Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices

Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolutio...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 23; no. 2; pp. 025706 - 1-6
Main Authors Kee, Yeh Yee, Tan, Sek Sean, Yong, Thian Khok, Nee, Chen Hon, Yap, Seong Shan, Tou, Teck Yong, Sáfrán, György, Horváth, Zsolt Endre, Moscatello, Jason P, Yap, Yoke Khin
Format Journal Article
LanguageEnglish
Published England IOP Publishing 20.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6 × 10−4 Ω cm) and high in visible transmittance (∼90-96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ∼30 mA cm−2 was detected at bias voltages of ∼19-21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2-2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.
AbstractList Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6×10⁻⁴ Ω cm) and high in visible transmittance (~90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ~30 mA cm⁻² was detected at bias voltages of ~19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.
Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6 × 10−4 Ω cm) and high in visible transmittance (∼90-96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ∼30 mA cm−2 was detected at bias voltages of ∼19-21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2-2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.
Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 degree C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6 x 10 super(-4) Omega cm) and high in visible transmittance ( similar to 90-96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of similar to 30 mA cm super(-2) was detected at bias voltages of similar to 19-21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2-2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.
Author Kee, Yeh Yee
Tou, Teck Yong
Yap, Seong Shan
Horváth, Zsolt Endre
Sáfrán, György
Yap, Yoke Khin
Tan, Sek Sean
Moscatello, Jason P
Yong, Thian Khok
Nee, Chen Hon
Author_xml – sequence: 1
  givenname: Yeh Yee
  surname: Kee
  fullname: Kee, Yeh Yee
  organization: Multimedia University Faculty of Engineering, 63100 Cyberjaya, Selangor, Malaysia
– sequence: 2
  givenname: Sek Sean
  surname: Tan
  fullname: Tan, Sek Sean
  organization: Multimedia University Faculty of Engineering, 63100 Cyberjaya, Selangor, Malaysia
– sequence: 3
  givenname: Thian Khok
  surname: Yong
  fullname: Yong, Thian Khok
  organization: Multimedia University Faculty of Engineering, 63100 Cyberjaya, Selangor, Malaysia
– sequence: 4
  givenname: Chen Hon
  surname: Nee
  fullname: Nee, Chen Hon
  organization: Multimedia University Faculty of Engineering, 63100 Cyberjaya, Selangor, Malaysia
– sequence: 5
  givenname: Seong Shan
  surname: Yap
  fullname: Yap, Seong Shan
  organization: Multimedia University Faculty of Engineering, 63100 Cyberjaya, Selangor, Malaysia
– sequence: 6
  givenname: Teck Yong
  surname: Tou
  fullname: Tou, Teck Yong
  email: tytou@mmu.edu
  organization: Multimedia University Faculty of Engineering, 63100 Cyberjaya, Selangor, Malaysia
– sequence: 7
  givenname: György
  surname: Sáfrán
  fullname: Sáfrán, György
  organization: Hungarian Academy of Sciences (MFA) Research Institute for Technical Physics and Material Science, Konkoly Thege M. út 29-33, H-1121 Budapest, Hungary
– sequence: 8
  givenname: Zsolt Endre
  surname: Horváth
  fullname: Horváth, Zsolt Endre
  organization: Hungarian Academy of Sciences (MFA) Research Institute for Technical Physics and Material Science, Konkoly Thege M. út 29-33, H-1121 Budapest, Hungary
– sequence: 9
  givenname: Jason P
  surname: Moscatello
  fullname: Moscatello, Jason P
  organization: Michigan Technological University Department of Physics, Houghton, MI 49931, USA
– sequence: 10
  givenname: Yoke Khin
  surname: Yap
  fullname: Yap, Yoke Khin
  email: ykyap@mtu.edu
  organization: Michigan Technological University Department of Physics, Houghton, MI 49931, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22166812$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFSEUxYmpsa_Vj6BhpwvHB8zAMEvT-C95iRtdEwYurzQzMAJj228vL68-Fxq7gnB-51xyzwU6CzEAQi8peUeJlFsy8L7pOtltWbtlW8J4T8QTtKGtoI3gTJ6hzYk5Rxc53xBCqWT0GTpnjAohKdugu128bQrMCyRd1gQ434dyDdlnHB32wfp1xsUHHO-8BRx0iLc-QcY648rhknTIi04QCoYJTEnRVtXFhGPa6-ANnvz-uoqzLzVnjy389Abyc_TU6SnDi4fzEn3_-OHb1edm9_XTl6v3u8Z0gpaGMW0IaG4t70U_6NGORtQ7BW2drK_OUe1GIzntbTswJjvXWyr16LitcHuJXh9zlxR_rJCLmn02ME06QFyzGpigXJChr-Sb_5KU0EGInvSsovyImhRzTuDUkvys032F1KEedVi9OqxesVYxdayn-l49jFjHGezJ9buPCrw9Aj4uJ_WfWWqxruLkb_yxL9A_lpu4plC3_4jnFwE5urg
CODEN NNOTER
CitedBy_id crossref_primary_10_35848_1347_4065_acc2ca
crossref_primary_10_1063_1_4890848
crossref_primary_10_1016_j_surfcoat_2013_06_063
crossref_primary_10_1016_j_mssp_2014_05_016
crossref_primary_10_1002_adom_202001122
crossref_primary_10_1007_s12274_014_0542_8
crossref_primary_10_3390_ma16196463
crossref_primary_10_1016_j_mssp_2016_03_016
crossref_primary_10_1016_j_tsf_2014_06_053
crossref_primary_10_1063_1_4875457
crossref_primary_10_1016_j_materresbull_2014_01_022
crossref_primary_10_1364_OE_21_016670
crossref_primary_10_1039_C8NR07908K
crossref_primary_10_3390_nano12060897
crossref_primary_10_1063_1_4871255
crossref_primary_10_1016_j_cclet_2024_110030
crossref_primary_10_1109_LED_2020_2977377
crossref_primary_10_1021_acsaem_9b00519
crossref_primary_10_1039_C4TC01484G
crossref_primary_10_1016_j_jallcom_2014_03_088
crossref_primary_10_1142_S0218625X1750113X
crossref_primary_10_1007_s00339_017_0994_2
crossref_primary_10_1007_s10853_021_06678_4
crossref_primary_10_1016_j_tsf_2014_02_002
crossref_primary_10_1088_1742_6596_2254_1_012023
crossref_primary_10_1109_JPHOTOV_2024_3393073
crossref_primary_10_1016_j_jallcom_2017_08_207
crossref_primary_10_1039_D1QM00279A
Cites_doi 10.1107/S0021889878012844
10.1016/S0040-6090(02)00165-7
10.1016/j.tsf.2005.03.022
10.1016/j.apsusc.2006.11.008
10.1063/1.1808877
10.1016/S0379-6779(99)00374-4
10.1063/1.119008
10.1007/s00339-004-2738-3
10.1142/S0217984906011402
10.1126/science.1101243
10.1021/nl072838r
10.1143/JJAP.44.1978
10.1023/A:1004842004640
10.1109/2944.669464
10.1063/1.368981
10.1007/BF02692436
10.1063/1.3606420
10.1016/j.solmat.2008.11.026
10.1002/adma.200601619
10.1038/nnano.2008.418
10.1021/nl062213d
10.1016/j.scriptamat.2006.08.022
ContentType Journal Article
Copyright 2012 IOP Publishing Ltd
Copyright_xml – notice: 2012 IOP Publishing Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1088/0957-4484/23/2/025706
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices
EISSN 1361-6528
EndPage 1-6
ExternalDocumentID 10_1088_0957_4484_23_2_025706
22166812
nano406053
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
123
1JI
1WK
4.4
53G
5B3
5PX
5VS
5ZH
5ZI
7.M
7.Q
9BW
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TN5
W28
XPP
ZMT
-
1PV
AAPBV
ABPTK
AHSEE
KNG
MGA
RW3
UNR
X
AERVB
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c461t-22ac0ea5dd57679abdbc6d571eadf8dd5ff1afbc8517d392284f7d18abf5dbdb3
IEDL.DBID IOP
ISSN 0957-4484
IngestDate Sat Oct 05 05:55:50 EDT 2024
Fri Oct 25 11:41:48 EDT 2024
Thu Sep 26 16:10:43 EDT 2024
Sat Sep 28 08:01:50 EDT 2024
Tue Nov 10 14:15:09 EST 2020
Mon May 13 16:00:14 EDT 2019
Wed Aug 21 03:41:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-22ac0ea5dd57679abdbc6d571eadf8dd5ff1afbc8517d392284f7d18abf5dbdb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 22166812
PQID 1019667072
PQPubID 23500
PageCount 6
ParticipantIDs iop_journals_10_1088_0957_4484_23_2_025706
crossref_primary_10_1088_0957_4484_23_2_025706
proquest_miscellaneous_926156097
pubmed_primary_22166812
proquest_miscellaneous_1019667072
iop_primary_10_1088_0957_4484_23_2_025706
PublicationCentury 2000
PublicationDate 2012-01-20
PublicationDateYYYYMMDD 2012-01-20
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev Nano
PublicationTitleAlternate Nanotechnology
PublicationYear 2012
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 20
  doi: 10.1107/S0021889878012844
– ident: 9
  doi: 10.1016/S0040-6090(02)00165-7
– ident: 11
  doi: 10.1016/j.tsf.2005.03.022
– ident: 19
  doi: 10.1016/j.apsusc.2006.11.008
– ident: 14
  doi: 10.1063/1.1808877
– ident: 7
  doi: 10.1016/S0379-6779(99)00374-4
– ident: 10
  doi: 10.1063/1.119008
– ident: 15
  doi: 10.1007/s00339-004-2738-3
– ident: 17
  doi: 10.1142/S0217984906011402
– ident: 1
  doi: 10.1126/science.1101243
– ident: 2
  doi: 10.1021/nl072838r
– ident: 13
  doi: 10.1143/JJAP.44.1978
– ident: 8
  doi: 10.1023/A:1004842004640
– ident: 5
  doi: 10.1109/2944.669464
– ident: 6
  doi: 10.1063/1.368981
– ident: 16
  doi: 10.1007/BF02692436
– ident: 21
  doi: 10.1063/1.3606420
– ident: 12
  doi: 10.1016/j.solmat.2008.11.026
– ident: 22
  doi: 10.1002/adma.200601619
– ident: 4
  doi: 10.1038/nnano.2008.418
– ident: 3
  doi: 10.1021/nl062213d
– ident: 18
  doi: 10.1016/j.scriptamat.2006.08.022
SSID ssj0011821
Score 2.2613115
Snippet Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser...
Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 degree C by Nd:YAG...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 025706
SubjectTerms Devices
Electrodes
Indium tin oxide
Light
Light emitting
Nanowires
Nanowires - chemistry
Nanowires - ultrastructure
Organic light emitting diodes
Photovoltaic cells
Scanning electron microscopy
Solar cells
Tin Compounds - chemistry
Title Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices
URI https://iopscience.iop.org/article/10.1088/0957-4484/23/2/025706
http://iopscience.iop.org/0957-4484/23/2/025706
https://www.ncbi.nlm.nih.gov/pubmed/22166812
https://search.proquest.com/docview/1019667072
https://search.proquest.com/docview/926156097
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7RIiR44ChHwyUjwQNI2V07dpx9RIiqIK4HKvXN8ilFpcmqyYrCr2ccJ9WCWFWINyuZOL5m_I09_gzw3C6WuhDc54YLkXNd0NzYIuTBeyqpp64ali4-fioPj_j7Y3G8cYq_blej6Z9hMhEFpyYcA-KqOYICmaNXweesmLP5It7DVu7A1QL1Jbpf7z5_udhHQPRME9te-mQ6w7Mtm99mpx0swXbgOUxAB7dAT0VPcScns3VvZvbnH6yO_1O323BzRKfkdZK_A1d8swc3NjgL9-DaEDNqu7tw_qH9nkdqq5GXmXQ_GoSTXd2RNpC4F74-JX3dkPa8dp40umkjMXJHdEdQjvQDr3o8jNaT8TYeh28RRZN015Ql3-LSAfGn9RCdTZwf7No9ODp4-_XNYT5e5JBbXtI-Z0zbhdfCOfRu5FIbZ2yJaYrDOFT4NASqg7GI_qRDwIZTZpCOVtoE4VC4uA-7Tdv4fSCcC2kME9Zzy50WFZVecq8DtTxUnmYwmzpQrRJfhxr22atKxcZVsXEVKxRTqXEzeIWdoUbN7S4TfhGFp4z_KqNWLmTwclPukjyfTSNMoWrH_Rrd-HYdi4LmsZQLyTIgW2SW6AEjaF3KDB6k0XnxV8ZoGdnlHv5LDR_BdYSEMVoH7edj2O3P1v4Jwq7ePB006xd5uB6P
link.rule.ids 315,783,787,1560,27936,27937,38877,53854,53918
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSA48ChQwtNIcKBSNmvHibNHRFm1UEoPVOrN8lNa0SYrkhWFX884zq4KYlUhblEyduyxPf5sj78BeGXGE5UX3KWaF0XKVU5TbXKfeueooI7aqt-6-HRU7p_wD6fF6Qbsre7CNPPB9I_wMRIFRxUODnFVhqBApLiq4BnLM5aNQxy2MptbvwnXcPgWgUH_4PPx6iwBETSNjHsx2fIez7qsfpuhNrEU68FnPwlN74BbFj_6nnwdLTo9Mj__YHb83_rdhdsDSiVvY5p7sOHqbbh1ibtwG673vqOmvQ8Xh833NFBcDfzMpP1RI6xsZy1pPAln4otz0s1q0lzMrCO1qptAkNwS1RKUI13Prx4upXVkiMpj8SuiaRJjThlyFrYQiDuf9V7axLrevj2Ak-n7L-_20yGgQ2p4SbuUMWXGThXW4ipHTJS22pT4TLE7-wrfek-V1wZRoLAI3HDq9MLSSmlfWBTOH8JW3dTuERDOC6E1K4zjhltVVFQ4wZ3y1HBfOZrAaNmIch55O2R_3l5VMihYBgVLlksmo4IT2MUGkcMIbq8Sfh2Elxn_VUZiiyXw5rLcFXm-XPYyiUM8nNuo2jWLUBQ0k6UYC5YAWSMzwZUwgteJSGAn9tDVXxmjZWCZe_wvNXwBN473pvLw4OjjE7iJKDE48KBJfQpb3beFe4ZIrNPP-4H2C0-_I-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+synthesis+of+indium+tin+oxide+nanowires+as+the+transparent+electrodes+for+organic+light+emitting+devices&rft.jtitle=Nanotechnology&rft.au=Kee%2C+Yeh+Yee&rft.au=Tan%2C+Sek+Sean&rft.au=Yong%2C+Thian+Khok&rft.au=Nee%2C+Chen+Hon&rft.date=2012-01-20&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=23&rft.issue=2&rft.spage=25706&rft_id=info:doi/10.1088%2F0957-4484%2F23%2F2%2F025706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0957_4484_23_2_025706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon