Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar

Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were select...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 263; no. Pt A; p. 114483
Main Authors Chen, Haoming, Tang, Lingyi, Wang, Zhijun, Su, Mu, Tian, Da, Zhang, Lin, Li, Zhen
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights. [Display omitted] •Pore structure contributes to isolation of bacterial cells from toxic Cd2+.•Surficial alkalinity causes Cd biomineralization, reducing Cd toxicity.•GWB model confirms that Cd-phosphate dominates mineralization after adding bacteria.•The abundant P induces a positive feedback between the bacteria and biochar. There are three main pathways (pore structure, carbonate and phosphate biomineralization) for biochar to assist bacteria to resist heavy metal stress. The data regarding bioactivities of bacteria cells (PLFA and microbial respiration) and GWB modeling confirmed the protection function of biochar.
AbstractList Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights. [Display omitted] •Pore structure contributes to isolation of bacterial cells from toxic Cd2+.•Surficial alkalinity causes Cd biomineralization, reducing Cd toxicity.•GWB model confirms that Cd-phosphate dominates mineralization after adding bacteria.•The abundant P induces a positive feedback between the bacteria and biochar. There are three main pathways (pore structure, carbonate and phosphate biomineralization) for biochar to assist bacteria to resist heavy metal stress. The data regarding bioactivities of bacteria cells (PLFA and microbial respiration) and GWB modeling confirmed the protection function of biochar.
Cadmium cations (Cd²⁺) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd²⁺ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd²⁺ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd²⁺ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd²⁺ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
Cadmium cations (Cd ) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
ArticleNumber 114483
Author Li, Zhen
Chen, Haoming
Wang, Zhijun
Su, Mu
Tian, Da
Zhang, Lin
Tang, Lingyi
Author_xml – sequence: 1
  givenname: Haoming
  surname: Chen
  fullname: Chen, Haoming
  organization: School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 2
  givenname: Lingyi
  surname: Tang
  fullname: Tang, Lingyi
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
– sequence: 3
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
– sequence: 4
  givenname: Mu
  surname: Su
  fullname: Su, Mu
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
– sequence: 5
  givenname: Da
  surname: Tian
  fullname: Tian, Da
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
– sequence: 6
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
– sequence: 7
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  email: lizhen@njau.edu.cn
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32283462$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qGzEURkVJaJykb1CCluliHP2NPNNFIRg3NQSSRUuWQiNd1TIzI0eSTf32HWecLrpIVhddzncR3zlHJ33oAaHPlEwpofJmPYV-twntlBE2rKgQFf-AJrSa8UIKJk7QhDBZFzNR0zN0ntKaECI45x_RGWes4kKyCXpa7HS71dn3v3FeAd7EkMFkH3ocHG60yRC9xi6GDsOfHKEDPLf4ern8gtPwTAk3e_xYQB-9WYHFjQ9mpeMlOnW6TfDpOC_Qr--Ln_Mfxf3D3XJ-e18YIWkuOKspMKOFnFnBiWS2FkI3M-dEwwlICqSy0lkOtgRJpDNl7UriatDMlMbyC3Q93h0-_ryFlFXnk4G21T2EbVJMcFpVZUnp-yivalmz6gW9OqLbpgOrNtF3Ou7Va28DIEbAxJBSBPcPoUQd9Ki1GvWogx416hliX_-LGZ_1oe0ctW_fC38bwzD0ufMQVTIeegPWx0GZssG_feAvXyKsWw
CitedBy_id crossref_primary_10_1016_j_chemosphere_2023_138171
crossref_primary_10_1016_j_chemosphere_2023_140093
crossref_primary_10_1016_j_biortech_2022_128480
crossref_primary_10_1007_s42773_023_00222_0
crossref_primary_10_1016_j_jhazmat_2020_123685
crossref_primary_10_1016_j_scitotenv_2021_147774
crossref_primary_10_5004_dwt_2020_26428
crossref_primary_10_1016_j_seppur_2024_129161
crossref_primary_10_1016_j_jece_2022_108990
crossref_primary_10_1021_acsomega_1c04901
crossref_primary_10_3390_agronomy12051003
crossref_primary_10_1016_j_chemosphere_2022_134811
crossref_primary_10_1007_s11356_023_31299_6
crossref_primary_10_3389_fbioe_2023_1181078
crossref_primary_10_1016_j_scitotenv_2021_147660
crossref_primary_10_1016_j_biortech_2023_129904
crossref_primary_10_1016_j_ibiod_2024_105787
crossref_primary_10_1016_j_jhazmat_2024_135140
crossref_primary_10_1051_e3sconf_202235003003
crossref_primary_10_1016_j_chemosphere_2021_131490
crossref_primary_10_1093_hr_uhad112
crossref_primary_10_1016_j_jenvman_2025_124620
crossref_primary_10_1016_j_jece_2022_107695
crossref_primary_10_1016_j_jclepro_2022_131097
crossref_primary_10_1515_geo_2022_0365
crossref_primary_10_1016_j_chemosphere_2021_131453
crossref_primary_10_1016_j_hazadv_2023_100305
crossref_primary_10_1007_s13762_023_05279_9
crossref_primary_10_1016_j_scitotenv_2022_154845
crossref_primary_10_1016_j_jhazmat_2022_129006
crossref_primary_10_1016_j_scitotenv_2022_160649
crossref_primary_10_3390_w16131917
crossref_primary_10_1016_j_jhazmat_2022_129481
crossref_primary_10_3389_fbioe_2023_1127166
crossref_primary_10_3390_agronomy11122392
crossref_primary_10_1016_j_jhazmat_2024_136828
crossref_primary_10_3389_fenvs_2022_1044921
crossref_primary_10_3390_su142417049
crossref_primary_10_1016_j_scitotenv_2021_150531
crossref_primary_10_3389_fbioe_2021_777957
crossref_primary_10_1016_j_bej_2024_109355
crossref_primary_10_1007_s11356_021_17833_4
crossref_primary_10_3390_agriculture11070620
crossref_primary_10_3390_agronomy11112175
crossref_primary_10_1016_j_scitotenv_2022_159033
crossref_primary_10_3390_agronomy13020543
crossref_primary_10_3389_fmicb_2025_1529784
crossref_primary_10_1016_j_scitotenv_2023_163279
crossref_primary_10_3389_fbioe_2023_1134310
crossref_primary_10_1016_j_chemosphere_2022_135095
crossref_primary_10_1016_j_ecoenv_2024_117074
crossref_primary_10_1016_j_jenvman_2024_121196
crossref_primary_10_1016_j_biortech_2024_131971
crossref_primary_10_1016_j_chemosphere_2021_132320
crossref_primary_10_1016_j_clay_2022_106464
crossref_primary_10_1007_s11270_021_05378_8
Cites_doi 10.1016/j.chemosphere.2006.07.007
10.1016/j.chemosphere.2017.02.061
10.1016/j.soilbio.2011.04.022
10.1023/A:1018570213546
10.1016/j.envint.2019.03.068
10.1897/07-273.1
10.1016/j.soilbio.2007.06.017
10.1016/j.apsusc.2013.07.033
10.1016/S0734-9750(99)00014-2
10.1111/1462-2920.14719
10.1016/0147-619X(92)90003-S
10.1016/j.apsusc.2014.06.034
10.1016/j.geoderma.2004.01.003
10.1021/es803092k
10.1016/j.scitotenv.2018.04.127
10.1128/mBio.00944-13
10.1021/jf9044217
10.1016/j.scitotenv.2017.11.132
10.1016/j.jclepro.2017.09.005
10.1016/j.chemosphere.2017.01.005
10.1016/j.scitotenv.2018.06.321
10.1016/j.agee.2012.06.011
10.1021/es0102989
10.1016/j.biortech.2013.08.020
10.1111/sum.12474
10.1016/j.cej.2018.12.098
10.1021/acsearthspacechem.7b00016
10.1016/j.watres.2011.11.058
10.1016/j.jhazmat.2010.09.095
10.1016/j.apsoil.2005.12.002
10.1016/S0956-053X(99)00312-8
10.1016/j.envpol.2016.06.053
10.1016/j.biortech.2015.06.111
10.1016/j.biortech.2007.11.064
10.1111/1462-2920.14478
10.1080/10643389.2017.1386951
10.1016/j.soilbio.2013.06.004
10.1016/j.biochi.2006.10.001
10.1080/10643389.2015.1096880
10.1016/j.chemosphere.2017.09.140
10.1016/j.matlet.2007.05.082
10.1080/19443994.2013.792546
10.1016/S0168-6445(02)00114-6
10.1016/j.molliq.2018.08.039
10.1007/s11356-017-9832-5
10.1016/j.chemosphere.2008.02.006
10.1007/s12665-017-6916-y
10.1016/S1093-0191(02)00135-1
10.1007/s11368-012-0554-5
10.1080/08827500902892077
10.1016/j.jhazmat.2018.06.032
10.1016/j.scitotenv.2017.08.008
10.1007/BF01576071
10.1016/j.chemgeo.2017.01.014
10.1016/j.jiec.2015.10.007
10.1016/j.jhazmat.2015.06.003
10.1007/s11356-012-0873-5
10.1007/s11356-014-3010-9
10.1007/s11368-015-1243-y
10.1128/AEM.53.10.2440-2444.1987
10.1016/j.chemosphere.2016.01.043
10.1016/j.jclepro.2020.120678
10.1016/j.jhazmat.2013.09.062
10.1016/j.resconrec.2018.10.004
10.1021/la047132g
10.1016/S0378-4290(98)00137-3
10.1111/j.1574-6968.1992.tb05703.x
10.1016/j.jhazmat.2018.01.024
10.1111/j.1469-8137.1993.tb03796.x
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2020.114483
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 32283462
10_1016_j_envpol_2020_114483
S0269749119376560
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-3291e2ca467d43062d944ab7ff4b30e61e08d6fd3ed5e606fc59f50f9ea2c5cd3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 04:18:03 EDT 2025
Fri Jul 11 16:19:57 EDT 2025
Wed Feb 19 02:31:13 EST 2025
Tue Jul 01 03:14:54 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Fri Feb 23 02:46:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Alkaline
Cadmium stress
Phosphate-solubilizing bacteria
Biochar
Mineralization
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-3291e2ca467d43062d944ab7ff4b30e61e08d6fd3ed5e606fc59f50f9ea2c5cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32283462
PQID 2389692811
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431885511
proquest_miscellaneous_2389692811
pubmed_primary_32283462
crossref_primary_10_1016_j_envpol_2020_114483
crossref_citationtrail_10_1016_j_envpol_2020_114483
elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Reddad, Gerente, Andres, Le Cloirec (bib46) 2002; 36
Cao, Ma, Gao, Harris (bib6) 2009; 43
Li, Pan, Yu, Wakeel, Luo, Alharbi, Liao, Liu (bib33) 2018; 269
Adriano, Wenzel, Vangronsveld, Bolan (bib1) 2004; 122
Uchimiya, Lima, Klasson, Chang, Wartelle, Rodgers (bib61) 2010; 58
Bandara, Herath, Kumarathilaka, Seneviratne, Seneviratne, Rajakaruna, Vithanage, Ok (bib4) 2017; 17
Kong, Su, Peng, Hou, Liu, Li, Diao, Shih, Xiong, Chen (bib28) 2017; 168
McLaughlin, Parker, Clarke (bib37) 1999; 60
Gadd (bib18) 1994; 124
Wang, Chen, Tsang, Guo, Yang, Shen, Hou, Ok, Poon (bib65) 2020; 258
Yuan, Yi, Wang, Zhang, Zhu, Yao (bib71) 2017; 24
Dong, Singh, Li, Lin, Zhao (bib16) 2019; 35
Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib45) 2016; 148
Tian, Jiang, Jiang, Su, Feng, Zhang, Wang, Li, Hu (bib60) 2019; 21
Shen, Tian, Zhang, Tang, Su, Zhang, Li, Hu, Hou (bib55) 2018; 190
Shen, Zhang, Jin, McMillan, Al-Tabbaa (bib57) 2017; 609
Chen, Rekha, Arun, Shen, Lai, Young (bib11) 2006; 34
O’Connor, Peng, Zhang, Tsang, Alessi, Shen, Bolan, Hou (bib40) 2018; 619
Janouskova, Pavlikova, Vosatka (bib23) 2006; 65
Xu, Cao, Zhao, Wang, Yu, Gao (bib67) 2013; 20
Valls, de Lorenzo (bib62) 2002; 26
Hoffman, Atlas (bib19) 1987; 53
Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Pullammanappallil, Ok, Cao (bib22) 2016; 46
Rillig, Thies (bib48) 2012
Askanneiad, Morsali (bib3) 2008; 62
Nies (bib39) 1992; 27
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib30) 2011; 43
Park, Bolan, Megharaj, Naidu (bib41) 2011; 185
Yakkala, Yu, Roh, Yang, Chang (bib68) 2013; 51
Derome, Gadd (bib14) 1991; 7
Gadd (bib17) 1992; 100
Li, Yang, Wang, Zhang, Liu, Li, Xiao (bib32) 2017; 175
Jeong, Moon, Shin, Nam (bib24) 2013; 263
Vig, Megharaj, Sethunathan, Naidu (bib63) 2003; 8
Zhang, Wang, Yin, Peng, Tan, Liu, Tan, Wu (bib73) 2015; 153
Quilliam, Marsden, Gertler, Rousk, DeLuca, Jones (bib44) 2012; 158
Sharma, Lee (bib53) 2014; 313
Jiang, Jiang, Zhang, Su, Tian, Wang, Sun, Nong, Hu, Wang, Li (bib26) 2020; 22
Crannell, Eighmy, Krzanowski, Eusden, Shaw, Francis (bib13) 2000; 20
Huang, Luo, Zhang, Zeng, Lai, Cheng, Wang, Deng, Xue, Gong, Guo, Li (bib21) 2019; 361
Zhan, Chen, Liao, Reid, Chi, Hou, Cai (bib72) 2016; 216
Shen, Jin, Wang, McMillan, Al-Tabbaa (bib56) 2015; 193
Shan, Yan, Yang, Hao, Du (bib52) 2015; 299
Sud, Mahajan, Kaur (bib58) 2008; 99
Chen, Zhang, Tang, Su, Tian, Zhang, Li, Hu (bib8) 2019; 127
Lu, Zhang, Yang, Huang, Wang, Qiu (bib36) 2012; 46
Moustakas, Akoumianaki-Ioannidou, Barouchas (bib38) 2011; 5
Choi (bib12) 2009; 26
Jiang, Sheng, Qian, Wang (bib25) 2008; 72
Chen, Yuan, Qian (bib7) 2012; 12
Rehman, Bonfield (bib47) 1997; 8
Saletnik, Zagula, Grabek-Lejko, Kasprzyk, Bajcar, Czernicka, Puchalski (bib50) 2017; 76
Wang, Li, Liang (bib64) 2013; 146
Ye, Zeng, Wu, Liang, Zhang, Dai, Xiong, Song, Wu, Yu (bib69) 2019; 140
Perez, Sulbaran, Ball, Yarzabal (bib42) 2007; 39
Ye, Zeng, Wu, Zhang, Liang, Dai, Liu, Xiong, Wan, Xu, Cheng (bib70) 2017; 47
Kusch, Krone, Chiverst (bib29) 2008; 27
Letoffe, Audrain, Bernier, Delepierre, Ghigo (bib31) 2014; 5
Rodriguez, Fraga (bib49) 1999; 17
Chen, Wang, Meng, Yang, Jiang, Zou, Li, Hu (bib10) 2017; 451
Ding, Hu, Wan, Wang, Gao (bib15) 2016; 33
Huang, Deng, Wan, Zeng, Xue, Wen, Zhou, Hu, Liu, Xu, Guo, Ren (bib20) 2018; 348
Bertin, Averbeck (bib5) 2006; 88
Kilic, Kirbiyik, Cepeliogullar, Putun (bib27) 2013; 283
Teng, Shao, Zhang, Huo, Li (bib59) 2019; 231
Xu, He, Liu, Zhang, Lu (bib66) 2017; 173
Ahmad, Akhtar, Zahir, Naveed, Mitter, Sessitsch (bib2) 2014; 21
Quilliam, Glanville, Wade, Jones (bib43) 2013; 65
Sanyal, Rautaray, Bansal, Ahmad, Sastry (bib51) 2005; 21
Chen, Ma, Wei, Gong, Yu, Guo, Zhao (bib9) 2018; 635
Li, Su, Duan, Tian, Yang, Guo, Wang, Hu (bib34) 2018; 357
Shen, Hou, Xu, Zhang, Jin, Zhao, Pan, Peng, Alessi (bib54) 2018; 643
Li, Tang, Zheng, Tian, Su, Zhang, Ma, Hu (bib35) 2017; 1
Kilic (10.1016/j.envpol.2020.114483_bib27) 2013; 283
Park (10.1016/j.envpol.2020.114483_bib41) 2011; 185
Lehmann (10.1016/j.envpol.2020.114483_bib30) 2011; 43
Perez (10.1016/j.envpol.2020.114483_bib42) 2007; 39
Chen (10.1016/j.envpol.2020.114483_bib8) 2019; 127
Saletnik (10.1016/j.envpol.2020.114483_bib50) 2017; 76
Janouskova (10.1016/j.envpol.2020.114483_bib23) 2006; 65
Gadd (10.1016/j.envpol.2020.114483_bib17) 1992; 100
Rajapaksha (10.1016/j.envpol.2020.114483_bib45) 2016; 148
Vig (10.1016/j.envpol.2020.114483_bib63) 2003; 8
Kusch (10.1016/j.envpol.2020.114483_bib29) 2008; 27
Jeong (10.1016/j.envpol.2020.114483_bib24) 2013; 263
Bandara (10.1016/j.envpol.2020.114483_bib4) 2017; 17
Quilliam (10.1016/j.envpol.2020.114483_bib44) 2012; 158
Lu (10.1016/j.envpol.2020.114483_bib36) 2012; 46
Shan (10.1016/j.envpol.2020.114483_bib52) 2015; 299
Chen (10.1016/j.envpol.2020.114483_bib10) 2017; 451
Cao (10.1016/j.envpol.2020.114483_bib6) 2009; 43
Tian (10.1016/j.envpol.2020.114483_bib60) 2019; 21
Hoffman (10.1016/j.envpol.2020.114483_bib19) 1987; 53
Xu (10.1016/j.envpol.2020.114483_bib67) 2013; 20
Yuan (10.1016/j.envpol.2020.114483_bib71) 2017; 24
Moustakas (10.1016/j.envpol.2020.114483_bib38) 2011; 5
Rodriguez (10.1016/j.envpol.2020.114483_bib49) 1999; 17
Derome (10.1016/j.envpol.2020.114483_bib14) 1991; 7
Xu (10.1016/j.envpol.2020.114483_bib66) 2017; 173
Nies (10.1016/j.envpol.2020.114483_bib39) 1992; 27
Li (10.1016/j.envpol.2020.114483_bib34) 2018; 357
Zhan (10.1016/j.envpol.2020.114483_bib72) 2016; 216
Chen (10.1016/j.envpol.2020.114483_bib11) 2006; 34
Jiang (10.1016/j.envpol.2020.114483_bib26) 2020; 22
Adriano (10.1016/j.envpol.2020.114483_bib1) 2004; 122
Bertin (10.1016/j.envpol.2020.114483_bib5) 2006; 88
Choi (10.1016/j.envpol.2020.114483_bib12) 2009; 26
Jiang (10.1016/j.envpol.2020.114483_bib25) 2008; 72
Reddad (10.1016/j.envpol.2020.114483_bib46) 2002; 36
Zhang (10.1016/j.envpol.2020.114483_bib73) 2015; 153
Ye (10.1016/j.envpol.2020.114483_bib70) 2017; 47
Ye (10.1016/j.envpol.2020.114483_bib69) 2019; 140
Valls (10.1016/j.envpol.2020.114483_bib62) 2002; 26
Wang (10.1016/j.envpol.2020.114483_bib65) 2020; 258
Gadd (10.1016/j.envpol.2020.114483_bib18) 1994; 124
Kong (10.1016/j.envpol.2020.114483_bib28) 2017; 168
Askanneiad (10.1016/j.envpol.2020.114483_bib3) 2008; 62
Letoffe (10.1016/j.envpol.2020.114483_bib31) 2014; 5
Quilliam (10.1016/j.envpol.2020.114483_bib43) 2013; 65
Huang (10.1016/j.envpol.2020.114483_bib20) 2018; 348
Rehman (10.1016/j.envpol.2020.114483_bib47) 1997; 8
Shen (10.1016/j.envpol.2020.114483_bib55) 2018; 190
Teng (10.1016/j.envpol.2020.114483_bib59) 2019; 231
Shen (10.1016/j.envpol.2020.114483_bib57) 2017; 609
Sharma (10.1016/j.envpol.2020.114483_bib53) 2014; 313
Crannell (10.1016/j.envpol.2020.114483_bib13) 2000; 20
Sanyal (10.1016/j.envpol.2020.114483_bib51) 2005; 21
Sud (10.1016/j.envpol.2020.114483_bib58) 2008; 99
Yakkala (10.1016/j.envpol.2020.114483_bib68) 2013; 51
Uchimiya (10.1016/j.envpol.2020.114483_bib61) 2010; 58
Li (10.1016/j.envpol.2020.114483_bib32) 2017; 175
Li (10.1016/j.envpol.2020.114483_bib33) 2018; 269
Dong (10.1016/j.envpol.2020.114483_bib16) 2019; 35
Shen (10.1016/j.envpol.2020.114483_bib56) 2015; 193
Ding (10.1016/j.envpol.2020.114483_bib15) 2016; 33
Shen (10.1016/j.envpol.2020.114483_bib54) 2018; 643
Chen (10.1016/j.envpol.2020.114483_bib9) 2018; 635
Ahmad (10.1016/j.envpol.2020.114483_bib2) 2014; 21
Li (10.1016/j.envpol.2020.114483_bib35) 2017; 1
Huang (10.1016/j.envpol.2020.114483_bib21) 2019; 361
Chen (10.1016/j.envpol.2020.114483_bib7) 2012; 12
Rillig (10.1016/j.envpol.2020.114483_bib48) 2012
Inyang (10.1016/j.envpol.2020.114483_bib22) 2016; 46
Wang (10.1016/j.envpol.2020.114483_bib64) 2013; 146
McLaughlin (10.1016/j.envpol.2020.114483_bib37) 1999; 60
O’Connor (10.1016/j.envpol.2020.114483_bib40) 2018; 619
References_xml – volume: 148
  start-page: 276
  year: 2016
  end-page: 291
  ident: bib45
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
– volume: 99
  start-page: 6017
  year: 2008
  end-page: 6027
  ident: bib58
  article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review
  publication-title: Bioresour. Technol.
– volume: 33
  start-page: 239
  year: 2016
  end-page: 245
  ident: bib15
  article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests
  publication-title: J. Ind. Eng. Chem.
– volume: 21
  start-page: 11054
  year: 2014
  end-page: 11065
  ident: bib2
  article-title: Cadmium-tolerant bacteria induce metal stress tolerance in cereals
  publication-title: Environ. Sci. Pollut. Res.
– volume: 26
  start-page: 248
  year: 2009
  end-page: 255
  ident: bib12
  article-title: Adsorption, bioavailability, and toxicity of cadmium to soil microorganisms
  publication-title: Geomicrobiol. J.
– volume: 313
  start-page: 624
  year: 2014
  end-page: 632
  ident: bib53
  article-title: Cd(II) removal and recovery enhancement by using acrylamide-titanium nanocomposite as an adsorbent
  publication-title: Appl. Surf. Sci.
– volume: 17
  start-page: 665
  year: 2017
  end-page: 673
  ident: bib4
  article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil
  publication-title: J. Soils Sediments
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: bib6
  article-title: Dairy-Manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 122
  start-page: 121
  year: 2004
  end-page: 142
  ident: bib1
  article-title: Role of assisted natural remediation in environmental cleanup
  publication-title: Geoderma
– volume: 100
  start-page: 197
  year: 1992
  end-page: 203
  ident: bib17
  article-title: Metals and microorganisms - a problem of definition
  publication-title: FEMS Microbiol. Lett.
– volume: 348
  start-page: 109
  year: 2018
  end-page: 116
  ident: bib20
  article-title: Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters
  publication-title: J. Hazard Mater.
– volume: 185
  start-page: 829
  year: 2011
  end-page: 836
  ident: bib41
  article-title: Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil
  publication-title: J. Hazard Mater.
– volume: 1
  start-page: 152
  year: 2017
  end-page: 157
  ident: bib35
  article-title: Characterizing the mechanisms of lead immobilization via bioapatite and various clay minerals
  publication-title: ACS Earth Space Chem.
– volume: 53
  start-page: 2440
  year: 1987
  end-page: 2444
  ident: bib19
  article-title: Measurement of the effects of cadmium stress on Protozoan grazing of bacteria (bacterivory) in activated-sludge by fluorescence microscopy
  publication-title: Appl. Environ. Microbiol.
– volume: 72
  start-page: 157
  year: 2008
  end-page: 164
  ident: bib25
  article-title: Isolation and characterization of a heavy metal-resistant Burkholderia sp from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil
  publication-title: Chemosphere
– volume: 635
  start-page: 333
  year: 2018
  end-page: 342
  ident: bib9
  article-title: Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 7732
  year: 2013
  end-page: 7745
  ident: bib68
  article-title: Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system
  publication-title: Desalin. Water Treat.
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: bib30
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
– volume: 299
  start-page: 42
  year: 2015
  end-page: 49
  ident: bib52
  article-title: Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies
  publication-title: J. Hazard Mater.
– volume: 619
  start-page: 815
  year: 2018
  end-page: 826
  ident: bib40
  article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials
  publication-title: Sci. Total Environ.
– volume: 140
  start-page: 278
  year: 2019
  end-page: 285
  ident: bib69
  article-title: The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil
  publication-title: Resour. Conserv. Recycl.
– volume: 146
  start-page: 803
  year: 2013
  end-page: 806
  ident: bib64
  article-title: Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption
  publication-title: Bioresour. Technol.
– start-page: 117
  year: 2012
  end-page: 138
  ident: bib48
  article-title: Biochar for Environmental Management
– volume: 357
  start-page: 491
  year: 2018
  end-page: 497
  ident: bib34
  article-title: Induced biotransformation of lead (II) by Enterobacter sp in SO4-PO4-Cl-Para solution
  publication-title: J. Hazard Mater.
– volume: 361
  start-page: 353
  year: 2019
  end-page: 363
  ident: bib21
  article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: 478
  year: 2008
  end-page: 482
  ident: bib3
  article-title: Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method
  publication-title: Mater. Lett.
– volume: 39
  start-page: 2905
  year: 2007
  end-page: 2914
  ident: bib42
  article-title: Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region
  publication-title: Soil Biol. Biochem.
– volume: 451
  start-page: 183
  year: 2017
  end-page: 188
  ident: bib10
  article-title: Temperature-related changes of Ca and P release in synthesized hydroxylapatite, geological fluorapatite, and bone bioapatite
  publication-title: Chem. Geol.
– volume: 21
  start-page: 7220
  year: 2005
  end-page: 7224
  ident: bib51
  article-title: Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals
  publication-title: Langmuir
– volume: 36
  start-page: 2067
  year: 2002
  end-page: 2073
  ident: bib46
  article-title: Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies
  publication-title: Environ. Sci. Technol.
– volume: 124
  start-page: 25
  year: 1994
  end-page: 60
  ident: bib18
  article-title: Interactions of fungi with toxic metals
  publication-title: New Phytol.
– volume: 609
  start-page: 1401
  year: 2017
  end-page: 1410
  ident: bib57
  article-title: Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars
  publication-title: Sci. Total Environ.
– volume: 60
  start-page: 143
  year: 1999
  end-page: 163
  ident: bib37
  article-title: Metals and micronutrients - food safety issues
  publication-title: Field Crop. Res.
– volume: 35
  start-page: 466
  year: 2019
  end-page: 477
  ident: bib16
  article-title: Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition
  publication-title: Soil Use Manag.
– volume: 127
  start-page: 395
  year: 2019
  end-page: 401
  ident: bib8
  article-title: Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria
  publication-title: Environ. Int.
– volume: 34
  start-page: 33
  year: 2006
  end-page: 41
  ident: bib11
  article-title: Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities
  publication-title: Appl. Soil Ecol.
– volume: 263
  start-page: 441
  year: 2013
  end-page: 449
  ident: bib24
  article-title: Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil
  publication-title: J. Hazard Mater.
– volume: 8
  start-page: 121
  year: 2003
  end-page: 135
  ident: bib63
  article-title: Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review
  publication-title: Adv. Environ. Res.
– volume: 24
  start-page: 21877
  year: 2017
  end-page: 21884
  ident: bib71
  article-title: Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil
  publication-title: Environ. Sci. Pollut. Res.
– volume: 153
  start-page: 68
  year: 2015
  end-page: 73
  ident: bib73
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manag.
– volume: 193
  start-page: 553
  year: 2015
  end-page: 556
  ident: bib56
  article-title: Sorption of lead by Salisbury biochar produced from British broadleaf hardwood
  publication-title: Bioresour. Technol.
– volume: 283
  start-page: 856
  year: 2013
  end-page: 862
  ident: bib27
  article-title: Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 17
  year: 1992
  end-page: 28
  ident: bib39
  article-title: Resistance to cadmium, cobalt, zinc, and nickel in microbes
  publication-title: Plasmid
– volume: 158
  start-page: 192
  year: 2012
  end-page: 199
  ident: bib44
  article-title: Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate
  publication-title: Agric. Ecosyst. Environ.
– volume: 7
  start-page: 97
  year: 1991
  end-page: 104
  ident: bib14
  article-title: Use of pelleted and immobilized yeast and fungal biomass for heavy-metal and radionuclide recovery
  publication-title: J. Ind. Microbiol.
– volume: 20
  start-page: 358
  year: 2013
  end-page: 368
  ident: bib67
  article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar
  publication-title: Environ. Sci. Pollut. Res.
– volume: 22
  start-page: 1507
  year: 2020
  end-page: 1516
  ident: bib26
  article-title: Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses
  publication-title: Environ. Microbiol.
– volume: 58
  start-page: 5538
  year: 2010
  end-page: 5544
  ident: bib61
  article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
– volume: 175
  start-page: 332
  year: 2017
  end-page: 340
  ident: bib32
  article-title: Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes
  publication-title: Chemosphere
– volume: 5
  start-page: 274
  year: 2011
  end-page: 279
  ident: bib38
  article-title: The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.)
  publication-title: Aust. J. Crop. Sci.
– volume: 216
  start-page: 819
  year: 2016
  end-page: 825
  ident: bib72
  article-title: Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L): a field study
  publication-title: Environ. Pollut.
– volume: 65
  start-page: 1959
  year: 2006
  end-page: 1965
  ident: bib23
  article-title: Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil
  publication-title: Chemosphere
– volume: 88
  start-page: 1549
  year: 2006
  end-page: 1559
  ident: bib5
  article-title: Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review)
  publication-title: Biochimie
– volume: 20
  start-page: 135
  year: 2000
  end-page: 148
  ident: bib13
  article-title: Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate
  publication-title: Waste Manag.
– volume: 21
  start-page: 471
  year: 2019
  end-page: 479
  ident: bib60
  article-title: A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus Niger and Penicillium oxalicum
  publication-title: Environ. Microbiol.
– volume: 65
  start-page: 287
  year: 2013
  end-page: 293
  ident: bib43
  article-title: Life in the ’charosphere’ - does biochar in agricultural soil provide a significant habitat for microorganisms?
  publication-title: Soil Biol. Biochem.
– volume: 26
  start-page: 327
  year: 2002
  end-page: 338
  ident: bib62
  article-title: Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution
  publication-title: FEMS Microbiol. Rev.
– volume: 8
  start-page: 1
  year: 1997
  end-page: 4
  ident: bib47
  article-title: Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 190
  start-page: 260
  year: 2018
  end-page: 266
  ident: bib55
  article-title: Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution
  publication-title: Chemosphere
– volume: 231
  start-page: 189
  year: 2019
  end-page: 197
  ident: bib59
  article-title: Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization
  publication-title: J. Environ. Manag.
– volume: 47
  start-page: 1528
  year: 2017
  end-page: 1553
  ident: bib70
  article-title: Co-occurrence and interactions of pollutants, and their impacts on soil remediation-A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 46
  start-page: 854
  year: 2012
  end-page: 862
  ident: bib36
  article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar
  publication-title: Water Res.
– volume: 258
  start-page: 120678
  year: 2020
  ident: bib65
  article-title: Biochar as green additives in cement-based composites with carbon dioxide curing
  publication-title: J. Clean. Prod.
– volume: 5
  year: 2014
  ident: bib31
  article-title: Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH
  publication-title: mBio
– volume: 46
  start-page: 406
  year: 2016
  end-page: 433
  ident: bib22
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 27
  start-page: 705
  year: 2008
  end-page: 710
  ident: bib29
  article-title: Chronic exposure to low concentrations of waterborne cadmium during embryonic and larval development results in the long-term hindrance of antipredator behavior in zebrafish
  publication-title: Environ. Toxicol. Chem.
– volume: 173
  start-page: 622
  year: 2017
  end-page: 629
  ident: bib66
  article-title: Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU
  publication-title: Chemosphere
– volume: 168
  start-page: 22
  year: 2017
  end-page: 29
  ident: bib28
  article-title: Producing sawdust derived activated carbon by co-calcinations with limestone for enhanced Acid Orange II adsorption
  publication-title: J. Clean. Prod.
– volume: 269
  start-page: 64
  year: 2018
  end-page: 71
  ident: bib33
  article-title: Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch
  publication-title: J. Mol. Liq.
– volume: 17
  start-page: 319
  year: 1999
  end-page: 339
  ident: bib49
  article-title: Phosphate solubilizing bacteria and their role in plant growth promotion
  publication-title: Biotechnol. Adv.
– volume: 643
  start-page: 1571
  year: 2018
  end-page: 1578
  ident: bib54
  article-title: Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing
  publication-title: Sci. Total Environ.
– volume: 12
  start-page: 1350
  year: 2012
  end-page: 1359
  ident: bib7
  article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers
  publication-title: J. Soils Sediments
– volume: 76
  year: 2017
  ident: bib50
  article-title: Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst)
  publication-title: Environ. Earth Sci.
– volume: 65
  start-page: 1959
  issue: 11
  year: 2006
  ident: 10.1016/j.envpol.2020.114483_bib23
  article-title: Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.07.007
– volume: 175
  start-page: 332
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib32
  article-title: Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.061
– volume: 43
  start-page: 1812
  issue: 9
  year: 2011
  ident: 10.1016/j.envpol.2020.114483_bib30
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 8
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.envpol.2020.114483_bib47
  article-title: Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1023/A:1018570213546
– volume: 127
  start-page: 395
  year: 2019
  ident: 10.1016/j.envpol.2020.114483_bib8
  article-title: Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.03.068
– volume: 27
  start-page: 705
  issue: 3
  year: 2008
  ident: 10.1016/j.envpol.2020.114483_bib29
  article-title: Chronic exposure to low concentrations of waterborne cadmium during embryonic and larval development results in the long-term hindrance of antipredator behavior in zebrafish
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/07-273.1
– volume: 39
  start-page: 2905
  issue: 11
  year: 2007
  ident: 10.1016/j.envpol.2020.114483_bib42
  article-title: Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.06.017
– volume: 5
  start-page: 274
  issue: 3
  year: 2011
  ident: 10.1016/j.envpol.2020.114483_bib38
  article-title: The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.)
  publication-title: Aust. J. Crop. Sci.
– volume: 283
  start-page: 856
  year: 2013
  ident: 10.1016/j.envpol.2020.114483_bib27
  article-title: Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.07.033
– volume: 153
  start-page: 68
  year: 2015
  ident: 10.1016/j.envpol.2020.114483_bib73
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manag.
– volume: 17
  start-page: 319
  issue: 4–5
  year: 1999
  ident: 10.1016/j.envpol.2020.114483_bib49
  article-title: Phosphate solubilizing bacteria and their role in plant growth promotion
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(99)00014-2
– volume: 22
  start-page: 1507
  issue: 4
  year: 2020
  ident: 10.1016/j.envpol.2020.114483_bib26
  article-title: Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14719
– volume: 27
  start-page: 17
  issue: 1
  year: 1992
  ident: 10.1016/j.envpol.2020.114483_bib39
  article-title: Resistance to cadmium, cobalt, zinc, and nickel in microbes
  publication-title: Plasmid
  doi: 10.1016/0147-619X(92)90003-S
– volume: 313
  start-page: 624
  year: 2014
  ident: 10.1016/j.envpol.2020.114483_bib53
  article-title: Cd(II) removal and recovery enhancement by using acrylamide-titanium nanocomposite as an adsorbent
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.06.034
– volume: 122
  start-page: 121
  issue: 2–4
  year: 2004
  ident: 10.1016/j.envpol.2020.114483_bib1
  article-title: Role of assisted natural remediation in environmental cleanup
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.01.003
– volume: 43
  start-page: 3285
  issue: 9
  year: 2009
  ident: 10.1016/j.envpol.2020.114483_bib6
  article-title: Dairy-Manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 635
  start-page: 333
  year: 2018
  ident: 10.1016/j.envpol.2020.114483_bib9
  article-title: Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.127
– volume: 5
  issue: 1
  year: 2014
  ident: 10.1016/j.envpol.2020.114483_bib31
  article-title: Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH
  publication-title: mBio
  doi: 10.1128/mBio.00944-13
– volume: 58
  start-page: 5538
  issue: 9
  year: 2010
  ident: 10.1016/j.envpol.2020.114483_bib61
  article-title: Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9044217
– volume: 619
  start-page: 815
  year: 2018
  ident: 10.1016/j.envpol.2020.114483_bib40
  article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.132
– volume: 168
  start-page: 22
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib28
  article-title: Producing sawdust derived activated carbon by co-calcinations with limestone for enhanced Acid Orange II adsorption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.005
– volume: 173
  start-page: 622
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib66
  article-title: Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.005
– volume: 643
  start-page: 1571
  year: 2018
  ident: 10.1016/j.envpol.2020.114483_bib54
  article-title: Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.321
– volume: 158
  start-page: 192
  year: 2012
  ident: 10.1016/j.envpol.2020.114483_bib44
  article-title: Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2012.06.011
– volume: 36
  start-page: 2067
  issue: 9
  year: 2002
  ident: 10.1016/j.envpol.2020.114483_bib46
  article-title: Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0102989
– volume: 146
  start-page: 803
  year: 2013
  ident: 10.1016/j.envpol.2020.114483_bib64
  article-title: Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.08.020
– start-page: 117
  year: 2012
  ident: 10.1016/j.envpol.2020.114483_bib48
– volume: 35
  start-page: 466
  issue: 3
  year: 2019
  ident: 10.1016/j.envpol.2020.114483_bib16
  article-title: Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12474
– volume: 361
  start-page: 353
  year: 2019
  ident: 10.1016/j.envpol.2020.114483_bib21
  article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.098
– volume: 1
  start-page: 152
  issue: 3
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib35
  article-title: Characterizing the mechanisms of lead immobilization via bioapatite and various clay minerals
  publication-title: ACS Earth Space Chem.
  doi: 10.1021/acsearthspacechem.7b00016
– volume: 46
  start-page: 854
  issue: 3
  year: 2012
  ident: 10.1016/j.envpol.2020.114483_bib36
  article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.058
– volume: 185
  start-page: 829
  issue: 2–3
  year: 2011
  ident: 10.1016/j.envpol.2020.114483_bib41
  article-title: Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.09.095
– volume: 231
  start-page: 189
  year: 2019
  ident: 10.1016/j.envpol.2020.114483_bib59
  article-title: Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization
  publication-title: J. Environ. Manag.
– volume: 34
  start-page: 33
  issue: 1
  year: 2006
  ident: 10.1016/j.envpol.2020.114483_bib11
  article-title: Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2005.12.002
– volume: 20
  start-page: 135
  issue: 2–3
  year: 2000
  ident: 10.1016/j.envpol.2020.114483_bib13
  article-title: Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate
  publication-title: Waste Manag.
  doi: 10.1016/S0956-053X(99)00312-8
– volume: 216
  start-page: 819
  year: 2016
  ident: 10.1016/j.envpol.2020.114483_bib72
  article-title: Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L): a field study
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.053
– volume: 193
  start-page: 553
  year: 2015
  ident: 10.1016/j.envpol.2020.114483_bib56
  article-title: Sorption of lead by Salisbury biochar produced from British broadleaf hardwood
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.06.111
– volume: 99
  start-page: 6017
  issue: 14
  year: 2008
  ident: 10.1016/j.envpol.2020.114483_bib58
  article-title: Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.11.064
– volume: 21
  start-page: 471
  issue: 1
  year: 2019
  ident: 10.1016/j.envpol.2020.114483_bib60
  article-title: A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus Niger and Penicillium oxalicum
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14478
– volume: 47
  start-page: 1528
  issue: 16
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib70
  article-title: Co-occurrence and interactions of pollutants, and their impacts on soil remediation-A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2017.1386951
– volume: 65
  start-page: 287
  year: 2013
  ident: 10.1016/j.envpol.2020.114483_bib43
  article-title: Life in the ’charosphere’ - does biochar in agricultural soil provide a significant habitat for microorganisms?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.06.004
– volume: 88
  start-page: 1549
  issue: 11
  year: 2006
  ident: 10.1016/j.envpol.2020.114483_bib5
  article-title: Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review)
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2006.10.001
– volume: 46
  start-page: 406
  issue: 4
  year: 2016
  ident: 10.1016/j.envpol.2020.114483_bib22
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2015.1096880
– volume: 190
  start-page: 260
  year: 2018
  ident: 10.1016/j.envpol.2020.114483_bib55
  article-title: Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.09.140
– volume: 62
  start-page: 478
  issue: 3
  year: 2008
  ident: 10.1016/j.envpol.2020.114483_bib3
  article-title: Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2007.05.082
– volume: 51
  start-page: 7732
  issue: 40–42
  year: 2013
  ident: 10.1016/j.envpol.2020.114483_bib68
  article-title: Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2013.792546
– volume: 26
  start-page: 327
  issue: 4
  year: 2002
  ident: 10.1016/j.envpol.2020.114483_bib62
  article-title: Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/S0168-6445(02)00114-6
– volume: 269
  start-page: 64
  year: 2018
  ident: 10.1016/j.envpol.2020.114483_bib33
  article-title: Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.08.039
– volume: 24
  start-page: 21877
  issue: 27
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib71
  article-title: Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9832-5
– volume: 72
  start-page: 157
  issue: 2
  year: 2008
  ident: 10.1016/j.envpol.2020.114483_bib25
  article-title: Isolation and characterization of a heavy metal-resistant Burkholderia sp from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.02.006
– volume: 76
  issue: 16
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib50
  article-title: Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6916-y
– volume: 8
  start-page: 121
  issue: 1
  year: 2003
  ident: 10.1016/j.envpol.2020.114483_bib63
  article-title: Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review
  publication-title: Adv. Environ. Res.
  doi: 10.1016/S1093-0191(02)00135-1
– volume: 12
  start-page: 1350
  issue: 9
  year: 2012
  ident: 10.1016/j.envpol.2020.114483_bib7
  article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-012-0554-5
– volume: 26
  start-page: 248
  issue: 4
  year: 2009
  ident: 10.1016/j.envpol.2020.114483_bib12
  article-title: Adsorption, bioavailability, and toxicity of cadmium to soil microorganisms
  publication-title: Geomicrobiol. J.
  doi: 10.1080/08827500902892077
– volume: 357
  start-page: 491
  year: 2018
  ident: 10.1016/j.envpol.2020.114483_bib34
  article-title: Induced biotransformation of lead (II) by Enterobacter sp in SO4-PO4-Cl-Para solution
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.06.032
– volume: 609
  start-page: 1401
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib57
  article-title: Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.008
– volume: 7
  start-page: 97
  issue: 2
  year: 1991
  ident: 10.1016/j.envpol.2020.114483_bib14
  article-title: Use of pelleted and immobilized yeast and fungal biomass for heavy-metal and radionuclide recovery
  publication-title: J. Ind. Microbiol.
  doi: 10.1007/BF01576071
– volume: 451
  start-page: 183
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib10
  article-title: Temperature-related changes of Ca and P release in synthesized hydroxylapatite, geological fluorapatite, and bone bioapatite
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2017.01.014
– volume: 33
  start-page: 239
  year: 2016
  ident: 10.1016/j.envpol.2020.114483_bib15
  article-title: Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.10.007
– volume: 299
  start-page: 42
  year: 2015
  ident: 10.1016/j.envpol.2020.114483_bib52
  article-title: Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: kinetic, isothermal, thermodynamic and mechanistic studies
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.06.003
– volume: 20
  start-page: 358
  issue: 1
  year: 2013
  ident: 10.1016/j.envpol.2020.114483_bib67
  article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-0873-5
– volume: 21
  start-page: 11054
  issue: 18
  year: 2014
  ident: 10.1016/j.envpol.2020.114483_bib2
  article-title: Cadmium-tolerant bacteria induce metal stress tolerance in cereals
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3010-9
– volume: 17
  start-page: 665
  issue: 3
  year: 2017
  ident: 10.1016/j.envpol.2020.114483_bib4
  article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-015-1243-y
– volume: 53
  start-page: 2440
  issue: 10
  year: 1987
  ident: 10.1016/j.envpol.2020.114483_bib19
  article-title: Measurement of the effects of cadmium stress on Protozoan grazing of bacteria (bacterivory) in activated-sludge by fluorescence microscopy
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.53.10.2440-2444.1987
– volume: 148
  start-page: 276
  year: 2016
  ident: 10.1016/j.envpol.2020.114483_bib45
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.043
– volume: 258
  start-page: 120678
  year: 2020
  ident: 10.1016/j.envpol.2020.114483_bib65
  article-title: Biochar as green additives in cement-based composites with carbon dioxide curing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120678
– volume: 263
  start-page: 441
  year: 2013
  ident: 10.1016/j.envpol.2020.114483_bib24
  article-title: Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.09.062
– volume: 140
  start-page: 278
  year: 2019
  ident: 10.1016/j.envpol.2020.114483_bib69
  article-title: The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.10.004
– volume: 21
  start-page: 7220
  issue: 16
  year: 2005
  ident: 10.1016/j.envpol.2020.114483_bib51
  article-title: Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals
  publication-title: Langmuir
  doi: 10.1021/la047132g
– volume: 60
  start-page: 143
  issue: 1–2
  year: 1999
  ident: 10.1016/j.envpol.2020.114483_bib37
  article-title: Metals and micronutrients - food safety issues
  publication-title: Field Crop. Res.
  doi: 10.1016/S0378-4290(98)00137-3
– volume: 100
  start-page: 197
  issue: 1–3
  year: 1992
  ident: 10.1016/j.envpol.2020.114483_bib17
  article-title: Metals and microorganisms - a problem of definition
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1992.tb05703.x
– volume: 348
  start-page: 109
  year: 2018
  ident: 10.1016/j.envpol.2020.114483_bib20
  article-title: Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.01.024
– volume: 124
  start-page: 25
  issue: 1
  year: 1994
  ident: 10.1016/j.envpol.2020.114483_bib18
  article-title: Interactions of fungi with toxic metals
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1993.tb03796.x
SSID ssj0004333
Score 2.5555663
Snippet Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of...
Cadmium cations (Cd ) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of...
Cadmium cations (Cd²⁺) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114483
SubjectTerms Alkaline
alkalinity
bacteria
Biochar
biomass
biomineralization
cadmium
Cadmium stress
carbonates
cations
Enterobacter
microbial growth
Mineralization
organic acids and salts
Phosphate-solubilizing bacteria
phosphates
phosphorus
remediation
surface area
thermogravimetry
toxicity
X-ray photoelectron spectroscopy
Title Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar
URI https://dx.doi.org/10.1016/j.envpol.2020.114483
https://www.ncbi.nlm.nih.gov/pubmed/32283462
https://www.proquest.com/docview/2389692811
https://www.proquest.com/docview/2431885511
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KfdEH0avV-lEiiOhDvN18bfJ4HFfuFIqgxb6F3U0iV3T3sFehL_7tTjbZVh9qwcddJkvYmcz8Jpn5BeCV9rUyKhgqnWRUVKGhWuqCCiWMi2wpdWL7PFbLE_H-VJ7uwHzshYllldn3J58-eOv8Zpr_5nSzXk8_YfaAYBgXK0bYSCETO9hFFa383a_rMg_B03XyKEyj9Ng-N9R4-e7npo8HEGwgzRWa3xSeboKfQxg6egD3M34kszTFh7DjuwnszTrMnb9fktdkqOgctsoncO8PssEJ7C-ue9rwC3lRn-_Bl0Vm_O6-EoSDJFM3oMJIH0iT6JxrEhtRCLryuKFI5o68Wa3ektRqQppL8pGiJca6UkeadR-buR7BydHi83xJ830LtBWq3FLOTOlZW6PvdAJTCeaMEHVThSAaXnhV-kI7FRz3TnpMfEIrTZBFML5mrWwd34fdru_8EyC4sKtC1I6F1gvvMCCUjsnGCMxfnOb8APj4m22bycjjnRjf7Fh1dmaTcmxUjk3KOQB6NWqTyDhuka9GDdq_jMpivLhl5MtR4RbXWzxEqTvfX5xbhDhGGabL8h8yiMq0RiyKMo-TtVzNl0e-IaHY0_-e2zO4G59SFeJz2N3-uPAvEBltm8PB9A_hzmz1YXn8G9IODHM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gH2gKBjbHwaCSF4sJr4I7Ufq6pTy0aFxCb2ZiWxPRVBUrEOaf8959jZ4GFM4jU5R1bOd_c7--5ngLfKlYUuvKbSSkbF2FdUSZVRUQhtA1tKGdk-l8X8VHw8k2dbMO17YUJZZfL90ad33jo9GaW_OVqvVqMvmD0gGEZjxQgbKGTuwXZgp5ID2J4sjubLm_ZIHm-UR3kaBvQddF2Zl2t-rdtwBsE63lyh-G0R6jYE2kWiw0fwMEFIMomzfAxbrhnC7qTB9PnHFXlHuqLObrd8CDt_8A0OYW9209aGX0h2fbELX2eJ9Ls5J4gISWJvQJ2R1pMqMjqXJPSiEPTmYU-RTC15v1h8ILHbhFRX5DPFxRhKSy2pVm3o53oCp4ezk-mcpisXaC2KfEM507ljdYnu0wrMJpjVQpTV2HtR8cwVucuULbzlzkqHuY-vpfYy89qVrJa15XswaNrG7QNB2x5norTM1044izEht0xWWmAKYxXnB8D732zqxEcersX4bvrCs28mKscE5ZionAOg16PWkY_jDvlxr0Hz17oyGDLuGPmmV7hBkwvnKGXj2ssLgyhHF5qpPP-HDAIzpRCOoszTuFqu58sD5ZAo2LP_nttruD8_-XRsjhfLo-fwILyJRYkvYLD5eeleIlDaVK-SIfwG-pIPJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+protection+of+bacteria+from+extreme+Cd+%28II%29+stress+by+P-enriched+biochar&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Chen%2C+Haoming&rft.au=Tang%2C+Lingyi&rft.au=Wang%2C+Zhijun&rft.au=Su%2C+Mu&rft.date=2020-08-01&rft.eissn=1873-6424&rft.volume=263&rft.issue=Pt+A&rft.spage=114483&rft_id=info:doi/10.1016%2Fj.envpol.2020.114483&rft_id=info%3Apmid%2F32283462&rft.externalDocID=32283462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon