Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar
Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were select...
Saved in:
Published in | Environmental pollution (1987) Vol. 263; no. Pt A; p. 114483 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
[Display omitted]
•Pore structure contributes to isolation of bacterial cells from toxic Cd2+.•Surficial alkalinity causes Cd biomineralization, reducing Cd toxicity.•GWB model confirms that Cd-phosphate dominates mineralization after adding bacteria.•The abundant P induces a positive feedback between the bacteria and biochar.
There are three main pathways (pore structure, carbonate and phosphate biomineralization) for biochar to assist bacteria to resist heavy metal stress. The data regarding bioactivities of bacteria cells (PLFA and microbial respiration) and GWB modeling confirmed the protection function of biochar. |
---|---|
AbstractList | Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights. Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights. [Display omitted] •Pore structure contributes to isolation of bacterial cells from toxic Cd2+.•Surficial alkalinity causes Cd biomineralization, reducing Cd toxicity.•GWB model confirms that Cd-phosphate dominates mineralization after adding bacteria.•The abundant P induces a positive feedback between the bacteria and biochar. There are three main pathways (pore structure, carbonate and phosphate biomineralization) for biochar to assist bacteria to resist heavy metal stress. The data regarding bioactivities of bacteria cells (PLFA and microbial respiration) and GWB modeling confirmed the protection function of biochar. Cadmium cations (Cd²⁺) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd²⁺ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd²⁺ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd²⁺ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd²⁺ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights. Cadmium cations (Cd ) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights. |
ArticleNumber | 114483 |
Author | Li, Zhen Chen, Haoming Wang, Zhijun Su, Mu Tian, Da Zhang, Lin Tang, Lingyi |
Author_xml | – sequence: 1 givenname: Haoming surname: Chen fullname: Chen, Haoming organization: School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China – sequence: 2 givenname: Lingyi surname: Tang fullname: Tang, Lingyi organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China – sequence: 3 givenname: Zhijun surname: Wang fullname: Wang, Zhijun organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China – sequence: 4 givenname: Mu surname: Su fullname: Su, Mu organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China – sequence: 5 givenname: Da surname: Tian fullname: Tian, Da organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China – sequence: 6 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China – sequence: 7 givenname: Zhen surname: Li fullname: Li, Zhen email: lizhen@njau.edu.cn organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32283462$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qGzEURkVJaJykb1CCluliHP2NPNNFIRg3NQSSRUuWQiNd1TIzI0eSTf32HWecLrpIVhddzncR3zlHJ33oAaHPlEwpofJmPYV-twntlBE2rKgQFf-AJrSa8UIKJk7QhDBZFzNR0zN0ntKaECI45x_RGWes4kKyCXpa7HS71dn3v3FeAd7EkMFkH3ocHG60yRC9xi6GDsOfHKEDPLf4ern8gtPwTAk3e_xYQB-9WYHFjQ9mpeMlOnW6TfDpOC_Qr--Ln_Mfxf3D3XJ-e18YIWkuOKspMKOFnFnBiWS2FkI3M-dEwwlICqSy0lkOtgRJpDNl7UriatDMlMbyC3Q93h0-_ryFlFXnk4G21T2EbVJMcFpVZUnp-yivalmz6gW9OqLbpgOrNtF3Ou7Va28DIEbAxJBSBPcPoUQd9Ki1GvWogx416hliX_-LGZ_1oe0ctW_fC38bwzD0ufMQVTIeegPWx0GZssG_feAvXyKsWw |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2023_138171 crossref_primary_10_1016_j_chemosphere_2023_140093 crossref_primary_10_1016_j_biortech_2022_128480 crossref_primary_10_1007_s42773_023_00222_0 crossref_primary_10_1016_j_jhazmat_2020_123685 crossref_primary_10_1016_j_scitotenv_2021_147774 crossref_primary_10_5004_dwt_2020_26428 crossref_primary_10_1016_j_seppur_2024_129161 crossref_primary_10_1016_j_jece_2022_108990 crossref_primary_10_1021_acsomega_1c04901 crossref_primary_10_3390_agronomy12051003 crossref_primary_10_1016_j_chemosphere_2022_134811 crossref_primary_10_1007_s11356_023_31299_6 crossref_primary_10_3389_fbioe_2023_1181078 crossref_primary_10_1016_j_scitotenv_2021_147660 crossref_primary_10_1016_j_biortech_2023_129904 crossref_primary_10_1016_j_ibiod_2024_105787 crossref_primary_10_1016_j_jhazmat_2024_135140 crossref_primary_10_1051_e3sconf_202235003003 crossref_primary_10_1016_j_chemosphere_2021_131490 crossref_primary_10_1093_hr_uhad112 crossref_primary_10_1016_j_jenvman_2025_124620 crossref_primary_10_1016_j_jece_2022_107695 crossref_primary_10_1016_j_jclepro_2022_131097 crossref_primary_10_1515_geo_2022_0365 crossref_primary_10_1016_j_chemosphere_2021_131453 crossref_primary_10_1016_j_hazadv_2023_100305 crossref_primary_10_1007_s13762_023_05279_9 crossref_primary_10_1016_j_scitotenv_2022_154845 crossref_primary_10_1016_j_jhazmat_2022_129006 crossref_primary_10_1016_j_scitotenv_2022_160649 crossref_primary_10_3390_w16131917 crossref_primary_10_1016_j_jhazmat_2022_129481 crossref_primary_10_3389_fbioe_2023_1127166 crossref_primary_10_3390_agronomy11122392 crossref_primary_10_1016_j_jhazmat_2024_136828 crossref_primary_10_3389_fenvs_2022_1044921 crossref_primary_10_3390_su142417049 crossref_primary_10_1016_j_scitotenv_2021_150531 crossref_primary_10_3389_fbioe_2021_777957 crossref_primary_10_1016_j_bej_2024_109355 crossref_primary_10_1007_s11356_021_17833_4 crossref_primary_10_3390_agriculture11070620 crossref_primary_10_3390_agronomy11112175 crossref_primary_10_1016_j_scitotenv_2022_159033 crossref_primary_10_3390_agronomy13020543 crossref_primary_10_3389_fmicb_2025_1529784 crossref_primary_10_1016_j_scitotenv_2023_163279 crossref_primary_10_3389_fbioe_2023_1134310 crossref_primary_10_1016_j_chemosphere_2022_135095 crossref_primary_10_1016_j_ecoenv_2024_117074 crossref_primary_10_1016_j_jenvman_2024_121196 crossref_primary_10_1016_j_biortech_2024_131971 crossref_primary_10_1016_j_chemosphere_2021_132320 crossref_primary_10_1016_j_clay_2022_106464 crossref_primary_10_1007_s11270_021_05378_8 |
Cites_doi | 10.1016/j.chemosphere.2006.07.007 10.1016/j.chemosphere.2017.02.061 10.1016/j.soilbio.2011.04.022 10.1023/A:1018570213546 10.1016/j.envint.2019.03.068 10.1897/07-273.1 10.1016/j.soilbio.2007.06.017 10.1016/j.apsusc.2013.07.033 10.1016/S0734-9750(99)00014-2 10.1111/1462-2920.14719 10.1016/0147-619X(92)90003-S 10.1016/j.apsusc.2014.06.034 10.1016/j.geoderma.2004.01.003 10.1021/es803092k 10.1016/j.scitotenv.2018.04.127 10.1128/mBio.00944-13 10.1021/jf9044217 10.1016/j.scitotenv.2017.11.132 10.1016/j.jclepro.2017.09.005 10.1016/j.chemosphere.2017.01.005 10.1016/j.scitotenv.2018.06.321 10.1016/j.agee.2012.06.011 10.1021/es0102989 10.1016/j.biortech.2013.08.020 10.1111/sum.12474 10.1016/j.cej.2018.12.098 10.1021/acsearthspacechem.7b00016 10.1016/j.watres.2011.11.058 10.1016/j.jhazmat.2010.09.095 10.1016/j.apsoil.2005.12.002 10.1016/S0956-053X(99)00312-8 10.1016/j.envpol.2016.06.053 10.1016/j.biortech.2015.06.111 10.1016/j.biortech.2007.11.064 10.1111/1462-2920.14478 10.1080/10643389.2017.1386951 10.1016/j.soilbio.2013.06.004 10.1016/j.biochi.2006.10.001 10.1080/10643389.2015.1096880 10.1016/j.chemosphere.2017.09.140 10.1016/j.matlet.2007.05.082 10.1080/19443994.2013.792546 10.1016/S0168-6445(02)00114-6 10.1016/j.molliq.2018.08.039 10.1007/s11356-017-9832-5 10.1016/j.chemosphere.2008.02.006 10.1007/s12665-017-6916-y 10.1016/S1093-0191(02)00135-1 10.1007/s11368-012-0554-5 10.1080/08827500902892077 10.1016/j.jhazmat.2018.06.032 10.1016/j.scitotenv.2017.08.008 10.1007/BF01576071 10.1016/j.chemgeo.2017.01.014 10.1016/j.jiec.2015.10.007 10.1016/j.jhazmat.2015.06.003 10.1007/s11356-012-0873-5 10.1007/s11356-014-3010-9 10.1007/s11368-015-1243-y 10.1128/AEM.53.10.2440-2444.1987 10.1016/j.chemosphere.2016.01.043 10.1016/j.jclepro.2020.120678 10.1016/j.jhazmat.2013.09.062 10.1016/j.resconrec.2018.10.004 10.1021/la047132g 10.1016/S0378-4290(98)00137-3 10.1111/j.1574-6968.1992.tb05703.x 10.1016/j.jhazmat.2018.01.024 10.1111/j.1469-8137.1993.tb03796.x |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2020.114483 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 32283462 10_1016_j_envpol_2020_114483 S0269749119376560 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-3291e2ca467d43062d944ab7ff4b30e61e08d6fd3ed5e606fc59f50f9ea2c5cd3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 04:18:03 EDT 2025 Fri Jul 11 16:19:57 EDT 2025 Wed Feb 19 02:31:13 EST 2025 Tue Jul 01 03:14:54 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Fri Feb 23 02:46:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Alkaline Cadmium stress Phosphate-solubilizing bacteria Biochar Mineralization |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-3291e2ca467d43062d944ab7ff4b30e61e08d6fd3ed5e606fc59f50f9ea2c5cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32283462 |
PQID | 2389692811 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2431885511 proquest_miscellaneous_2389692811 pubmed_primary_32283462 crossref_primary_10_1016_j_envpol_2020_114483 crossref_citationtrail_10_1016_j_envpol_2020_114483 elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Reddad, Gerente, Andres, Le Cloirec (bib46) 2002; 36 Cao, Ma, Gao, Harris (bib6) 2009; 43 Li, Pan, Yu, Wakeel, Luo, Alharbi, Liao, Liu (bib33) 2018; 269 Adriano, Wenzel, Vangronsveld, Bolan (bib1) 2004; 122 Uchimiya, Lima, Klasson, Chang, Wartelle, Rodgers (bib61) 2010; 58 Bandara, Herath, Kumarathilaka, Seneviratne, Seneviratne, Rajakaruna, Vithanage, Ok (bib4) 2017; 17 Kong, Su, Peng, Hou, Liu, Li, Diao, Shih, Xiong, Chen (bib28) 2017; 168 McLaughlin, Parker, Clarke (bib37) 1999; 60 Gadd (bib18) 1994; 124 Wang, Chen, Tsang, Guo, Yang, Shen, Hou, Ok, Poon (bib65) 2020; 258 Yuan, Yi, Wang, Zhang, Zhu, Yao (bib71) 2017; 24 Dong, Singh, Li, Lin, Zhao (bib16) 2019; 35 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib45) 2016; 148 Tian, Jiang, Jiang, Su, Feng, Zhang, Wang, Li, Hu (bib60) 2019; 21 Shen, Tian, Zhang, Tang, Su, Zhang, Li, Hu, Hou (bib55) 2018; 190 Shen, Zhang, Jin, McMillan, Al-Tabbaa (bib57) 2017; 609 Chen, Rekha, Arun, Shen, Lai, Young (bib11) 2006; 34 O’Connor, Peng, Zhang, Tsang, Alessi, Shen, Bolan, Hou (bib40) 2018; 619 Janouskova, Pavlikova, Vosatka (bib23) 2006; 65 Xu, Cao, Zhao, Wang, Yu, Gao (bib67) 2013; 20 Valls, de Lorenzo (bib62) 2002; 26 Hoffman, Atlas (bib19) 1987; 53 Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bib22) 2016; 46 Rillig, Thies (bib48) 2012 Askanneiad, Morsali (bib3) 2008; 62 Nies (bib39) 1992; 27 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib30) 2011; 43 Park, Bolan, Megharaj, Naidu (bib41) 2011; 185 Yakkala, Yu, Roh, Yang, Chang (bib68) 2013; 51 Derome, Gadd (bib14) 1991; 7 Gadd (bib17) 1992; 100 Li, Yang, Wang, Zhang, Liu, Li, Xiao (bib32) 2017; 175 Jeong, Moon, Shin, Nam (bib24) 2013; 263 Vig, Megharaj, Sethunathan, Naidu (bib63) 2003; 8 Zhang, Wang, Yin, Peng, Tan, Liu, Tan, Wu (bib73) 2015; 153 Quilliam, Marsden, Gertler, Rousk, DeLuca, Jones (bib44) 2012; 158 Sharma, Lee (bib53) 2014; 313 Jiang, Jiang, Zhang, Su, Tian, Wang, Sun, Nong, Hu, Wang, Li (bib26) 2020; 22 Crannell, Eighmy, Krzanowski, Eusden, Shaw, Francis (bib13) 2000; 20 Huang, Luo, Zhang, Zeng, Lai, Cheng, Wang, Deng, Xue, Gong, Guo, Li (bib21) 2019; 361 Zhan, Chen, Liao, Reid, Chi, Hou, Cai (bib72) 2016; 216 Shen, Jin, Wang, McMillan, Al-Tabbaa (bib56) 2015; 193 Shan, Yan, Yang, Hao, Du (bib52) 2015; 299 Sud, Mahajan, Kaur (bib58) 2008; 99 Chen, Zhang, Tang, Su, Tian, Zhang, Li, Hu (bib8) 2019; 127 Lu, Zhang, Yang, Huang, Wang, Qiu (bib36) 2012; 46 Moustakas, Akoumianaki-Ioannidou, Barouchas (bib38) 2011; 5 Choi (bib12) 2009; 26 Jiang, Sheng, Qian, Wang (bib25) 2008; 72 Chen, Yuan, Qian (bib7) 2012; 12 Rehman, Bonfield (bib47) 1997; 8 Saletnik, Zagula, Grabek-Lejko, Kasprzyk, Bajcar, Czernicka, Puchalski (bib50) 2017; 76 Wang, Li, Liang (bib64) 2013; 146 Ye, Zeng, Wu, Liang, Zhang, Dai, Xiong, Song, Wu, Yu (bib69) 2019; 140 Perez, Sulbaran, Ball, Yarzabal (bib42) 2007; 39 Ye, Zeng, Wu, Zhang, Liang, Dai, Liu, Xiong, Wan, Xu, Cheng (bib70) 2017; 47 Kusch, Krone, Chiverst (bib29) 2008; 27 Letoffe, Audrain, Bernier, Delepierre, Ghigo (bib31) 2014; 5 Rodriguez, Fraga (bib49) 1999; 17 Chen, Wang, Meng, Yang, Jiang, Zou, Li, Hu (bib10) 2017; 451 Ding, Hu, Wan, Wang, Gao (bib15) 2016; 33 Huang, Deng, Wan, Zeng, Xue, Wen, Zhou, Hu, Liu, Xu, Guo, Ren (bib20) 2018; 348 Bertin, Averbeck (bib5) 2006; 88 Kilic, Kirbiyik, Cepeliogullar, Putun (bib27) 2013; 283 Teng, Shao, Zhang, Huo, Li (bib59) 2019; 231 Xu, He, Liu, Zhang, Lu (bib66) 2017; 173 Ahmad, Akhtar, Zahir, Naveed, Mitter, Sessitsch (bib2) 2014; 21 Quilliam, Glanville, Wade, Jones (bib43) 2013; 65 Sanyal, Rautaray, Bansal, Ahmad, Sastry (bib51) 2005; 21 Chen, Ma, Wei, Gong, Yu, Guo, Zhao (bib9) 2018; 635 Li, Su, Duan, Tian, Yang, Guo, Wang, Hu (bib34) 2018; 357 Shen, Hou, Xu, Zhang, Jin, Zhao, Pan, Peng, Alessi (bib54) 2018; 643 Li, Tang, Zheng, Tian, Su, Zhang, Ma, Hu (bib35) 2017; 1 Kilic (10.1016/j.envpol.2020.114483_bib27) 2013; 283 Park (10.1016/j.envpol.2020.114483_bib41) 2011; 185 Lehmann (10.1016/j.envpol.2020.114483_bib30) 2011; 43 Perez (10.1016/j.envpol.2020.114483_bib42) 2007; 39 Chen (10.1016/j.envpol.2020.114483_bib8) 2019; 127 Saletnik (10.1016/j.envpol.2020.114483_bib50) 2017; 76 Janouskova (10.1016/j.envpol.2020.114483_bib23) 2006; 65 Gadd (10.1016/j.envpol.2020.114483_bib17) 1992; 100 Rajapaksha (10.1016/j.envpol.2020.114483_bib45) 2016; 148 Vig (10.1016/j.envpol.2020.114483_bib63) 2003; 8 Kusch (10.1016/j.envpol.2020.114483_bib29) 2008; 27 Jeong (10.1016/j.envpol.2020.114483_bib24) 2013; 263 Bandara (10.1016/j.envpol.2020.114483_bib4) 2017; 17 Quilliam (10.1016/j.envpol.2020.114483_bib44) 2012; 158 Lu (10.1016/j.envpol.2020.114483_bib36) 2012; 46 Shan (10.1016/j.envpol.2020.114483_bib52) 2015; 299 Chen (10.1016/j.envpol.2020.114483_bib10) 2017; 451 Cao (10.1016/j.envpol.2020.114483_bib6) 2009; 43 Tian (10.1016/j.envpol.2020.114483_bib60) 2019; 21 Hoffman (10.1016/j.envpol.2020.114483_bib19) 1987; 53 Xu (10.1016/j.envpol.2020.114483_bib67) 2013; 20 Yuan (10.1016/j.envpol.2020.114483_bib71) 2017; 24 Moustakas (10.1016/j.envpol.2020.114483_bib38) 2011; 5 Rodriguez (10.1016/j.envpol.2020.114483_bib49) 1999; 17 Derome (10.1016/j.envpol.2020.114483_bib14) 1991; 7 Xu (10.1016/j.envpol.2020.114483_bib66) 2017; 173 Nies (10.1016/j.envpol.2020.114483_bib39) 1992; 27 Li (10.1016/j.envpol.2020.114483_bib34) 2018; 357 Zhan (10.1016/j.envpol.2020.114483_bib72) 2016; 216 Chen (10.1016/j.envpol.2020.114483_bib11) 2006; 34 Jiang (10.1016/j.envpol.2020.114483_bib26) 2020; 22 Adriano (10.1016/j.envpol.2020.114483_bib1) 2004; 122 Bertin (10.1016/j.envpol.2020.114483_bib5) 2006; 88 Choi (10.1016/j.envpol.2020.114483_bib12) 2009; 26 Jiang (10.1016/j.envpol.2020.114483_bib25) 2008; 72 Reddad (10.1016/j.envpol.2020.114483_bib46) 2002; 36 Zhang (10.1016/j.envpol.2020.114483_bib73) 2015; 153 Ye (10.1016/j.envpol.2020.114483_bib70) 2017; 47 Ye (10.1016/j.envpol.2020.114483_bib69) 2019; 140 Valls (10.1016/j.envpol.2020.114483_bib62) 2002; 26 Wang (10.1016/j.envpol.2020.114483_bib65) 2020; 258 Gadd (10.1016/j.envpol.2020.114483_bib18) 1994; 124 Kong (10.1016/j.envpol.2020.114483_bib28) 2017; 168 Askanneiad (10.1016/j.envpol.2020.114483_bib3) 2008; 62 Letoffe (10.1016/j.envpol.2020.114483_bib31) 2014; 5 Quilliam (10.1016/j.envpol.2020.114483_bib43) 2013; 65 Huang (10.1016/j.envpol.2020.114483_bib20) 2018; 348 Rehman (10.1016/j.envpol.2020.114483_bib47) 1997; 8 Shen (10.1016/j.envpol.2020.114483_bib55) 2018; 190 Teng (10.1016/j.envpol.2020.114483_bib59) 2019; 231 Shen (10.1016/j.envpol.2020.114483_bib57) 2017; 609 Sharma (10.1016/j.envpol.2020.114483_bib53) 2014; 313 Crannell (10.1016/j.envpol.2020.114483_bib13) 2000; 20 Sanyal (10.1016/j.envpol.2020.114483_bib51) 2005; 21 Sud (10.1016/j.envpol.2020.114483_bib58) 2008; 99 Yakkala (10.1016/j.envpol.2020.114483_bib68) 2013; 51 Uchimiya (10.1016/j.envpol.2020.114483_bib61) 2010; 58 Li (10.1016/j.envpol.2020.114483_bib32) 2017; 175 Li (10.1016/j.envpol.2020.114483_bib33) 2018; 269 Dong (10.1016/j.envpol.2020.114483_bib16) 2019; 35 Shen (10.1016/j.envpol.2020.114483_bib56) 2015; 193 Ding (10.1016/j.envpol.2020.114483_bib15) 2016; 33 Shen (10.1016/j.envpol.2020.114483_bib54) 2018; 643 Chen (10.1016/j.envpol.2020.114483_bib9) 2018; 635 Ahmad (10.1016/j.envpol.2020.114483_bib2) 2014; 21 Li (10.1016/j.envpol.2020.114483_bib35) 2017; 1 Huang (10.1016/j.envpol.2020.114483_bib21) 2019; 361 Chen (10.1016/j.envpol.2020.114483_bib7) 2012; 12 Rillig (10.1016/j.envpol.2020.114483_bib48) 2012 Inyang (10.1016/j.envpol.2020.114483_bib22) 2016; 46 Wang (10.1016/j.envpol.2020.114483_bib64) 2013; 146 McLaughlin (10.1016/j.envpol.2020.114483_bib37) 1999; 60 O’Connor (10.1016/j.envpol.2020.114483_bib40) 2018; 619 |
References_xml | – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: bib45 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 99 start-page: 6017 year: 2008 end-page: 6027 ident: bib58 article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review publication-title: Bioresour. Technol. – volume: 33 start-page: 239 year: 2016 end-page: 245 ident: bib15 article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests publication-title: J. Ind. Eng. Chem. – volume: 21 start-page: 11054 year: 2014 end-page: 11065 ident: bib2 article-title: Cadmium-tolerant bacteria induce metal stress tolerance in cereals publication-title: Environ. Sci. Pollut. Res. – volume: 26 start-page: 248 year: 2009 end-page: 255 ident: bib12 article-title: Adsorption, bioavailability, and toxicity of cadmium to soil microorganisms publication-title: Geomicrobiol. J. – volume: 313 start-page: 624 year: 2014 end-page: 632 ident: bib53 article-title: Cd(II) removal and recovery enhancement by using acrylamide-titanium nanocomposite as an adsorbent publication-title: Appl. Surf. Sci. – volume: 17 start-page: 665 year: 2017 end-page: 673 ident: bib4 article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil publication-title: J. Soils Sediments – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: bib6 article-title: Dairy-Manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 122 start-page: 121 year: 2004 end-page: 142 ident: bib1 article-title: Role of assisted natural remediation in environmental cleanup publication-title: Geoderma – volume: 100 start-page: 197 year: 1992 end-page: 203 ident: bib17 article-title: Metals and microorganisms - a problem of definition publication-title: FEMS Microbiol. Lett. – volume: 348 start-page: 109 year: 2018 end-page: 116 ident: bib20 article-title: Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters publication-title: J. Hazard Mater. – volume: 185 start-page: 829 year: 2011 end-page: 836 ident: bib41 article-title: Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil publication-title: J. Hazard Mater. – volume: 1 start-page: 152 year: 2017 end-page: 157 ident: bib35 article-title: Characterizing the mechanisms of lead immobilization via bioapatite and various clay minerals publication-title: ACS Earth Space Chem. – volume: 53 start-page: 2440 year: 1987 end-page: 2444 ident: bib19 article-title: Measurement of the effects of cadmium stress on Protozoan grazing of bacteria (bacterivory) in activated-sludge by fluorescence microscopy publication-title: Appl. Environ. Microbiol. – volume: 72 start-page: 157 year: 2008 end-page: 164 ident: bib25 article-title: Isolation and characterization of a heavy metal-resistant Burkholderia sp from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil publication-title: Chemosphere – volume: 635 start-page: 333 year: 2018 end-page: 342 ident: bib9 article-title: Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates publication-title: Sci. Total Environ. – volume: 51 start-page: 7732 year: 2013 end-page: 7745 ident: bib68 article-title: Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system publication-title: Desalin. Water Treat. – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bib30 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. – volume: 299 start-page: 42 year: 2015 end-page: 49 ident: bib52 article-title: Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies publication-title: J. Hazard Mater. – volume: 619 start-page: 815 year: 2018 end-page: 826 ident: bib40 article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials publication-title: Sci. Total Environ. – volume: 140 start-page: 278 year: 2019 end-page: 285 ident: bib69 article-title: The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil publication-title: Resour. Conserv. Recycl. – volume: 146 start-page: 803 year: 2013 end-page: 806 ident: bib64 article-title: Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption publication-title: Bioresour. Technol. – start-page: 117 year: 2012 end-page: 138 ident: bib48 article-title: Biochar for Environmental Management – volume: 357 start-page: 491 year: 2018 end-page: 497 ident: bib34 article-title: Induced biotransformation of lead (II) by Enterobacter sp in SO4-PO4-Cl-Para solution publication-title: J. Hazard Mater. – volume: 361 start-page: 353 year: 2019 end-page: 363 ident: bib21 article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process publication-title: Chem. Eng. J. – volume: 62 start-page: 478 year: 2008 end-page: 482 ident: bib3 article-title: Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method publication-title: Mater. Lett. – volume: 39 start-page: 2905 year: 2007 end-page: 2914 ident: bib42 article-title: Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region publication-title: Soil Biol. Biochem. – volume: 451 start-page: 183 year: 2017 end-page: 188 ident: bib10 article-title: Temperature-related changes of Ca and P release in synthesized hydroxylapatite, geological fluorapatite, and bone bioapatite publication-title: Chem. Geol. – volume: 21 start-page: 7220 year: 2005 end-page: 7224 ident: bib51 article-title: Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals publication-title: Langmuir – volume: 36 start-page: 2067 year: 2002 end-page: 2073 ident: bib46 article-title: Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies publication-title: Environ. Sci. Technol. – volume: 124 start-page: 25 year: 1994 end-page: 60 ident: bib18 article-title: Interactions of fungi with toxic metals publication-title: New Phytol. – volume: 609 start-page: 1401 year: 2017 end-page: 1410 ident: bib57 article-title: Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars publication-title: Sci. Total Environ. – volume: 60 start-page: 143 year: 1999 end-page: 163 ident: bib37 article-title: Metals and micronutrients - food safety issues publication-title: Field Crop. Res. – volume: 35 start-page: 466 year: 2019 end-page: 477 ident: bib16 article-title: Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition publication-title: Soil Use Manag. – volume: 127 start-page: 395 year: 2019 end-page: 401 ident: bib8 article-title: Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria publication-title: Environ. Int. – volume: 34 start-page: 33 year: 2006 end-page: 41 ident: bib11 article-title: Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities publication-title: Appl. Soil Ecol. – volume: 263 start-page: 441 year: 2013 end-page: 449 ident: bib24 article-title: Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil publication-title: J. Hazard Mater. – volume: 8 start-page: 121 year: 2003 end-page: 135 ident: bib63 article-title: Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review publication-title: Adv. Environ. Res. – volume: 24 start-page: 21877 year: 2017 end-page: 21884 ident: bib71 article-title: Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil publication-title: Environ. Sci. Pollut. Res. – volume: 153 start-page: 68 year: 2015 end-page: 73 ident: bib73 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manag. – volume: 193 start-page: 553 year: 2015 end-page: 556 ident: bib56 article-title: Sorption of lead by Salisbury biochar produced from British broadleaf hardwood publication-title: Bioresour. Technol. – volume: 283 start-page: 856 year: 2013 end-page: 862 ident: bib27 article-title: Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis publication-title: Appl. Surf. Sci. – volume: 27 start-page: 17 year: 1992 end-page: 28 ident: bib39 article-title: Resistance to cadmium, cobalt, zinc, and nickel in microbes publication-title: Plasmid – volume: 158 start-page: 192 year: 2012 end-page: 199 ident: bib44 article-title: Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate publication-title: Agric. Ecosyst. Environ. – volume: 7 start-page: 97 year: 1991 end-page: 104 ident: bib14 article-title: Use of pelleted and immobilized yeast and fungal biomass for heavy-metal and radionuclide recovery publication-title: J. Ind. Microbiol. – volume: 20 start-page: 358 year: 2013 end-page: 368 ident: bib67 article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar publication-title: Environ. Sci. Pollut. Res. – volume: 22 start-page: 1507 year: 2020 end-page: 1516 ident: bib26 article-title: Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses publication-title: Environ. Microbiol. – volume: 58 start-page: 5538 year: 2010 end-page: 5544 ident: bib61 article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. – volume: 175 start-page: 332 year: 2017 end-page: 340 ident: bib32 article-title: Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes publication-title: Chemosphere – volume: 5 start-page: 274 year: 2011 end-page: 279 ident: bib38 article-title: The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.) publication-title: Aust. J. Crop. Sci. – volume: 216 start-page: 819 year: 2016 end-page: 825 ident: bib72 article-title: Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L): a field study publication-title: Environ. Pollut. – volume: 65 start-page: 1959 year: 2006 end-page: 1965 ident: bib23 article-title: Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil publication-title: Chemosphere – volume: 88 start-page: 1549 year: 2006 end-page: 1559 ident: bib5 article-title: Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review) publication-title: Biochimie – volume: 20 start-page: 135 year: 2000 end-page: 148 ident: bib13 article-title: Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate publication-title: Waste Manag. – volume: 21 start-page: 471 year: 2019 end-page: 479 ident: bib60 article-title: A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus Niger and Penicillium oxalicum publication-title: Environ. Microbiol. – volume: 65 start-page: 287 year: 2013 end-page: 293 ident: bib43 article-title: Life in the ’charosphere’ - does biochar in agricultural soil provide a significant habitat for microorganisms? publication-title: Soil Biol. Biochem. – volume: 26 start-page: 327 year: 2002 end-page: 338 ident: bib62 article-title: Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution publication-title: FEMS Microbiol. Rev. – volume: 8 start-page: 1 year: 1997 end-page: 4 ident: bib47 article-title: Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy publication-title: J. Mater. Sci. Mater. Med. – volume: 190 start-page: 260 year: 2018 end-page: 266 ident: bib55 article-title: Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution publication-title: Chemosphere – volume: 231 start-page: 189 year: 2019 end-page: 197 ident: bib59 article-title: Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization publication-title: J. Environ. Manag. – volume: 47 start-page: 1528 year: 2017 end-page: 1553 ident: bib70 article-title: Co-occurrence and interactions of pollutants, and their impacts on soil remediation-A review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 46 start-page: 854 year: 2012 end-page: 862 ident: bib36 article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar publication-title: Water Res. – volume: 258 start-page: 120678 year: 2020 ident: bib65 article-title: Biochar as green additives in cement-based composites with carbon dioxide curing publication-title: J. Clean. Prod. – volume: 5 year: 2014 ident: bib31 article-title: Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH publication-title: mBio – volume: 46 start-page: 406 year: 2016 end-page: 433 ident: bib22 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 27 start-page: 705 year: 2008 end-page: 710 ident: bib29 article-title: Chronic exposure to low concentrations of waterborne cadmium during embryonic and larval development results in the long-term hindrance of antipredator behavior in zebrafish publication-title: Environ. Toxicol. Chem. – volume: 173 start-page: 622 year: 2017 end-page: 629 ident: bib66 article-title: Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU publication-title: Chemosphere – volume: 168 start-page: 22 year: 2017 end-page: 29 ident: bib28 article-title: Producing sawdust derived activated carbon by co-calcinations with limestone for enhanced Acid Orange II adsorption publication-title: J. Clean. Prod. – volume: 269 start-page: 64 year: 2018 end-page: 71 ident: bib33 article-title: Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch publication-title: J. Mol. Liq. – volume: 17 start-page: 319 year: 1999 end-page: 339 ident: bib49 article-title: Phosphate solubilizing bacteria and their role in plant growth promotion publication-title: Biotechnol. Adv. – volume: 643 start-page: 1571 year: 2018 end-page: 1578 ident: bib54 article-title: Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing publication-title: Sci. Total Environ. – volume: 12 start-page: 1350 year: 2012 end-page: 1359 ident: bib7 article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers publication-title: J. Soils Sediments – volume: 76 year: 2017 ident: bib50 article-title: Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst) publication-title: Environ. Earth Sci. – volume: 65 start-page: 1959 issue: 11 year: 2006 ident: 10.1016/j.envpol.2020.114483_bib23 article-title: Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.07.007 – volume: 175 start-page: 332 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib32 article-title: Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.061 – volume: 43 start-page: 1812 issue: 9 year: 2011 ident: 10.1016/j.envpol.2020.114483_bib30 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 8 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.envpol.2020.114483_bib47 article-title: Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy publication-title: J. Mater. Sci. Mater. Med. doi: 10.1023/A:1018570213546 – volume: 127 start-page: 395 year: 2019 ident: 10.1016/j.envpol.2020.114483_bib8 article-title: Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria publication-title: Environ. Int. doi: 10.1016/j.envint.2019.03.068 – volume: 27 start-page: 705 issue: 3 year: 2008 ident: 10.1016/j.envpol.2020.114483_bib29 article-title: Chronic exposure to low concentrations of waterborne cadmium during embryonic and larval development results in the long-term hindrance of antipredator behavior in zebrafish publication-title: Environ. Toxicol. Chem. doi: 10.1897/07-273.1 – volume: 39 start-page: 2905 issue: 11 year: 2007 ident: 10.1016/j.envpol.2020.114483_bib42 article-title: Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.06.017 – volume: 5 start-page: 274 issue: 3 year: 2011 ident: 10.1016/j.envpol.2020.114483_bib38 article-title: The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.) publication-title: Aust. J. Crop. Sci. – volume: 283 start-page: 856 year: 2013 ident: 10.1016/j.envpol.2020.114483_bib27 article-title: Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.07.033 – volume: 153 start-page: 68 year: 2015 ident: 10.1016/j.envpol.2020.114483_bib73 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manag. – volume: 17 start-page: 319 issue: 4–5 year: 1999 ident: 10.1016/j.envpol.2020.114483_bib49 article-title: Phosphate solubilizing bacteria and their role in plant growth promotion publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(99)00014-2 – volume: 22 start-page: 1507 issue: 4 year: 2020 ident: 10.1016/j.envpol.2020.114483_bib26 article-title: Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14719 – volume: 27 start-page: 17 issue: 1 year: 1992 ident: 10.1016/j.envpol.2020.114483_bib39 article-title: Resistance to cadmium, cobalt, zinc, and nickel in microbes publication-title: Plasmid doi: 10.1016/0147-619X(92)90003-S – volume: 313 start-page: 624 year: 2014 ident: 10.1016/j.envpol.2020.114483_bib53 article-title: Cd(II) removal and recovery enhancement by using acrylamide-titanium nanocomposite as an adsorbent publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.06.034 – volume: 122 start-page: 121 issue: 2–4 year: 2004 ident: 10.1016/j.envpol.2020.114483_bib1 article-title: Role of assisted natural remediation in environmental cleanup publication-title: Geoderma doi: 10.1016/j.geoderma.2004.01.003 – volume: 43 start-page: 3285 issue: 9 year: 2009 ident: 10.1016/j.envpol.2020.114483_bib6 article-title: Dairy-Manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 635 start-page: 333 year: 2018 ident: 10.1016/j.envpol.2020.114483_bib9 article-title: Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.127 – volume: 5 issue: 1 year: 2014 ident: 10.1016/j.envpol.2020.114483_bib31 article-title: Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH publication-title: mBio doi: 10.1128/mBio.00944-13 – volume: 58 start-page: 5538 issue: 9 year: 2010 ident: 10.1016/j.envpol.2020.114483_bib61 article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. doi: 10.1021/jf9044217 – volume: 619 start-page: 815 year: 2018 ident: 10.1016/j.envpol.2020.114483_bib40 article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.132 – volume: 168 start-page: 22 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib28 article-title: Producing sawdust derived activated carbon by co-calcinations with limestone for enhanced Acid Orange II adsorption publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.005 – volume: 173 start-page: 622 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib66 article-title: Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.005 – volume: 643 start-page: 1571 year: 2018 ident: 10.1016/j.envpol.2020.114483_bib54 article-title: Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.321 – volume: 158 start-page: 192 year: 2012 ident: 10.1016/j.envpol.2020.114483_bib44 article-title: Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2012.06.011 – volume: 36 start-page: 2067 issue: 9 year: 2002 ident: 10.1016/j.envpol.2020.114483_bib46 article-title: Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies publication-title: Environ. Sci. Technol. doi: 10.1021/es0102989 – volume: 146 start-page: 803 year: 2013 ident: 10.1016/j.envpol.2020.114483_bib64 article-title: Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.08.020 – start-page: 117 year: 2012 ident: 10.1016/j.envpol.2020.114483_bib48 – volume: 35 start-page: 466 issue: 3 year: 2019 ident: 10.1016/j.envpol.2020.114483_bib16 article-title: Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition publication-title: Soil Use Manag. doi: 10.1111/sum.12474 – volume: 361 start-page: 353 year: 2019 ident: 10.1016/j.envpol.2020.114483_bib21 article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.098 – volume: 1 start-page: 152 issue: 3 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib35 article-title: Characterizing the mechanisms of lead immobilization via bioapatite and various clay minerals publication-title: ACS Earth Space Chem. doi: 10.1021/acsearthspacechem.7b00016 – volume: 46 start-page: 854 issue: 3 year: 2012 ident: 10.1016/j.envpol.2020.114483_bib36 article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar publication-title: Water Res. doi: 10.1016/j.watres.2011.11.058 – volume: 185 start-page: 829 issue: 2–3 year: 2011 ident: 10.1016/j.envpol.2020.114483_bib41 article-title: Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.09.095 – volume: 231 start-page: 189 year: 2019 ident: 10.1016/j.envpol.2020.114483_bib59 article-title: Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization publication-title: J. Environ. Manag. – volume: 34 start-page: 33 issue: 1 year: 2006 ident: 10.1016/j.envpol.2020.114483_bib11 article-title: Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2005.12.002 – volume: 20 start-page: 135 issue: 2–3 year: 2000 ident: 10.1016/j.envpol.2020.114483_bib13 article-title: Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate publication-title: Waste Manag. doi: 10.1016/S0956-053X(99)00312-8 – volume: 216 start-page: 819 year: 2016 ident: 10.1016/j.envpol.2020.114483_bib72 article-title: Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L): a field study publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.053 – volume: 193 start-page: 553 year: 2015 ident: 10.1016/j.envpol.2020.114483_bib56 article-title: Sorption of lead by Salisbury biochar produced from British broadleaf hardwood publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.111 – volume: 99 start-page: 6017 issue: 14 year: 2008 ident: 10.1016/j.envpol.2020.114483_bib58 article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.11.064 – volume: 21 start-page: 471 issue: 1 year: 2019 ident: 10.1016/j.envpol.2020.114483_bib60 article-title: A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus Niger and Penicillium oxalicum publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14478 – volume: 47 start-page: 1528 issue: 16 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib70 article-title: Co-occurrence and interactions of pollutants, and their impacts on soil remediation-A review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2017.1386951 – volume: 65 start-page: 287 year: 2013 ident: 10.1016/j.envpol.2020.114483_bib43 article-title: Life in the ’charosphere’ - does biochar in agricultural soil provide a significant habitat for microorganisms? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.06.004 – volume: 88 start-page: 1549 issue: 11 year: 2006 ident: 10.1016/j.envpol.2020.114483_bib5 article-title: Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review) publication-title: Biochimie doi: 10.1016/j.biochi.2006.10.001 – volume: 46 start-page: 406 issue: 4 year: 2016 ident: 10.1016/j.envpol.2020.114483_bib22 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2015.1096880 – volume: 190 start-page: 260 year: 2018 ident: 10.1016/j.envpol.2020.114483_bib55 article-title: Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.140 – volume: 62 start-page: 478 issue: 3 year: 2008 ident: 10.1016/j.envpol.2020.114483_bib3 article-title: Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method publication-title: Mater. Lett. doi: 10.1016/j.matlet.2007.05.082 – volume: 51 start-page: 7732 issue: 40–42 year: 2013 ident: 10.1016/j.envpol.2020.114483_bib68 article-title: Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2013.792546 – volume: 26 start-page: 327 issue: 4 year: 2002 ident: 10.1016/j.envpol.2020.114483_bib62 article-title: Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution publication-title: FEMS Microbiol. Rev. doi: 10.1016/S0168-6445(02)00114-6 – volume: 269 start-page: 64 year: 2018 ident: 10.1016/j.envpol.2020.114483_bib33 article-title: Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.08.039 – volume: 24 start-page: 21877 issue: 27 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib71 article-title: Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9832-5 – volume: 72 start-page: 157 issue: 2 year: 2008 ident: 10.1016/j.envpol.2020.114483_bib25 article-title: Isolation and characterization of a heavy metal-resistant Burkholderia sp from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.02.006 – volume: 76 issue: 16 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib50 article-title: Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6916-y – volume: 8 start-page: 121 issue: 1 year: 2003 ident: 10.1016/j.envpol.2020.114483_bib63 article-title: Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review publication-title: Adv. Environ. Res. doi: 10.1016/S1093-0191(02)00135-1 – volume: 12 start-page: 1350 issue: 9 year: 2012 ident: 10.1016/j.envpol.2020.114483_bib7 article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers publication-title: J. Soils Sediments doi: 10.1007/s11368-012-0554-5 – volume: 26 start-page: 248 issue: 4 year: 2009 ident: 10.1016/j.envpol.2020.114483_bib12 article-title: Adsorption, bioavailability, and toxicity of cadmium to soil microorganisms publication-title: Geomicrobiol. J. doi: 10.1080/08827500902892077 – volume: 357 start-page: 491 year: 2018 ident: 10.1016/j.envpol.2020.114483_bib34 article-title: Induced biotransformation of lead (II) by Enterobacter sp in SO4-PO4-Cl-Para solution publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.06.032 – volume: 609 start-page: 1401 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib57 article-title: Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.008 – volume: 7 start-page: 97 issue: 2 year: 1991 ident: 10.1016/j.envpol.2020.114483_bib14 article-title: Use of pelleted and immobilized yeast and fungal biomass for heavy-metal and radionuclide recovery publication-title: J. Ind. Microbiol. doi: 10.1007/BF01576071 – volume: 451 start-page: 183 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib10 article-title: Temperature-related changes of Ca and P release in synthesized hydroxylapatite, geological fluorapatite, and bone bioapatite publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2017.01.014 – volume: 33 start-page: 239 year: 2016 ident: 10.1016/j.envpol.2020.114483_bib15 article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.10.007 – volume: 299 start-page: 42 year: 2015 ident: 10.1016/j.envpol.2020.114483_bib52 article-title: Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.06.003 – volume: 20 start-page: 358 issue: 1 year: 2013 ident: 10.1016/j.envpol.2020.114483_bib67 article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-0873-5 – volume: 21 start-page: 11054 issue: 18 year: 2014 ident: 10.1016/j.envpol.2020.114483_bib2 article-title: Cadmium-tolerant bacteria induce metal stress tolerance in cereals publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3010-9 – volume: 17 start-page: 665 issue: 3 year: 2017 ident: 10.1016/j.envpol.2020.114483_bib4 article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil publication-title: J. Soils Sediments doi: 10.1007/s11368-015-1243-y – volume: 53 start-page: 2440 issue: 10 year: 1987 ident: 10.1016/j.envpol.2020.114483_bib19 article-title: Measurement of the effects of cadmium stress on Protozoan grazing of bacteria (bacterivory) in activated-sludge by fluorescence microscopy publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.53.10.2440-2444.1987 – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.envpol.2020.114483_bib45 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – volume: 258 start-page: 120678 year: 2020 ident: 10.1016/j.envpol.2020.114483_bib65 article-title: Biochar as green additives in cement-based composites with carbon dioxide curing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120678 – volume: 263 start-page: 441 year: 2013 ident: 10.1016/j.envpol.2020.114483_bib24 article-title: Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.09.062 – volume: 140 start-page: 278 year: 2019 ident: 10.1016/j.envpol.2020.114483_bib69 article-title: The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2018.10.004 – volume: 21 start-page: 7220 issue: 16 year: 2005 ident: 10.1016/j.envpol.2020.114483_bib51 article-title: Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals publication-title: Langmuir doi: 10.1021/la047132g – volume: 60 start-page: 143 issue: 1–2 year: 1999 ident: 10.1016/j.envpol.2020.114483_bib37 article-title: Metals and micronutrients - food safety issues publication-title: Field Crop. Res. doi: 10.1016/S0378-4290(98)00137-3 – volume: 100 start-page: 197 issue: 1–3 year: 1992 ident: 10.1016/j.envpol.2020.114483_bib17 article-title: Metals and microorganisms - a problem of definition publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1992.tb05703.x – volume: 348 start-page: 109 year: 2018 ident: 10.1016/j.envpol.2020.114483_bib20 article-title: Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.01.024 – volume: 124 start-page: 25 issue: 1 year: 1994 ident: 10.1016/j.envpol.2020.114483_bib18 article-title: Interactions of fungi with toxic metals publication-title: New Phytol. doi: 10.1111/j.1469-8137.1993.tb03796.x |
SSID | ssj0004333 |
Score | 2.5555663 |
Snippet | Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of... Cadmium cations (Cd ) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of... Cadmium cations (Cd²⁺) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114483 |
SubjectTerms | Alkaline alkalinity bacteria Biochar biomass biomineralization cadmium Cadmium stress carbonates cations Enterobacter microbial growth Mineralization organic acids and salts Phosphate-solubilizing bacteria phosphates phosphorus remediation surface area thermogravimetry toxicity X-ray photoelectron spectroscopy |
Title | Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar |
URI | https://dx.doi.org/10.1016/j.envpol.2020.114483 https://www.ncbi.nlm.nih.gov/pubmed/32283462 https://www.proquest.com/docview/2389692811 https://www.proquest.com/docview/2431885511 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KfdEH0avV-lEiiOhDvN18bfJ4HFfuFIqgxb6F3U0iV3T3sFehL_7tTjbZVh9qwcddJkvYmcz8Jpn5BeCV9rUyKhgqnWRUVKGhWuqCCiWMi2wpdWL7PFbLE_H-VJ7uwHzshYllldn3J58-eOv8Zpr_5nSzXk8_YfaAYBgXK0bYSCETO9hFFa383a_rMg_B03XyKEyj9Ng-N9R4-e7npo8HEGwgzRWa3xSeboKfQxg6egD3M34kszTFh7DjuwnszTrMnb9fktdkqOgctsoncO8PssEJ7C-ue9rwC3lRn-_Bl0Vm_O6-EoSDJFM3oMJIH0iT6JxrEhtRCLryuKFI5o68Wa3ektRqQppL8pGiJca6UkeadR-buR7BydHi83xJ830LtBWq3FLOTOlZW6PvdAJTCeaMEHVThSAaXnhV-kI7FRz3TnpMfEIrTZBFML5mrWwd34fdru_8EyC4sKtC1I6F1gvvMCCUjsnGCMxfnOb8APj4m22bycjjnRjf7Fh1dmaTcmxUjk3KOQB6NWqTyDhuka9GDdq_jMpivLhl5MtR4RbXWzxEqTvfX5xbhDhGGabL8h8yiMq0RiyKMo-TtVzNl0e-IaHY0_-e2zO4G59SFeJz2N3-uPAvEBltm8PB9A_hzmz1YXn8G9IODHM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gH2gKBjbHwaCSF4sJr4I7Ufq6pTy0aFxCb2ZiWxPRVBUrEOaf8959jZ4GFM4jU5R1bOd_c7--5ngLfKlYUuvKbSSkbF2FdUSZVRUQhtA1tKGdk-l8X8VHw8k2dbMO17YUJZZfL90ad33jo9GaW_OVqvVqMvmD0gGEZjxQgbKGTuwXZgp5ID2J4sjubLm_ZIHm-UR3kaBvQddF2Zl2t-rdtwBsE63lyh-G0R6jYE2kWiw0fwMEFIMomzfAxbrhnC7qTB9PnHFXlHuqLObrd8CDt_8A0OYW9209aGX0h2fbELX2eJ9Ls5J4gISWJvQJ2R1pMqMjqXJPSiEPTmYU-RTC15v1h8ILHbhFRX5DPFxRhKSy2pVm3o53oCp4ezk-mcpisXaC2KfEM507ljdYnu0wrMJpjVQpTV2HtR8cwVucuULbzlzkqHuY-vpfYy89qVrJa15XswaNrG7QNB2x5norTM1044izEht0xWWmAKYxXnB8D732zqxEcersX4bvrCs28mKscE5ZionAOg16PWkY_jDvlxr0Hz17oyGDLuGPmmV7hBkwvnKGXj2ssLgyhHF5qpPP-HDAIzpRCOoszTuFqu58sD5ZAo2LP_nttruD8_-XRsjhfLo-fwILyJRYkvYLD5eeleIlDaVK-SIfwG-pIPJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+protection+of+bacteria+from+extreme+Cd+%28II%29+stress+by+P-enriched+biochar&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Chen%2C+Haoming&rft.au=Tang%2C+Lingyi&rft.au=Wang%2C+Zhijun&rft.au=Su%2C+Mu&rft.date=2020-08-01&rft.eissn=1873-6424&rft.volume=263&rft.issue=Pt+A&rft.spage=114483&rft_id=info:doi/10.1016%2Fj.envpol.2020.114483&rft_id=info%3Apmid%2F32283462&rft.externalDocID=32283462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |