Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge
Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been invest...
Saved in:
Published in | Water research (Oxford) Vol. 155; pp. 142 - 151 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.
[Display omitted]
•cPAM decreased the yield of SCFAs from anaerobic fermentation of WAS.•cPAM affected the composition of individual SCFA.•cPAM showed different inhibition on microbes involved in the anaerobic fermentation.•cPAM's degradation product polyacrylic acid also suppressed anaerobic fermentation.•cPAM decreased microbial community diversity and altered community structure. |
---|---|
AbstractList | Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation. Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation. Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation. [Display omitted] •cPAM decreased the yield of SCFAs from anaerobic fermentation of WAS.•cPAM affected the composition of individual SCFA.•cPAM showed different inhibition on microbes involved in the anaerobic fermentation.•cPAM's degradation product polyacrylic acid also suppressed anaerobic fermentation.•cPAM decreased microbial community diversity and altered community structure. |
Author | Liu, Xuran Zeng, Guangming Yang, Guojing Wang, Qilin Li, Hailong Yang, Qi Li, Xiaoming Wu, Yanxin Xu, Qiuxiang Liu, Yiwen Wang, Dongbo |
Author_xml | – sequence: 1 givenname: Xuran surname: Liu fullname: Liu, Xuran email: liuxuran@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China – sequence: 2 givenname: Qiuxiang surname: Xu fullname: Xu, Qiuxiang email: qiuxiangxu66@yahoo.com organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China – sequence: 3 givenname: Dongbo surname: Wang fullname: Wang, Dongbo email: w.dongbo@yahoo.com organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China – sequence: 4 givenname: Yanxin surname: Wu fullname: Wu, Yanxin organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China – sequence: 5 givenname: Qi orcidid: 0000-0001-6781-770X surname: Yang fullname: Yang, Qi organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China – sequence: 6 givenname: Yiwen orcidid: 0000-0001-6677-7961 surname: Liu fullname: Liu, Yiwen organization: Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia – sequence: 7 givenname: Qilin surname: Wang fullname: Wang, Qilin organization: Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia – sequence: 8 givenname: Xiaoming surname: Li fullname: Li, Xiaoming organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China – sequence: 9 givenname: Hailong surname: Li fullname: Li, Hailong organization: School of Energy Science and Engineering, Central South University, Changsha, 410083, PR China – sequence: 10 givenname: Guangming orcidid: 0000-0002-4230-7647 surname: Zeng fullname: Zeng, Guangming organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China – sequence: 11 givenname: Guojing surname: Yang fullname: Yang, Guojing email: guojing_yang@163.com organization: College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30844675$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU-LEzEchoOsuN3qNxDJ0cvU_JlpMx4EWfwHC17Wc8gkv7QpmaQmmZZ-of2cps7qwYN6SQi8zxt4nxt0FWIAhF5SsqKErt_sVydVEuQVI7RfEbYifP0ELajY9A1rW3GFFoS0vKG8a6_RTc57QghjvH-GrjkRbbvedAv08C0cwXkXtrjsAI-gdyq4PGYcLd7FE9aquBicxofoz0qns1ejM4CVtaBLxnkXU2kq5QK2qpQzVtqZXE89jZP_SWMzpcsPPoZtUyCNWAUFKQ611tYnhDLn6p8nlUtt18UdVQGDs5_MFp6jp1b5DC8e7yW6__jh_vZzc_f105fb93eNbte0NIx0hnBLe04s74RQYhg0IQMVphNGGCC0LqCY1VRrbTZK0V4AJxyYsYPgS_R6rj2k-H2CXOTosgbvVYA4ZclYx-u2bPMfUSr6ruWkEkv06jE6DSMYeUhuVOksf1mogXYO6BRzTmB_RyiRF9lyL2fZ8iJbEiar7Iq9_QPTbh6yJOX8v-B3Mwx1zqODJLN2EDQYl6pYaaL7e8EPqjfMaQ |
CitedBy_id | crossref_primary_10_1016_j_procbio_2020_12_018 crossref_primary_10_1039_D1EW00165E crossref_primary_10_1016_j_biortech_2019_121598 crossref_primary_10_1016_j_biortech_2020_122859 crossref_primary_10_1016_j_biortech_2020_123947 crossref_primary_10_1016_j_eti_2022_102363 crossref_primary_10_1016_j_jclepro_2024_143396 crossref_primary_10_1016_j_watres_2022_118082 crossref_primary_10_1016_j_jcis_2020_04_075 crossref_primary_10_1016_j_scitotenv_2022_160309 crossref_primary_10_1016_j_biortech_2023_129776 crossref_primary_10_1016_j_cej_2024_155111 crossref_primary_10_1021_acs_est_4c05971 crossref_primary_10_1007_s13399_019_00576_1 crossref_primary_10_1016_j_scitotenv_2022_161122 crossref_primary_10_1016_j_scitotenv_2020_139035 crossref_primary_10_1016_j_jece_2022_107821 crossref_primary_10_1016_j_scitotenv_2020_136561 crossref_primary_10_1016_j_watres_2021_117316 crossref_primary_10_1021_acs_est_2c04170 crossref_primary_10_1016_j_jhazmat_2019_121048 crossref_primary_10_3390_app11010100 crossref_primary_10_1016_j_biortech_2019_122282 crossref_primary_10_1007_s11356_019_05889_2 crossref_primary_10_1007_s42768_024_00207_0 crossref_primary_10_1016_j_jece_2021_105489 crossref_primary_10_1016_j_biortech_2024_130892 crossref_primary_10_1016_j_biortech_2024_130772 crossref_primary_10_1007_s11783_020_1277_2 crossref_primary_10_1016_j_biortech_2019_121363 crossref_primary_10_1016_j_biortech_2019_122058 crossref_primary_10_1016_j_watres_2019_115249 crossref_primary_10_1016_j_cej_2020_127026 crossref_primary_10_1016_j_cej_2020_127147 crossref_primary_10_1021_acsestengg_2c00279 crossref_primary_10_1007_s12155_022_10448_8 crossref_primary_10_1016_j_envres_2021_112661 crossref_primary_10_1016_j_jenvman_2022_115025 crossref_primary_10_1016_j_jhazmat_2024_136715 crossref_primary_10_1021_acs_est_2c09178 crossref_primary_10_1016_j_biortech_2020_123141 crossref_primary_10_1016_j_scitotenv_2022_160441 crossref_primary_10_1016_j_watres_2021_117325 crossref_primary_10_1016_j_chemosphere_2019_06_117 crossref_primary_10_1016_j_jwpe_2024_106618 crossref_primary_10_1016_j_biortech_2025_132386 crossref_primary_10_1016_j_envres_2022_115119 crossref_primary_10_1016_j_jenvman_2024_122581 crossref_primary_10_1016_j_aquaeng_2020_102090 crossref_primary_10_1016_j_jclepro_2019_119305 crossref_primary_10_1021_acs_est_2c08004 crossref_primary_10_1016_j_eti_2022_102427 crossref_primary_10_1016_j_biortech_2023_129032 crossref_primary_10_1016_j_watres_2024_122368 crossref_primary_10_1016_j_jhazmat_2020_122336 crossref_primary_10_1016_j_jhazmat_2024_133592 crossref_primary_10_1016_j_biortech_2019_121776 crossref_primary_10_3390_ijerph19052806 crossref_primary_10_1007_s11356_020_11548_8 crossref_primary_10_1016_j_biortech_2020_124588 crossref_primary_10_1016_j_watres_2020_116645 crossref_primary_10_1016_j_biortech_2021_125307 crossref_primary_10_1021_acs_est_4c03165 crossref_primary_10_1016_j_biortech_2022_127804 crossref_primary_10_1007_s11356_019_07527_3 crossref_primary_10_1007_s12649_024_02503_6 crossref_primary_10_1016_j_cej_2020_124580 crossref_primary_10_1016_j_scitotenv_2019_06_207 crossref_primary_10_2139_ssrn_3988740 crossref_primary_10_1016_j_jenvman_2022_116212 crossref_primary_10_1016_j_watres_2019_114934 crossref_primary_10_1371_journal_pone_0238531 crossref_primary_10_5004_dwt_2023_29669 crossref_primary_10_1016_j_cej_2021_131442 crossref_primary_10_1016_j_jclepro_2021_127756 crossref_primary_10_1016_j_ijhydene_2022_11_015 crossref_primary_10_1016_j_cej_2021_129809 crossref_primary_10_1016_j_biortech_2021_124875 crossref_primary_10_1021_acsestengg_1c00468 crossref_primary_10_1016_j_cej_2019_123285 crossref_primary_10_1038_s41598_020_58054_y crossref_primary_10_1016_j_jclepro_2022_134989 crossref_primary_10_1016_j_cej_2022_134968 crossref_primary_10_1016_j_seppur_2022_120958 crossref_primary_10_1016_j_scitotenv_2020_144470 crossref_primary_10_1016_j_jhazmat_2019_121176 crossref_primary_10_1007_s11356_020_08207_3 crossref_primary_10_4491_eer_2021_190 crossref_primary_10_1021_acssuschemeng_0c01081 crossref_primary_10_1016_j_jece_2024_114830 crossref_primary_10_2139_ssrn_3989401 crossref_primary_10_1016_j_jtice_2019_06_010 crossref_primary_10_1016_j_jclepro_2020_123504 crossref_primary_10_1016_j_scitotenv_2021_145598 crossref_primary_10_1016_j_jece_2023_110752 crossref_primary_10_1016_j_colsurfa_2022_130582 crossref_primary_10_1016_j_jenvman_2024_122828 crossref_primary_10_1021_acsestengg_3c00291 crossref_primary_10_1016_j_enconman_2020_113436 crossref_primary_10_1016_j_biortech_2019_03_116 crossref_primary_10_1016_j_biortech_2019_121713 crossref_primary_10_1016_j_jenvman_2021_112853 crossref_primary_10_1021_acs_est_3c09239 crossref_primary_10_1007_s11356_020_09306_x crossref_primary_10_1016_j_enconman_2020_113560 crossref_primary_10_1016_j_watres_2020_115851 crossref_primary_10_1016_j_scitotenv_2019_136105 crossref_primary_10_1016_j_jclepro_2019_119912 crossref_primary_10_1016_j_cej_2019_122567 crossref_primary_10_1155_2020_1705232 crossref_primary_10_2166_wst_2019_308 crossref_primary_10_3390_su16083181 crossref_primary_10_1016_j_jhazmat_2019_121363 crossref_primary_10_1016_j_jclepro_2020_124687 crossref_primary_10_1016_j_watres_2023_120897 crossref_primary_10_3390_en14010150 crossref_primary_10_1016_j_ecoenv_2023_115059 crossref_primary_10_1021_acs_est_1c04693 crossref_primary_10_1016_j_biortech_2019_03_121 crossref_primary_10_1016_j_biortech_2022_127266 crossref_primary_10_1016_j_watres_2019_114912 crossref_primary_10_1016_j_cej_2020_124235 crossref_primary_10_1016_j_biortech_2022_127143 crossref_primary_10_1016_j_chemosphere_2019_125804 crossref_primary_10_1021_acsomega_0c03606 crossref_primary_10_1039_D4GC05125D crossref_primary_10_5004_dwt_2020_25642 crossref_primary_10_1016_j_scitotenv_2021_146974 crossref_primary_10_1016_j_jenvman_2022_114528 crossref_primary_10_1016_j_bej_2020_107883 crossref_primary_10_1016_j_cej_2022_137339 crossref_primary_10_3390_ma17143482 crossref_primary_10_1016_j_biortech_2019_03_090 crossref_primary_10_1016_j_watres_2020_116539 crossref_primary_10_1016_j_jhazmat_2021_125295 crossref_primary_10_1002_bse_2987 crossref_primary_10_1016_j_biortech_2022_127331 crossref_primary_10_1016_j_scitotenv_2023_169025 crossref_primary_10_1016_j_jhazmat_2020_123343 crossref_primary_10_1016_j_cej_2020_124147 crossref_primary_10_1016_j_biortech_2019_122428 crossref_primary_10_1080_10643389_2024_2309846 crossref_primary_10_3390_en14030590 crossref_primary_10_1016_j_cej_2024_151563 crossref_primary_10_1016_j_watres_2021_117651 crossref_primary_10_1021_acssuschemeng_2c06015 crossref_primary_10_1016_j_cherd_2019_07_018 crossref_primary_10_1016_j_watres_2024_121757 crossref_primary_10_1002_ep_13656 crossref_primary_10_1016_j_cej_2022_140913 crossref_primary_10_1016_j_biortech_2020_124266 crossref_primary_10_3390_app11031067 crossref_primary_10_2139_ssrn_3975254 crossref_primary_10_1016_j_afres_2024_100569 crossref_primary_10_1016_j_cej_2020_127251 crossref_primary_10_1016_j_chemosphere_2024_142727 crossref_primary_10_1080_09593330_2019_1707880 crossref_primary_10_1016_j_resconrec_2022_106342 crossref_primary_10_1016_j_cej_2019_123991 crossref_primary_10_1016_j_cej_2021_131407 crossref_primary_10_1016_j_cej_2020_125502 crossref_primary_10_1007_s11356_019_05739_1 crossref_primary_10_1016_j_jhazmat_2020_124206 crossref_primary_10_1016_j_biortech_2020_122869 crossref_primary_10_1016_j_biortech_2022_127567 crossref_primary_10_1016_j_scitotenv_2024_175673 crossref_primary_10_1016_j_watres_2019_06_016 crossref_primary_10_1016_j_chemosphere_2021_130939 crossref_primary_10_1016_j_watres_2019_115264 crossref_primary_10_12677_PI_2021_104023 crossref_primary_10_1016_j_biortech_2020_123686 crossref_primary_10_1016_j_jff_2020_103796 crossref_primary_10_1016_j_jclepro_2021_129580 crossref_primary_10_3390_w15061200 crossref_primary_10_1016_j_scitotenv_2019_133741 crossref_primary_10_1016_j_scitotenv_2023_163673 crossref_primary_10_1016_j_chemosphere_2019_125380 crossref_primary_10_1016_j_jclepro_2022_132241 crossref_primary_10_1016_j_chemosphere_2022_134760 crossref_primary_10_2166_wst_2020_079 crossref_primary_10_1016_j_jhazmat_2024_134915 |
Cites_doi | 10.1016/j.watres.2018.10.060 10.1016/j.actbio.2018.07.038 10.1021/es052252b 10.1016/j.watres.2006.07.030 10.1016/j.watres.2017.02.064 10.1016/j.watres.2017.04.015 10.1016/j.watres.2018.04.026 10.1016/j.dental.2011.02.003 10.1016/j.ibiod.2014.07.004 10.1016/j.chemosphere.2018.09.048 10.1186/s13068-017-0821-1 10.1039/C4RA05721J 10.1021/es1031882 10.1021/acs.est.6b00003 10.2166/wst.2004.0622 10.1016/j.biortech.2018.07.018 10.1016/j.biortech.2018.12.055 10.1016/j.watres.2018.01.051 10.1021/acssuschemeng.8b04427 10.1016/j.jhazmat.2005.11.076 10.1016/j.biortech.2018.07.109 10.1021/es8037142 10.1016/j.watres.2017.04.055 10.1016/j.watres.2017.09.062 10.1016/j.watres.2016.08.062 10.1021/acssuschemeng.8b05799 10.1016/j.watres.2016.09.030 10.1016/j.watres.2015.04.012 10.1016/j.biortech.2010.11.119 10.1016/j.watres.2017.12.007 10.1016/j.watres.2012.02.005 10.1016/j.cej.2017.11.064 10.1016/S0892-6875(00)00059-5 10.1007/s11157-005-7191-z 10.1016/j.bej.2016.06.002 10.1016/S0045-6535(03)00553-8 10.1016/j.watres.2017.07.067 10.2166/wst.2001.0802 10.1016/j.pecs.2008.06.002 10.1038/srep11675 10.1007/s11157-004-2502-3 10.1016/j.jhazmat.2010.08.011 10.1016/j.ecoleng.2015.07.028 10.1021/es400210v 10.1016/j.biortech.2013.11.007 10.1016/j.polymertesting.2008.06.009 10.1016/j.biortech.2018.01.084 10.1016/j.watres.2018.05.049 10.1021/acs.est.5b00200 10.1016/j.biortech.2006.12.008 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2019.02.036 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 151 |
ExternalDocumentID | 30844675 10_1016_j_watres_2019_02_036 S0043135419301617 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-205d03f1930f3588a8bbc00b18d58d8de01223a2fc1cccd7aa198e303e2dfb83 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 12:25:53 EDT 2025 Fri Jul 11 00:56:07 EDT 2025 Thu Apr 03 06:57:43 EDT 2025 Tue Jul 01 01:20:55 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 Fri Feb 23 02:23:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cationic polyacrylamide Short-chain fatty acids Anaerobic fermentation Waste activated sludge |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-205d03f1930f3588a8bbc00b18d58d8de01223a2fc1cccd7aa198e303e2dfb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6677-7961 0000-0001-6781-770X 0000-0002-4230-7647 |
PMID | 30844675 |
PQID | 2189543025 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2253244278 proquest_miscellaneous_2189543025 pubmed_primary_30844675 crossref_primary_10_1016_j_watres_2019_02_036 crossref_citationtrail_10_1016_j_watres_2019_02_036 elsevier_sciencedirect_doi_10_1016_j_watres_2019_02_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-15 |
PublicationDateYYYYMMDD | 2019-05-15 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Duan, Wang, Xie, Feng, Yan, Zhou (bib19) 2016; 105 Liu, Xu, Wang, Yang, Wu, Yang, Gong, Ye, Li, Wang, Liu, Ni, Zeng, Li (bib25) 2018; 6 Luo, Chen, Feng (bib30) 2016; 50 Xiao, Chen, Jiang, Tyagi, Zhou (bib42) 2016; 105 Angelidaki, Torang, Waul, Schmidt (bib2) 2004; 49 Sang, Pi, Bao, Li, Lu (bib35) 2015; 84 Wang, Duan, Yang, Liu, Ni, Wang, Zeng, Li, Yuan (bib37) 2018; 133 Czech, Pełech (bib15) 2008; 27 Liu, Wang, Wang, Yu, Fu, Liu (bib24) 2017; 119 Xu, Liu, Zhao, Wang, Wang, Li, Yang, Zeng (bib44) 2018; 254 Bao, Chen, Li, Jiang (bib5) 2010; 184 Chen, Liu, Ni, Wang, Wang, Zhang, Li, Zeng (bib10) 2016; 113 Wong, Teng, Ahmad, Zuhairi, Najafpour (bib41) 2006; 135 Nelson, Morrison, Yu (bib32) 2011; 102 Ma, Liu, Zhang, Yang, Fu, Liu (bib31) 2017; 10 Campos, Almirall, Mtnez-Almela, Palatsi, Flotats (bib7) 2008; 99 Liu, Xu, Wang, Zhao, Wu, Liu, Ni, Wang, Zeng, Li (bib26) 2018; 268 Liu, Li, Kang, Yuan, Du (bib22) 2014; 94 Dai, Luo, Zhang, Dai, Chen, Dong (bib17) 2015; 5 Zhao, Wang, Li, Yang, Chen, Zhong, Zeng (bib50) 2015; 78 Angelidaki, Sanders (bib1) 2004; 3 Liu, Xu, Wang, Yang, Wu, Yang, Liu, Wang, Ni, Li, Li, Yang (bib27) 2019; 7 Yuan, Chen, Zhang, Jiang, Zhou, Gu (bib48) 2006; 40 Feng, Chen, Zheng (bib20) 2009; 43 Chen, Jiang, Yuan, Zhou, Gu (bib9) 2007; 41 Omar, Abou-Shanab, El-Gammal, Fotidis, Kougias, Zhang, Angelidaki (bib33) 2018; 142 Xu, Liu, Wang, Wu, Wang, Liu, Li, An, Zhao, Chen (bib46) 2018; 213 Appels, Baeyens, Degrève, Dewil (bib4) 2008; 34 Wang, Wang, Liu, Wang, Chen, Yang, Li, Zeng, Li (bib36) 2017; 127 Wei, Zhou, Wang, Sun, Wang (bib40) 2017; 118 Apha (bib3) 1998; vol. 20 Zheng, Su, Li, Xiao, Wang, Chen (bib51) 2013; 47 Yang, Liu, Wang, Xu, Yang, Zeng, Li, Liu, Gong, Ye, Li (bib47) 2019; 148 Batstone (bib6) 2006; 5 Santhiya, Subramanian, Natarajan (bib53) 2000; 13 Xu, Li, Ding, Wang, Liu, Wang, Zhao, Chen, Zeng, Yang, Li (bib43) 2017; 124 Chang, Raudenbush, Dentel (bib8) 2001; 44 Dai, Xu, Dong (bib52) 2017; 115 Li, Chen, Hu, Yu, Chen, Gu (bib21) 2011; 45 Wang, Liu, Zeng, Zhao, Liu, Wang, Chen, Li, Yang (bib38) 2018; 130 Cotte, Bouadam, Sordoillet, Jaudinaud, Chambon, Talaga (bib14) 2017; 1–10 Dowling, Fleming (bib18) 2011; 27 Chu, Tsai, Lee, Tay (bib13) 2005; 76 Lou, Venkataraman, Zhong, Ding, Tan, Xu, Fan, Yang (bib28) 2018; 78 Rao, Wan, Liu, Angelidaki, Zhang, Zhang, Luo (bib34) 2018; 139 Zhao, Ma, Ma, Gao, Zhu, Luo (bib49) 2014; 4 Dai, Luo, Yi, He, Dong (bib16) 2014; 153 Xu, Liu, Fu, Li, Wang, Wang, Liu, An, Zhao, Wu (bib45) 2018; 267 Liu, Chen, Xiao, Zheng, Li (bib23) 2015; 49 Wang, Huang, Xu, Liu, Yang, Li (bib39) 2019; 275 Lu, Xing, Ren (bib29) 2012; 46 Chen, Wu, Wang, Li, Wang, Liu, Peng, Yang, Li, Zeng (bib11) 2018; 334 Chu, Lee, Chang, You, Liao, Tay (bib12) 2003; 53 Liu (10.1016/j.watres.2019.02.036_bib27) 2019; 7 Duan (10.1016/j.watres.2019.02.036_bib19) 2016; 105 Xu (10.1016/j.watres.2019.02.036_bib45) 2018; 267 Chu (10.1016/j.watres.2019.02.036_bib12) 2003; 53 Xiao (10.1016/j.watres.2019.02.036_bib42) 2016; 105 Rao (10.1016/j.watres.2019.02.036_bib34) 2018; 139 Chu (10.1016/j.watres.2019.02.036_bib13) 2005; 76 Xu (10.1016/j.watres.2019.02.036_bib46) 2018; 213 Lou (10.1016/j.watres.2019.02.036_bib28) 2018; 78 Zhao (10.1016/j.watres.2019.02.036_bib49) 2014; 4 Chen (10.1016/j.watres.2019.02.036_bib11) 2018; 334 Dai (10.1016/j.watres.2019.02.036_bib17) 2015; 5 Liu (10.1016/j.watres.2019.02.036_bib23) 2015; 49 Chang (10.1016/j.watres.2019.02.036_bib8) 2001; 44 Chen (10.1016/j.watres.2019.02.036_bib9) 2007; 41 Nelson (10.1016/j.watres.2019.02.036_bib32) 2011; 102 Zhao (10.1016/j.watres.2019.02.036_bib50) 2015; 78 Angelidaki (10.1016/j.watres.2019.02.036_bib1) 2004; 3 Dai (10.1016/j.watres.2019.02.036_bib52) 2017; 115 Wang (10.1016/j.watres.2019.02.036_bib39) 2019; 275 Xu (10.1016/j.watres.2019.02.036_bib44) 2018; 254 Wong (10.1016/j.watres.2019.02.036_bib41) 2006; 135 Wei (10.1016/j.watres.2019.02.036_bib40) 2017; 118 Liu (10.1016/j.watres.2019.02.036_bib26) 2018; 268 Yuan (10.1016/j.watres.2019.02.036_bib48) 2006; 40 Xu (10.1016/j.watres.2019.02.036_bib43) 2017; 124 Zheng (10.1016/j.watres.2019.02.036_bib51) 2013; 47 Sang (10.1016/j.watres.2019.02.036_bib35) 2015; 84 Angelidaki (10.1016/j.watres.2019.02.036_bib2) 2004; 49 Ma (10.1016/j.watres.2019.02.036_bib31) 2017; 10 Omar (10.1016/j.watres.2019.02.036_bib33) 2018; 142 Campos (10.1016/j.watres.2019.02.036_bib7) 2008; 99 Dowling (10.1016/j.watres.2019.02.036_bib18) 2011; 27 Bao (10.1016/j.watres.2019.02.036_bib5) 2010; 184 Chen (10.1016/j.watres.2019.02.036_bib10) 2016; 113 Apha (10.1016/j.watres.2019.02.036_bib3) 1998; vol. 20 Cotte (10.1016/j.watres.2019.02.036_bib14) 2017; 1–10 Yang (10.1016/j.watres.2019.02.036_bib47) 2019; 148 Wang (10.1016/j.watres.2019.02.036_bib37) 2018; 133 Lu (10.1016/j.watres.2019.02.036_bib29) 2012; 46 Feng (10.1016/j.watres.2019.02.036_bib20) 2009; 43 Liu (10.1016/j.watres.2019.02.036_bib24) 2017; 119 Czech (10.1016/j.watres.2019.02.036_bib15) 2008; 27 Dai (10.1016/j.watres.2019.02.036_bib16) 2014; 153 Li (10.1016/j.watres.2019.02.036_bib21) 2011; 45 Wang (10.1016/j.watres.2019.02.036_bib38) 2018; 130 Liu (10.1016/j.watres.2019.02.036_bib22) 2014; 94 Liu (10.1016/j.watres.2019.02.036_bib25) 2018; 6 Wang (10.1016/j.watres.2019.02.036_bib36) 2017; 127 Luo (10.1016/j.watres.2019.02.036_bib30) 2016; 50 Batstone (10.1016/j.watres.2019.02.036_bib6) 2006; 5 Santhiya (10.1016/j.watres.2019.02.036_bib53) 2000; 13 Appels (10.1016/j.watres.2019.02.036_bib4) 2008; 34 |
References_xml | – volume: 153 start-page: 55 year: 2014 end-page: 61 ident: bib16 article-title: Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system publication-title: Bioresour. Technol. – volume: 5 start-page: 11675 year: 2015 ident: bib17 article-title: Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal publication-title: Sci. Rep. – volume: 47 start-page: 4262 year: 2013 end-page: 4268 ident: bib51 article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production publication-title: Environ. Sci. Technol. – volume: 334 start-page: 1351 year: 2018 end-page: 1360 ident: bib11 article-title: Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge publication-title: Chem. Eng. J. – volume: 10 start-page: 137 year: 2017 ident: bib31 article-title: Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation publication-title: Biotechnol. Biofuels – volume: 27 start-page: 535 year: 2011 end-page: 543 ident: bib18 article-title: The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative publication-title: Dental Materials Official Publication of the Academy of Dental Materials – volume: 78 start-page: 78 year: 2018 end-page: 88 ident: bib28 article-title: Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection publication-title: Acta Biomater. – volume: 49 start-page: 115 year: 2004 end-page: 122 ident: bib2 article-title: Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS) publication-title: Water Sci. Technol. – volume: 148 start-page: 239 year: 2019 end-page: 249 ident: bib47 article-title: Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge publication-title: Water Res. – volume: 105 start-page: 470 year: 2016 end-page: 478 ident: bib42 article-title: Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments publication-title: Water Res. – volume: 142 start-page: 86 year: 2018 end-page: 95 ident: bib33 article-title: Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures publication-title: Water Res. – volume: 43 start-page: 4373 year: 2009 end-page: 4380 ident: bib20 article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH publication-title: Environ. Sci. Technol. – volume: 124 start-page: 269 year: 2017 end-page: 279 ident: bib43 article-title: Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge publication-title: Water Res. – volume: 254 start-page: 194 year: 2018 end-page: 202 ident: bib44 article-title: Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: role and significance of Tea saponin publication-title: Bioresour. Technol. – volume: 46 start-page: 2425 year: 2012 end-page: 2434 ident: bib29 article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge publication-title: Water Res. – volume: vol. 20 year: 1998 ident: bib3 publication-title: WPCF, 1998. Standard Methods for the Examination of Water and Wastewater – volume: 3 start-page: 117 year: 2004 end-page: 129 ident: bib1 article-title: Assessment of the anaerobic biodegradability of macropollutants publication-title: Rev. Environ. Sci. Biotechnol. – volume: 113 start-page: 114 year: 2016 end-page: 122 ident: bib10 article-title: Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area publication-title: Biochem. Eng. J. – volume: 94 start-page: 128 year: 2014 end-page: 133 ident: bib22 article-title: Short chain fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process: effect of alkaline adjustment publication-title: Int. Biodeterior. Biodegrad. – volume: 115 start-page: 220 year: 2017 end-page: 228 ident: bib52 article-title: Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge publication-title: Water Res. – volume: 184 start-page: 105 year: 2010 end-page: 110 ident: bib5 article-title: Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field publication-title: J. Hazard Mater. – volume: 34 start-page: 755 year: 2008 end-page: 781 ident: bib4 article-title: Principles and potential of the anaerobic digestion of waste-activated sludge publication-title: Prog. Energy Combust. Sci. – volume: 41 start-page: 683 year: 2007 end-page: 689 ident: bib9 article-title: Hydrolysis and acidification of waste activated sludge at different pHs publication-title: Water Res. – volume: 127 start-page: 150 year: 2017 end-page: 161 ident: bib36 article-title: Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge publication-title: Water Res. – volume: 275 start-page: 163 year: 2019 end-page: 171 ident: bib39 article-title: Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge publication-title: Bioresour. Technol. – volume: 4 start-page: 56831 year: 2014 end-page: 56837 ident: bib49 article-title: Biosorption and biodegradation of polyacrylate/nano-ZnO leather finishing agent and toxic effect on activated sludge publication-title: RSC Adv. – volume: 133 start-page: 272 year: 2018 end-page: 281 ident: bib37 article-title: Free ammonia enhances dark fermentative hydrogen production from waste activated sludge publication-title: Water Res. – volume: 84 start-page: 121 year: 2015 end-page: 127 ident: bib35 article-title: Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank publication-title: Ecol. Eng. – volume: 50 start-page: 6921 year: 2016 end-page: 6929 ident: bib30 article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen publication-title: Environ. Sci. Technol. – volume: 53 start-page: 757 year: 2003 end-page: 764 ident: bib12 article-title: Anaerobic digestion of polyelectrolyte flocculated waste activated sludge publication-title: Chemosphere – volume: 13 start-page: 747 year: 2000 end-page: 763 ident: bib53 article-title: Surface chemical studies on galena and sphalerite in the presence of Thiobacillus Thiooxidans with reference to mineral beneficiation publication-title: Miner. Eng. – volume: 5 start-page: 57 year: 2006 end-page: 71 ident: bib6 article-title: Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use publication-title: Rev. Environ. Sci. Biotechnol. – volume: 6 start-page: 15822 year: 2018 end-page: 15831 ident: bib25 article-title: Revealing the underlying mechanisms of how initial pH affects waste activated sludge solubilization and dewaterability in freezing and thawing process publication-title: ACS Sustain. Chem. Eng. – volume: 102 start-page: 3730 year: 2011 end-page: 3739 ident: bib32 article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters publication-title: Bioresour. Technol. – volume: 27 start-page: 870 year: 2008 end-page: 872 ident: bib15 article-title: Use of pyrolysis and gas chromatography for the determination of acrylic acid concentration in acrylic copolymers containing carboxylic groups publication-title: Polym. Test. – volume: 40 start-page: 2025 year: 2006 end-page: 2029 ident: bib48 article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions publication-title: Environ. Sci. Technol. – volume: 213 start-page: 276 year: 2018 end-page: 284 ident: bib46 article-title: Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge publication-title: Chemosphere – volume: 139 start-page: 372 year: 2018 end-page: 380 ident: bib34 article-title: A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge publication-title: Water Res. – volume: 135 start-page: 378 year: 2006 end-page: 388 ident: bib41 article-title: Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation publication-title: J. Hazard Mater. – volume: 118 start-page: 12 year: 2017 end-page: 19 ident: bib40 article-title: Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production publication-title: Water Res. – volume: 76 start-page: 239 year: 2005 end-page: 244 ident: bib13 article-title: Size-dependent anaerobic digestion rates of flocculated activated sludge: role of intrafloc mass transfer resistance publication-title: J. Environ. Manag. – volume: 105 start-page: 209 year: 2016 end-page: 217 ident: bib19 article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge publication-title: Water Res. – volume: 1–10 year: 2017 ident: bib14 article-title: Determination of molecular size parameters and quantification of polyacrylic acid by high performance size-exclusion chromatography with triple detection publication-title: Anal. Bioanal. Chem. – volume: 267 start-page: 141 year: 2018 end-page: 148 ident: bib45 article-title: Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: role and significance of rhamnolipid publication-title: Bioresour. Technol. – volume: 78 start-page: 111 year: 2015 end-page: 120 ident: bib50 article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge publication-title: Water Res. – volume: 49 start-page: 4929 year: 2015 end-page: 4936 ident: bib23 article-title: Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge publication-title: Environ. Sci. Technol. – volume: 268 start-page: 230 year: 2018 end-page: 236 ident: bib26 article-title: Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications publication-title: Bioresour. Technol. – volume: 44 start-page: 461 year: 2001 end-page: 468 ident: bib8 article-title: Aerobic and anaerobic biodegradability of a flocculant polymer publication-title: Water Sci. Technol. – volume: 45 start-page: 1834 year: 2011 end-page: 1839 ident: bib21 article-title: Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal publication-title: Environ. Sci. Technol. – volume: 130 start-page: 281 year: 2018 end-page: 290 ident: bib38 article-title: Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge publication-title: Water Res. – volume: 99 start-page: 387 year: 2008 end-page: 395 ident: bib7 article-title: Feasibility study of the anaerobic digestion of dewatered pig slurry by means of polyacrylamide publication-title: Bioresour. Technol. – volume: 119 start-page: 225 year: 2017 end-page: 233 ident: bib24 article-title: Stepwise hydrolysis to improve carbon releasing efficiency from sludge publication-title: Water Res. – volume: 7 start-page: 3544 year: 2019 end-page: 3555 ident: bib27 article-title: Enhanced short-chain fatty acids from waste activated sludge by heat–CaO publication-title: ACS Sustain. Chem. Eng. – volume: 148 start-page: 239 year: 2019 ident: 10.1016/j.watres.2019.02.036_bib47 article-title: Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2018.10.060 – volume: 78 start-page: 78 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib28 article-title: Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.07.038 – volume: 40 start-page: 2025 issue: 6 year: 2006 ident: 10.1016/j.watres.2019.02.036_bib48 article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es052252b – volume: 41 start-page: 683 issue: 3 year: 2007 ident: 10.1016/j.watres.2019.02.036_bib9 article-title: Hydrolysis and acidification of waste activated sludge at different pHs publication-title: Water Res. doi: 10.1016/j.watres.2006.07.030 – volume: vol. 20 year: 1998 ident: 10.1016/j.watres.2019.02.036_bib3 – volume: 115 start-page: 220 year: 2017 ident: 10.1016/j.watres.2019.02.036_bib52 article-title: Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge publication-title: Water Res. doi: 10.1016/j.watres.2017.02.064 – volume: 118 start-page: 12 year: 2017 ident: 10.1016/j.watres.2019.02.036_bib40 article-title: Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production publication-title: Water Res. doi: 10.1016/j.watres.2017.04.015 – volume: 139 start-page: 372 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib34 article-title: A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2018.04.026 – volume: 27 start-page: 535 issue: 6 year: 2011 ident: 10.1016/j.watres.2019.02.036_bib18 article-title: The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative publication-title: Dental Materials Official Publication of the Academy of Dental Materials doi: 10.1016/j.dental.2011.02.003 – volume: 94 start-page: 128 year: 2014 ident: 10.1016/j.watres.2019.02.036_bib22 article-title: Short chain fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process: effect of alkaline adjustment publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2014.07.004 – volume: 213 start-page: 276 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib46 article-title: Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.048 – volume: 10 start-page: 137 issue: 1 year: 2017 ident: 10.1016/j.watres.2019.02.036_bib31 article-title: Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0821-1 – volume: 4 start-page: 56831 issue: 100 year: 2014 ident: 10.1016/j.watres.2019.02.036_bib49 article-title: Biosorption and biodegradation of polyacrylate/nano-ZnO leather finishing agent and toxic effect on activated sludge publication-title: RSC Adv. doi: 10.1039/C4RA05721J – volume: 45 start-page: 1834 issue: 5 year: 2011 ident: 10.1016/j.watres.2019.02.036_bib21 article-title: Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal publication-title: Environ. Sci. Technol. doi: 10.1021/es1031882 – volume: 50 start-page: 6921 issue: 13 year: 2016 ident: 10.1016/j.watres.2019.02.036_bib30 article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00003 – volume: 49 start-page: 115 year: 2004 ident: 10.1016/j.watres.2019.02.036_bib2 article-title: Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS) publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0622 – volume: 267 start-page: 141 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib45 article-title: Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: role and significance of rhamnolipid publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.018 – volume: 275 start-page: 163 year: 2019 ident: 10.1016/j.watres.2019.02.036_bib39 article-title: Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.12.055 – volume: 133 start-page: 272 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib37 article-title: Free ammonia enhances dark fermentative hydrogen production from waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2018.01.051 – volume: 6 start-page: 15822 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib25 article-title: Revealing the underlying mechanisms of how initial pH affects waste activated sludge solubilization and dewaterability in freezing and thawing process publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04427 – volume: 135 start-page: 378 issue: 1 year: 2006 ident: 10.1016/j.watres.2019.02.036_bib41 article-title: Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2005.11.076 – volume: 268 start-page: 230 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib26 article-title: Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.109 – volume: 43 start-page: 4373 issue: 12 year: 2009 ident: 10.1016/j.watres.2019.02.036_bib20 article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH publication-title: Environ. Sci. Technol. doi: 10.1021/es8037142 – volume: 119 start-page: 225 year: 2017 ident: 10.1016/j.watres.2019.02.036_bib24 article-title: Stepwise hydrolysis to improve carbon releasing efficiency from sludge publication-title: Water Res. doi: 10.1016/j.watres.2017.04.055 – volume: 127 start-page: 150 year: 2017 ident: 10.1016/j.watres.2019.02.036_bib36 article-title: Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2017.09.062 – volume: 105 start-page: 209 year: 2016 ident: 10.1016/j.watres.2019.02.036_bib19 article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2016.08.062 – volume: 7 start-page: 3544 year: 2019 ident: 10.1016/j.watres.2019.02.036_bib27 article-title: Enhanced short-chain fatty acids from waste activated sludge by heat–CaO2 advanced thermal hydrolysis pretreatment: parameter optimization, mechanisms, and implications publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05799 – volume: 105 start-page: 470 year: 2016 ident: 10.1016/j.watres.2019.02.036_bib42 article-title: Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments publication-title: Water Res. doi: 10.1016/j.watres.2016.09.030 – volume: 78 start-page: 111 year: 2015 ident: 10.1016/j.watres.2019.02.036_bib50 article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2015.04.012 – volume: 102 start-page: 3730 issue: 4 year: 2011 ident: 10.1016/j.watres.2019.02.036_bib32 article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.119 – volume: 130 start-page: 281 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib38 article-title: Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2017.12.007 – volume: 46 start-page: 2425 issue: 7 year: 2012 ident: 10.1016/j.watres.2019.02.036_bib29 article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2012.02.005 – volume: 334 start-page: 1351 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib11 article-title: Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.064 – volume: 13 start-page: 747 year: 2000 ident: 10.1016/j.watres.2019.02.036_bib53 article-title: Surface chemical studies on galena and sphalerite in the presence of Thiobacillus Thiooxidans with reference to mineral beneficiation publication-title: Miner. Eng. doi: 10.1016/S0892-6875(00)00059-5 – volume: 5 start-page: 57 issue: 1 year: 2006 ident: 10.1016/j.watres.2019.02.036_bib6 article-title: Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-005-7191-z – volume: 113 start-page: 114 issue: Suppl. C year: 2016 ident: 10.1016/j.watres.2019.02.036_bib10 article-title: Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2016.06.002 – volume: 53 start-page: 757 issue: 7 year: 2003 ident: 10.1016/j.watres.2019.02.036_bib12 article-title: Anaerobic digestion of polyelectrolyte flocculated waste activated sludge publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00553-8 – volume: 124 start-page: 269 year: 2017 ident: 10.1016/j.watres.2019.02.036_bib43 article-title: Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge publication-title: Water Res. doi: 10.1016/j.watres.2017.07.067 – volume: 44 start-page: 461 issue: 2–3 year: 2001 ident: 10.1016/j.watres.2019.02.036_bib8 article-title: Aerobic and anaerobic biodegradability of a flocculant polymer publication-title: Water Sci. Technol. doi: 10.2166/wst.2001.0802 – volume: 34 start-page: 755 issue: 6 year: 2008 ident: 10.1016/j.watres.2019.02.036_bib4 article-title: Principles and potential of the anaerobic digestion of waste-activated sludge publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2008.06.002 – volume: 76 start-page: 239 issue: 3 year: 2005 ident: 10.1016/j.watres.2019.02.036_bib13 article-title: Size-dependent anaerobic digestion rates of flocculated activated sludge: role of intrafloc mass transfer resistance publication-title: J. Environ. Manag. – volume: 5 start-page: 11675 year: 2015 ident: 10.1016/j.watres.2019.02.036_bib17 article-title: Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal publication-title: Sci. Rep. doi: 10.1038/srep11675 – volume: 3 start-page: 117 year: 2004 ident: 10.1016/j.watres.2019.02.036_bib1 article-title: Assessment of the anaerobic biodegradability of macropollutants publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-004-2502-3 – volume: 184 start-page: 105 issue: 1 year: 2010 ident: 10.1016/j.watres.2019.02.036_bib5 article-title: Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.08.011 – volume: 84 start-page: 121 year: 2015 ident: 10.1016/j.watres.2019.02.036_bib35 article-title: Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2015.07.028 – volume: 47 start-page: 4262 issue: 9 year: 2013 ident: 10.1016/j.watres.2019.02.036_bib51 article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production publication-title: Environ. Sci. Technol. doi: 10.1021/es400210v – volume: 153 start-page: 55 year: 2014 ident: 10.1016/j.watres.2019.02.036_bib16 article-title: Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.11.007 – volume: 1–10 year: 2017 ident: 10.1016/j.watres.2019.02.036_bib14 article-title: Determination of molecular size parameters and quantification of polyacrylic acid by high performance size-exclusion chromatography with triple detection publication-title: Anal. Bioanal. Chem. – volume: 27 start-page: 870 issue: 7 year: 2008 ident: 10.1016/j.watres.2019.02.036_bib15 article-title: Use of pyrolysis and gas chromatography for the determination of acrylic acid concentration in acrylic copolymers containing carboxylic groups publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2008.06.009 – volume: 254 start-page: 194 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib44 article-title: Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: role and significance of Tea saponin publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.01.084 – volume: 142 start-page: 86 year: 2018 ident: 10.1016/j.watres.2019.02.036_bib33 article-title: Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures publication-title: Water Res. doi: 10.1016/j.watres.2018.05.049 – volume: 49 start-page: 4929 year: 2015 ident: 10.1016/j.watres.2019.02.036_bib23 article-title: Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00200 – volume: 99 start-page: 387 issue: 2 year: 2008 ident: 10.1016/j.watres.2019.02.036_bib7 article-title: Feasibility study of the anaerobic digestion of dewatered pig slurry by means of polyacrylamide publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.12.008 |
SSID | ssj0002239 |
Score | 2.6334777 |
Snippet | Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 142 |
SubjectTerms | acetic acid activated sludge Anaerobic fermentation biotransformation Cationic polyacrylamide chemical oxygen demand community structure dewatering enzymes fermentation flocculation hydrolysis metabolites microbial communities polyacrylamide polyacrylic acid proteins Short-chain fatty acids solubilization total suspended solids Waste activated sludge wastewater |
Title | Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge |
URI | https://dx.doi.org/10.1016/j.watres.2019.02.036 https://www.ncbi.nlm.nih.gov/pubmed/30844675 https://www.proquest.com/docview/2189543025 https://www.proquest.com/docview/2253244278 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4s22UBmJq2kS24lzrCqqBURPrdRb5MekDdpNVk22q73wc_o7mcmjgARU4hIp0VixPOOZL_F8M4y9hxhKE3knQjBBKF_mwrg0CJsoifHaZdD3Ift6ms7P1ecLfbHDjicuDKVVjr5_8Om9tx6fHI6rebiqKuL4YvCTWiEEIdxCjHKlMrLyD99_pnlg-MunU2aSnuhzfY7XxhIhgxK88r5yZ1-o-Y_h6W_wsw9DJ0_Y4xE_8qNhik_ZDtTP2KNfqgo-Z7fn9Q1URDPniO74EojcW7XLljclv2o2fPhLV3m-ahZb66-3aBVVAG6H3A7eXiEmFziqqnlpu27Lra9Ci1e_Xo7tvvjAb-SLpr4U5N65rS1QUSfPS7wdKU01vXNj0ZQ4MShuENkG3i7W4RJesLOTj2fHczG2YxBepXGH-0mHSJa03KXUxljjnI8iF5ugDWoa6JRO2qT0sfc-ZNbGuQEMkZCE0hn5ku3WTQ2vGQdQaWqkclQsxiaRgzhDYKogymwSIj1jclJC4cdS5dQxY1FMOWnfikF1BamuiJICVTdj4m7UaijVcY98Num3-M3kCowm94x8N5lDgbuRjlhsDc0ahWKTayURSP5DJtGIYqnFyYy9Gmzpbr4yMvh9num9_57bPntId5TgEOs3bLe7XsNbxE2dO-g3xgF7cPTpy_z0B4KXHLM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHijdbXkaCY2gS24n3wAEB1ZY-TlupN8uxJ23QbrJqsl3thZ_DD-AXMpNHAQmohNTLStn1JFZmPPN5Pd8MY68hglyHLgu81z6QLh8HOkt8YGMpMF5nKbR9yA6Pksmx_HyiTjbY94ELQ2mVve_vfHrrrftvdvq3ubMoCuL4YvATSiIEIdyS9pmV-7Be4b6tfrf3EZX8Jo53P00_TIK-tUDgZBI1aBvKhyIn0Vwora3OMheGWaS90jhroBMnYePcRc45n1qLm3NAdw-xzzMt8LY32E2J3oK6Jrz9-jOtBMXGw6k2zW6g67U5ZStLBBBKKBu3lULbwtB_DId_g7tt2Nu9y7Z6vMrfd6_kHtuA8j6780sVwwfs23F5AQXR2jmiST4HIhMX9bzmVc7PqhXv_hUsHF9Us7V152u0wsIDt10uCa_PcA8QoFRR8tw2zZpbV_gaP91y3rcX4x2fks-q8jSgcMJtaYGKSDme42VPoSrpmSuLpsuJsXGBSNrzerb0p_CQTa9DR4_YZlmV8IRxAJkkWsiMitPYOMwgShEISwhTG_tQjZgYlGBcXxqdOnTMzJAD98V0qjOkOhPGBlU3YsGl1KIrDXLF-HTQr_nNxA1GryskXw3mYHD105GOLaFa4qBIj5UUCFz_MSZWiJqppcqIPe5s6XK-ItQSQ6Xa_u-5vWS3JtPDA3Owd7T_lN2mXyi5IlLP2GZzvoTniNma7EW7SDgz17wofwAaxlgx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+mechanisms+of+how+cationic+polyacrylamide+affects+short-chain+fatty+acids+accumulation+during+long-term+anaerobic+fermentation+of+waste+activated+sludge&rft.jtitle=Water+research+%28Oxford%29&rft.au=Liu%2C+Xuran&rft.au=Xu%2C+Qiuxiang&rft.au=Wang%2C+Dongbo&rft.au=Wu%2C+Yanxin&rft.date=2019-05-15&rft.issn=0043-1354&rft.volume=155&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1016%2Fj.watres.2019.02.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2019_02_036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |