Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge

Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been invest...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 155; pp. 142 - 151
Main Authors Liu, Xuran, Xu, Qiuxiang, Wang, Dongbo, Wu, Yanxin, Yang, Qi, Liu, Yiwen, Wang, Qilin, Li, Xiaoming, Li, Hailong, Zeng, Guangming, Yang, Guojing
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation. [Display omitted] •cPAM decreased the yield of SCFAs from anaerobic fermentation of WAS.•cPAM affected the composition of individual SCFA.•cPAM showed different inhibition on microbes involved in the anaerobic fermentation.•cPAM's degradation product polyacrylic acid also suppressed anaerobic fermentation.•cPAM decreased microbial community diversity and altered community structure.
AbstractList Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.
Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.
Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation. [Display omitted] •cPAM decreased the yield of SCFAs from anaerobic fermentation of WAS.•cPAM affected the composition of individual SCFA.•cPAM showed different inhibition on microbes involved in the anaerobic fermentation.•cPAM's degradation product polyacrylic acid also suppressed anaerobic fermentation.•cPAM decreased microbial community diversity and altered community structure.
Author Liu, Xuran
Zeng, Guangming
Yang, Guojing
Wang, Qilin
Li, Hailong
Yang, Qi
Li, Xiaoming
Wu, Yanxin
Xu, Qiuxiang
Liu, Yiwen
Wang, Dongbo
Author_xml – sequence: 1
  givenname: Xuran
  surname: Liu
  fullname: Liu, Xuran
  email: liuxuran@hnu.edu.cn
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
– sequence: 2
  givenname: Qiuxiang
  surname: Xu
  fullname: Xu, Qiuxiang
  email: qiuxiangxu66@yahoo.com
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
– sequence: 3
  givenname: Dongbo
  surname: Wang
  fullname: Wang, Dongbo
  email: w.dongbo@yahoo.com
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
– sequence: 4
  givenname: Yanxin
  surname: Wu
  fullname: Wu, Yanxin
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
– sequence: 5
  givenname: Qi
  orcidid: 0000-0001-6781-770X
  surname: Yang
  fullname: Yang, Qi
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
– sequence: 6
  givenname: Yiwen
  orcidid: 0000-0001-6677-7961
  surname: Liu
  fullname: Liu, Yiwen
  organization: Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
– sequence: 7
  givenname: Qilin
  surname: Wang
  fullname: Wang, Qilin
  organization: Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
– sequence: 8
  givenname: Xiaoming
  surname: Li
  fullname: Li, Xiaoming
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
– sequence: 9
  givenname: Hailong
  surname: Li
  fullname: Li, Hailong
  organization: School of Energy Science and Engineering, Central South University, Changsha, 410083, PR China
– sequence: 10
  givenname: Guangming
  orcidid: 0000-0002-4230-7647
  surname: Zeng
  fullname: Zeng, Guangming
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
– sequence: 11
  givenname: Guojing
  surname: Yang
  fullname: Yang, Guojing
  email: guojing_yang@163.com
  organization: College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30844675$$D View this record in MEDLINE/PubMed
BookMark eNqNkU-LEzEchoOsuN3qNxDJ0cvU_JlpMx4EWfwHC17Wc8gkv7QpmaQmmZZ-of2cps7qwYN6SQi8zxt4nxt0FWIAhF5SsqKErt_sVydVEuQVI7RfEbYifP0ELajY9A1rW3GFFoS0vKG8a6_RTc57QghjvH-GrjkRbbvedAv08C0cwXkXtrjsAI-gdyq4PGYcLd7FE9aquBicxofoz0qns1ejM4CVtaBLxnkXU2kq5QK2qpQzVtqZXE89jZP_SWMzpcsPPoZtUyCNWAUFKQ611tYnhDLn6p8nlUtt18UdVQGDs5_MFp6jp1b5DC8e7yW6__jh_vZzc_f105fb93eNbte0NIx0hnBLe04s74RQYhg0IQMVphNGGCC0LqCY1VRrbTZK0V4AJxyYsYPgS_R6rj2k-H2CXOTosgbvVYA4ZclYx-u2bPMfUSr6ruWkEkv06jE6DSMYeUhuVOksf1mogXYO6BRzTmB_RyiRF9lyL2fZ8iJbEiar7Iq9_QPTbh6yJOX8v-B3Mwx1zqODJLN2EDQYl6pYaaL7e8EPqjfMaQ
CitedBy_id crossref_primary_10_1016_j_procbio_2020_12_018
crossref_primary_10_1039_D1EW00165E
crossref_primary_10_1016_j_biortech_2019_121598
crossref_primary_10_1016_j_biortech_2020_122859
crossref_primary_10_1016_j_biortech_2020_123947
crossref_primary_10_1016_j_eti_2022_102363
crossref_primary_10_1016_j_jclepro_2024_143396
crossref_primary_10_1016_j_watres_2022_118082
crossref_primary_10_1016_j_jcis_2020_04_075
crossref_primary_10_1016_j_scitotenv_2022_160309
crossref_primary_10_1016_j_biortech_2023_129776
crossref_primary_10_1016_j_cej_2024_155111
crossref_primary_10_1021_acs_est_4c05971
crossref_primary_10_1007_s13399_019_00576_1
crossref_primary_10_1016_j_scitotenv_2022_161122
crossref_primary_10_1016_j_scitotenv_2020_139035
crossref_primary_10_1016_j_jece_2022_107821
crossref_primary_10_1016_j_scitotenv_2020_136561
crossref_primary_10_1016_j_watres_2021_117316
crossref_primary_10_1021_acs_est_2c04170
crossref_primary_10_1016_j_jhazmat_2019_121048
crossref_primary_10_3390_app11010100
crossref_primary_10_1016_j_biortech_2019_122282
crossref_primary_10_1007_s11356_019_05889_2
crossref_primary_10_1007_s42768_024_00207_0
crossref_primary_10_1016_j_jece_2021_105489
crossref_primary_10_1016_j_biortech_2024_130892
crossref_primary_10_1016_j_biortech_2024_130772
crossref_primary_10_1007_s11783_020_1277_2
crossref_primary_10_1016_j_biortech_2019_121363
crossref_primary_10_1016_j_biortech_2019_122058
crossref_primary_10_1016_j_watres_2019_115249
crossref_primary_10_1016_j_cej_2020_127026
crossref_primary_10_1016_j_cej_2020_127147
crossref_primary_10_1021_acsestengg_2c00279
crossref_primary_10_1007_s12155_022_10448_8
crossref_primary_10_1016_j_envres_2021_112661
crossref_primary_10_1016_j_jenvman_2022_115025
crossref_primary_10_1016_j_jhazmat_2024_136715
crossref_primary_10_1021_acs_est_2c09178
crossref_primary_10_1016_j_biortech_2020_123141
crossref_primary_10_1016_j_scitotenv_2022_160441
crossref_primary_10_1016_j_watres_2021_117325
crossref_primary_10_1016_j_chemosphere_2019_06_117
crossref_primary_10_1016_j_jwpe_2024_106618
crossref_primary_10_1016_j_biortech_2025_132386
crossref_primary_10_1016_j_envres_2022_115119
crossref_primary_10_1016_j_jenvman_2024_122581
crossref_primary_10_1016_j_aquaeng_2020_102090
crossref_primary_10_1016_j_jclepro_2019_119305
crossref_primary_10_1021_acs_est_2c08004
crossref_primary_10_1016_j_eti_2022_102427
crossref_primary_10_1016_j_biortech_2023_129032
crossref_primary_10_1016_j_watres_2024_122368
crossref_primary_10_1016_j_jhazmat_2020_122336
crossref_primary_10_1016_j_jhazmat_2024_133592
crossref_primary_10_1016_j_biortech_2019_121776
crossref_primary_10_3390_ijerph19052806
crossref_primary_10_1007_s11356_020_11548_8
crossref_primary_10_1016_j_biortech_2020_124588
crossref_primary_10_1016_j_watres_2020_116645
crossref_primary_10_1016_j_biortech_2021_125307
crossref_primary_10_1021_acs_est_4c03165
crossref_primary_10_1016_j_biortech_2022_127804
crossref_primary_10_1007_s11356_019_07527_3
crossref_primary_10_1007_s12649_024_02503_6
crossref_primary_10_1016_j_cej_2020_124580
crossref_primary_10_1016_j_scitotenv_2019_06_207
crossref_primary_10_2139_ssrn_3988740
crossref_primary_10_1016_j_jenvman_2022_116212
crossref_primary_10_1016_j_watres_2019_114934
crossref_primary_10_1371_journal_pone_0238531
crossref_primary_10_5004_dwt_2023_29669
crossref_primary_10_1016_j_cej_2021_131442
crossref_primary_10_1016_j_jclepro_2021_127756
crossref_primary_10_1016_j_ijhydene_2022_11_015
crossref_primary_10_1016_j_cej_2021_129809
crossref_primary_10_1016_j_biortech_2021_124875
crossref_primary_10_1021_acsestengg_1c00468
crossref_primary_10_1016_j_cej_2019_123285
crossref_primary_10_1038_s41598_020_58054_y
crossref_primary_10_1016_j_jclepro_2022_134989
crossref_primary_10_1016_j_cej_2022_134968
crossref_primary_10_1016_j_seppur_2022_120958
crossref_primary_10_1016_j_scitotenv_2020_144470
crossref_primary_10_1016_j_jhazmat_2019_121176
crossref_primary_10_1007_s11356_020_08207_3
crossref_primary_10_4491_eer_2021_190
crossref_primary_10_1021_acssuschemeng_0c01081
crossref_primary_10_1016_j_jece_2024_114830
crossref_primary_10_2139_ssrn_3989401
crossref_primary_10_1016_j_jtice_2019_06_010
crossref_primary_10_1016_j_jclepro_2020_123504
crossref_primary_10_1016_j_scitotenv_2021_145598
crossref_primary_10_1016_j_jece_2023_110752
crossref_primary_10_1016_j_colsurfa_2022_130582
crossref_primary_10_1016_j_jenvman_2024_122828
crossref_primary_10_1021_acsestengg_3c00291
crossref_primary_10_1016_j_enconman_2020_113436
crossref_primary_10_1016_j_biortech_2019_03_116
crossref_primary_10_1016_j_biortech_2019_121713
crossref_primary_10_1016_j_jenvman_2021_112853
crossref_primary_10_1021_acs_est_3c09239
crossref_primary_10_1007_s11356_020_09306_x
crossref_primary_10_1016_j_enconman_2020_113560
crossref_primary_10_1016_j_watres_2020_115851
crossref_primary_10_1016_j_scitotenv_2019_136105
crossref_primary_10_1016_j_jclepro_2019_119912
crossref_primary_10_1016_j_cej_2019_122567
crossref_primary_10_1155_2020_1705232
crossref_primary_10_2166_wst_2019_308
crossref_primary_10_3390_su16083181
crossref_primary_10_1016_j_jhazmat_2019_121363
crossref_primary_10_1016_j_jclepro_2020_124687
crossref_primary_10_1016_j_watres_2023_120897
crossref_primary_10_3390_en14010150
crossref_primary_10_1016_j_ecoenv_2023_115059
crossref_primary_10_1021_acs_est_1c04693
crossref_primary_10_1016_j_biortech_2019_03_121
crossref_primary_10_1016_j_biortech_2022_127266
crossref_primary_10_1016_j_watres_2019_114912
crossref_primary_10_1016_j_cej_2020_124235
crossref_primary_10_1016_j_biortech_2022_127143
crossref_primary_10_1016_j_chemosphere_2019_125804
crossref_primary_10_1021_acsomega_0c03606
crossref_primary_10_1039_D4GC05125D
crossref_primary_10_5004_dwt_2020_25642
crossref_primary_10_1016_j_scitotenv_2021_146974
crossref_primary_10_1016_j_jenvman_2022_114528
crossref_primary_10_1016_j_bej_2020_107883
crossref_primary_10_1016_j_cej_2022_137339
crossref_primary_10_3390_ma17143482
crossref_primary_10_1016_j_biortech_2019_03_090
crossref_primary_10_1016_j_watres_2020_116539
crossref_primary_10_1016_j_jhazmat_2021_125295
crossref_primary_10_1002_bse_2987
crossref_primary_10_1016_j_biortech_2022_127331
crossref_primary_10_1016_j_scitotenv_2023_169025
crossref_primary_10_1016_j_jhazmat_2020_123343
crossref_primary_10_1016_j_cej_2020_124147
crossref_primary_10_1016_j_biortech_2019_122428
crossref_primary_10_1080_10643389_2024_2309846
crossref_primary_10_3390_en14030590
crossref_primary_10_1016_j_cej_2024_151563
crossref_primary_10_1016_j_watres_2021_117651
crossref_primary_10_1021_acssuschemeng_2c06015
crossref_primary_10_1016_j_cherd_2019_07_018
crossref_primary_10_1016_j_watres_2024_121757
crossref_primary_10_1002_ep_13656
crossref_primary_10_1016_j_cej_2022_140913
crossref_primary_10_1016_j_biortech_2020_124266
crossref_primary_10_3390_app11031067
crossref_primary_10_2139_ssrn_3975254
crossref_primary_10_1016_j_afres_2024_100569
crossref_primary_10_1016_j_cej_2020_127251
crossref_primary_10_1016_j_chemosphere_2024_142727
crossref_primary_10_1080_09593330_2019_1707880
crossref_primary_10_1016_j_resconrec_2022_106342
crossref_primary_10_1016_j_cej_2019_123991
crossref_primary_10_1016_j_cej_2021_131407
crossref_primary_10_1016_j_cej_2020_125502
crossref_primary_10_1007_s11356_019_05739_1
crossref_primary_10_1016_j_jhazmat_2020_124206
crossref_primary_10_1016_j_biortech_2020_122869
crossref_primary_10_1016_j_biortech_2022_127567
crossref_primary_10_1016_j_scitotenv_2024_175673
crossref_primary_10_1016_j_watres_2019_06_016
crossref_primary_10_1016_j_chemosphere_2021_130939
crossref_primary_10_1016_j_watres_2019_115264
crossref_primary_10_12677_PI_2021_104023
crossref_primary_10_1016_j_biortech_2020_123686
crossref_primary_10_1016_j_jff_2020_103796
crossref_primary_10_1016_j_jclepro_2021_129580
crossref_primary_10_3390_w15061200
crossref_primary_10_1016_j_scitotenv_2019_133741
crossref_primary_10_1016_j_scitotenv_2023_163673
crossref_primary_10_1016_j_chemosphere_2019_125380
crossref_primary_10_1016_j_jclepro_2022_132241
crossref_primary_10_1016_j_chemosphere_2022_134760
crossref_primary_10_2166_wst_2020_079
crossref_primary_10_1016_j_jhazmat_2024_134915
Cites_doi 10.1016/j.watres.2018.10.060
10.1016/j.actbio.2018.07.038
10.1021/es052252b
10.1016/j.watres.2006.07.030
10.1016/j.watres.2017.02.064
10.1016/j.watres.2017.04.015
10.1016/j.watres.2018.04.026
10.1016/j.dental.2011.02.003
10.1016/j.ibiod.2014.07.004
10.1016/j.chemosphere.2018.09.048
10.1186/s13068-017-0821-1
10.1039/C4RA05721J
10.1021/es1031882
10.1021/acs.est.6b00003
10.2166/wst.2004.0622
10.1016/j.biortech.2018.07.018
10.1016/j.biortech.2018.12.055
10.1016/j.watres.2018.01.051
10.1021/acssuschemeng.8b04427
10.1016/j.jhazmat.2005.11.076
10.1016/j.biortech.2018.07.109
10.1021/es8037142
10.1016/j.watres.2017.04.055
10.1016/j.watres.2017.09.062
10.1016/j.watres.2016.08.062
10.1021/acssuschemeng.8b05799
10.1016/j.watres.2016.09.030
10.1016/j.watres.2015.04.012
10.1016/j.biortech.2010.11.119
10.1016/j.watres.2017.12.007
10.1016/j.watres.2012.02.005
10.1016/j.cej.2017.11.064
10.1016/S0892-6875(00)00059-5
10.1007/s11157-005-7191-z
10.1016/j.bej.2016.06.002
10.1016/S0045-6535(03)00553-8
10.1016/j.watres.2017.07.067
10.2166/wst.2001.0802
10.1016/j.pecs.2008.06.002
10.1038/srep11675
10.1007/s11157-004-2502-3
10.1016/j.jhazmat.2010.08.011
10.1016/j.ecoleng.2015.07.028
10.1021/es400210v
10.1016/j.biortech.2013.11.007
10.1016/j.polymertesting.2008.06.009
10.1016/j.biortech.2018.01.084
10.1016/j.watres.2018.05.049
10.1021/acs.est.5b00200
10.1016/j.biortech.2006.12.008
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2019.02.036
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 151
ExternalDocumentID 30844675
10_1016_j_watres_2019_02_036
S0043135419301617
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c461t-205d03f1930f3588a8bbc00b18d58d8de01223a2fc1cccd7aa198e303e2dfb83
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Jul 11 12:25:53 EDT 2025
Fri Jul 11 00:56:07 EDT 2025
Thu Apr 03 06:57:43 EDT 2025
Tue Jul 01 01:20:55 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
Fri Feb 23 02:23:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cationic polyacrylamide
Short-chain fatty acids
Anaerobic fermentation
Waste activated sludge
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-205d03f1930f3588a8bbc00b18d58d8de01223a2fc1cccd7aa198e303e2dfb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6677-7961
0000-0001-6781-770X
0000-0002-4230-7647
PMID 30844675
PQID 2189543025
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2253244278
proquest_miscellaneous_2189543025
pubmed_primary_30844675
crossref_primary_10_1016_j_watres_2019_02_036
crossref_citationtrail_10_1016_j_watres_2019_02_036
elsevier_sciencedirect_doi_10_1016_j_watres_2019_02_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Duan, Wang, Xie, Feng, Yan, Zhou (bib19) 2016; 105
Liu, Xu, Wang, Yang, Wu, Yang, Gong, Ye, Li, Wang, Liu, Ni, Zeng, Li (bib25) 2018; 6
Luo, Chen, Feng (bib30) 2016; 50
Xiao, Chen, Jiang, Tyagi, Zhou (bib42) 2016; 105
Angelidaki, Torang, Waul, Schmidt (bib2) 2004; 49
Sang, Pi, Bao, Li, Lu (bib35) 2015; 84
Wang, Duan, Yang, Liu, Ni, Wang, Zeng, Li, Yuan (bib37) 2018; 133
Czech, Pełech (bib15) 2008; 27
Liu, Wang, Wang, Yu, Fu, Liu (bib24) 2017; 119
Xu, Liu, Zhao, Wang, Wang, Li, Yang, Zeng (bib44) 2018; 254
Bao, Chen, Li, Jiang (bib5) 2010; 184
Chen, Liu, Ni, Wang, Wang, Zhang, Li, Zeng (bib10) 2016; 113
Wong, Teng, Ahmad, Zuhairi, Najafpour (bib41) 2006; 135
Nelson, Morrison, Yu (bib32) 2011; 102
Ma, Liu, Zhang, Yang, Fu, Liu (bib31) 2017; 10
Campos, Almirall, Mtnez-Almela, Palatsi, Flotats (bib7) 2008; 99
Liu, Xu, Wang, Zhao, Wu, Liu, Ni, Wang, Zeng, Li (bib26) 2018; 268
Liu, Li, Kang, Yuan, Du (bib22) 2014; 94
Dai, Luo, Zhang, Dai, Chen, Dong (bib17) 2015; 5
Zhao, Wang, Li, Yang, Chen, Zhong, Zeng (bib50) 2015; 78
Angelidaki, Sanders (bib1) 2004; 3
Liu, Xu, Wang, Yang, Wu, Yang, Liu, Wang, Ni, Li, Li, Yang (bib27) 2019; 7
Yuan, Chen, Zhang, Jiang, Zhou, Gu (bib48) 2006; 40
Feng, Chen, Zheng (bib20) 2009; 43
Chen, Jiang, Yuan, Zhou, Gu (bib9) 2007; 41
Omar, Abou-Shanab, El-Gammal, Fotidis, Kougias, Zhang, Angelidaki (bib33) 2018; 142
Xu, Liu, Wang, Wu, Wang, Liu, Li, An, Zhao, Chen (bib46) 2018; 213
Appels, Baeyens, Degrève, Dewil (bib4) 2008; 34
Wang, Wang, Liu, Wang, Chen, Yang, Li, Zeng, Li (bib36) 2017; 127
Wei, Zhou, Wang, Sun, Wang (bib40) 2017; 118
Apha (bib3) 1998; vol. 20
Zheng, Su, Li, Xiao, Wang, Chen (bib51) 2013; 47
Yang, Liu, Wang, Xu, Yang, Zeng, Li, Liu, Gong, Ye, Li (bib47) 2019; 148
Batstone (bib6) 2006; 5
Santhiya, Subramanian, Natarajan (bib53) 2000; 13
Xu, Li, Ding, Wang, Liu, Wang, Zhao, Chen, Zeng, Yang, Li (bib43) 2017; 124
Chang, Raudenbush, Dentel (bib8) 2001; 44
Dai, Xu, Dong (bib52) 2017; 115
Li, Chen, Hu, Yu, Chen, Gu (bib21) 2011; 45
Wang, Liu, Zeng, Zhao, Liu, Wang, Chen, Li, Yang (bib38) 2018; 130
Cotte, Bouadam, Sordoillet, Jaudinaud, Chambon, Talaga (bib14) 2017; 1–10
Dowling, Fleming (bib18) 2011; 27
Chu, Tsai, Lee, Tay (bib13) 2005; 76
Lou, Venkataraman, Zhong, Ding, Tan, Xu, Fan, Yang (bib28) 2018; 78
Rao, Wan, Liu, Angelidaki, Zhang, Zhang, Luo (bib34) 2018; 139
Zhao, Ma, Ma, Gao, Zhu, Luo (bib49) 2014; 4
Dai, Luo, Yi, He, Dong (bib16) 2014; 153
Xu, Liu, Fu, Li, Wang, Wang, Liu, An, Zhao, Wu (bib45) 2018; 267
Liu, Chen, Xiao, Zheng, Li (bib23) 2015; 49
Wang, Huang, Xu, Liu, Yang, Li (bib39) 2019; 275
Lu, Xing, Ren (bib29) 2012; 46
Chen, Wu, Wang, Li, Wang, Liu, Peng, Yang, Li, Zeng (bib11) 2018; 334
Chu, Lee, Chang, You, Liao, Tay (bib12) 2003; 53
Liu (10.1016/j.watres.2019.02.036_bib27) 2019; 7
Duan (10.1016/j.watres.2019.02.036_bib19) 2016; 105
Xu (10.1016/j.watres.2019.02.036_bib45) 2018; 267
Chu (10.1016/j.watres.2019.02.036_bib12) 2003; 53
Xiao (10.1016/j.watres.2019.02.036_bib42) 2016; 105
Rao (10.1016/j.watres.2019.02.036_bib34) 2018; 139
Chu (10.1016/j.watres.2019.02.036_bib13) 2005; 76
Xu (10.1016/j.watres.2019.02.036_bib46) 2018; 213
Lou (10.1016/j.watres.2019.02.036_bib28) 2018; 78
Zhao (10.1016/j.watres.2019.02.036_bib49) 2014; 4
Chen (10.1016/j.watres.2019.02.036_bib11) 2018; 334
Dai (10.1016/j.watres.2019.02.036_bib17) 2015; 5
Liu (10.1016/j.watres.2019.02.036_bib23) 2015; 49
Chang (10.1016/j.watres.2019.02.036_bib8) 2001; 44
Chen (10.1016/j.watres.2019.02.036_bib9) 2007; 41
Nelson (10.1016/j.watres.2019.02.036_bib32) 2011; 102
Zhao (10.1016/j.watres.2019.02.036_bib50) 2015; 78
Angelidaki (10.1016/j.watres.2019.02.036_bib1) 2004; 3
Dai (10.1016/j.watres.2019.02.036_bib52) 2017; 115
Wang (10.1016/j.watres.2019.02.036_bib39) 2019; 275
Xu (10.1016/j.watres.2019.02.036_bib44) 2018; 254
Wong (10.1016/j.watres.2019.02.036_bib41) 2006; 135
Wei (10.1016/j.watres.2019.02.036_bib40) 2017; 118
Liu (10.1016/j.watres.2019.02.036_bib26) 2018; 268
Yuan (10.1016/j.watres.2019.02.036_bib48) 2006; 40
Xu (10.1016/j.watres.2019.02.036_bib43) 2017; 124
Zheng (10.1016/j.watres.2019.02.036_bib51) 2013; 47
Sang (10.1016/j.watres.2019.02.036_bib35) 2015; 84
Angelidaki (10.1016/j.watres.2019.02.036_bib2) 2004; 49
Ma (10.1016/j.watres.2019.02.036_bib31) 2017; 10
Omar (10.1016/j.watres.2019.02.036_bib33) 2018; 142
Campos (10.1016/j.watres.2019.02.036_bib7) 2008; 99
Dowling (10.1016/j.watres.2019.02.036_bib18) 2011; 27
Bao (10.1016/j.watres.2019.02.036_bib5) 2010; 184
Chen (10.1016/j.watres.2019.02.036_bib10) 2016; 113
Apha (10.1016/j.watres.2019.02.036_bib3) 1998; vol. 20
Cotte (10.1016/j.watres.2019.02.036_bib14) 2017; 1–10
Yang (10.1016/j.watres.2019.02.036_bib47) 2019; 148
Wang (10.1016/j.watres.2019.02.036_bib37) 2018; 133
Lu (10.1016/j.watres.2019.02.036_bib29) 2012; 46
Feng (10.1016/j.watres.2019.02.036_bib20) 2009; 43
Liu (10.1016/j.watres.2019.02.036_bib24) 2017; 119
Czech (10.1016/j.watres.2019.02.036_bib15) 2008; 27
Dai (10.1016/j.watres.2019.02.036_bib16) 2014; 153
Li (10.1016/j.watres.2019.02.036_bib21) 2011; 45
Wang (10.1016/j.watres.2019.02.036_bib38) 2018; 130
Liu (10.1016/j.watres.2019.02.036_bib22) 2014; 94
Liu (10.1016/j.watres.2019.02.036_bib25) 2018; 6
Wang (10.1016/j.watres.2019.02.036_bib36) 2017; 127
Luo (10.1016/j.watres.2019.02.036_bib30) 2016; 50
Batstone (10.1016/j.watres.2019.02.036_bib6) 2006; 5
Santhiya (10.1016/j.watres.2019.02.036_bib53) 2000; 13
Appels (10.1016/j.watres.2019.02.036_bib4) 2008; 34
References_xml – volume: 153
  start-page: 55
  year: 2014
  end-page: 61
  ident: bib16
  article-title: Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 11675
  year: 2015
  ident: bib17
  article-title: Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal
  publication-title: Sci. Rep.
– volume: 47
  start-page: 4262
  year: 2013
  end-page: 4268
  ident: bib51
  article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production
  publication-title: Environ. Sci. Technol.
– volume: 334
  start-page: 1351
  year: 2018
  end-page: 1360
  ident: bib11
  article-title: Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 137
  year: 2017
  ident: bib31
  article-title: Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation
  publication-title: Biotechnol. Biofuels
– volume: 27
  start-page: 535
  year: 2011
  end-page: 543
  ident: bib18
  article-title: The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative
  publication-title: Dental Materials Official Publication of the Academy of Dental Materials
– volume: 78
  start-page: 78
  year: 2018
  end-page: 88
  ident: bib28
  article-title: Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection
  publication-title: Acta Biomater.
– volume: 49
  start-page: 115
  year: 2004
  end-page: 122
  ident: bib2
  article-title: Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)
  publication-title: Water Sci. Technol.
– volume: 148
  start-page: 239
  year: 2019
  end-page: 249
  ident: bib47
  article-title: Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge
  publication-title: Water Res.
– volume: 105
  start-page: 470
  year: 2016
  end-page: 478
  ident: bib42
  article-title: Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments
  publication-title: Water Res.
– volume: 142
  start-page: 86
  year: 2018
  end-page: 95
  ident: bib33
  article-title: Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures
  publication-title: Water Res.
– volume: 43
  start-page: 4373
  year: 2009
  end-page: 4380
  ident: bib20
  article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH
  publication-title: Environ. Sci. Technol.
– volume: 124
  start-page: 269
  year: 2017
  end-page: 279
  ident: bib43
  article-title: Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
– volume: 254
  start-page: 194
  year: 2018
  end-page: 202
  ident: bib44
  article-title: Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: role and significance of Tea saponin
  publication-title: Bioresour. Technol.
– volume: 46
  start-page: 2425
  year: 2012
  end-page: 2434
  ident: bib29
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge
  publication-title: Water Res.
– volume: vol. 20
  year: 1998
  ident: bib3
  publication-title: WPCF, 1998. Standard Methods for the Examination of Water and Wastewater
– volume: 3
  start-page: 117
  year: 2004
  end-page: 129
  ident: bib1
  article-title: Assessment of the anaerobic biodegradability of macropollutants
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 113
  start-page: 114
  year: 2016
  end-page: 122
  ident: bib10
  article-title: Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area
  publication-title: Biochem. Eng. J.
– volume: 94
  start-page: 128
  year: 2014
  end-page: 133
  ident: bib22
  article-title: Short chain fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process: effect of alkaline adjustment
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 115
  start-page: 220
  year: 2017
  end-page: 228
  ident: bib52
  article-title: Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge
  publication-title: Water Res.
– volume: 184
  start-page: 105
  year: 2010
  end-page: 110
  ident: bib5
  article-title: Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field
  publication-title: J. Hazard Mater.
– volume: 34
  start-page: 755
  year: 2008
  end-page: 781
  ident: bib4
  article-title: Principles and potential of the anaerobic digestion of waste-activated sludge
  publication-title: Prog. Energy Combust. Sci.
– volume: 41
  start-page: 683
  year: 2007
  end-page: 689
  ident: bib9
  article-title: Hydrolysis and acidification of waste activated sludge at different pHs
  publication-title: Water Res.
– volume: 127
  start-page: 150
  year: 2017
  end-page: 161
  ident: bib36
  article-title: Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
– volume: 275
  start-page: 163
  year: 2019
  end-page: 171
  ident: bib39
  article-title: Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 56831
  year: 2014
  end-page: 56837
  ident: bib49
  article-title: Biosorption and biodegradation of polyacrylate/nano-ZnO leather finishing agent and toxic effect on activated sludge
  publication-title: RSC Adv.
– volume: 133
  start-page: 272
  year: 2018
  end-page: 281
  ident: bib37
  article-title: Free ammonia enhances dark fermentative hydrogen production from waste activated sludge
  publication-title: Water Res.
– volume: 84
  start-page: 121
  year: 2015
  end-page: 127
  ident: bib35
  article-title: Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank
  publication-title: Ecol. Eng.
– volume: 50
  start-page: 6921
  year: 2016
  end-page: 6929
  ident: bib30
  article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 757
  year: 2003
  end-page: 764
  ident: bib12
  article-title: Anaerobic digestion of polyelectrolyte flocculated waste activated sludge
  publication-title: Chemosphere
– volume: 13
  start-page: 747
  year: 2000
  end-page: 763
  ident: bib53
  article-title: Surface chemical studies on galena and sphalerite in the presence of Thiobacillus Thiooxidans with reference to mineral beneficiation
  publication-title: Miner. Eng.
– volume: 5
  start-page: 57
  year: 2006
  end-page: 71
  ident: bib6
  article-title: Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 6
  start-page: 15822
  year: 2018
  end-page: 15831
  ident: bib25
  article-title: Revealing the underlying mechanisms of how initial pH affects waste activated sludge solubilization and dewaterability in freezing and thawing process
  publication-title: ACS Sustain. Chem. Eng.
– volume: 102
  start-page: 3730
  year: 2011
  end-page: 3739
  ident: bib32
  article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 870
  year: 2008
  end-page: 872
  ident: bib15
  article-title: Use of pyrolysis and gas chromatography for the determination of acrylic acid concentration in acrylic copolymers containing carboxylic groups
  publication-title: Polym. Test.
– volume: 40
  start-page: 2025
  year: 2006
  end-page: 2029
  ident: bib48
  article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions
  publication-title: Environ. Sci. Technol.
– volume: 213
  start-page: 276
  year: 2018
  end-page: 284
  ident: bib46
  article-title: Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge
  publication-title: Chemosphere
– volume: 139
  start-page: 372
  year: 2018
  end-page: 380
  ident: bib34
  article-title: A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge
  publication-title: Water Res.
– volume: 135
  start-page: 378
  year: 2006
  end-page: 388
  ident: bib41
  article-title: Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation
  publication-title: J. Hazard Mater.
– volume: 118
  start-page: 12
  year: 2017
  end-page: 19
  ident: bib40
  article-title: Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production
  publication-title: Water Res.
– volume: 76
  start-page: 239
  year: 2005
  end-page: 244
  ident: bib13
  article-title: Size-dependent anaerobic digestion rates of flocculated activated sludge: role of intrafloc mass transfer resistance
  publication-title: J. Environ. Manag.
– volume: 105
  start-page: 209
  year: 2016
  end-page: 217
  ident: bib19
  article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
– volume: 1–10
  year: 2017
  ident: bib14
  article-title: Determination of molecular size parameters and quantification of polyacrylic acid by high performance size-exclusion chromatography with triple detection
  publication-title: Anal. Bioanal. Chem.
– volume: 267
  start-page: 141
  year: 2018
  end-page: 148
  ident: bib45
  article-title: Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: role and significance of rhamnolipid
  publication-title: Bioresour. Technol.
– volume: 78
  start-page: 111
  year: 2015
  end-page: 120
  ident: bib50
  article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge
  publication-title: Water Res.
– volume: 49
  start-page: 4929
  year: 2015
  end-page: 4936
  ident: bib23
  article-title: Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge
  publication-title: Environ. Sci. Technol.
– volume: 268
  start-page: 230
  year: 2018
  end-page: 236
  ident: bib26
  article-title: Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 461
  year: 2001
  end-page: 468
  ident: bib8
  article-title: Aerobic and anaerobic biodegradability of a flocculant polymer
  publication-title: Water Sci. Technol.
– volume: 45
  start-page: 1834
  year: 2011
  end-page: 1839
  ident: bib21
  article-title: Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal
  publication-title: Environ. Sci. Technol.
– volume: 130
  start-page: 281
  year: 2018
  end-page: 290
  ident: bib38
  article-title: Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge
  publication-title: Water Res.
– volume: 99
  start-page: 387
  year: 2008
  end-page: 395
  ident: bib7
  article-title: Feasibility study of the anaerobic digestion of dewatered pig slurry by means of polyacrylamide
  publication-title: Bioresour. Technol.
– volume: 119
  start-page: 225
  year: 2017
  end-page: 233
  ident: bib24
  article-title: Stepwise hydrolysis to improve carbon releasing efficiency from sludge
  publication-title: Water Res.
– volume: 7
  start-page: 3544
  year: 2019
  end-page: 3555
  ident: bib27
  article-title: Enhanced short-chain fatty acids from waste activated sludge by heat–CaO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 148
  start-page: 239
  year: 2019
  ident: 10.1016/j.watres.2019.02.036_bib47
  article-title: Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.060
– volume: 78
  start-page: 78
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib28
  article-title: Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.07.038
– volume: 40
  start-page: 2025
  issue: 6
  year: 2006
  ident: 10.1016/j.watres.2019.02.036_bib48
  article-title: Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052252b
– volume: 41
  start-page: 683
  issue: 3
  year: 2007
  ident: 10.1016/j.watres.2019.02.036_bib9
  article-title: Hydrolysis and acidification of waste activated sludge at different pHs
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.07.030
– volume: vol. 20
  year: 1998
  ident: 10.1016/j.watres.2019.02.036_bib3
– volume: 115
  start-page: 220
  year: 2017
  ident: 10.1016/j.watres.2019.02.036_bib52
  article-title: Effect of the micron-sized silica particles (MSSP) on biogas conversion of sewage sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.02.064
– volume: 118
  start-page: 12
  year: 2017
  ident: 10.1016/j.watres.2019.02.036_bib40
  article-title: Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.015
– volume: 139
  start-page: 372
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib34
  article-title: A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.04.026
– volume: 27
  start-page: 535
  issue: 6
  year: 2011
  ident: 10.1016/j.watres.2019.02.036_bib18
  article-title: The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative
  publication-title: Dental Materials Official Publication of the Academy of Dental Materials
  doi: 10.1016/j.dental.2011.02.003
– volume: 94
  start-page: 128
  year: 2014
  ident: 10.1016/j.watres.2019.02.036_bib22
  article-title: Short chain fatty acids accumulation and microbial community succession during ultrasonic-pretreated sludge anaerobic fermentation process: effect of alkaline adjustment
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2014.07.004
– volume: 213
  start-page: 276
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib46
  article-title: Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.09.048
– volume: 10
  start-page: 137
  issue: 1
  year: 2017
  ident: 10.1016/j.watres.2019.02.036_bib31
  article-title: Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0821-1
– volume: 4
  start-page: 56831
  issue: 100
  year: 2014
  ident: 10.1016/j.watres.2019.02.036_bib49
  article-title: Biosorption and biodegradation of polyacrylate/nano-ZnO leather finishing agent and toxic effect on activated sludge
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05721J
– volume: 45
  start-page: 1834
  issue: 5
  year: 2011
  ident: 10.1016/j.watres.2019.02.036_bib21
  article-title: Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1031882
– volume: 50
  start-page: 6921
  issue: 13
  year: 2016
  ident: 10.1016/j.watres.2019.02.036_bib30
  article-title: Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00003
– volume: 49
  start-page: 115
  year: 2004
  ident: 10.1016/j.watres.2019.02.036_bib2
  article-title: Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2004.0622
– volume: 267
  start-page: 141
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib45
  article-title: Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: role and significance of rhamnolipid
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.018
– volume: 275
  start-page: 163
  year: 2019
  ident: 10.1016/j.watres.2019.02.036_bib39
  article-title: Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.12.055
– volume: 133
  start-page: 272
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib37
  article-title: Free ammonia enhances dark fermentative hydrogen production from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.051
– volume: 6
  start-page: 15822
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib25
  article-title: Revealing the underlying mechanisms of how initial pH affects waste activated sludge solubilization and dewaterability in freezing and thawing process
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04427
– volume: 135
  start-page: 378
  issue: 1
  year: 2006
  ident: 10.1016/j.watres.2019.02.036_bib41
  article-title: Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2005.11.076
– volume: 268
  start-page: 230
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib26
  article-title: Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.109
– volume: 43
  start-page: 4373
  issue: 12
  year: 2009
  ident: 10.1016/j.watres.2019.02.036_bib20
  article-title: Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8037142
– volume: 119
  start-page: 225
  year: 2017
  ident: 10.1016/j.watres.2019.02.036_bib24
  article-title: Stepwise hydrolysis to improve carbon releasing efficiency from sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.055
– volume: 127
  start-page: 150
  year: 2017
  ident: 10.1016/j.watres.2019.02.036_bib36
  article-title: Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.062
– volume: 105
  start-page: 209
  year: 2016
  ident: 10.1016/j.watres.2019.02.036_bib19
  article-title: Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.08.062
– volume: 7
  start-page: 3544
  year: 2019
  ident: 10.1016/j.watres.2019.02.036_bib27
  article-title: Enhanced short-chain fatty acids from waste activated sludge by heat–CaO2 advanced thermal hydrolysis pretreatment: parameter optimization, mechanisms, and implications
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05799
– volume: 105
  start-page: 470
  year: 2016
  ident: 10.1016/j.watres.2019.02.036_bib42
  article-title: Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.09.030
– volume: 78
  start-page: 111
  year: 2015
  ident: 10.1016/j.watres.2019.02.036_bib50
  article-title: Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.012
– volume: 102
  start-page: 3730
  issue: 4
  year: 2011
  ident: 10.1016/j.watres.2019.02.036_bib32
  article-title: A meta-analysis of the microbial diversity observed in anaerobic digesters
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.119
– volume: 130
  start-page: 281
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib38
  article-title: Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.12.007
– volume: 46
  start-page: 2425
  issue: 7
  year: 2012
  ident: 10.1016/j.watres.2019.02.036_bib29
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.02.005
– volume: 334
  start-page: 1351
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib11
  article-title: Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.064
– volume: 13
  start-page: 747
  year: 2000
  ident: 10.1016/j.watres.2019.02.036_bib53
  article-title: Surface chemical studies on galena and sphalerite in the presence of Thiobacillus Thiooxidans with reference to mineral beneficiation
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(00)00059-5
– volume: 5
  start-page: 57
  issue: 1
  year: 2006
  ident: 10.1016/j.watres.2019.02.036_bib6
  article-title: Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-005-7191-z
– volume: 113
  start-page: 114
  issue: Suppl. C
  year: 2016
  ident: 10.1016/j.watres.2019.02.036_bib10
  article-title: Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2016.06.002
– volume: 53
  start-page: 757
  issue: 7
  year: 2003
  ident: 10.1016/j.watres.2019.02.036_bib12
  article-title: Anaerobic digestion of polyelectrolyte flocculated waste activated sludge
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(03)00553-8
– volume: 124
  start-page: 269
  year: 2017
  ident: 10.1016/j.watres.2019.02.036_bib43
  article-title: Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.07.067
– volume: 44
  start-page: 461
  issue: 2–3
  year: 2001
  ident: 10.1016/j.watres.2019.02.036_bib8
  article-title: Aerobic and anaerobic biodegradability of a flocculant polymer
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2001.0802
– volume: 34
  start-page: 755
  issue: 6
  year: 2008
  ident: 10.1016/j.watres.2019.02.036_bib4
  article-title: Principles and potential of the anaerobic digestion of waste-activated sludge
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2008.06.002
– volume: 76
  start-page: 239
  issue: 3
  year: 2005
  ident: 10.1016/j.watres.2019.02.036_bib13
  article-title: Size-dependent anaerobic digestion rates of flocculated activated sludge: role of intrafloc mass transfer resistance
  publication-title: J. Environ. Manag.
– volume: 5
  start-page: 11675
  year: 2015
  ident: 10.1016/j.watres.2019.02.036_bib17
  article-title: Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal
  publication-title: Sci. Rep.
  doi: 10.1038/srep11675
– volume: 3
  start-page: 117
  year: 2004
  ident: 10.1016/j.watres.2019.02.036_bib1
  article-title: Assessment of the anaerobic biodegradability of macropollutants
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-004-2502-3
– volume: 184
  start-page: 105
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2019.02.036_bib5
  article-title: Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.08.011
– volume: 84
  start-page: 121
  year: 2015
  ident: 10.1016/j.watres.2019.02.036_bib35
  article-title: Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2015.07.028
– volume: 47
  start-page: 4262
  issue: 9
  year: 2013
  ident: 10.1016/j.watres.2019.02.036_bib51
  article-title: Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400210v
– volume: 153
  start-page: 55
  year: 2014
  ident: 10.1016/j.watres.2019.02.036_bib16
  article-title: Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.11.007
– volume: 1–10
  year: 2017
  ident: 10.1016/j.watres.2019.02.036_bib14
  article-title: Determination of molecular size parameters and quantification of polyacrylic acid by high performance size-exclusion chromatography with triple detection
  publication-title: Anal. Bioanal. Chem.
– volume: 27
  start-page: 870
  issue: 7
  year: 2008
  ident: 10.1016/j.watres.2019.02.036_bib15
  article-title: Use of pyrolysis and gas chromatography for the determination of acrylic acid concentration in acrylic copolymers containing carboxylic groups
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2008.06.009
– volume: 254
  start-page: 194
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib44
  article-title: Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: role and significance of Tea saponin
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.01.084
– volume: 142
  start-page: 86
  year: 2018
  ident: 10.1016/j.watres.2019.02.036_bib33
  article-title: Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.05.049
– volume: 49
  start-page: 4929
  year: 2015
  ident: 10.1016/j.watres.2019.02.036_bib23
  article-title: Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00200
– volume: 99
  start-page: 387
  issue: 2
  year: 2008
  ident: 10.1016/j.watres.2019.02.036_bib7
  article-title: Feasibility study of the anaerobic digestion of dewatered pig slurry by means of polyacrylamide
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.12.008
SSID ssj0002239
Score 2.6334777
Snippet Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms acetic acid
activated sludge
Anaerobic fermentation
biotransformation
Cationic polyacrylamide
chemical oxygen demand
community structure
dewatering
enzymes
fermentation
flocculation
hydrolysis
metabolites
microbial communities
polyacrylamide
polyacrylic acid
proteins
Short-chain fatty acids
solubilization
total suspended solids
Waste activated sludge
wastewater
Title Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge
URI https://dx.doi.org/10.1016/j.watres.2019.02.036
https://www.ncbi.nlm.nih.gov/pubmed/30844675
https://www.proquest.com/docview/2189543025
https://www.proquest.com/docview/2253244278
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4s22UBmJq2kS24lzrCqqBURPrdRb5MekDdpNVk22q73wc_o7mcmjgARU4hIp0VixPOOZL_F8M4y9hxhKE3knQjBBKF_mwrg0CJsoifHaZdD3Ift6ms7P1ecLfbHDjicuDKVVjr5_8Om9tx6fHI6rebiqKuL4YvCTWiEEIdxCjHKlMrLyD99_pnlg-MunU2aSnuhzfY7XxhIhgxK88r5yZ1-o-Y_h6W_wsw9DJ0_Y4xE_8qNhik_ZDtTP2KNfqgo-Z7fn9Q1URDPniO74EojcW7XLljclv2o2fPhLV3m-ahZb66-3aBVVAG6H3A7eXiEmFziqqnlpu27Lra9Ci1e_Xo7tvvjAb-SLpr4U5N65rS1QUSfPS7wdKU01vXNj0ZQ4MShuENkG3i7W4RJesLOTj2fHczG2YxBepXGH-0mHSJa03KXUxljjnI8iF5ugDWoa6JRO2qT0sfc-ZNbGuQEMkZCE0hn5ku3WTQ2vGQdQaWqkclQsxiaRgzhDYKogymwSIj1jclJC4cdS5dQxY1FMOWnfikF1BamuiJICVTdj4m7UaijVcY98Num3-M3kCowm94x8N5lDgbuRjlhsDc0ahWKTayURSP5DJtGIYqnFyYy9Gmzpbr4yMvh9num9_57bPntId5TgEOs3bLe7XsNbxE2dO-g3xgF7cPTpy_z0B4KXHLM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHijdbXkaCY2gS24n3wAEB1ZY-TlupN8uxJ23QbrJqsl3thZ_DD-AXMpNHAQmohNTLStn1JFZmPPN5Pd8MY68hglyHLgu81z6QLh8HOkt8YGMpMF5nKbR9yA6Pksmx_HyiTjbY94ELQ2mVve_vfHrrrftvdvq3ubMoCuL4YvATSiIEIdyS9pmV-7Be4b6tfrf3EZX8Jo53P00_TIK-tUDgZBI1aBvKhyIn0Vwora3OMheGWaS90jhroBMnYePcRc45n1qLm3NAdw-xzzMt8LY32E2J3oK6Jrz9-jOtBMXGw6k2zW6g67U5ZStLBBBKKBu3lULbwtB_DId_g7tt2Nu9y7Z6vMrfd6_kHtuA8j6780sVwwfs23F5AQXR2jmiST4HIhMX9bzmVc7PqhXv_hUsHF9Us7V152u0wsIDt10uCa_PcA8QoFRR8tw2zZpbV_gaP91y3rcX4x2fks-q8jSgcMJtaYGKSDme42VPoSrpmSuLpsuJsXGBSNrzerb0p_CQTa9DR4_YZlmV8IRxAJkkWsiMitPYOMwgShEISwhTG_tQjZgYlGBcXxqdOnTMzJAD98V0qjOkOhPGBlU3YsGl1KIrDXLF-HTQr_nNxA1GryskXw3mYHD105GOLaFa4qBIj5UUCFz_MSZWiJqppcqIPe5s6XK-ItQSQ6Xa_u-5vWS3JtPDA3Owd7T_lN2mXyi5IlLP2GZzvoTniNma7EW7SDgz17wofwAaxlgx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+mechanisms+of+how+cationic+polyacrylamide+affects+short-chain+fatty+acids+accumulation+during+long-term+anaerobic+fermentation+of+waste+activated+sludge&rft.jtitle=Water+research+%28Oxford%29&rft.au=Liu%2C+Xuran&rft.au=Xu%2C+Qiuxiang&rft.au=Wang%2C+Dongbo&rft.au=Wu%2C+Yanxin&rft.date=2019-05-15&rft.issn=0043-1354&rft.volume=155&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1016%2Fj.watres.2019.02.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2019_02_036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon