44 article-title: Agrobacterium rhizogenes-mediated transformation of soybean to study root biology publication-title: Nat. Protoc. – volume: 197 start-page: 729 year: 2018 end-page: 740 ident: bib19 article-title: Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function publication-title: Chemosphere – volume: 346 start-page: 256 year: 2005 end-page: 273 ident: bib60 article-title: Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater publication-title: Sci. Total Environ. – volume: 2 start-page: 113 year: 1993 end-page: 118 ident: bib25 article-title: ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts publication-title: Mol. Ecol. – volume: 26 start-page: 316 year: 2018 end-page: 332 ident: bib34 article-title: Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils publication-title: Environ. Rev. – volume: 28 start-page: 639 year: 1977 end-page: 649 ident: bib1 article-title: Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas publication-title: Aust. J. Agric. Res. – volume: 65 start-page: 50 year: 2013 end-page: 59 ident: bib28 article-title: Do bacterial and fungal communities in soils of the Bolivian Altiplano change under shorter fallow periods? publication-title: Soil Biol. Biochem. – volume: 50 start-page: 346 year: 2006 end-page: 352 ident: bib53 article-title: Response of wheat seedlings to Ni stress: effects of supplemental calcium publication-title: Arch. Environ. Contam. Toxicol. – volume: 7 year: 2016 ident: bib35 article-title: Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression publication-title: mBio – volume: 30 start-page: 127 year: 2008 end-page: 133 ident: bib30 article-title: Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine publication-title: Environ. Geochem. Health. – volume: 338 start-page: 118 year: 2019 end-page: 127 ident: bib12 article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau publication-title: Geoderma – volume: 651 start-page: 3034 year: 2019 end-page: 3042 ident: bib36 article-title: Current status of agricultural soil pollution by heavy metals in China: a meta-analysis publication-title: Sci. Total Environ. – volume: 154 start-page: 203 year: 2008 end-page: 211 ident: bib54 article-title: Toxic effects of arsenic on Sinorhizobiume Medicago sativa symbiotic interaction publication-title: Environ. Pollut. – volume: 83 start-page: 57 year: 2011 end-page: 62 ident: bib71 article-title: Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus publication-title: Chemosphere – start-page: 595 year: 1982 end-page: 624 ident: bib8 article-title: Nitrogen-total publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties – volume: 5 start-page: 2 year: 2017 ident: bib29 article-title: Deciphering composition and function of the root microbiome of a legume plant publication-title: Microbiome – volume: 68 start-page: 139 year: 2007 end-page: 146 ident: bib31 article-title: Arbuscular mycorrhiza and heavy metal tolerance publication-title: Phytochemistry – volume: 4 year: 2008 ident: bib37 article-title: Exploring microbial diversity and taxonomy using ssu rrna hypervariable tag sequencing publication-title: PLoS Genet. – volume: 47 start-page: 1901 year: 2017 end-page: 1957 ident: bib69 article-title: Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 171 start-page: 476 year: 2017 end-page: 484 ident: bib50 article-title: Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network publication-title: Chemosphere – volume: 183 start-page: 109504 year: 2019 ident: bib45 article-title: Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils publication-title: Ecotoxiol. Environ. Safe. – volume: 32 start-page: 583 year: 2010 end-page: 590 ident: bib49 article-title: Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial ( publication-title: Acta Physiol. Plant. – volume: 64 start-page: 807 year: 2013 end-page: 838 ident: bib9 article-title: Structure and functions of the bacterial microbiota of plants publication-title: Annu. Rev. Plant Biol. – volume: 10 start-page: 268 year: 2010 end-page: 292 ident: bib68 article-title: Mobility and bioavailability of heavy metals and metalloids in soil environments publication-title: J. Soil Sci. Plant Nutr. – volume: 106 start-page: 93 year: 1987 end-page: 111 ident: bib4 article-title: Metal tolerance publication-title: New Phytol. – volume: 57 start-page: 711 year: 2006 end-page: 726 ident: bib61 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress publication-title: J. Exp. Bot. – volume: 9 start-page: 542 year: 2018 ident: bib17 article-title: Harnessing rhizobia to improve heavy-metal phytoremediation by legumes publication-title: Genes – volume: 402 start-page: 123919 year: 2020 ident: bib59 article-title: Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review publication-title: J. Hazard Mater. – volume: 6 start-page: 863 year: 2015 ident: bib26 article-title: Nodulation by publication-title: Front. Plant Sci. – volume: 198 start-page: 132 year: 2017 end-page: 143 ident: bib3 article-title: Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review publication-title: J. Environ. Manag. – volume: 407 start-page: 355 year: 2016 end-page: 366 ident: bib23 article-title: Synergistic interactions between a saprophytic fungal consortium and rhizophagus irregularisalleviate oxidative stress in plants grown in heavy metal contaminated soil publication-title: Plant Soil – volume: 7 start-page: e6875 year: 2019 ident: bib38 article-title: Promotion of growth and metal accumulation of alfalfa by co-inoculation with publication-title: PeerJ – year: 2016 ident: bib64 article-title: Synergy of Actinomycete Co-inoculation. Plant Growth Promoting Actinobacteria – volume: 103 start-page: 131 year: 2016 end-page: 137 ident: bib70 article-title: Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils publication-title: Soil Biol. Biochem. – volume: 143 start-page: 233 year: 1992 end-page: 238 ident: bib63 article-title: The extraction by soil and absorption by plants of applied zinc and cadmium publication-title: Plant Soil – volume: 215 year: 2018 ident: bib65 article-title: Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals publication-title: Chemosphere – volume: 37 start-page: 680 year: 2018 end-page: 693 ident: bib43 article-title: Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants publication-title: J. Plant Growth Regul. – volume: 59 start-page: 81 year: 1991 end-page: 94 ident: bib58 article-title: Soil heavy metal concentrations and erosion damage in upland grasslands in the pennines, england publication-title: Water, Air, Soil Pollut. – year: 2020 ident: bib62 article-title: Increased contribution of root exudates to soil carbon input during grassland degradation publication-title: Soil Biol. Biochem. – volume: 178 start-page: 28 year: 1996 ident: bib33 article-title: State of the art and future developments in soil analysis for bioavailability assessment publication-title: Sci. Total Environ. – volume: 21 start-page: 383 year: 2003 end-page: 393 ident: bib27 article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment publication-title: Biotechnol. Adv. – volume: 16 start-page: 567 year: 2018 end-page: 576 ident: bib5 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat. Rev. Microbiol. – volume: 82 start-page: 523 year: 1991 end-page: 528 ident: bib14 article-title: Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus publication-title: Physiol. Plantarum – volume: 8 start-page: 1695 year: 2020 ident: bib6 article-title: Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity publication-title: Microorganisms – volume: 31 start-page: 893 year: 2000 end-page: 903 ident: bib42 article-title: Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1Mpotassiumchloride extraction publication-title: Commun. Soil Sci. Plant Anal. – volume: 19 start-page: 3008 year: 2019 end-page: 3017 ident: bib48 article-title: Detoxification effect of single inoculation and co-inoculation of publication-title: J. Soils Sediments – volume: 7 start-page: 341 year: 2016 ident: bib66 article-title: Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism publication-title: Front. Microbiol. – volume: 98 start-page: 195 year: 2016 end-page: 203 ident: bib56 article-title: Coal mining practices reduce the microbial biomass, richness and diversity of soil publication-title: Appl. Soil Ecol. – volume: 57 start-page: 578 year: 2011 end-page: 589 ident: bib2 article-title: Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase publication-title: Can. J. Microbiol. – volume: 17 start-page: 478 year: 2012 end-page: 486 ident: bib7 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci. – volume: 24 start-page: 14627 year: 2017 end-page: 14636 ident: bib20 article-title: Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils publication-title: Environ. Sci. Pollut. Res. Int. – volume: 156 start-page: 106 year: 2018 end-page: 115 ident: bib16 article-title: Reveal the response of enzyme activities to heavy metals through in situ zymography publication-title: Ecotoxiol. Environ. Safe. – volume: 47 start-page: 195 year: 2018 end-page: 203 ident: bib24 article-title: Effects of dual inoculation of AMF and rhizobium on alfalfa (Medicago sativa) root rot caused by publication-title: Australas. Plant Pathol. – volume: 167 start-page: 218 year: 2019 end-page: 226 ident: bib40 article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil publication-title: Ecotoxiol. Environ. Safe. – volume: 390 start-page: 337 year: 2015 end-page: 349 ident: bib18 article-title: Soil inoculation with publication-title: Plant Soil – start-page: 403 year: 1982 end-page: 430 ident: bib52 article-title: Phosphorous publication-title: Methods of Soil Analysis, Part 2, Chemical and Microbial Properties – volume: 38 start-page: 991 year: 2006 end-page: 999 ident: bib39 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. – volume: 12 start-page: 1405 year: 2009 end-page: 1419 ident: bib32 article-title: Biodiversity in a complex world: consolidation and progress in functional biodiversity research publication-title: Ecol. Lett. – volume: 17 start-page: 1289 year: 2016 end-page: 1297 ident: bib10 article-title: Plant hormones: a fungal point of view publication-title: Mol. Plant Pathol. – volume: 162 start-page: 563 year: 2018 end-page: 570 ident: bib46 article-title: Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.) publication-title: Ecotoxiol. Environ. Safe. – volume: 439 start-page: 505 year: 2019 end-page: 523 ident: bib72 article-title: Impact of soil leachate on microbial biomass and diversity affected by plant diversity publication-title: Plant Soil – volume: 30 start-page: 1562 year: 2012 end-page: 1574 ident: bib57 article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation publication-title: Biotechnol. Adv. – volume: 150 year: 2020 ident: bib41 article-title: Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere publication-title: Appl. Soil Ecol. – year: 1998 ident: bib67 article-title: Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. SW-846: Test Methods for Evaluation of Solid Waste Physical and Chemical Methods – volume: 143 start-page: 201 year: 1992 end-page: 211 ident: bib11 article-title: Zinc toxicity in ectomycorrhizalpinus sylvestris publication-title: Plant Soil – volume: 151 start-page: 264 year: 1998 end-page: 276 ident: bib15 article-title: The statistical inevitability of stability-diversity relationships in community ecology publication-title: Am. Nat. – volume: 114744 year: 2020 ident: bib22 article-title: Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils publication-title: Environ. Pollut. – volume: 8 start-page: 199 year: 2010 end-page: 216 ident: bib51 article-title: Heavy metals, occurrence and toxicity for plants: a review publication-title: Environ. Chem. Lett. – volume: 31 start-page: 893 year: 2000 ident: 10.1016/j.envpol.2021.116758_bib42 article-title: Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1Mpotassiumchloride extraction publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620009370485 – volume: 16 start-page: 567 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib5 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0024-1 – volume: 64 start-page: 807 issue: 1 year: 2013 ident: 10.1016/j.envpol.2021.116758_bib9 article-title: Structure and functions of the bacterial microbiota of plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120106 – volume: 98 start-page: 195 year: 2016 ident: 10.1016/j.envpol.2021.116758_bib56 article-title: Coal mining practices reduce the microbial biomass, richness and diversity of soil publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.10.016 – volume: 143 start-page: 201 issue: 2 year: 1992 ident: 10.1016/j.envpol.2021.116758_bib11 article-title: Zinc toxicity in ectomycorrhizalpinus sylvestris publication-title: Plant Soil doi: 10.1007/BF00007874 – year: 1998 ident: 10.1016/j.envpol.2021.116758_bib67 – volume: 171 start-page: 476 year: 2017 ident: 10.1016/j.envpol.2021.116758_bib50 article-title: Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.093 – volume: 28 start-page: 639 year: 1977 ident: 10.1016/j.envpol.2021.116758_bib1 article-title: Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas publication-title: Aust. J. Agric. Res. doi: 10.1071/AR9770639 – volume: 17 start-page: 1289 issue: 8 year: 2016 ident: 10.1016/j.envpol.2021.116758_bib10 article-title: Plant hormones: a fungal point of view publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12393 – volume: 65 start-page: 50 issue: 5 year: 2013 ident: 10.1016/j.envpol.2021.116758_bib28 article-title: Do bacterial and fungal communities in soils of the Bolivian Altiplano change under shorter fallow periods? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.04.005 – volume: 37 start-page: 680 issue: 2 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib43 article-title: Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-017-9750-2 – volume: 30 start-page: 1562 issue: 6 year: 2012 ident: 10.1016/j.envpol.2021.116758_bib57 article-title: Perspectives of plant-associated microbes in heavy metal phytoremediation publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.04.011 – volume: 30 start-page: 127 issue: 2 year: 2008 ident: 10.1016/j.envpol.2021.116758_bib30 article-title: Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine publication-title: Environ. Geochem. Health. doi: 10.1007/s10653-008-9150-4 – volume: 10 start-page: 268 year: 2010 ident: 10.1016/j.envpol.2021.116758_bib68 article-title: Mobility and bioavailability of heavy metals and metalloids in soil environments publication-title: J. Soil Sci. Plant Nutr. – volume: 402 start-page: 123919 year: 2020 ident: 10.1016/j.envpol.2021.116758_bib59 article-title: Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123919 – volume: 7 start-page: 341 year: 2016 ident: 10.1016/j.envpol.2021.116758_bib66 article-title: Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00341 – volume: 19 start-page: 3008 issue: 7 year: 2019 ident: 10.1016/j.envpol.2021.116758_bib48 article-title: Detoxification effect of single inoculation and co-inoculation of oudemansiella radicata and serratia marcescens on Pb and fluoranthene co-contaminated soil publication-title: J. Soils Sediments doi: 10.1007/s11368-019-02304-8 – volume: 167 start-page: 218 year: 2019 ident: 10.1016/j.envpol.2021.116758_bib40 article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil publication-title: Ecotoxiol. Environ. Safe. doi: 10.1016/j.ecoenv.2018.10.016 – volume: 7 issue: 6 year: 2016 ident: 10.1016/j.envpol.2021.116758_bib35 article-title: Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression publication-title: mBio doi: 10.1128/mBio.01790-16 – volume: 178 start-page: 28 issue: 1–3 year: 1996 ident: 10.1016/j.envpol.2021.116758_bib33 article-title: State of the art and future developments in soil analysis for bioavailability assessment publication-title: Sci. Total Environ. – volume: 183 start-page: 109504 year: 2019 ident: 10.1016/j.envpol.2021.116758_bib45 article-title: Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils publication-title: Ecotoxiol. Environ. Safe. doi: 10.1016/j.ecoenv.2019.109504 – volume: 197 start-page: 729 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib19 article-title: Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.102 – start-page: 595 year: 1982 ident: 10.1016/j.envpol.2021.116758_bib8 article-title: Nitrogen-total – volume: 2 start-page: 948 year: 2007 ident: 10.1016/j.envpol.2021.116758_bib44 article-title: Agrobacterium rhizogenes-mediated transformation of soybean to study root biology publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.141 – volume: 215 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib65 article-title: Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals publication-title: Chemosphere – volume: 83 start-page: 57 issue: 1 year: 2011 ident: 10.1016/j.envpol.2021.116758_bib71 article-title: Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.01.041 – volume: 24 start-page: 14627 year: 2017 ident: 10.1016/j.envpol.2021.116758_bib20 article-title: Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-017-9029-y – volume: 150 year: 2020 ident: 10.1016/j.envpol.2021.116758_bib41 article-title: Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.103450 – volume: 407 start-page: 355 issue: 1–2 year: 2016 ident: 10.1016/j.envpol.2021.116758_bib23 article-title: Synergistic interactions between a saprophytic fungal consortium and rhizophagus irregularisalleviate oxidative stress in plants grown in heavy metal contaminated soil publication-title: Plant Soil doi: 10.1007/s11104-016-2893-2 – volume: 151 start-page: 264 issue: 3 year: 1998 ident: 10.1016/j.envpol.2021.116758_bib15 article-title: The statistical inevitability of stability-diversity relationships in community ecology publication-title: Am. Nat. doi: 10.1086/286117 – volume: 17 start-page: 478 year: 2012 ident: 10.1016/j.envpol.2021.116758_bib7 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.04.001 – volume: 143 start-page: 233 issue: 2 year: 1992 ident: 10.1016/j.envpol.2021.116758_bib63 article-title: The extraction by soil and absorption by plants of applied zinc and cadmium publication-title: Plant Soil doi: 10.1007/BF00007878 – volume: 338 start-page: 118 year: 2019 ident: 10.1016/j.envpol.2021.116758_bib12 article-title: Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau publication-title: Geoderma doi: 10.1016/j.geoderma.2018.11.047 – volume: 162 start-page: 563 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib46 article-title: Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the bioaccessibility of heavy metals in water spinach (Ipomoea aquatica Forsk.) publication-title: Ecotoxiol. Environ. Safe. doi: 10.1016/j.ecoenv.2018.07.047 – volume: 50 start-page: 346 issue: 3 year: 2006 ident: 10.1016/j.envpol.2021.116758_bib53 article-title: Response of wheat seedlings to Ni stress: effects of supplemental calcium publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/s00244-005-5076-3 – volume: 82 start-page: 523 issue: 4 year: 1991 ident: 10.1016/j.envpol.2021.116758_bib14 article-title: Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus publication-title: Physiol. Plantarum doi: 10.1034/j.1399-3054.1991.820407.x – volume: 21 start-page: 383 issue: 5 year: 2003 ident: 10.1016/j.envpol.2021.116758_bib27 article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(03)00055-7 – volume: 47 start-page: 1901 issue: 20 year: 2017 ident: 10.1016/j.envpol.2021.116758_bib69 article-title: Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2017.1400853 – volume: 38 start-page: 991 issue: 5 year: 2006 ident: 10.1016/j.envpol.2021.116758_bib39 article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.08.012 – start-page: 403 year: 1982 ident: 10.1016/j.envpol.2021.116758_bib52 article-title: Phosphorous – volume: 68 start-page: 139 issue: 1 year: 2007 ident: 10.1016/j.envpol.2021.116758_bib31 article-title: Arbuscular mycorrhiza and heavy metal tolerance publication-title: Phytochemistry doi: 10.1016/j.phytochem.2006.09.023 – volume: 32 start-page: 583 issue: 3 year: 2010 ident: 10.1016/j.envpol.2021.116758_bib49 article-title: Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-009-0436-7 – volume: 8 start-page: 1695 issue: 11 year: 2020 ident: 10.1016/j.envpol.2021.116758_bib6 article-title: Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity publication-title: Microorganisms doi: 10.3390/microorganisms8111695 – volume: 439 start-page: 505 issue: 1–2 year: 2019 ident: 10.1016/j.envpol.2021.116758_bib72 article-title: Impact of soil leachate on microbial biomass and diversity affected by plant diversity publication-title: Plant Soil doi: 10.1007/s11104-019-04032-x – volume: 156 start-page: 106 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib16 article-title: Reveal the response of enzyme activities to heavy metals through in situ zymography publication-title: Ecotoxiol. Environ. Safe. doi: 10.1016/j.ecoenv.2018.03.015 – volume: 57 start-page: 711 issue: 4 year: 2006 ident: 10.1016/j.envpol.2021.116758_bib61 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj073 – volume: 59 start-page: 81 issue: 1–2 year: 1991 ident: 10.1016/j.envpol.2021.116758_bib58 article-title: Soil heavy metal concentrations and erosion damage in upland grasslands in the pennines, england publication-title: Water, Air, Soil Pollut. – volume: 2 start-page: 113 year: 1993 ident: 10.1016/j.envpol.2021.116758_bib25 article-title: ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.1993.tb00005.x – volume: 12 start-page: 1405 year: 2009 ident: 10.1016/j.envpol.2021.116758_bib32 article-title: Biodiversity in a complex world: consolidation and progress in functional biodiversity research publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01388.x – volume: 198 start-page: 132 year: 2017 ident: 10.1016/j.envpol.2021.116758_bib3 article-title: Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review publication-title: J. Environ. Manag. – volume: 5 start-page: 2 issue: 1 year: 2017 ident: 10.1016/j.envpol.2021.116758_bib29 article-title: Deciphering composition and function of the root microbiome of a legume plant publication-title: Microbiome doi: 10.1186/s40168-016-0220-z – volume: 103 start-page: 131 year: 2016 ident: 10.1016/j.envpol.2021.116758_bib70 article-title: Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.08.021 – volume: 57 start-page: 578 issue: 7 year: 2011 ident: 10.1016/j.envpol.2021.116758_bib2 article-title: Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase publication-title: Can. J. Microbiol. doi: 10.1139/w11-044 – volume: 4 issue: 11 year: 2008 ident: 10.1016/j.envpol.2021.116758_bib37 article-title: Exploring microbial diversity and taxonomy using ssu rrna hypervariable tag sequencing publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000255 – year: 2016 ident: 10.1016/j.envpol.2021.116758_bib64 – volume: 106 start-page: 93 issue: s1 year: 1987 ident: 10.1016/j.envpol.2021.116758_bib4 article-title: Metal tolerance publication-title: New Phytol. doi: 10.1111/j.1469-8137.1987.tb04685.x – volume: 7 start-page: e6875 year: 2019 ident: 10.1016/j.envpol.2021.116758_bib38 article-title: Promotion of growth and metal accumulation of alfalfa by co-inoculation with Sinorhizobium and Agrobacterium under copper and zinc stress publication-title: PeerJ doi: 10.7717/peerj.6875 – year: 2020 ident: 10.1016/j.envpol.2021.116758_bib62 article-title: Increased contribution of root exudates to soil carbon input during grassland degradation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107817 – volume: 47 start-page: 195 issue: 2 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib24 article-title: Effects of dual inoculation of AMF and rhizobium on alfalfa (Medicago sativa) root rot caused by Microdochium tabacinum publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-018-0543-2 – volume: 651 start-page: 3034 issue: PT.2 year: 2019 ident: 10.1016/j.envpol.2021.116758_bib36 article-title: Current status of agricultural soil pollution by heavy metals in China: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.185 – volume: 154 start-page: 203 year: 2008 ident: 10.1016/j.envpol.2021.116758_bib54 article-title: Toxic effects of arsenic on Sinorhizobiume Medicago sativa symbiotic interaction publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.10.015 – volume: 26 start-page: 316 issue: 3 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib34 article-title: Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils publication-title: Environ. Rev. doi: 10.1139/er-2018-0023 – volume: 177 start-page: 323 year: 2010 ident: 10.1016/j.envpol.2021.116758_bib13 article-title: “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.12.035 – volume: 9 start-page: 542 issue: 11 year: 2018 ident: 10.1016/j.envpol.2021.116758_bib17 article-title: Harnessing rhizobia to improve heavy-metal phytoremediation by legumes publication-title: Genes doi: 10.3390/genes9110542 – volume: 6 start-page: 863 year: 2015 ident: 10.1016/j.envpol.2021.116758_bib26 article-title: Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00863 – volume: 114744 year: 2020 ident: 10.1016/j.envpol.2021.116758_bib22 article-title: Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils publication-title: Environ. Pollut. – volume: 390 start-page: 337 year: 2015 ident: 10.1016/j.envpol.2021.116758_bib18 article-title: Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize publication-title: Plant Soil doi: 10.1007/s11104-015-2410-z – volume: 8 start-page: 199 issue: 3 year: 2010 ident: 10.1016/j.envpol.2021.116758_bib51 article-title: Heavy metals, occurrence and toxicity for plants: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-010-0297-8 – volume: 346 start-page: 256 issue: 1–3 year: 2005 ident: 10.1016/j.envpol.2021.116758_bib60 article-title: Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater publication-title: Sci. Total Environ. |
SSID | ssj0004333 |
Score | 2.6333914 |
Snippet | Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116758 |
SubjectTerms | Acidobacteria Actinobacteria alfalfa antioxidant enzymes bacterial communities Cadmium - toxicity carbon Chloroflexi Co-inoculation community structure fungal communities Fungi lipid peroxidation Medicago sativa Microbial community microbiome Mycorrhizae - chemistry Plant Roots - chemistry pollution Proteobacteria reactive oxygen species Rhizobium Rhizosphere Soil Soil heavy metal Soil Microbiology Soil Pollutants - analysis Soil Pollutants - toxicity Symbiotic microbes vesicular arbuscular mycorrhizae |
Title | Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil |
URI | https://dx.doi.org/10.1016/j.envpol.2021.116758 https://www.ncbi.nlm.nih.gov/pubmed/33652182 https://www.proquest.com/docview/2496245959 https://www.proquest.com/docview/2552018894 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELam8TIeEHQMOmC6SYg3r0lsp8ljVW0qQ-wFJu3NcmJ7CuqSau2Q9sIf4E9zFzsbSMCkSXlpeoms3Nn3nf3dHWPvc-lM7nzKXVY7jv5acGON5L7CoLnMvHGScoc_n-WLc3l6oS622HzIhSFaZVz7w5rer9bxziR-zcmqaSZfMHpAMFxSBawEAy1K4pNySlZ-9OOe5iFFaCePwpykh_S5nuPl2u-rjg4gsvSIDiSo8fvf3dO_4Gfvhk6es2cRP8IsDPEF23LtiO3OWoydr27hA_SMzn6rfMSe_lZscMT2ju9z2vANcVKvd9nPsLHQ7xNC58EsPV2AgTiBSxQCc2kaxJEwtxCSSyD294Fr4uxVjQHTWjCookBshatbDGvpTwPoOi8bqDvetF0du4VB0-LLOBHlDZFxEPfCumuWL9n5yfHX-YLHHg28lnm64QIRUVYVBsOeSlC_T5zRzohcGoXIzjqbqMR65ZPClYmy0hR1JUqR5t4m3ldS7LHttmvdawaqSJwtszpDs8GVxBsq9je1orbSIkjxYyYG1eg6FjCnPhpLPTDVvumgUE0K1UGhY8bvnlqFAh4PyE8Hres_DFGjj3ngycPBSDTOUTp4Ma3rbtYaQ9w8k6pU5X9k8HslaVGUcsxeBQu7G68QuaJK-_uPHtsbtkO_iPaQqrdse3N9494hmtpUB_10OWBPZh8_Lc5-ARByIlk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOCLa0LL9GAm7uJrGdJgcOVWm1pT8XWqk348R2FbRNVt0taC-8AI_DCzKTOC1IQCWkSnvaOJblmcx8Y38zA_A6lc6kzsfcJaXj6K8FN9ZI7gsMmvPEGycpd_jgMB0fyw8n6mQJfvS5MESrDLa_s-mttQ7_jMJujqZVNfqI0QOC4ZwqYEUYaOWBWbnnFl8xbpu9232PQn6TJDvbR1tjHloL8FKm8ZwLdORJkRlE64WgNpWoiM6IVBqFgMQ6G6nIeuWjzOWRstJkZSFyEafeRt4XUuC8t-C2RHNBbRPWv13xSqTo-tfj6jgtr8_Xa0llrv4ybejGI4nX6QaEOs3_2R_-De-2fm_nAdwPgJVtdnvyEJZcPYCVzRqD9bMFe8taCml7Nj-Ae79UNxzA6vZVEh3OEKzIbAW-dycZ7cEkazwzE08_hpE_oVkcxMypqRC4si3LumwWFhoKsXMiCRaVYaa2zKBOdExadrbAOJoeGoa--rRiZcOruilDezJW1TgZJ2a-IfYPAm02a6rJIzi-EcmtwnLd1O4xMJVFzuZJmaCeounyhqoLblhRWmkRFfkhiF40ugwV06lxx0T31LjPuhOoJoHqTqBD4JdvTbuKIdeM3-ilrn_TfI1O7Zo3X_VKotEo0E2PqV1zMdMYU6eJVLnK_zEG9yuKsyyXQ1jrNOxyvUKkikr7P_nvtb2EO-Ojg329v3u49xTu0hPiXMTqGSzPzy_cc4Ry8-JF--kw-HTT3-pPhmpc8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+alfalfa+resistance+against+Cd+stress+through+rhizobia+and+arbuscular+mycorrhiza+fungi+co-inoculation+in+Cd-contaminated+soil&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Wang%2C+Xia&rft.au=Fang%2C+Linchuan&rft.au=Beiyuan%2C+Jingzi&rft.au=Cui%2C+Yongxing&rft.date=2021-05-15&rft.issn=0269-7491&rft.volume=277&rft.spage=116758&rft_id=info:doi/10.1016%2Fj.envpol.2021.116758&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2021_116758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |