Sutureless sealing of penetrating corneal wounds using a laser-activated thin film adhesive

Background and Objectives To demonstrate the feasibility of a novel, thin film, laser‐activated adhesive in sealing penetrative corneal wounds with a view to replacing sutures in ophthalmic operations. Methods A previously described thin film adhesive composed of chitosan and indocyanine green activ...

Full description

Saved in:
Bibliographic Details
Published inLasers in surgery and medicine Vol. 43; no. 6; pp. 490 - 498
Main Authors Shahbazi, Jeyran, Marçal, Helder, Watson, Stephanie, Wakefield, Denis, Sarris, Maria, Foster, L. John R.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Objectives To demonstrate the feasibility of a novel, thin film, laser‐activated adhesive in sealing penetrative corneal wounds with a view to replacing sutures in ophthalmic operations. Methods A previously described thin film adhesive composed of chitosan and indocyanine green activated by infrared laser (808 nm) was used to seal penetrating corneal wounds ranging from 1 to 6 mm in size in enucleated bovine eyes. The excised corneas were subjected to pressure tests to evaluate the strength of the corneal repairs and compared to sutures and commercial fibrin glue, Tisseel®. Temperatures at the adhesive–tissue interface were measured and histological examinations of the repairs performed to investigate potential tissue damage. Biodegradability of the films was monitored in lysozyme solutions at concentrations reported in tears. Results The adhesive effectively sealed corneal wounds, withstanding pressures of 140–320 mmHg, far in excess of the normal intraocular pressure. In contrast, pressures of 40–80 mm Hg were determined using a combination of sutures with Tisseel® as a sealant. The laser‐activation process was 1.5–5 times faster than other procedures studied and required no curing time. A transient, mean temperature of 56 ± 2°C was measured at the adhesive–tissue interface while histology showed no tissue damage as a consequence of the irradiation process. Irradiation had no significant influence on adhesive biodegradation in vitro, which lost approximately 30% of their initial weight in a lysozyme solution (6 mg ml−1). Conclusions The thin film adhesive was found to be an effective in sealing corneal wounds with considerable advantages over sutures, including speed of application and sealing strength and biodegradability. Lasers Surg. Med. 43:490–498, 2011. © 2011 Wiley‐Liss, Inc.
AbstractList To demonstrate the feasibility of a novel, thin film, laser-activated adhesive in sealing penetrative corneal wounds with a view to replacing sutures in ophthalmic operations. A previously described thin film adhesive composed of chitosan and indocyanine green activated by infrared laser (808 nm) was used to seal penetrating corneal wounds ranging from 1 to 6 mm in size in enucleated bovine eyes. The excised corneas were subjected to pressure tests to evaluate the strength of the corneal repairs and compared to sutures and commercial fibrin glue, Tisseel®. Temperatures at the adhesive-tissue interface were measured and histological examinations of the repairs performed to investigate potential tissue damage. Biodegradability of the films was monitored in lysozyme solutions at concentrations reported in tears. The adhesive effectively sealed corneal wounds, withstanding pressures of 140-320 mmHg, far in excess of the normal intraocular pressure. In contrast, pressures of 40-80 mm Hg were determined using a combination of sutures with Tisseel® as a sealant. The laser-activation process was 1.5-5 times faster than other procedures studied and required no curing time. A transient, mean temperature of 56 ± 2°C was measured at the adhesive-tissue interface while histology showed no tissue damage as a consequence of the irradiation process. Irradiation had no significant influence on adhesive biodegradation in vitro, which lost approximately 30% of their initial weight in a lysozyme solution (6 mg ml(-1)). The thin film adhesive was found to be an effective in sealing corneal wounds with considerable advantages over sutures, including speed of application and sealing strength and biodegradability.
BACKGROUND AND OBJECTIVESTo demonstrate the feasibility of a novel, thin film, laser-activated adhesive in sealing penetrative corneal wounds with a view to replacing sutures in ophthalmic operations.METHODSA previously described thin film adhesive composed of chitosan and indocyanine green activated by infrared laser (808 nm) was used to seal penetrating corneal wounds ranging from 1 to 6 mm in size in enucleated bovine eyes. The excised corneas were subjected to pressure tests to evaluate the strength of the corneal repairs and compared to sutures and commercial fibrin glue, Tisseel®. Temperatures at the adhesive-tissue interface were measured and histological examinations of the repairs performed to investigate potential tissue damage. Biodegradability of the films was monitored in lysozyme solutions at concentrations reported in tears.RESULTSThe adhesive effectively sealed corneal wounds, withstanding pressures of 140-320 mmHg, far in excess of the normal intraocular pressure. In contrast, pressures of 40-80 mm Hg were determined using a combination of sutures with Tisseel® as a sealant. The laser-activation process was 1.5-5 times faster than other procedures studied and required no curing time. A transient, mean temperature of 56 ± 2°C was measured at the adhesive-tissue interface while histology showed no tissue damage as a consequence of the irradiation process. Irradiation had no significant influence on adhesive biodegradation in vitro, which lost approximately 30% of their initial weight in a lysozyme solution (6 mg ml(-1)).CONCLUSIONSThe thin film adhesive was found to be an effective in sealing corneal wounds with considerable advantages over sutures, including speed of application and sealing strength and biodegradability.
Background and Objectives To demonstrate the feasibility of a novel, thin film, laser‐activated adhesive in sealing penetrative corneal wounds with a view to replacing sutures in ophthalmic operations. Methods A previously described thin film adhesive composed of chitosan and indocyanine green activated by infrared laser (808 nm) was used to seal penetrating corneal wounds ranging from 1 to 6 mm in size in enucleated bovine eyes. The excised corneas were subjected to pressure tests to evaluate the strength of the corneal repairs and compared to sutures and commercial fibrin glue, Tisseel®. Temperatures at the adhesive–tissue interface were measured and histological examinations of the repairs performed to investigate potential tissue damage. Biodegradability of the films was monitored in lysozyme solutions at concentrations reported in tears. Results The adhesive effectively sealed corneal wounds, withstanding pressures of 140–320 mmHg, far in excess of the normal intraocular pressure. In contrast, pressures of 40–80 mm Hg were determined using a combination of sutures with Tisseel® as a sealant. The laser‐activation process was 1.5–5 times faster than other procedures studied and required no curing time. A transient, mean temperature of 56 ± 2°C was measured at the adhesive–tissue interface while histology showed no tissue damage as a consequence of the irradiation process. Irradiation had no significant influence on adhesive biodegradation in vitro, which lost approximately 30% of their initial weight in a lysozyme solution (6 mg ml−1). Conclusions The thin film adhesive was found to be an effective in sealing corneal wounds with considerable advantages over sutures, including speed of application and sealing strength and biodegradability. Lasers Surg. Med. 43:490–498, 2011. © 2011 Wiley‐Liss, Inc.
Background and Objectives To demonstrate the feasibility of a novel, thin film, laser-activated adhesive in sealing penetrative corneal wounds with a view to replacing sutures in ophthalmic operations. Methods A previously described thin film adhesive composed of chitosan and indocyanine green activated by infrared laser (808nm) was used to seal penetrating corneal wounds ranging from 1 to 6mm in size in enucleated bovine eyes. The excised corneas were subjected to pressure tests to evaluate the strength of the corneal repairs and compared to sutures and commercial fibrin glue, Tisseel?. Temperatures at the adhesive-tissue interface were measured and histological examinations of the repairs performed to investigate potential tissue damage. Biodegradability of the films was monitored in lysozyme solutions at concentrations reported in tears. Results The adhesive effectively sealed corneal wounds, withstanding pressures of 140-320mmHg, far in excess of the normal intraocular pressure. In contrast, pressures of 40-80mm Hg were determined using a combination of sutures with Tisseel? as a sealant. The laser-activation process was 1.5-5 times faster than other procedures studied and required no curing time. A transient, mean temperature of 56?2?C was measured at the adhesive-tissue interface while histology showed no tissue damage as a consequence of the irradiation process. Irradiation had no significant influence on adhesive biodegradation in vitro, which lost approximately 30% of their initial weight in a lysozyme solution (6mgml-1). Conclusions The thin film adhesive was found to be an effective in sealing corneal wounds with considerable advantages over sutures, including speed of application and sealing strength and biodegradability. Lasers Surg. Med. 43:490-498, 2011. ? 2011 Wiley-Liss, Inc.
Author Shahbazi, Jeyran
Marçal, Helder
Watson, Stephanie
Wakefield, Denis
Sarris, Maria
Foster, L. John R.
Author_xml – sequence: 1
  givenname: Jeyran
  surname: Shahbazi
  fullname: Shahbazi, Jeyran
  organization: Bio/Polymer Research Group, Centre for Advanced Macromolecular Design, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 2
  givenname: Helder
  surname: Marçal
  fullname: Marçal, Helder
  organization: Bio/Polymer Research Group, Centre for Advanced Macromolecular Design, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 3
  givenname: Stephanie
  surname: Watson
  fullname: Watson, Stephanie
  organization: School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 4
  givenname: Denis
  surname: Wakefield
  fullname: Wakefield, Denis
  organization: School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 5
  givenname: Maria
  surname: Sarris
  fullname: Sarris, Maria
  organization: Prince of Wales Hospital, Barker Street, Randwick, NSW 2031, Australia
– sequence: 6
  givenname: L. John R.
  surname: Foster
  fullname: Foster, L. John R.
  email: j.foster@unsw.edu.au
  organization: Bio/Polymer Research Group, Centre for Advanced Macromolecular Design, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21761419$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtv1DAURi1URKeFBX8AZQddpL22E9tZogoKYniIVmLBwvLjhhqcZLCTPv49HqbtDlb3de63OAdkb5xGJOQ5hWMKwE5iHo4ZBSkekRWFTtQdBbpHVkBLr6Bj--Qg558AwBnIJ2SfUSloQ7sV-X6-zEvCiDlXGU0M449q6qsNjjgnM29HN6WxXKrraRl9rpa8XZoqmoypNm4OV2ZGX82XYaz6EIfK-EvM4Qqfkse9iRmf3dVDcvH2zcXpu3r9-ez96et17RpBRW2lsr63vlW888pwx1sFzlMBzHmkTLGWgXLUttZa2cvGG6RCOK8oNGD5IXm5i92k6feCedZDyA5jNCNOS9ZKygZakFDIV_8lizXZCQqcF_Roh7o05Zyw15sUBpNuC6S30nWRrv9KL-yLu9jFDugfyHvLBTjZAdch4u2_k_T6_ON9ZL37CHnGm4cPk35pIbls9bdPZxrklw-whq-a8j8IOJzM
CitedBy_id crossref_primary_10_1002_app_39876
crossref_primary_10_1002_cptx_98
crossref_primary_10_1021_acs_biomac_7b00969
crossref_primary_10_3390_app10093193
crossref_primary_10_1016_j_ijadhadh_2016_08_006
crossref_primary_10_1155_2012_940585
crossref_primary_10_1167_tvst_10_8_27
crossref_primary_10_1016_j_actbio_2017_10_037
crossref_primary_10_1080_02713683_2023_2174556
crossref_primary_10_3390_bioengineering9020053
crossref_primary_10_1080_17469899_2018_1427063
crossref_primary_10_1097_j_jcrs_0000000000000751
crossref_primary_10_1097_ICU_0000000000000431
crossref_primary_10_1002_jbio_201300148
crossref_primary_10_1016_j_ijbiomac_2023_128275
crossref_primary_10_1016_j_jcrs_2017_05_035
crossref_primary_10_1007_s10143_014_0559_1
crossref_primary_10_1088_1755_1315_632_5_052098
crossref_primary_10_1117_1_JBO_24_12_128002
crossref_primary_10_3390_ijms15022142
crossref_primary_10_1038_s41598_020_61079_y
crossref_primary_10_4028_www_scientific_net_AMR_506_7
crossref_primary_10_1371_journal_pone_0135153
crossref_primary_10_1038_s41536_024_00355_1
crossref_primary_10_1016_j_jcrs_2014_03_034
Cites_doi 10.1016/S0161-6420(82)34742-9
10.1097/00055735-200408000-00005
10.1002/lsm.20727
10.1002/jctb.1771
10.1039/b719791h
10.1016/S0142-9612(96)00167-6
10.1002/lsm.1900170203
10.1001/archopht.1970.00990030619018
10.1002/lsm.20145
10.1002/lsm.20099
10.1136/bjo.79.7.672
10.1097/ICO.0b013e318167810f
10.1016/S0161-6420(03)00832-7
10.1002/lsm.20418
10.1016/S0002-9610(01)00770-X
10.1073/pnas.111150598
10.1016/S0886-3350(02)01989-2
10.1002/(SICI)1096-9101(1999)24:1<61::AID-LSM10>3.0.CO;2-G
10.1097/ICU.0b013e328012166e
10.1016/S0039-6257(97)80029-X
10.1089/pho.2007.2131
10.1097/00006982-198808020-00013
10.1021/bm101028g
10.1002/lsm.20094
10.1136/bjo.2008.139600
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1002/lsm.21076
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1096-9101
EndPage 498
ExternalDocumentID 10_1002_lsm_21076
21761419
LSM21076
ark_67375_WNG_07PK0L0R_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council of Australia
  funderid: 630510
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HJTMK
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4616-b78bdfbd5839d8a3c3580cd1602cde12825208c1b5bbb7f74dae166cd81040b3
IEDL.DBID DR2
ISSN 0196-8092
1096-9101
IngestDate Wed Dec 04 04:11:00 EST 2024
Wed Dec 04 03:43:19 EST 2024
Fri Dec 06 03:39:37 EST 2024
Sat Sep 28 07:49:08 EDT 2024
Sat Aug 24 00:53:48 EDT 2024
Wed Oct 30 09:55:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2011 Wiley-Liss, Inc.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4616-b78bdfbd5839d8a3c3580cd1602cde12825208c1b5bbb7f74dae166cd81040b3
Notes National Health and Medical Research Council of Australia - No. 630510
istex:4071FB2B66D8EDFFA5009932AD1958A8F8FE7AC7
ArticleID:LSM21076
ark:/67375/WNG-07PK0L0R-1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21761419
PQID 1017961033
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_877405070
proquest_miscellaneous_1017961033
crossref_primary_10_1002_lsm_21076
pubmed_primary_21761419
wiley_primary_10_1002_lsm_21076_LSM21076
istex_primary_ark_67375_WNG_07PK0L0R_1
PublicationCentury 2000
PublicationDate August 2011
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: August 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Lasers in surgery and medicine
PublicationTitleAlternate Lasers Surg. Med
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Barak A, Eyal O, Rosner M, Belotserkousky E, Solomon A, Belkin M, Katzir A. Temperature controlled CO2 laser tissue welding of ocular tissues. Surv Ophthalmol 1997; 1: 77-81.
Hirst LW, Smiddy WE, Stark WJ. Corneal perforations: Changing methods of treatment, 1960-1980. Ophthalmology 1982; 89: 630-635.
Kaufman HE, Insler MS, Ibrahim-Elzembely HA, Kaufman SC. Human fibrin tissue adhesive for sutureless lamellar keratoplasty and scleral patch adhesion: A pilot study. Ophthalmology 2003; 110: 2168-2172.
Oelker AM, Grinstaff MW. Ophthalmic adhesives: A material chemistry perspective. J Mater Chem 2008; 18: 2521-2521.
Garcia P, Mines MJ, Bowwer KS, Hill J, Menon J, Tremblay E, Smith B. Robotic laser tissue welding of sclera using chitosan films. Lasers Surg Med 2009; 41: 60-67.
Chan SM, Boisjoly H. Advances in the use of adhesives in ophthalmology. Curr Opin Ophthalmol 2004; 15: 305-310.
Kraus JM, Pullaflto CA. Lasers in ophthalmology. Lasers Surg Med 1995; 17: 102-159.
Khadem J, Martino M, Anatelli F, Dana MR, Hamblin MR. Healing of perforating rat corneal incisions closed with photodynamic laser-activated tissue glue. Lasers Surg Med 2000; 35: 304-311.
Foster LJR, Thomson K, Marcal H, Butt J, Watson S, Wakefield D. A chitosan-vancomycin composite biomaterial as a laser activated surgical adhesive with regional antimicrobial activity. Biomacromolecules 2010; 11(12): 3563-3570.
Jackson RM. Fibrin sealants in surgical practice: An overview. Am J Surg 2001; 182(2S1): 1-7.
Benyamini OG, Barkana Y, Hartstein M, Atta L, Avni I, Zadok D. Biological glue in pterygium surgery with a rotational flap or sliding flaps. Cornea 2008; 27: 911.
Savage HE, Halder RK, Kartazayeu U, Rosen RB, Gayen T, McCormick S, Patel NS, Katz A, Perry H, Paul M, Alfano RR. NIR laser tissue welding of in vitro porcine cornea and sclera tissue. Lasers Surg Med 2004; 35: 293-303.
Desmettre TJ, Soulie-Begu S, Devoisselle JM, Mordon SR. Diode laser-induced thermal damage evaluation on the retina with a liposome dye system. Lasers Surg Med 1999; 24: 61-68.
Lauto A, Hook J, Doran M, Camacho F, Poole-Warren LA, Avolio A, Foster LJR. Chitosan adhesive for laser tissue repair: In vitro characterization. Lasers Surg Med 2005; 36: 193-201.
Girard LJ, Cobb S, Reed T, Williams B, Minaya J. Surgical adhesives and bonded contact lenses: An experimental study. Ann Ophthalmol 1969; 1: 65.
Lauto A, Mawad D, Foster LJR. Adhesive biomaterials for tissue reconstruction. J Chem Technol Biotechnol 2008; 83: 464-472.
Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 1997; 18: 567-575.
Siegal JE, Zaidman GW. Surgical removal of cyanoacrylate adhesive after accidental instillation in the anterior chamber. Ophthalmic Surg 1989; 20: 179-181.
Hida T, Sheta SM, Proia AD, McCuen BW. Retinal toxicity of cyanoacrylate tissue adhesive in the rabbit. Retina 1988; 8: 148-153.
Mainster M. Ophthalmic applications of infrared lasers-thermal considerations. Invest Ophthalmol Vis Sci 1979; 18: 414.
Karalezli A, Kucukerdonmez C, Akova YA. Fibrin glue versus sutures for conjuntival autografting in pterygium surgery: A prospective comparative study. Br J Ophthalmol 2008; 92: 1206-1210.
Kim T, Kharod BV. Tissue adhesives in corneal cataract incisions. Curr Opin Ophthalmol 2007; 18(1): 39-43.
Seelenfreund MH, Refojo MF, Schepens CL. Sealing choroidal perforations with cyanoacrylate adhesives. Arch Ophthalmol 1970; 83: 619-625.
McHugh JDA, England C, Vanderzypen E, Marshall J, Fankhauser F, Fankhauser-Kwanieska S. Irradiation of rabbit retina with diode and Nd:YAG lasers. Br J Ophthalmol 1995; 79: 672-677.
Lauto A, Stoodley M, Marcel H, Avolio A, Sarris M, McKenzie G, Sampson DD, Foster LJR. In vitro and in vivo tissue repair with laser-activated chitosan adhesive. Lasers Surg Med 2007; 39: 19-27.
Lauto A, Foster LJ, Avolio R, Sampson A, Raston D, Sarris C, McKenzie M, Stoodley GM. Sutureless nerve repair with laser-activated chitosan adhesive: A pilot in vivo study. Photomed Laser Surg 2008; 26: 227-234.
Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE. Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization. Proc Natl Acad Sci USA 2001; 98: 7307.
Anderson NJ, Hardten DR. Fibrin glue for the prevention of epithelial ingrowth after laser in situ keratomileusis. J Cataract Refract Surg 2003; 29: 1425-1429.
2007; 39
2007; 18
2010; 11
1979; 18
2009; 41
1989; 20
1995; 17
2001; 182
2008; 18
1995; 79
1999; 24
1997; 1
2008; 92
2003; 110
1982; 89
1969; 1
2000; 35
2004; 15
2008; 27
1988; 8
2004; 35
2008; 26
1997; 18
2003; 29
1970; 83
2008; 83
2005; 36
2001; 98
e_1_2_6_31_2
e_1_2_6_30_2
Mainster M (e_1_2_6_24_2) 1979; 18
Siegal JE (e_1_2_6_9_2) 1989; 20
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
Girard LJ (e_1_2_6_8_2) 1969; 1
e_1_2_6_7_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 110
  start-page: 2168
  year: 2003
  end-page: 2172
  article-title: Human fibrin tissue adhesive for sutureless lamellar keratoplasty and scleral patch adhesion: A pilot study
  publication-title: Ophthalmology
– volume: 8
  start-page: 148
  year: 1988
  end-page: 153
  article-title: Retinal toxicity of cyanoacrylate tissue adhesive in the rabbit
  publication-title: Retina
– volume: 39
  start-page: 19
  year: 2007
  end-page: 27
  article-title: In vitro and in vivo tissue repair with laser‐activated chitosan adhesive
  publication-title: Lasers Surg Med
– volume: 18
  start-page: 414
  year: 1979
  article-title: Ophthalmic applications of infrared lasers‐thermal considerations
  publication-title: Invest Ophthalmol Vis Sci
– volume: 92
  start-page: 1206
  year: 2008
  end-page: 1210
  article-title: Fibrin glue versus sutures for conjuntival autografting in pterygium surgery: A prospective comparative study
  publication-title: Br J Ophthalmol
– volume: 83
  start-page: 619
  year: 1970
  end-page: 625
  article-title: Sealing choroidal perforations with cyanoacrylate adhesives
  publication-title: Arch Ophthalmol
– volume: 1
  start-page: 65
  year: 1969
  article-title: Surgical adhesives and bonded contact lenses: An experimental study
  publication-title: Ann Ophthalmol
– volume: 20
  start-page: 179
  year: 1989
  end-page: 181
  article-title: Surgical removal of cyanoacrylate adhesive after accidental instillation in the anterior chamber
  publication-title: Ophthalmic Surg
– volume: 24
  start-page: 61
  year: 1999
  end-page: 68
  article-title: Diode laser‐induced thermal damage evaluation on the retina with a liposome dye system
  publication-title: Lasers Surg Med
– volume: 17
  start-page: 102
  year: 1995
  end-page: 159
  article-title: Lasers in ophthalmology
  publication-title: Lasers Surg Med
– volume: 89
  start-page: 630
  year: 1982
  end-page: 635
  article-title: Corneal perforations: Changing methods of treatment, 1960–1980
  publication-title: Ophthalmology
– volume: 29
  start-page: 1425
  year: 2003
  end-page: 1429
  article-title: Fibrin glue for the prevention of epithelial ingrowth after laser in situ keratomileusis
  publication-title: J Cataract Refract Surg
– volume: 41
  start-page: 60
  year: 2009
  end-page: 67
  article-title: Robotic laser tissue welding of sclera using chitosan films
  publication-title: Lasers Surg Med
– volume: 79
  start-page: 672
  year: 1995
  end-page: 677
  article-title: Irradiation of rabbit retina with diode and Nd:YAG lasers
  publication-title: Br J Ophthalmol
– volume: 18
  start-page: 567
  year: 1997
  end-page: 575
  article-title: In vitro and in vivo degradation of films of chitin and its deacetylated derivatives
  publication-title: Biomaterials
– volume: 83
  start-page: 464
  year: 2008
  end-page: 472
  article-title: Adhesive biomaterials for tissue reconstruction
  publication-title: J Chem Technol Biotechnol
– volume: 98
  start-page: 7307
  year: 2001
  article-title: Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization
  publication-title: Proc Natl Acad Sci USA
– volume: 36
  start-page: 193
  year: 2005
  end-page: 201
  article-title: Chitosan adhesive for laser tissue repair: In vitro characterization
  publication-title: Lasers Surg Med
– volume: 1
  start-page: 77
  year: 1997
  end-page: 81
  article-title: Temperature controlled CO2 laser tissue welding of ocular tissues
  publication-title: Surv Ophthalmol
– volume: 15
  start-page: 305
  year: 2004
  end-page: 310
  article-title: Advances in the use of adhesives in ophthalmology
  publication-title: Curr Opin Ophthalmol
– volume: 182
  start-page: 1
  issue: 2S1
  year: 2001
  end-page: 7
  article-title: Fibrin sealants in surgical practice: An overview
  publication-title: Am J Surg
– volume: 26
  start-page: 227
  year: 2008
  end-page: 234
  article-title: Sutureless nerve repair with laser‐activated chitosan adhesive: A pilot study
  publication-title: Photomed Laser Surg
– volume: 35
  start-page: 293
  year: 2004
  end-page: 303
  article-title: NIR laser tissue welding of in vitro porcine cornea and sclera tissue
  publication-title: Lasers Surg Med
– volume: 18
  start-page: 2521
  year: 2008
  end-page: 2521
  article-title: Ophthalmic adhesives: A material chemistry perspective
  publication-title: J Mater Chem
– volume: 18
  start-page: 39
  issue: 1
  year: 2007
  end-page: 43
  article-title: Tissue adhesives in corneal cataract incisions
  publication-title: Curr Opin Ophthalmol
– volume: 27
  start-page: 911
  year: 2008
  article-title: Biological glue in pterygium surgery with a rotational flap or sliding flaps
  publication-title: Cornea
– volume: 11
  start-page: 3563
  issue: 12
  year: 2010
  end-page: 3570
  article-title: A chitosan‐vancomycin composite biomaterial as a laser activated surgical adhesive with regional antimicrobial activity
  publication-title: Biomacromolecules
– volume: 35
  start-page: 304
  year: 2000
  end-page: 311
  article-title: Healing of perforating rat corneal incisions closed with photodynamic laser‐activated tissue glue
  publication-title: Lasers Surg Med
– ident: e_1_2_6_6_2
  doi: 10.1016/S0161-6420(82)34742-9
– ident: e_1_2_6_4_2
  doi: 10.1097/00055735-200408000-00005
– ident: e_1_2_6_28_2
  doi: 10.1002/lsm.20727
– volume: 20
  start-page: 179
  year: 1989
  ident: e_1_2_6_9_2
  article-title: Surgical removal of cyanoacrylate adhesive after accidental instillation in the anterior chamber
  publication-title: Ophthalmic Surg
  contributor:
    fullname: Siegal JE
– ident: e_1_2_6_15_2
  doi: 10.1002/jctb.1771
– ident: e_1_2_6_5_2
  doi: 10.1039/b719791h
– volume: 1
  start-page: 65
  year: 1969
  ident: e_1_2_6_8_2
  article-title: Surgical adhesives and bonded contact lenses: An experimental study
  publication-title: Ann Ophthalmol
  contributor:
    fullname: Girard LJ
– ident: e_1_2_6_29_2
  doi: 10.1016/S0142-9612(96)00167-6
– ident: e_1_2_6_18_2
  doi: 10.1002/lsm.1900170203
– ident: e_1_2_6_7_2
  doi: 10.1001/archopht.1970.00990030619018
– ident: e_1_2_6_14_2
  doi: 10.1002/lsm.20145
– ident: e_1_2_6_27_2
  doi: 10.1002/lsm.20099
– ident: e_1_2_6_26_2
  doi: 10.1136/bjo.79.7.672
– ident: e_1_2_6_3_2
  doi: 10.1097/ICO.0b013e318167810f
– ident: e_1_2_6_12_2
  doi: 10.1016/S0161-6420(03)00832-7
– ident: e_1_2_6_13_2
  doi: 10.1002/lsm.20418
– ident: e_1_2_6_20_2
  doi: 10.1016/S0002-9610(01)00770-X
– ident: e_1_2_6_21_2
  doi: 10.1073/pnas.111150598
– ident: e_1_2_6_11_2
  doi: 10.1016/S0886-3350(02)01989-2
– ident: e_1_2_6_25_2
  doi: 10.1002/(SICI)1096-9101(1999)24:1<61::AID-LSM10>3.0.CO;2-G
– ident: e_1_2_6_19_2
  doi: 10.1097/ICU.0b013e328012166e
– ident: e_1_2_6_23_2
  doi: 10.1016/S0039-6257(97)80029-X
– ident: e_1_2_6_16_2
  doi: 10.1089/pho.2007.2131
– volume: 18
  start-page: 414
  year: 1979
  ident: e_1_2_6_24_2
  article-title: Ophthalmic applications of infrared lasers‐thermal considerations
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Mainster M
– ident: e_1_2_6_30_2
– ident: e_1_2_6_10_2
  doi: 10.1097/00006982-198808020-00013
– ident: e_1_2_6_17_2
– ident: e_1_2_6_31_2
  doi: 10.1021/bm101028g
– ident: e_1_2_6_22_2
  doi: 10.1002/lsm.20094
– ident: e_1_2_6_2_2
  doi: 10.1136/bjo.2008.139600
SSID ssj0003207
Score 2.181053
Snippet Background and Objectives To demonstrate the feasibility of a novel, thin film, laser‐activated adhesive in sealing penetrative corneal wounds with a view to...
To demonstrate the feasibility of a novel, thin film, laser-activated adhesive in sealing penetrative corneal wounds with a view to replacing sutures in...
Background and Objectives To demonstrate the feasibility of a novel, thin film, laser-activated adhesive in sealing penetrative corneal wounds with a view to...
BACKGROUND AND OBJECTIVESTo demonstrate the feasibility of a novel, thin film, laser-activated adhesive in sealing penetrative corneal wounds with a view to...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 490
SubjectTerms Adhesives
Animals
Biodegradability
Biodegradation
Cattle
Chitosan
Cornea
Corneal Injuries
Corneal Perforation - therapy
Feasibility Studies
fibrin
Indocyanine Green
intraocular pressure
IOP
Laser Therapy
Lasers
Lysozyme
Pressure
SurgiLux
Sutures
Tears
Temperature effects
Tissue Adhesives
Wounds
Title Sutureless sealing of penetrating corneal wounds using a laser-activated thin film adhesive
URI https://api.istex.fr/ark:/67375/WNG-07PK0L0R-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flsm.21076
https://www.ncbi.nlm.nih.gov/pubmed/21761419
https://search.proquest.com/docview/1017961033
https://search.proquest.com/docview/877405070
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VRUjwwKXc0hZkEEK8ZGvn4iTqEwJKBW2F2iL6ALJ8S1t1m602uwXxxCfwjXwJM06zpYhKiLdEdpTEY4_P2GeOAZ4iSJV57nnsCpPGmU7r2IiayA6VtF7WtXWU77y5Jdc_ZG_38r05WO1zYTp9iNmCG42M4K9pgGvTrpyLhg7b4wHGKwXJbYu0IDrfq-1z6ag06VOlSXC3SnpVIZ6szJ68MBddoWb9-jegeRG3holn7SZ86j-545scDaYTM7Df_lBz_M9_ugU3zgApe9H1oNsw55sFuP6bTOECXA00Udvegc87QYJkiO6REXMMi9moZifoMIP8Lt5iNNtgCftC5zW1jHj1-0wzBOl-_PP7D8qjOEV869jk4LBh9eHwmGl34IlFfxd2117vvlyPzw5oiG0mhYxNURpXG5cjynKlTi3tqVonJE-s84LSYhNeWmFyY0xRF5nTXkhpXYlBIDfpPZhvRo1_AExWOGlyh3DFmwwxiKm0IW0rmUln8zyJ4ElvKXXSyXCoTnA5UdhoKjRaBM-CDWc19PiIeGtFrj5uvVG8eP-Ob_BtJSJ43BtZ4WiiLRLd-NG0VcFBIaJM0wjYJXVKRMwcYTSP4H7XQWYvxPgO4Y6oIngezHz5t6qNnc1wsfjvVZfgWr-izcUyzE_GU_8QIdHEPAp9_xcP-weN
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVgh44FKghKtBCPGSrZ2Lk0i8IKAsdHeF2kX0pbLiS9qq22y1F0A88Ql8I1_CjNNsKaIS4i2RHcXxeOwz9pkTgKcIUmWaOh7aTMdhUsZVqEVFZIdCGieryljKd-4PZPdj8n4n3VmCF20uTKMPsdhwI8_w8zU5OG1Ir5-qho6mRx0MWDJ5AVbQ3QURul5vnYpHxVGbLE2Su0XU6grxaH3x6JnVaIU69uvfoOZZ5OqXno1rsNs2umGcHHbmM90x3_7Qc_zfr7oOV08wKXvZDKIbsOTqVbjym1LhKlz0TFEzvQm7216FZIQzJCPyGBazccWOcc70Crx4iwFtjSXsC_2yacqIWr_HSoY43U1-fv9BqRSfEeJaNts_qFl1MDpipd13RKS_BcONN8NX3fDkHw2hSaSQoc5ybSttUwRaNi9jQ8eqxgrJI2OdoMzYiOdG6FRrnVVZYksnpDQ2xziQ6_g2LNfj2t0BJgtcN7lFxOJ0gjBEF6UmeSuZSGvSNArgSWsqddwocahGczlS2GnKd1oAz7wRFzXKySFR17JUfRq8VTz7sMl7fEuJAB63VlboUHRKUtZuPJ8qP0chqIzjANg5dXIEzRyRNA9grRkhixdiiIeIRxQBPPd2Pr-tqrfd9xd3_73qI7jUHfZ7qvdusHkPLrcb3Fzch-XZZO4eIEKa6YfeEX4Biu4Lrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFD5BiAYfBFF0FLEaY3yZpZ1LZyY-GXFBWTYEMPKgaaY3ISyzm72o4Ymf4G_0l3jaYRYwkhjfZtJOpu3pOf1Oe85XgBcIUnmaGhrqTMZhUsY2lMy6YIeCK8OtVdrlO293-ebH5MNBejADr5tcmJofYrrh5jTD22un4ANt1y5IQ3ujkxb6Kxm_AXMJjwpHnL--e8EdFUdNrrRj3C2ihlaIRmvTT68sRnNuXH_8DWleBa5-5WkvwOemzXXAyXFrMpYtdfoHneN_dmoR7pwjUvKmnkJ3YcZUS3D7Ek_hEtz0caJqdA--7HkOkh7aR-JCx7CY9C0ZoMX0_Lv4iu5shSXku7uwaURcYP1XUhJE6Wb46-ynS6T4hgBXk_HhUUXsUe-ElPrQuDD6-7Dffrf_djM8v6EhVAlnPJRZLrWVOkWYpfMyVu5QVWnGaaS0YS4vNqK5YjKVUmY2S3RpGOdK5-gFUhkvw2zVr8xDILzAVZNqxCtGJghCZFFKR27FE65VmkYBPG8kJQY1D4eoGZcjgYMm_KAF8NLLcFqjHB67wLUsFZ-6G4JmO1u0Q3cFC-BZI2SB6uTOSMrK9Ccj4S0UQso4DoBcUydHyEwRR9MAHtQTZPpDdPAQ77AigFdezNe3VXT2tv3Do3-v-hRu7ay3Red9d-sxzDe725StwOx4ODFPEB6N5apXg99lYgpd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sutureless+sealing+of+penetrating+corneal+wounds+using+a+laser-activated+thin+film+adhesive&rft.jtitle=Lasers+in+surgery+and+medicine&rft.au=Shahbazi%2C+Jeyran&rft.au=Mar%C3%A7al%2C+Helder&rft.au=Watson%2C+Stephanie&rft.au=Wakefield%2C+Denis&rft.date=2011-08-01&rft.eissn=1096-9101&rft.volume=43&rft.issue=6&rft.spage=490&rft.epage=498&rft_id=info:doi/10.1002%2Flsm.21076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8092&client=summon