AttentionGAN: Unpaired Image-to-Image Translation Using Attention-Guided Generative Adversarial Networks
State-of-the-art methods in the image-to-image translation are capable of learning a mapping from a source domain to a target domain with unpaired image data. Though the existing methods have achieved promising results, they still produce visual artifacts, being able to translate low-level informati...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 4; pp. 1972 - 1987 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2021.3105725 |
Cover
Loading…
Abstract | State-of-the-art methods in the image-to-image translation are capable of learning a mapping from a source domain to a target domain with unpaired image data. Though the existing methods have achieved promising results, they still produce visual artifacts, being able to translate low-level information but not high-level semantics of input images. One possible reason is that generators do not have the ability to perceive the most discriminative parts between the source and target domains, thus making the generated images low quality. In this article, we propose a new Attention-Guided Generative Adversarial Networks (AttentionGAN) for the unpaired image-to-image translation task. AttentionGAN can identify the most discriminative foreground objects and minimize the change of the background. The attention-guided generators in AttentionGAN are able to produce attention masks, and then fuse the generation output with the attention masks to obtain high-quality target images. Accordingly, we also design a novel attention-guided discriminator which only considers attended regions. Extensive experiments are conducted on several generative tasks with eight public datasets, demonstrating that the proposed method is effective to generate sharper and more realistic images compared with existing competitive models. The code is available at https://github.com/Ha0Tang/AttentionGAN . |
---|---|
AbstractList | State-of-the-art methods in the image-to-image translation are capable of learning a mapping from a source domain to a target domain with unpaired image data. Though the existing methods have achieved promising results, they still produce visual artifacts, being able to translate low-level information but not high-level semantics of input images. One possible reason is that generators do not have the ability to perceive the most discriminative parts between the source and target domains, thus making the generated images low quality. In this article, we propose a new Attention-Guided Generative Adversarial Networks (AttentionGAN) for the unpaired image-to-image translation task. AttentionGAN can identify the most discriminative foreground objects and minimize the change of the background. The attention-guided generators in AttentionGAN are able to produce attention masks, and then fuse the generation output with the attention masks to obtain high-quality target images. Accordingly, we also design a novel attention-guided discriminator which only considers attended regions. Extensive experiments are conducted on several generative tasks with eight public datasets, demonstrating that the proposed method is effective to generate sharper and more realistic images compared with existing competitive models. The code is available at https://github.com/Ha0Tang/AttentionGAN . State-of-the-art methods in the image-to-image translation are capable of learning a mapping from a source domain to a target domain with unpaired image data. Though the existing methods have achieved promising results, they still produce visual artifacts, being able to translate low-level information but not high-level semantics of input images. One possible reason is that generators do not have the ability to perceive the most discriminative parts between the source and target domains, thus making the generated images low quality. In this article, we propose a new Attention-Guided Generative Adversarial Networks (AttentionGAN) for the unpaired image-to-image translation task. AttentionGAN can identify the most discriminative foreground objects and minimize the change of the background. The attention-guided generators in AttentionGAN are able to produce attention masks, and then fuse the generation output with the attention masks to obtain high-quality target images. Accordingly, we also design a novel attention-guided discriminator which only considers attended regions. Extensive experiments are conducted on several generative tasks with eight public datasets, demonstrating that the proposed method is effective to generate sharper and more realistic images compared with existing competitive models. The code is available at https://github.com/Ha0Tang/AttentionGAN.State-of-the-art methods in the image-to-image translation are capable of learning a mapping from a source domain to a target domain with unpaired image data. Though the existing methods have achieved promising results, they still produce visual artifacts, being able to translate low-level information but not high-level semantics of input images. One possible reason is that generators do not have the ability to perceive the most discriminative parts between the source and target domains, thus making the generated images low quality. In this article, we propose a new Attention-Guided Generative Adversarial Networks (AttentionGAN) for the unpaired image-to-image translation task. AttentionGAN can identify the most discriminative foreground objects and minimize the change of the background. The attention-guided generators in AttentionGAN are able to produce attention masks, and then fuse the generation output with the attention masks to obtain high-quality target images. Accordingly, we also design a novel attention-guided discriminator which only considers attended regions. Extensive experiments are conducted on several generative tasks with eight public datasets, demonstrating that the proposed method is effective to generate sharper and more realistic images compared with existing competitive models. The code is available at https://github.com/Ha0Tang/AttentionGAN. |
Author | Torr, Philip H. S. Sebe, Nicu Liu, Hong Tang, Hao Xu, Dan |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0002-2077-1246 surname: Tang fullname: Tang, Hao email: hao.tang@vision.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland – sequence: 2 givenname: Hong orcidid: 0000-0002-7498-6541 surname: Liu fullname: Liu, Hong email: hongliu@pku.edu.cn organization: Shenzhen Graduate School, Peking University, Shenzhen, China – sequence: 3 givenname: Dan orcidid: 0000-0003-0136-9603 surname: Xu fullname: Xu, Dan organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology (HKUST), Hong Kong – sequence: 4 givenname: Philip H. S. surname: Torr fullname: Torr, Philip H. S. organization: Department of Engineering Science, University of Oxford, Oxford, U.K – sequence: 5 givenname: Nicu orcidid: 0000-0002-6597-7248 surname: Sebe fullname: Sebe, Nicu organization: Department of Information Engineering and Computer Science (DISI), University of Trento, Trento, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34473628$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJaT6aP9BCMeSSizfSyPrqbQnNJrBsDt2F3oRsj1OlXnkr2Sn99_V-ZA85dC4zgucZxLzn5CR0AQn5xOiEMWpulovF_PsEKLAJZ1QoEO_IGTAJOXCtT46z-nFKLlN6pmNJKmRhPpBTXhSKS9Bn5Oe07zH0vguz6eJrtgob5yPW2cPaPWHed_luyJbRhdS6LZetkg9P2dHLZ4OvR2OGAeNIvGA2rV8wJhe9a7MF9n-6-Ct9JO8b1ya8PPQLsrr7try9z-ePs4fb6TyvCsn6nBccseESK6GasmQFM6JqVK1qIwEkGFe58UElyFprVjQ1BVmCoAIRTGn4Bbne793E7veAqbdrnypsWxewG5IFIQ1XhZF0RK_eoM_dEMP4OwvKCE01SD5SXw7UUK6xtpvo1y7-ta83HAG9B6rYpRSxsZXvd6fqo_OtZdRuE7O7xOw2MXtIbFThjfq6_b_S573kEfEoGAGKa8P_AdploOg |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TIP_2024_3381833 crossref_primary_10_1109_TNNLS_2023_3321076 crossref_primary_10_1016_j_optlaseng_2024_108042 crossref_primary_10_1109_TCE_2023_3347274 crossref_primary_10_1016_j_engstruct_2025_119636 crossref_primary_10_3390_math13010177 crossref_primary_10_1109_TASLP_2024_3515794 crossref_primary_10_1145_3698105 crossref_primary_10_1016_j_cmpb_2024_108007 crossref_primary_10_1109_TCE_2023_3329574 crossref_primary_10_3389_fbioe_2024_1330713 crossref_primary_10_1109_TAFFC_2022_3207007 crossref_primary_10_1109_TMM_2021_3091847 crossref_primary_10_1109_ACCESS_2025_3531366 crossref_primary_10_3390_math12203244 crossref_primary_10_1109_TCSVT_2024_3404256 crossref_primary_10_1016_j_eswa_2024_123167 crossref_primary_10_1007_s11263_022_01722_5 crossref_primary_10_1016_j_compbiomed_2024_108472 crossref_primary_10_1515_phys_2024_0060 crossref_primary_10_1007_s00259_024_06961_x crossref_primary_10_1007_s10489_022_04352_z crossref_primary_10_1109_TPAMI_2023_3298868 crossref_primary_10_1117_1_JEI_33_4_043023 crossref_primary_10_1109_TPAMI_2024_3355248 crossref_primary_10_1007_s11018_024_02346_6 crossref_primary_10_1016_j_bspc_2024_107159 crossref_primary_10_32446_0368_1025it_2024_4_23_31 crossref_primary_10_1109_ACCESS_2023_3338629 crossref_primary_10_1109_TMI_2023_3288940 crossref_primary_10_1088_1612_202X_ad26eb crossref_primary_10_1109_TII_2023_3252410 crossref_primary_10_1007_s10489_024_05522_x crossref_primary_10_1007_s12046_022_01807_4 crossref_primary_10_1109_TAI_2024_3483731 crossref_primary_10_1371_journal_pone_0310097 crossref_primary_10_1109_ACCESS_2023_3321118 crossref_primary_10_1016_j_cag_2024_104086 crossref_primary_10_1109_TNNLS_2023_3282306 crossref_primary_10_1007_s00521_023_09345_8 crossref_primary_10_1109_JBHI_2023_3252665 crossref_primary_10_1007_s10278_024_01385_3 crossref_primary_10_1109_ACCESS_2024_3491792 crossref_primary_10_1007_s11042_024_19361_y crossref_primary_10_1007_s00371_023_03115_2 crossref_primary_10_1109_TCSVT_2024_3382621 crossref_primary_10_1016_j_aei_2024_103070 crossref_primary_10_1117_1_JEI_32_6_063030 crossref_primary_10_3390_info16020157 crossref_primary_10_1007_s40747_023_01079_3 crossref_primary_10_1109_TMM_2023_3274990 crossref_primary_10_1007_s10409_024_24076_x crossref_primary_10_1016_j_neunet_2024_106877 crossref_primary_10_1117_1_JRS_16_044520 crossref_primary_10_1007_s11042_021_11252_w crossref_primary_10_1109_TPAMI_2022_3155989 crossref_primary_10_1080_01431161_2023_2169593 crossref_primary_10_1109_TNNLS_2023_3315778 crossref_primary_10_1002_acm2_14212 crossref_primary_10_1109_LRA_2024_3414270 crossref_primary_10_1109_TAI_2022_3187384 crossref_primary_10_1029_2024EA003565 crossref_primary_10_1038_s41467_023_44385_7 crossref_primary_10_1109_TNNLS_2023_3274221 crossref_primary_10_1016_j_ndteint_2024_103174 crossref_primary_10_1016_j_neunet_2022_01_013 crossref_primary_10_7555_JBR_36_20220037 crossref_primary_10_1109_TIFS_2024_3372803 crossref_primary_10_1016_j_patcog_2024_110445 crossref_primary_10_1360_SSI_2022_0092 crossref_primary_10_1109_ACCESS_2023_3322146 crossref_primary_10_1007_s42979_023_02040_4 crossref_primary_10_1016_j_compbiomed_2025_109889 crossref_primary_10_1109_TPAMI_2023_3298721 crossref_primary_10_1016_j_compbiomed_2022_105878 crossref_primary_10_1109_MWC_004_2100362 crossref_primary_10_1109_TIFS_2023_3301729 crossref_primary_10_1007_s10489_025_06379_4 crossref_primary_10_1145_3672400 crossref_primary_10_1109_TIP_2021_3109531 crossref_primary_10_1109_TMM_2023_3328176 crossref_primary_10_1016_j_media_2024_103390 crossref_primary_10_1109_TAFFC_2023_3327118 crossref_primary_10_1109_ACCESS_2024_3438992 crossref_primary_10_3390_s24113424 crossref_primary_10_3390_rs16020242 crossref_primary_10_1038_s41598_023_32398_7 crossref_primary_10_1016_j_compbiomed_2024_108380 crossref_primary_10_1109_TPAMI_2022_3212915 |
Cites_doi | 10.1109/CVPR.2019.00252 10.1109/CVPRW.2018.00122 10.1109/CVPR.2019.00820 10.1007/978-3-030-58595-2_43 10.1109/TMM.2021.3091847 10.1109/CVPR.2017.683 10.1007/978-3-030-20887-5_1 10.1145/3343031.3350980 10.1109/CVPR.2018.00917 10.1109/CVPR.2018.00573 10.1109/CVPR.2017.632 10.1007/978-3-030-01216-8_11 10.1007/978-3-030-01246-5_3 10.1109/WACV.2016.7477553 10.1109/CVPR.2018.00593 10.1109/CVPR.2017.241 10.1007/978-3-030-01258-8_40 10.1109/CVPR42600.2020.00789 10.1145/3474085.3475596 10.18772/10539/20690 10.1063/1.4902458 10.1109/ICCV.2017.310 10.1145/3240508.3240704 10.1109/IJCNN.2019.8851881 10.1007/978-3-030-01249-6_50 10.1109/TIP.2019.2914583 10.1109/ICCV.2015.425 10.1145/3394171.3416270 10.1007/978-3-030-01219-9_11 10.1109/TIP.2020.3021789 10.1080/02699930903485076 10.1109/CVPR.2018.00412 10.1007/978-3-030-01261-8_34 10.1109/CVPR.2018.00916 10.1109/IVMSPW.2018.8448850 10.1109/ICCV.2017.244 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3105725 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 1987 |
ExternalDocumentID | 34473628 10_1109_TNNLS_2021_3105725 9527389 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: EU H2020 AI4Media Project grantid: 951911 – fundername: Shenzhen Fundamental Research Program grantid: GXWD20201231165807007-20200807164903001 funderid: 10.13039/501100017607 – fundername: National Natural Science Foundation of China grantid: 62073004 funderid: 10.13039/501100001809 – fundername: Italy-China Collaboration Project TALENT grantid: 2018YFE0118400 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c461t-343eef36ec57fbb14195cf7d7d9622629acad7d0626d8814fd026b2505ee29b93 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 01:47:20 EDT 2025 Mon Jun 30 06:52:41 EDT 2025 Thu Jan 02 22:51:38 EST 2025 Tue Jul 01 00:27:41 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Wed Aug 27 02:14:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-343eef36ec57fbb14195cf7d7d9622629acad7d0626d8814fd026b2505ee29b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0136-9603 0000-0002-7498-6541 0000-0002-2077-1246 0000-0002-6597-7248 |
OpenAccessLink | https://doi.org/10.1109/TNNLS.2021.3105725 |
PMID | 34473628 |
PQID | 2795808263 |
PQPubID | 85436 |
PageCount | 16 |
ParticipantIDs | ieee_primary_9527389 pubmed_primary_34473628 crossref_citationtrail_10_1109_TNNLS_2021_3105725 proquest_miscellaneous_2569374960 proquest_journals_2795808263 crossref_primary_10_1109_TNNLS_2021_3105725 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 Liu (ref44) ref10 Mejjati (ref11) Zhu (ref38) ref17 ref16 ref19 ref18 Bińkowski (ref52) ref51 Donahue (ref49) ref46 ref48 ref47 Kim (ref5) ref42 Goodfellow (ref1) ref41 ref8 ref7 ref9 ref4 Mo (ref37) ref3 ref6 ref40 Benaim (ref32) ref35 ref34 ref36 Kim (ref12) ref31 ref30 ref33 ref2 ref39 Dumoulin (ref50) ref24 Perarnau (ref23) ref25 ref20 Liu (ref45) ref22 ref28 ref27 Tang (ref26) ref29 Mirza (ref21) 2014 Li (ref43) 2016 Heusel (ref53) |
References_xml | – ident: ref28 doi: 10.1109/CVPR.2019.00252 – ident: ref33 doi: 10.1109/CVPRW.2018.00122 – volume-title: Proc. ICLR ident: ref12 article-title: U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation – ident: ref16 doi: 10.1109/CVPR.2019.00820 – ident: ref27 doi: 10.1007/978-3-030-58595-2_43 – ident: ref20 doi: 10.1109/TMM.2021.3091847 – start-page: 700 volume-title: Proc. NeurIPS ident: ref44 article-title: Unsupervised image-to-image translation networks – ident: ref48 doi: 10.1109/CVPR.2017.683 – ident: ref34 doi: 10.1007/978-3-030-20887-5_1 – ident: ref24 doi: 10.1145/3343031.3350980 – ident: ref31 doi: 10.1109/CVPR.2018.00917 – ident: ref35 doi: 10.1109/CVPR.2018.00573 – ident: ref2 doi: 10.1109/CVPR.2017.632 – ident: ref8 doi: 10.1007/978-3-030-01216-8_11 – volume-title: Proc. BMVC ident: ref26 article-title: Bipartite graph reasoning gans for person image generation – volume-title: Proc. NeurIPS ident: ref1 article-title: Generative adversarial nets – volume-title: Proc. ICLR ident: ref50 article-title: Adversarially learned inference – ident: ref15 doi: 10.1007/978-3-030-01246-5_3 – ident: ref51 doi: 10.1109/WACV.2016.7477553 – ident: ref17 doi: 10.1109/CVPR.2018.00593 – volume-title: Proc. NeurIPS Workshop ident: ref23 article-title: Invertible conditional GANs for image editing – ident: ref46 doi: 10.1109/CVPR.2017.241 – ident: ref6 doi: 10.1007/978-3-030-01258-8_40 – ident: ref30 doi: 10.1109/CVPR42600.2020.00789 – ident: ref19 doi: 10.1145/3474085.3475596 – volume-title: arXiv:1411.1784 year: 2014 ident: ref21 article-title: Conditional generative adversarial nets – start-page: 465 volume-title: Proc. NeurIPS ident: ref38 article-title: Toward multimodal image-to-image translation – ident: ref41 doi: 10.18772/10539/20690 – start-page: 469 volume-title: Proc. NeurIPS ident: ref45 article-title: Coupled generative adversarial networks – volume-title: arXiv:1610.05586 year: 2016 ident: ref43 article-title: Deep identity-aware transfer of facial attributes – volume-title: Proc. ICLR ident: ref37 article-title: InstaGAN: Instance-aware image-to-image translation – ident: ref42 doi: 10.1063/1.4902458 – ident: ref4 doi: 10.1109/ICCV.2017.310 – ident: ref25 doi: 10.1145/3240508.3240704 – ident: ref10 doi: 10.1109/IJCNN.2019.8851881 – start-page: 3693 volume-title: Proc. NeurIPS ident: ref11 article-title: Unsupervised attention-guided image to image translation – ident: ref47 doi: 10.1007/978-3-030-01249-6_50 – ident: ref13 doi: 10.1109/TIP.2019.2914583 – ident: ref39 doi: 10.1109/ICCV.2015.425 – ident: ref29 doi: 10.1145/3394171.3416270 – ident: ref14 doi: 10.1007/978-3-030-01219-9_11 – ident: ref22 doi: 10.1109/TIP.2020.3021789 – ident: ref40 doi: 10.1080/02699930903485076 – volume-title: Proc. ICLR ident: ref52 article-title: Demystifying MMD GANs – ident: ref36 doi: 10.1109/CVPR.2018.00412 – ident: ref7 doi: 10.1007/978-3-030-01261-8_34 – start-page: 6629 volume-title: Proc. NeurIPS ident: ref53 article-title: GANs trained by a two time-scale update rule converge to a local nash equilibrium – ident: ref18 doi: 10.1109/CVPR.2018.00916 – ident: ref9 doi: 10.1109/IVMSPW.2018.8448850 – start-page: 752 volume-title: Proc. NeurIPS ident: ref32 article-title: One-sided unsupervised domain mapping – ident: ref3 doi: 10.1109/ICCV.2017.244 – volume-title: Proc. ICLR ident: ref49 article-title: Adversarial feature learning – start-page: 1857 volume-title: Proc. ICML ident: ref5 article-title: Learning to discover cross-domain relations with generative adversarial networks |
SSID | ssj0000605649 |
Score | 2.6674566 |
Snippet | State-of-the-art methods in the image-to-image translation are capable of learning a mapping from a source domain to a target domain with unpaired image data.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1972 |
SubjectTerms | Attention guided Computational modeling Domains Generative adversarial networks generative adversarial networks (GANs) Generators Image quality Masks Semantics Target masking Task analysis Training Training data Translation unpaired image-to-image translation |
Title | AttentionGAN: Unpaired Image-to-Image Translation Using Attention-Guided Generative Adversarial Networks |
URI | https://ieeexplore.ieee.org/document/9527389 https://www.ncbi.nlm.nih.gov/pubmed/34473628 https://www.proquest.com/docview/2795808263 https://www.proquest.com/docview/2569374960 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHkECjISN_A2Thwn5rZCtAXRXOhKe4tieyIQkK3Y5MKvZ2wnkUCAuCWKx0k0r2_s8QzAi86pshVoeWWs41KTzhlXSk6uGjtbGonOLw1c1epyI99vi-0BvFrOwiBiSD7Dlb8Me_luZ0e_VHamQ7UwfQiHFLjFs1rLekpKuFwFtJsJlfEsL7fzGZlUn13X9YePFA1mgoJUgiiZ71jji92R_a5-cUmhx8rf4WZwO-fHcDV_cMw2-bIaB7OyP36r5fi_f3QHbk_4k62jwNyFA-zvwfHc24FNqn4Cn9bDEDMhL9b1a7bpb1oyjo69-0YGiA87Hi5YcHUxnY6F7AO20PGL8bMjiljY2ltVFro_71sv86yO-ef7-7A5f3v95pJPXRm4lUoMPJc5YpcrtEXZGSOk0IXtSlc6rQjLZbq1Ld2kFCm5qhKycxTmGY-0EDNtdP4Ajvpdj4-AuY6oRVG1moBcZopKKGeQ5ncpSiO6BMTMmMZOJct954yvTQhdUt0Evjaer83E1wReLjQ3sWDHP0efeKYsIyd-JHA687-ZdHrfZKUuKkJMKk_g-fKYtNFvsbQ97kYaUyjCe5LCwgQeRrlZ5p7F7fGf3_kEbvlW9jEr6BSOhu8jPiXAM5hnQdJ_AoWo-l4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQo0UMBI3MDbOHGcmNsK0W5hNxd2pb1F8SMqgmYrNrnw6xnbSSQQIG6J4nESzesbezwD8LoxIq-Z1bRQ2lAuUeeUyTlFV20bnStujVsaWJViseEft9n2AN5OZ2GstT75zM7cpd_LNzvdu6WyM-mrhclbcBv9fsbCaa1pRSVGZC483k2YSGiS5tvxlEwsz9ZlufyM8WDCMExFkJK4njWu3B1a8OIXp-S7rPwdcHrHc34Eq_GTQ77J11nfqZn-8Vs1x__9p_twb0CgZB5E5gEc2PYhHI3dHcig7MdwNe-6kAt5MS_fkU17U6N5NOTyGk0Q7XbUXxDv7EJCHfH5B2Sioxf9F4MUobS1s6vE93_e107qSRky0PePYHP-Yf1-QYe-DFRzwTqa8tTaJhVWZ3mjFONMZrrJTW6kQDSXyFrXeBNjrGSKgvHGYKCnHNayNpFKpo_hsN219gSIaZCaZUUtEcolKiuYMMri_Ca2XLEmAjYyptJD0XLXO-Nb5YOXWFaer5XjazXwNYI3E81NKNnxz9HHjinTyIEfEZyO_K8Grd5XSS6zAjGTSCN4NT1GfXSbLHVrdz2OyQQiPo6BYQRPgtxMc4_i9vTP73wJdxbr1bJaXpafnsFd19g-5AidwmH3vbfPEf506oWX-p-6uf2n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AttentionGAN%3A+Unpaired+Image-to-Image+Translation+Using+Attention-Guided+Generative+Adversarial+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Tang%2C+Hao&rft.au=Liu%2C+Hong&rft.au=Xu%2C+Dan&rft.au=Torr%2C+Philip+H.+S.&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=4&rft.spage=1972&rft.epage=1987&rft_id=info:doi/10.1109%2FTNNLS.2021.3105725&rft_id=info%3Apmid%2F34473628&rft.externalDocID=9527389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |