Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland
This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial comm...
Saved in:
Published in | Water research (Oxford) Vol. 165; p. 114988 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis.
[Display omitted]
•The electro-active bacteria Geobacter was greatly enriched on Mn ore anode.•Methanogen functional genes predicted by PICRUSt reduced on Mn ore anode.•Higher COD removal and electricity generation performance was obtained in UCW-MFC (Mn).•The migration of ARGs and their hosts from water phase to substrate reduced the ARGs. |
---|---|
AbstractList | This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. [Display omitted] •The electro-active bacteria Geobacter was greatly enriched on Mn ore anode.•Methanogen functional genes predicted by PICRUSt reduced on Mn ore anode.•Higher COD removal and electricity generation performance was obtained in UCW-MFC (Mn).•The migration of ARGs and their hosts from water phase to substrate reduced the ARGs. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis.This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. |
ArticleNumber | 114988 |
Author | Li, Hua Xu, Han Yang, Xiao-Li Yang, Yu-Li Zhang, Shuai Wu, You Song, Hai-Liang |
Author_xml | – sequence: 1 givenname: Hua surname: Li fullname: Li, Hua email: lihua20170305@163.com organization: School of Energy and Environment, Southeast University, Nanjing, 210096, China – sequence: 2 givenname: Han surname: Xu fullname: Xu, Han email: xuhseudoc@163.com organization: School of Civil Engineering, Southeast University, Nanjing, 210096, China – sequence: 3 givenname: Yu-Li orcidid: 0000-0003-1282-7729 surname: Yang fullname: Yang, Yu-Li email: yuli9031@yahoo.com organization: School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing, 210023, China – sequence: 4 givenname: Xiao-Li orcidid: 0000-0001-6570-8630 surname: Yang fullname: Yang, Xiao-Li email: yangxiaoli@seu.edu.cn organization: School of Civil Engineering, Southeast University, Nanjing, 210096, China – sequence: 5 givenname: You surname: Wu fullname: Wu, You email: 18656693978@163.com organization: School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing, 210023, China – sequence: 6 givenname: Shuai surname: Zhang fullname: Zhang, Shuai email: zhangshuai198702@163.com organization: School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China – sequence: 7 givenname: Hai-Liang orcidid: 0000-0001-5747-8847 surname: Song fullname: Song, Hai-Liang email: hlsong@njnu.edu.cn organization: School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing, 210023, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31442759$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URLeFN0DIRy5ZbMf5xwEJVS0gFXGBs-U44-2sEjvYTle8DW_BnSertykcONCLx7K_75vR_M7IifMOCHnJ2ZYzXr_Zbw86BYhbwXi35Vx2bfuEbHjbdIWQsj0hG8ZkWfCykqfkLMY9Y0yIsntGTksupWiqbkN-XVoLJkXqLd0FPd9gAqrdQD876gPQCQbU1DsKY5YFX2iT8BZonyuE_AUuoLmZwKV7m9XZn7O0S9ijT2jun40PedTZuwHdjuYrxqSdAboDB79_oqPLTO3oD3RCE3yPeqR2gZEaGPPhXUxhyR0HeoA05sTn5KnVY4QXD_WcfLu6_Hrxsbj-8uHTxfvrwsiap4L30ra8b8SgRcNsY0HXVlQaai3bprdDP9RlLYxuG8kkM1bUsoOqEaxtB8ua8py8XnPn4L8vEJOaMB6H0g78EpWQZVc2teT8caloWSVFJ4-prx6kS583rOaAkw4_1B8uWSBXQV5GjAHsXwln6ohf7dWKXx3xqxV_tr39x2Yw6YTepaBxfMz8bjVD3uctQlDRIGRIA4bMXg0e_x9wB3wn0g4 |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2023_139461 crossref_primary_10_1016_j_envres_2022_115127 crossref_primary_10_1016_j_bioelechem_2023_108622 crossref_primary_10_1016_j_scitotenv_2021_150220 crossref_primary_10_1016_j_biortech_2022_127114 crossref_primary_10_1016_j_cej_2022_134494 crossref_primary_10_1080_09593330_2022_2044917 crossref_primary_10_1016_j_jenvman_2020_111682 crossref_primary_10_1016_j_psep_2022_11_022 crossref_primary_10_1016_j_jhazmat_2023_132802 crossref_primary_10_1007_s11783_024_1868_4 crossref_primary_10_1016_j_jenvman_2021_112935 crossref_primary_10_1016_j_chemosphere_2020_126014 crossref_primary_10_1016_j_biortech_2020_123419 crossref_primary_10_1016_j_envres_2021_111054 crossref_primary_10_1016_j_jclepro_2024_143262 crossref_primary_10_1016_j_watres_2021_117688 crossref_primary_10_1016_j_cej_2024_149477 crossref_primary_10_1016_j_cej_2020_124391 crossref_primary_10_1016_j_jhazmat_2023_131207 crossref_primary_10_1016_j_watres_2022_118118 crossref_primary_10_1016_j_biortech_2019_122290 crossref_primary_10_1016_j_biortech_2020_123808 crossref_primary_10_1016_j_envint_2022_107381 crossref_primary_10_1016_j_watres_2024_122244 crossref_primary_10_1016_j_watres_2021_117333 crossref_primary_10_1016_j_scitotenv_2021_146544 crossref_primary_10_1016_j_uclim_2021_100956 crossref_primary_10_1016_j_cej_2021_130582 crossref_primary_10_1016_j_jenvman_2023_118143 crossref_primary_10_1016_j_envpol_2020_115040 crossref_primary_10_1016_j_scitotenv_2023_164855 crossref_primary_10_1016_j_jece_2021_106355 crossref_primary_10_1016_j_scitotenv_2023_163520 crossref_primary_10_1016_j_ecoenv_2020_111362 crossref_primary_10_1016_j_ijhydene_2020_08_070 crossref_primary_10_3390_bioengineering10020199 crossref_primary_10_1016_j_biortech_2023_129324 crossref_primary_10_1016_j_jwpe_2024_105592 crossref_primary_10_1016_j_cej_2023_148505 crossref_primary_10_1016_j_envpol_2023_122081 crossref_primary_10_1016_j_jece_2023_109551 crossref_primary_10_1016_j_chemosphere_2022_135377 crossref_primary_10_1016_j_jwpe_2020_101421 crossref_primary_10_1016_j_scitotenv_2020_142454 crossref_primary_10_1016_j_cej_2022_138005 crossref_primary_10_1016_j_jece_2020_105011 crossref_primary_10_1016_j_cej_2022_141133 crossref_primary_10_1016_j_cej_2024_156816 crossref_primary_10_1016_j_envpol_2023_121828 crossref_primary_10_1016_j_jconhyd_2022_103981 crossref_primary_10_1016_j_jwpe_2025_107226 crossref_primary_10_3390_pr10040714 crossref_primary_10_1016_j_jhazmat_2021_125865 crossref_primary_10_1039_D3RA05729A crossref_primary_10_1016_j_chemosphere_2021_131138 crossref_primary_10_1016_j_chemosphere_2020_128366 crossref_primary_10_1016_j_envres_2024_118271 crossref_primary_10_1016_j_jwpe_2022_102572 crossref_primary_10_1016_j_jhazmat_2023_131114 crossref_primary_10_1016_j_biortech_2020_124285 crossref_primary_10_1016_j_cej_2024_153539 crossref_primary_10_3390_ijerph191710919 crossref_primary_10_1016_j_biortech_2024_131300 crossref_primary_10_1016_j_ijhydene_2020_08_051 crossref_primary_10_1016_j_envpol_2020_115988 crossref_primary_10_1016_j_biortech_2022_128110 crossref_primary_10_1016_j_rser_2021_111261 crossref_primary_10_1016_j_envint_2021_106689 crossref_primary_10_1061__ASCE_EE_1943_7870_0002017 crossref_primary_10_1016_j_jwpe_2024_106420 crossref_primary_10_1039_D0EN00668H crossref_primary_10_1016_j_jenvman_2021_112723 crossref_primary_10_1016_j_chemosphere_2022_137655 crossref_primary_10_1016_j_ecoenv_2022_113698 crossref_primary_10_1016_j_eng_2021_05_016 crossref_primary_10_1021_acsestwater_2c00212 crossref_primary_10_1007_s11356_024_34574_2 crossref_primary_10_1007_s10904_023_02935_y crossref_primary_10_1016_j_jclepro_2021_126639 crossref_primary_10_1016_j_jhazmat_2020_122892 crossref_primary_10_2166_wrd_2024_008 crossref_primary_10_1016_j_envres_2023_117567 crossref_primary_10_1007_s44246_023_00092_y crossref_primary_10_1016_j_envpol_2020_115084 crossref_primary_10_1016_j_watres_2021_117814 crossref_primary_10_3389_fmicb_2023_1106332 crossref_primary_10_1016_j_jes_2024_06_038 crossref_primary_10_1016_j_scitotenv_2023_163721 crossref_primary_10_1016_j_cej_2021_133663 crossref_primary_10_1016_j_jenvman_2025_124872 crossref_primary_10_1016_j_ecoenv_2021_112292 crossref_primary_10_1016_j_watres_2023_120233 crossref_primary_10_1007_s11356_024_33474_9 crossref_primary_10_1016_j_biortech_2020_123838 crossref_primary_10_1021_acsestengg_3c00362 crossref_primary_10_1016_j_scitotenv_2024_178147 crossref_primary_10_1016_j_jes_2022_03_045 crossref_primary_10_1016_j_cej_2023_143417 crossref_primary_10_1016_j_jhazmat_2023_132394 crossref_primary_10_1016_j_jwpe_2024_106882 crossref_primary_10_1016_j_jwpe_2024_105709 crossref_primary_10_1016_j_jclepro_2021_130202 crossref_primary_10_1016_j_ecoenv_2020_111332 crossref_primary_10_1016_j_jenvman_2020_111157 crossref_primary_10_1016_j_chemosphere_2022_134760 crossref_primary_10_1016_j_envres_2021_112649 crossref_primary_10_1016_j_psep_2024_04_065 |
Cites_doi | 10.1016/j.cej.2018.06.035 10.1016/j.marpolbul.2018.01.051 10.1016/j.biortech.2016.10.079 10.1016/j.jpowsour.2017.05.099 10.1016/j.watres.2017.07.048 10.1016/j.jhazmat.2009.03.074 10.1016/j.scitotenv.2018.03.083 10.1016/j.ymben.2008.06.005 10.1016/j.biortech.2015.05.072 10.3390/ma9110885 10.1016/j.powtec.2013.11.008 10.1016/j.biortech.2018.12.053 10.1016/j.ecoleng.2013.12.006 10.1021/es800238e 10.1016/j.scitotenv.2016.04.176 10.1038/nbt.2676 10.1021/acs.est.7b00551 10.3168/jds.2017-14096 10.1016/j.watres.2018.05.061 10.1016/j.biortech.2015.05.098 10.1016/j.watres.2018.11.075 10.1016/j.ibiod.2017.12.003 10.1016/j.scitotenv.2018.10.234 10.1016/j.biortech.2018.09.039 10.1016/j.bios.2016.02.051 10.1021/es504930v 10.1016/j.biortech.2016.09.054 10.1016/j.scitotenv.2018.04.359 10.1016/j.chemosphere.2013.10.062 10.1016/j.cej.2017.10.159 10.1016/j.watres.2017.12.029 10.1016/j.watres.2018.05.047 10.1016/j.envpol.2016.10.075 10.2166/wst.2001.0832 10.1021/es903490h 10.1007/s00253-013-5328-5 10.1016/j.biortech.2016.09.116 10.1021/es071739c 10.1016/j.scitotenv.2018.08.186 10.1038/s41467-018-04641-7 10.1016/j.ecoenv.2018.12.024 10.1128/AEM.60.10.3752-3759.1994 10.1007/s11356-014-3351-4 10.1016/j.envpol.2019.112996 10.1016/j.desal.2010.10.040 10.1016/j.biortech.2015.10.021 10.1016/j.scitotenv.2018.11.328 10.1016/j.cej.2016.09.110 10.1016/j.chemosphere.2015.03.055 10.1016/j.chemosphere.2017.01.134 10.1016/j.cej.2018.02.003 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2019.114988 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
ExternalDocumentID | 31442759 10_1016_j_watres_2019_114988 S0043135419307626 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c461t-1b4f81b72da270f7fea6f25ae6a487bfdbd6362ca874040cf2649e572088df073 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 11:39:36 EDT 2025 Fri Jul 11 10:56:17 EDT 2025 Thu Apr 03 07:05:29 EDT 2025 Tue Jul 01 01:20:58 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Tue Dec 03 03:45:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mn ore Up-flow microbial fuel cell constructed wetland Bioelectricity generation Bacterial community Antibiotic resistance gene |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-1b4f81b72da270f7fea6f25ae6a487bfdbd6362ca874040cf2649e572088df073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1282-7729 0000-0001-6570-8630 0000-0001-5747-8847 |
PMID | 31442759 |
PQID | 2280542947 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2439376411 proquest_miscellaneous_2280542947 pubmed_primary_31442759 crossref_primary_10_1016_j_watres_2019_114988 crossref_citationtrail_10_1016_j_watres_2019_114988 elsevier_sciencedirect_doi_10_1016_j_watres_2019_114988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-15 |
PublicationDateYYYYMMDD | 2019-11-15 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fan, Hu, Liu (bib11) 2007; 41 Yan, Wang, Ding, Tian, Bai, Gang, Yan, Xiao, Zhao (bib47) 2019; 275 Guo, Pang, Dou, Yin (bib13) 2017; 175 He, Nurul, Schmitt, Sutton, Murk, Blokland, Rijnaarts, Langenhoff (bib16) 2018; 631–632 Wang, Tian, Liu, Zhao, Wu (bib40) 2019; 271 American Public Health Association, A (bib1) 1995 Arends, Speeckaert, Blondeel, De Vrieze, Boeckx, Verstraete, Rabaey, Boon (bib2) 2014; 98 Hill, Sobsey (bib17) 2001; 44 Huang, Ling, Xu, Feng, Li (bib18) 2011; 269 Brigante, Parolo, Schulz, Avena (bib4) 2014; 253 Muurinen, Stedtfeld, Karkman, Pärnänen, Tiedje, Virta (bib29) 2017; 51 Yang, Wu, Liu, Zhang, Liang (bib48) 2016; 9 Ma, Wang, Wang, Zhang, Mao, Tan (bib1a) 2018; 101 Hartl, Bedoya-Ríos, Fernández-Gatell, Rousseau, Du Laing, Garfí, Puigagut (bib14) 2019; 652 Xu, Cao, Kong, Zhou, Yuan, Zhu, Wang, Du, Wang (bib43) 2018; 339 Wang, Tian, Liu, Zhao, Peng (bib39) 2019; 656 Oon, Ong, Ho, Wong, Dahalan, Oon, Lehl, Thung, Nordin (bib30) 2017; 224 Wang, Song, Li, Bai, Zhu, Weng, Yan, Bai (bib38) 2019; 150 Yan, Guo, Xiao, Wang, Ding, Jiang, Gang, Wang, Yang, Zhao (bib46) 2018; 142 Li, Song, Yang, Zhang, Yang, Zhang, Xu, Wang (bib23) 2018; 637–638 de Muinck, Trosvik (bib8) 2018; 9 Qiu, Zhang, Li, Lv, Wang, Gu (bib31) 2017; 359 Xu, Chen, Huang, Li, Liu, Yang, Gao (bib42) 2009; 169 Corbella Vidal, P Steidl, Puigagut Juárez, Reguera (bib7) 2017; 20 Wang, Song, Wang, Abayneh, Ding, Yan, Bai (bib36) 2016; 221 Xu, Quan, Xiao, Chen (bib44) 2018; 335 He, Xu, Chen, Ling, Li, Huang, Zhou, Zheng, Xie (bib15) 2017; 124 Yang, Liu, Zhang, Xie, Zhang, Hu, Wang (bib49) 2019; 170 Mander, Dotro, Ebie, Towprayoon, Chiemchaisri, Nogueira, Jamsranjav, Kasak, Truu, Tournebize (bib28) 2014; 66 Tran, Reinhard, Gin (bib35) 2018; 133 Blöthe, Wegorzewski, Müller, Simon, Kuhn, Schippers (bib3) 2015; 49 Caccavo, Lonergan, Lovley, Davis, Stolz, McInerney (bib5) 1994; 60 Zhang, Liang, Yang, Jiang, Bian, Chen, Zhang, Huang (bib50) 2016; 81 Yan, Gao, Huang, Gan, Zhang, Chen, Peng, Guo (bib45) 2014; 99 Ding, Su, Wu, Lin (bib9) 2015; 133 Izallalen, Mahadevan, Burgard, Postier, Didonato, Sun, Schilling, Lovley (bib20) 2008; 10 Song, Li, Zhang, Yang, Zhang, Xu, Yang (bib32) 2018; 350 Lu, Xing, Ren (bib27) 2015; 195 Langille, Zaneveld, Caporaso, McDonald, Knights, Reyes, Clemente, Burkepile, Thurber, Knight, Beiko, Huttenhower (bib21) 2013; 31 Liu, Guo, Liu, Lu, Xi, Zhang, Bi (bib25) 2019 Engemann, Keen, Knapp, Hall, Graham (bib10) 2008; 42 Srivastava, Yadav, Mishra (bib33) 2015; 195 Fang, Cao, Li, Wang, Li (bib12) 2018; 129 Xie, Yang, Liu, Kang, Zhang, Hu, Liang (bib41) 2018; 143 Zhao, Zhang, Quan, Zhao (bib51) 2016; 200 Zhao, Wang, Han, Chen, Liu, Lu, Yan, Chen (bib52) 2017; 220 López, Sepúlveda-Mardones, Ruiz-Tagle, Sossa, Uggetti, Vidal (bib26) 2019; 648 Tan, Guo, Gu, Gu (bib34) 2015; 22 Chen, Wei, Liu, Ying, Liu, He, Su, Hu, Chen, Yang (bib6) 2016; 565 Huang, Zheng, Liu, Liu, Liu, Fan (bib19) 2017; 308 Li, Zhang (bib22) 2010; 44 Wang, Song, Wang, Abayneh, Li, Yan, Bai (bib37) 2016; 221 Li, Na, Zhang, Lu, Gao, Li, Jin (bib24) 2018; 128 Chen (10.1016/j.watres.2019.114988_bib6) 2016; 565 Li (10.1016/j.watres.2019.114988_bib23) 2018; 637–638 Arends (10.1016/j.watres.2019.114988_bib2) 2014; 98 Wang (10.1016/j.watres.2019.114988_bib39) 2019; 656 Wang (10.1016/j.watres.2019.114988_bib37) 2016; 221 American Public Health Association, A (10.1016/j.watres.2019.114988_bib1) 1995 Langille (10.1016/j.watres.2019.114988_bib21) 2013; 31 Huang (10.1016/j.watres.2019.114988_bib19) 2017; 308 Yan (10.1016/j.watres.2019.114988_bib45) 2014; 99 Xu (10.1016/j.watres.2019.114988_bib43) 2018; 339 Wang (10.1016/j.watres.2019.114988_bib36) 2016; 221 de Muinck (10.1016/j.watres.2019.114988_bib8) 2018; 9 Xie (10.1016/j.watres.2019.114988_bib41) 2018; 143 Tran (10.1016/j.watres.2019.114988_bib35) 2018; 133 Hill (10.1016/j.watres.2019.114988_bib17) 2001; 44 Zhang (10.1016/j.watres.2019.114988_bib50) 2016; 81 Blöthe (10.1016/j.watres.2019.114988_bib3) 2015; 49 Engemann (10.1016/j.watres.2019.114988_bib10) 2008; 42 Corbella Vidal (10.1016/j.watres.2019.114988_bib7) 2017; 20 Huang (10.1016/j.watres.2019.114988_bib18) 2011; 269 Xu (10.1016/j.watres.2019.114988_bib44) 2018; 335 Yan (10.1016/j.watres.2019.114988_bib46) 2018; 142 Guo (10.1016/j.watres.2019.114988_bib13) 2017; 175 Li (10.1016/j.watres.2019.114988_bib22) 2010; 44 Mander (10.1016/j.watres.2019.114988_bib28) 2014; 66 Qiu (10.1016/j.watres.2019.114988_bib31) 2017; 359 Song (10.1016/j.watres.2019.114988_bib32) 2018; 350 Yang (10.1016/j.watres.2019.114988_bib48) 2016; 9 Brigante (10.1016/j.watres.2019.114988_bib4) 2014; 253 López (10.1016/j.watres.2019.114988_bib26) 2019; 648 Lu (10.1016/j.watres.2019.114988_bib27) 2015; 195 Tan (10.1016/j.watres.2019.114988_bib34) 2015; 22 Fang (10.1016/j.watres.2019.114988_bib12) 2018; 129 Xu (10.1016/j.watres.2019.114988_bib42) 2009; 169 Zhao (10.1016/j.watres.2019.114988_bib51) 2016; 200 Li (10.1016/j.watres.2019.114988_bib24) 2018; 128 Muurinen (10.1016/j.watres.2019.114988_bib29) 2017; 51 Liu (10.1016/j.watres.2019.114988_bib25) 2019 Yang (10.1016/j.watres.2019.114988_bib49) 2019; 170 He (10.1016/j.watres.2019.114988_bib16) 2018; 631–632 Yan (10.1016/j.watres.2019.114988_bib47) 2019; 275 Ma (10.1016/j.watres.2019.114988_bib1a) 2018; 101 Oon (10.1016/j.watres.2019.114988_bib30) 2017; 224 Wang (10.1016/j.watres.2019.114988_bib38) 2019; 150 Ding (10.1016/j.watres.2019.114988_bib9) 2015; 133 Caccavo (10.1016/j.watres.2019.114988_bib5) 1994; 60 Zhao (10.1016/j.watres.2019.114988_bib52) 2017; 220 Izallalen (10.1016/j.watres.2019.114988_bib20) 2008; 10 Srivastava (10.1016/j.watres.2019.114988_bib33) 2015; 195 He (10.1016/j.watres.2019.114988_bib15) 2017; 124 Wang (10.1016/j.watres.2019.114988_bib40) 2019; 271 Hartl (10.1016/j.watres.2019.114988_bib14) 2019; 652 Fan (10.1016/j.watres.2019.114988_bib11) 2007; 41 |
References_xml | – volume: 41 start-page: 8154 year: 2007 end-page: 8158 ident: bib11 article-title: Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms publication-title: Environ. Sci. Technol. – volume: 31 start-page: 814 year: 2013 ident: bib21 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nat. Biotechnol. – volume: 631–632 start-page: 1572 year: 2018 end-page: 1581 ident: bib16 article-title: Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents publication-title: Sci. Total Environ. – volume: 200 start-page: 235 year: 2016 end-page: 244 ident: bib51 article-title: Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell publication-title: Bioresour. Technol. – volume: 565 start-page: 240 year: 2016 end-page: 248 ident: bib6 article-title: Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: optimization of wetland substrates and hydraulic loading publication-title: Sci. Total Environ. – volume: 195 start-page: 223 year: 2015 end-page: 230 ident: bib33 article-title: The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland publication-title: Bioresour. Technol. – volume: 253 start-page: 178 year: 2014 end-page: 186 ident: bib4 article-title: Synthesis, characterization of mesoporous silica powders and application to antibiotic remotion from aqueous solution. Effect of supported Fe-oxide on the SiO2 adsorption properties publication-title: Powder Technol. – volume: 359 start-page: 379 year: 2017 end-page: 383 ident: bib31 article-title: Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode publication-title: J. Power. Sources – volume: 101 start-page: 5153 year: 2018 end-page: 5158 ident: bib1a article-title: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows publication-title: J. Dairy. Sci. – volume: 275 start-page: 192 year: 2019 end-page: 199 ident: bib47 article-title: Long-term operation of electroactive biofilms for enhanced ciprofloxacin removal capacity and anti-shock capabilities publication-title: Bioresour. Technol. – volume: 221 start-page: 697 year: 2016 end-page: 702 ident: bib36 article-title: Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell publication-title: Bioresour. Technol. – volume: 42 start-page: 5131 year: 2008 end-page: 5136 ident: bib10 article-title: Fate of tetracycline resistance genes in aquatic systems: migration from the water column to peripheral biofilms publication-title: Environ. Sci. Technol. – volume: 128 start-page: 475 year: 2018 end-page: 482 ident: bib24 article-title: Effects of corresponding and non-corresponding contaminants on the fate of sulfonamide and quinolone resistance genes in the Laizhou Bay, China publication-title: Mar. Pollut. Bull. – volume: 10 start-page: 267 year: 2008 end-page: 275 ident: bib20 article-title: Geobacter sulfurreducens strain engineered for increased rates of respiration publication-title: Metab. Eng. – volume: 60 start-page: 3752 year: 1994 end-page: 3759 ident: bib5 article-title: Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism publication-title: Appl. Environ. Microbiol. – start-page: 112996 year: 2019 ident: bib25 article-title: A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response publication-title: Environ. Pollut. – volume: 143 start-page: 457 year: 2018 end-page: 466 ident: bib41 article-title: Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides publication-title: Water Res. – volume: 339 start-page: 479 year: 2018 end-page: 486 ident: bib43 article-title: Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell publication-title: Chem. Eng. J. – volume: 150 start-page: 340 year: 2019 end-page: 348 ident: bib38 article-title: Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI publication-title: Water Res. – volume: 129 start-page: 1 year: 2018 end-page: 9 ident: bib12 article-title: Biorefractory wastewater degradation in the cathode of constructed wetland-microbial fuel cell and the study of the electrode performance publication-title: Int. Biodeterior. Biodegrad. – volume: 66 start-page: 19 year: 2014 end-page: 35 ident: bib28 article-title: Greenhouse gas emission in constructed wetlands for wastewater treatment: a review publication-title: Ecol. Eng. – volume: 637–638 start-page: 295 year: 2018 end-page: 305 ident: bib23 article-title: A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes publication-title: Sci. Total Environ. – volume: 9 start-page: 885 year: 2016 ident: bib48 article-title: Treatment of oil wastewater and electricity generation by integrating constructed wetland with microbial fuel cell publication-title: Materials – volume: 133 start-page: 41 year: 2015 end-page: 46 ident: bib9 article-title: Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions publication-title: Chemosphere – volume: 350 start-page: 920 year: 2018 end-page: 929 ident: bib32 article-title: Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: effects of circuit operation mode and hydraulic retention time publication-title: Chem. Eng. J. – volume: 220 start-page: 909 year: 2017 end-page: 918 ident: bib52 article-title: Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture publication-title: Environ. Pollut. – volume: 269 start-page: 41 year: 2011 end-page: 49 ident: bib18 article-title: Advanced treatment of wastewater from an iron and steel enterprise by a constructed wetland/ultrafiltration/reverse osmosis process publication-title: Desalination – volume: 51 start-page: 5989 year: 2017 end-page: 5999 ident: bib29 article-title: Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use publication-title: Environ. Sci. Technol. – volume: 133 start-page: 182 year: 2018 end-page: 207 ident: bib35 article-title: Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review publication-title: Water Res. – volume: 335 start-page: 539 year: 2018 end-page: 547 ident: bib44 article-title: Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells publication-title: Chem. Eng. J. – volume: 308 start-page: 692 year: 2017 end-page: 699 ident: bib19 article-title: Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type publication-title: Chem. Eng. J. – volume: 170 start-page: 446 year: 2019 end-page: 452 ident: bib49 article-title: Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal publication-title: Ecotoxicol. Environ. Saf. – volume: 656 start-page: 270 year: 2019 end-page: 279 ident: bib39 article-title: The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands publication-title: Sci. Total Environ. – volume: 44 start-page: 3468 year: 2010 end-page: 3473 ident: bib22 article-title: Biodegradation and adsorption of antibiotics in the activated sludge process publication-title: Environ. Sci. Technol. – volume: 49 start-page: 7692 year: 2015 end-page: 7700 ident: bib3 article-title: Manganese-cycling microbial communities inside deep-sea manganese nodules publication-title: Environ. Sci. Technol. – volume: 169 start-page: 309 year: 2009 end-page: 317 ident: bib42 article-title: Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater publication-title: J. Hazard Mater. – volume: 271 start-page: 492 year: 2019 end-page: 495 ident: bib40 article-title: Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland–microbial fuel cell systems publication-title: Bioresour. Technol. – year: 1995 ident: bib1 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 81 start-page: 32 year: 2016 end-page: 38 ident: bib50 article-title: Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell publication-title: Biosens. Bioelectron. – volume: 221 start-page: 358 year: 2016 end-page: 365 ident: bib37 article-title: Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: establishment of electrochemically active bacteria community on anode publication-title: Bioresour. Technol. – volume: 195 start-page: 115 year: 2015 end-page: 121 ident: bib27 article-title: Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell publication-title: Bioresour. Technol. – volume: 124 start-page: 39 year: 2017 end-page: 48 ident: bib15 article-title: Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals publication-title: Water Res. – volume: 22 start-page: 609 year: 2015 end-page: 617 ident: bib34 article-title: Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite publication-title: Environ. Sci. Pollut. Res. – volume: 44 start-page: 215 year: 2001 end-page: 222 ident: bib17 article-title: Removal of Salmonella and microbial indicators in constructed wetlands treating swine wastewater publication-title: Water Sci. Technol. – volume: 98 start-page: 3205 year: 2014 end-page: 3217 ident: bib2 article-title: Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell publication-title: Appl. Microbiol. Biotechnol. – volume: 142 start-page: 105 year: 2018 end-page: 114 ident: bib46 article-title: The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing publication-title: Water Res. – volume: 175 start-page: 21 year: 2017 end-page: 27 ident: bib13 article-title: Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors publication-title: Chemosphere – volume: 652 start-page: 1195 year: 2019 end-page: 1208 ident: bib14 article-title: Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells publication-title: Sci. Total Environ. – volume: 224 start-page: 265 year: 2017 end-page: 275 ident: bib30 article-title: Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery publication-title: Bioresour. Technol. – volume: 99 start-page: 160 year: 2014 end-page: 170 ident: bib45 article-title: Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: mass balance analysis and consumption back-calculated model publication-title: Chemosphere – volume: 20 start-page: 55 year: 2017 end-page: 64 ident: bib7 article-title: Electrochemical characterization of Geobacter lovleyi identifies limitations of microbial fuel cell performance in constructed wetlands publication-title: Int. Microbiol. – volume: 9 start-page: 10 year: 2018 end-page: 1038 ident: bib8 article-title: Individuality and convergence of the infant gut microbiota during the first year of life publication-title: Nat. Commun. – volume: 648 start-page: 1042 year: 2019 end-page: 1051 ident: bib26 article-title: Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons publication-title: Sci. Total Environ. – volume: 350 start-page: 920 year: 2018 ident: 10.1016/j.watres.2019.114988_bib32 article-title: Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: effects of circuit operation mode and hydraulic retention time publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.035 – volume: 128 start-page: 475 year: 2018 ident: 10.1016/j.watres.2019.114988_bib24 article-title: Effects of corresponding and non-corresponding contaminants on the fate of sulfonamide and quinolone resistance genes in the Laizhou Bay, China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.01.051 – volume: 224 start-page: 265 year: 2017 ident: 10.1016/j.watres.2019.114988_bib30 article-title: Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.10.079 – volume: 359 start-page: 379 year: 2017 ident: 10.1016/j.watres.2019.114988_bib31 article-title: Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode publication-title: J. Power. Sources doi: 10.1016/j.jpowsour.2017.05.099 – volume: 124 start-page: 39 year: 2017 ident: 10.1016/j.watres.2019.114988_bib15 article-title: Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals publication-title: Water Res. doi: 10.1016/j.watres.2017.07.048 – volume: 169 start-page: 309 year: 2009 ident: 10.1016/j.watres.2019.114988_bib42 article-title: Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.03.074 – volume: 631–632 start-page: 1572 year: 2018 ident: 10.1016/j.watres.2019.114988_bib16 article-title: Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.083 – volume: 10 start-page: 267 year: 2008 ident: 10.1016/j.watres.2019.114988_bib20 article-title: Geobacter sulfurreducens strain engineered for increased rates of respiration publication-title: Metab. Eng. doi: 10.1016/j.ymben.2008.06.005 – volume: 195 start-page: 223 year: 2015 ident: 10.1016/j.watres.2019.114988_bib33 article-title: The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.072 – volume: 9 start-page: 885 year: 2016 ident: 10.1016/j.watres.2019.114988_bib48 article-title: Treatment of oil wastewater and electricity generation by integrating constructed wetland with microbial fuel cell publication-title: Materials doi: 10.3390/ma9110885 – volume: 253 start-page: 178 year: 2014 ident: 10.1016/j.watres.2019.114988_bib4 article-title: Synthesis, characterization of mesoporous silica powders and application to antibiotic remotion from aqueous solution. Effect of supported Fe-oxide on the SiO2 adsorption properties publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.11.008 – volume: 275 start-page: 192 year: 2019 ident: 10.1016/j.watres.2019.114988_bib47 article-title: Long-term operation of electroactive biofilms for enhanced ciprofloxacin removal capacity and anti-shock capabilities publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.12.053 – volume: 66 start-page: 19 year: 2014 ident: 10.1016/j.watres.2019.114988_bib28 article-title: Greenhouse gas emission in constructed wetlands for wastewater treatment: a review publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.12.006 – volume: 42 start-page: 5131 year: 2008 ident: 10.1016/j.watres.2019.114988_bib10 article-title: Fate of tetracycline resistance genes in aquatic systems: migration from the water column to peripheral biofilms publication-title: Environ. Sci. Technol. doi: 10.1021/es800238e – volume: 565 start-page: 240 year: 2016 ident: 10.1016/j.watres.2019.114988_bib6 article-title: Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: optimization of wetland substrates and hydraulic loading publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.04.176 – volume: 31 start-page: 814 year: 2013 ident: 10.1016/j.watres.2019.114988_bib21 article-title: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2676 – volume: 51 start-page: 5989 year: 2017 ident: 10.1016/j.watres.2019.114988_bib29 article-title: Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00551 – volume: 101 start-page: 5153 year: 2018 ident: 10.1016/j.watres.2019.114988_bib1a article-title: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows publication-title: J. Dairy. Sci. doi: 10.3168/jds.2017-14096 – volume: 143 start-page: 457 year: 2018 ident: 10.1016/j.watres.2019.114988_bib41 article-title: Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides publication-title: Water Res. doi: 10.1016/j.watres.2018.05.061 – volume: 195 start-page: 115 year: 2015 ident: 10.1016/j.watres.2019.114988_bib27 article-title: Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.098 – volume: 150 start-page: 340 year: 2019 ident: 10.1016/j.watres.2019.114988_bib38 article-title: Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI publication-title: Water Res. doi: 10.1016/j.watres.2018.11.075 – volume: 129 start-page: 1 year: 2018 ident: 10.1016/j.watres.2019.114988_bib12 article-title: Biorefractory wastewater degradation in the cathode of constructed wetland-microbial fuel cell and the study of the electrode performance publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2017.12.003 – volume: 652 start-page: 1195 year: 2019 ident: 10.1016/j.watres.2019.114988_bib14 article-title: Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.234 – year: 1995 ident: 10.1016/j.watres.2019.114988_bib1 – volume: 271 start-page: 492 year: 2019 ident: 10.1016/j.watres.2019.114988_bib40 article-title: Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland–microbial fuel cell systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.039 – volume: 81 start-page: 32 year: 2016 ident: 10.1016/j.watres.2019.114988_bib50 article-title: Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.02.051 – volume: 49 start-page: 7692 year: 2015 ident: 10.1016/j.watres.2019.114988_bib3 article-title: Manganese-cycling microbial communities inside deep-sea manganese nodules publication-title: Environ. Sci. Technol. doi: 10.1021/es504930v – volume: 221 start-page: 358 year: 2016 ident: 10.1016/j.watres.2019.114988_bib37 article-title: Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: establishment of electrochemically active bacteria community on anode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.054 – volume: 637–638 start-page: 295 year: 2018 ident: 10.1016/j.watres.2019.114988_bib23 article-title: A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.359 – volume: 99 start-page: 160 year: 2014 ident: 10.1016/j.watres.2019.114988_bib45 article-title: Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: mass balance analysis and consumption back-calculated model publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.062 – volume: 335 start-page: 539 year: 2018 ident: 10.1016/j.watres.2019.114988_bib44 article-title: Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.159 – volume: 133 start-page: 182 year: 2018 ident: 10.1016/j.watres.2019.114988_bib35 article-title: Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review publication-title: Water Res. doi: 10.1016/j.watres.2017.12.029 – volume: 20 start-page: 55 year: 2017 ident: 10.1016/j.watres.2019.114988_bib7 article-title: Electrochemical characterization of Geobacter lovleyi identifies limitations of microbial fuel cell performance in constructed wetlands publication-title: Int. Microbiol. – volume: 142 start-page: 105 year: 2018 ident: 10.1016/j.watres.2019.114988_bib46 article-title: The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing publication-title: Water Res. doi: 10.1016/j.watres.2018.05.047 – volume: 220 start-page: 909 year: 2017 ident: 10.1016/j.watres.2019.114988_bib52 article-title: Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.075 – volume: 44 start-page: 215 year: 2001 ident: 10.1016/j.watres.2019.114988_bib17 article-title: Removal of Salmonella and microbial indicators in constructed wetlands treating swine wastewater publication-title: Water Sci. Technol. doi: 10.2166/wst.2001.0832 – volume: 44 start-page: 3468 year: 2010 ident: 10.1016/j.watres.2019.114988_bib22 article-title: Biodegradation and adsorption of antibiotics in the activated sludge process publication-title: Environ. Sci. Technol. doi: 10.1021/es903490h – volume: 98 start-page: 3205 year: 2014 ident: 10.1016/j.watres.2019.114988_bib2 article-title: Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5328-5 – volume: 221 start-page: 697 year: 2016 ident: 10.1016/j.watres.2019.114988_bib36 article-title: Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.116 – volume: 41 start-page: 8154 year: 2007 ident: 10.1016/j.watres.2019.114988_bib11 article-title: Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/es071739c – volume: 648 start-page: 1042 year: 2019 ident: 10.1016/j.watres.2019.114988_bib26 article-title: Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.186 – volume: 9 start-page: 10 year: 2018 ident: 10.1016/j.watres.2019.114988_bib8 article-title: Individuality and convergence of the infant gut microbiota during the first year of life publication-title: Nat. Commun. doi: 10.1038/s41467-018-04641-7 – volume: 170 start-page: 446 year: 2019 ident: 10.1016/j.watres.2019.114988_bib49 article-title: Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.12.024 – volume: 60 start-page: 3752 year: 1994 ident: 10.1016/j.watres.2019.114988_bib5 article-title: Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.60.10.3752-3759.1994 – volume: 22 start-page: 609 year: 2015 ident: 10.1016/j.watres.2019.114988_bib34 article-title: Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3351-4 – start-page: 112996 year: 2019 ident: 10.1016/j.watres.2019.114988_bib25 article-title: A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.112996 – volume: 269 start-page: 41 year: 2011 ident: 10.1016/j.watres.2019.114988_bib18 article-title: Advanced treatment of wastewater from an iron and steel enterprise by a constructed wetland/ultrafiltration/reverse osmosis process publication-title: Desalination doi: 10.1016/j.desal.2010.10.040 – volume: 200 start-page: 235 year: 2016 ident: 10.1016/j.watres.2019.114988_bib51 article-title: Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.021 – volume: 656 start-page: 270 year: 2019 ident: 10.1016/j.watres.2019.114988_bib39 article-title: The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.328 – volume: 308 start-page: 692 year: 2017 ident: 10.1016/j.watres.2019.114988_bib19 article-title: Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.110 – volume: 133 start-page: 41 year: 2015 ident: 10.1016/j.watres.2019.114988_bib9 article-title: Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.03.055 – volume: 175 start-page: 21 year: 2017 ident: 10.1016/j.watres.2019.114988_bib13 article-title: Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.134 – volume: 339 start-page: 479 year: 2018 ident: 10.1016/j.watres.2019.114988_bib43 article-title: Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.003 |
SSID | ssj0002239 |
Score | 2.590911 |
Snippet | This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114988 |
SubjectTerms | adsorption anodes Antibiotic resistance gene antibiotic resistance genes antibiotics bacteria bacterial communities Bacterial community Bioelectricity generation chemical oxygen demand ciprofloxacin constructed wetlands electricity generation electron transfer Geobacter graphene hosts manganese methanogens Methanosaeta microbial fuel cells Mn ore multiple drug resistance pollutants sulfadiazine Up-flow microbial fuel cell constructed wetland |
Title | Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland |
URI | https://dx.doi.org/10.1016/j.watres.2019.114988 https://www.ncbi.nlm.nih.gov/pubmed/31442759 https://www.proquest.com/docview/2280542947 https://www.proquest.com/docview/2439376411 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcqEHBC0_W6CaSlxN144Tk2NVtVqK2hOVeovGsa0GLckKdrW3Pgtvwb1P1hknaUECKnFLIjuxPOOZz_HMN0K8s4QBYl4EqZ3z0sQyk6XTmfTOk_snn-sDZyOfnRezC3N6mV9uiKMxF4bDKgfb39v0ZK2HJwfDbB4smoZzfMn5ZbkhCEKbcc2028ZY1vL31_dhHuT-yvGUmVuP6XMpxmuNnJDBAV4lk-aWqf7KH93T3-BnckMnT8WTAT_CYT_EZ2IjtNti6xdWwR3xs2ck_g5dhMRHTagSsPVw1kL3LUBKFoGuhaEEjsRk88D1xM0IpFJNfcW_DVO3SHCU30UyaFzT0YfT4zrV9Vh0KS0G6JKRKE0fkEqGmx9NC6sFxHm3hq9NYnuiYcdVmAOfFVDvgbo2eFiHJcdXPhcXJ8efj2ZyqM8ga1OopVTOREK9VnvUdhptDFhEnWMokLZBLpK8C_KPNXLZPzOtI4GvMuRWk2XzkWzLC7HZdm14JQCdCqgwIma1qdEgoYg8Tn0WC1QqMxORjWKp6oG8nGtozKsxSu1L1QuzYmFWvTAnQt71WvTkHQ-0t6PEq9-UsCL_8kDP_VFBKlqfPJHYhm5FjfSHKdcEM_YfbQzTEhZGqYl42WvX3Xgz2vFqm5e7_z221-Ix33ECpcrfiE0SbnhLSGrp9tJS2ROPDj9-mp3fAlwvIxM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtswDCa69LD1UOx_affDAbsKjW1Zno9F0SJdm5xaoDdDsiTMQ2oHW4K8Tt9i9z3ZSFkONmBbgd0MW7QFkSY_2eRHgA8FYQCfKydSY6yQvsxEadJMWGMp_FPMtY6rkWdzNb2Wn27ymx04GWphOK0y-v7epwdvHc8cxdU8WjYN1_hS8MtySRCENuOpegC7zE6Vj2D3-PxiOt86ZIqA5fCjmQWGCrqQ5rXRXJPBOV4l8-aWoQXLHyPU3xBoiERnj2E_Qkg87mf5BHZc-xT2fiEWfAbfe1Lib9h5DJTUBCxRtxZnLXZfHYZ6EexajF1whA5uD03P3ayRrKqpP_OXwyDmCZHyvUgNjWk6enA4XYfWHssuVMYgHTIYpRVEskr3465pcb1Ev-g2eNsEwieatl-7BfLvApKO7LXO4satOMXyOVyfnV6dTEVs0SBqqZKVSIz0BHyL1Oq0mPjCO618mmunNO2EjCeVKwqRtebOf3JSe8JfpcuLlJyb9eReXsCo7Vr3ClCbxOlEe62zWtZaagISuZ_YzCudJJkcQzaopaojfzm30VhUQ6Lal6pXZsXKrHpljkFspZY9f8c944tB49VvdlhRiLlH8v1gIBW9oryQunXdmgalHyfcFkwW_xgjmZlQySQZw8veurbzzWjTmxZ5efDfc3sHD6dXs8vq8nx-cQiP-ArXUyb5axiRot0bAlYr8za-OD8BM0klxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+graphite+and+Mn+ore+media+on+electro-active+bacteria+enrichment+and+fate+of+antibiotic+and+corresponding+resistance+gene+in+up+flow+microbial+fuel+cell+constructed+wetland&rft.jtitle=Water+research+%28Oxford%29&rft.au=Li%2C+Hua&rft.au=Xu%2C+Han&rft.au=Yang%2C+Yu-Li&rft.au=Yang%2C+Xiao-Li&rft.date=2019-11-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=165&rft.spage=114988&rft_id=info:doi/10.1016%2Fj.watres.2019.114988&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |