Between-Frequency Topographical and Dynamic High-Order Functional Connectivity for Driving Drowsiness Assessment

Previous studies exploring driving drowsiness utilized spectral power and functional connectivity without considering between-frequency and more complex synchronizations. To complement such lacks, we explored inter-regional synchronizations based on the topographical and dynamic properties between f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 3; pp. 358 - 367
Main Authors Harvy, Jonathan, Thakor, Nitish, Bezerianos, Anastasios, Li, Junhua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies exploring driving drowsiness utilized spectral power and functional connectivity without considering between-frequency and more complex synchronizations. To complement such lacks, we explored inter-regional synchronizations based on the topographical and dynamic properties between frequency bands using high-order functional connectivity (HOFC) and envelope correlation. We proposed the dynamic interactions of HOFC, associated-HOFC, and a global metric measuring the aggregated effect of the functional connectivity. The EEG dataset was collected from 30 healthy subjects, undergoing two driving sessions. The two-session setting was employed for evaluating the metric reliability across sessions. Based on the results, we observed reliably significant metric changes, mainly involving the alpha band. In HOFC θα , HOFC αβ , associated-HOFC θα , and associatedHOFC αβ , the connection-level metrics in frontal-central, central-central,and central-parietal/occipitalareas were significantly increased, indicating a dominance in the central region. Similar results were also obtained in the HOFC θαβ and aHOFC θαβ . For dynamic-low-order-FC and dynamicHOFC, the global metrics revealed a reliably significant increment in the alpha, theta-alpha, and alpha-beta bands. Modularity indexes of associated-HOFC α and associatedHOFC θα also exhibited reliably significant differences. This paper demonstrated that within-band and betweenfrequency topographical and dynamic FC can provide complementary information to the traditional individual-band LOFC for assessing driving drowsiness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2019.2893949