Advances in the genetics of schizophrenia: toward a network and pathway view for drug discovery
The spectacular advance in our understanding of the genetic basis of schizophrenia through genome‐wide association studies has the potential to identify new leads for drug treatment through improved understanding of disease pathophysiology. However, using these genetic associations successfully in d...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1366; no. 1; pp. 61 - 75 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.02.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spectacular advance in our understanding of the genetic basis of schizophrenia through genome‐wide association studies has the potential to identify new leads for drug treatment through improved understanding of disease pathophysiology. However, using these genetic associations successfully in drug development and patient stratification requires further target validation, particularly in understanding which gene(s) is causal in the disease, how the risk variants alter gene function and regulation, and how they fit into disease pathways and networks. If researchers consider the disease network as the target, they need to understand which genes should be targeted and in which modality, in order to modulate pathophysiology and obtain a beneficial effect for the patient. In the present article, we review recent genetic findings in schizophrenia and discuss how these might be validated with biology and integrated with epigenetic and transcriptome data to identify targets that lie within disease networks and pathways. This new understanding of disease biology will also facilitate the development of assays that recapitulate specific aspects of the disease using model organisms and cells. These assays can then be used in screening approaches, which manipulate disease networks or pathological processes to generate and test therapeutic strategies. |
---|---|
AbstractList | The spectacular advance in our understanding of the genetic basis of schizophrenia through genome-wide association studies has the potential to identify new leads for drug treatment through improved understanding of disease pathophysiology. However, using these genetic associations successfully in drug development and patient stratification requires further target validation, particularly in understanding which gene(s) is causal in the disease, how the risk variants alter gene function and regulation, and how they fit into disease pathways and networks. If researchers consider the disease network as the target, they need to understand which genes should be targeted and in which modality, in order to modulate pathophysiology and obtain a beneficial effect for the patient. In the present article, we review recent genetic findings in schizophrenia and discuss how these might be validated with biology and integrated with epigenetic and transcriptome data to identify targets that lie within disease networks and pathways. This new understanding of disease biology will also facilitate the development of assays that recapitulate specific aspects of the disease using model organisms and cells. These assays can then be used in screening approaches, which manipulate disease networks or pathological processes to generate and test therapeutic strategies. |
Author | Eastwood, Brian J. Mokrab, Younes Collier, David A. Malki, Karim |
Author_xml | – sequence: 1 givenname: David A. surname: Collier fullname: Collier, David A. email: collier_david_andrew@lilly.com organization: Discovery Neuroscience Research, Eli Lilly and Company Ltd, Surrey, Windlesham, United Kingdom – sequence: 2 givenname: Brian J. surname: Eastwood fullname: Eastwood, Brian J. organization: Discovery Neuroscience Research, Eli Lilly and Company Ltd, Surrey, Windlesham, United Kingdom – sequence: 3 givenname: Karim surname: Malki fullname: Malki, Karim organization: Discovery Neuroscience Research, Eli Lilly and Company Ltd, Surrey, Windlesham, United Kingdom – sequence: 4 givenname: Younes surname: Mokrab fullname: Mokrab, Younes organization: Discovery Neuroscience Research, Eli Lilly and Company Ltd, Windlesham, Surrey, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27111133$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UFv0zAYBmALDbFucOEHIEtcEFLG5zixXW7VBANpDKQBEyfLSb6s3lK72ElD-PW4dNthQoAP9uV5P9l-D8ie8w4JecrgiKX1yk0mHjEOQjwgMyaLeSYEz_fIDEDKTM1zvk8OYrwCYLkq5COyn8ttkPMZ0YtmY1yNkVpH-yXSS3TY2zpS39JYL-1Pv14GdNa8pr0fTWiooUmMPlxT4xq6Nv1yNBPdWBxp6wNtwnBJGxtrv8EwPSYPW9NFfHJzHpIvb998Pn6XnX48eX-8OM3qQjCRKS5kY2QjRAUMasFBlqpQpSybpi4Uq_KKgWQlcsQW5jmoCtOeQ1FhhbLlh-TFbu46-O8Dxl6v0hWw64xDP0TNFCgQpZTq31QqOVd5Cf9Fi_TfAEWiz-_RKz8El96cVBJClJwn9exGDdUKG70OdmXCpG8LSeDlDtTBxxiwvSMM9Nbobdv6d9sJwz1c29701rs-GNv9OcJ2kdF2OP1luD77tji_zWS7jI09_rjLmHCtheSy1BdnJ_rrJ_7h4nwudcl_Aae3yVU |
CODEN | ANYAA9 |
CitedBy_id | crossref_primary_10_1016_j_bbr_2016_11_049 crossref_primary_10_30773_pi_2022_0343 crossref_primary_10_1016_j_schres_2019_03_010 crossref_primary_10_1186_s12974_017_0938_y crossref_primary_10_1111_acer_14233 crossref_primary_10_1155_2018_2682037 crossref_primary_10_1177_0269881117715597 crossref_primary_10_3389_fpsyt_2022_885904 crossref_primary_10_1007_s00439_019_02098_2 crossref_primary_10_1016_j_bbrc_2017_03_141 crossref_primary_10_1038_s41537_016_0001_5 |
Cites_doi | 10.1371/journal.pgen.1004494 10.1038/nature13595 10.1016/j.cell.2013.03.030 10.1186/1755-8794-7-S1-S8 10.1002/gepi.20199 10.1038/ng.2915 10.1016/S0140-6736(12)62129-1 10.1016/j.cell.2012.02.039 10.1186/1471-2105-9-559 10.1038/ng.3406 10.1186/1471-2164-15-S4-S5 10.1038/nature12873 10.1186/s11689-015-9113-x 10.1038/mp.2014.40 10.1016/j.neurol.2013.07.017 10.2337/db14-0703 10.1186/gm543 10.1016/j.biopsych.2014.10.008 10.1038/nn.3922 10.1038/ng.3404 10.1126/science.1239101 10.1176/appi.ajp.2013.13070864 10.1371/journal.pgen.1005230 10.1016/j.neuron.2015.04.022 10.1111/jcpp.12295 10.1016/j.ajhg.2012.11.004 10.1093/bioinformatics/btu848 10.1038/nature12929 10.1038/npp.2008.156 10.1093/hmg/ddu739 10.1038/mp.2011.94 10.1038/nbt.2151 10.1126/scitranslmed.3007941 10.1016/S0140-6736(15)01124-1 10.1038/ng.803 10.1126/science.344.6185.687 10.1001/jamapsychiatry.2013.3730 10.1038/nature16549 10.1007/s00439-014-1494-5 10.1126/science.1132939 10.1016/S0140-6736(09)60072-6 10.1016/j.tig.2014.10.001 10.1016/S0140-6736(13)60733-3 10.1038/mp.2013.138 10.1080/10543400903572753 10.1038/nn.3898 10.1186/s13059-014-0483-2 10.1038/nature08185 10.1007/s00335-007-9040-6 10.1038/nrg3228 10.1002/pd.4613 10.1016/S0166-2236(00)01862-2 10.1371/journal.pone.0063812 10.1016/j.ajhg.2011.11.006 10.1038/ng.2892 10.1042/BJ20040311 10.1007/978-3-642-25761-2_2 10.1038/nature12975 10.1038/ng.3246 10.1038/nrd2519 10.1007/978-1-4939-2627-5_28 |
ContentType | Journal Article |
Copyright | 2016 New York Academy of Sciences. 2016 The New York Academy of Sciences |
Copyright_xml | – notice: 2016 New York Academy of Sciences. – notice: 2016 The New York Academy of Sciences |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 7SP 7U5 L7M |
DOI | 10.1111/nyas.13066 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Environment Abstracts MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts CrossRef Solid State and Superconductivity Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 75 |
ExternalDocumentID | 4062118281 27111133 10_1111_nyas_13066 NYAS13066 ark_67375_WNG_VP3MWS97_5 |
Genre | article Journal Article Review |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO ADXHL AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHDLI AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 7SP 7U5 L7M |
ID | FETCH-LOGICAL-c4616-8367da7d66b010c63075848575ddc481b2b10715e3eef09208be920204bebe7f3 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 |
IngestDate | Fri Jul 11 01:18:27 EDT 2025 Fri Jul 11 11:01:33 EDT 2025 Fri Jul 11 14:48:25 EDT 2025 Sun Jul 13 03:54:31 EDT 2025 Thu Apr 03 07:02:36 EDT 2025 Tue Jul 01 04:00:51 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Aug 20 07:27:28 EDT 2025 Wed Oct 30 09:55:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genome-wide association drug discovery pharmacogenetics psychosis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 New York Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4616-8367da7d66b010c63075848575ddc481b2b10715e3eef09208be920204bebe7f3 |
Notes | istex:C9478003805CC734D5F79E282B03C637324494FF ark:/67375/WNG-VP3MWS97-5 ArticleID:NYAS13066 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 27111133 |
PQID | 1790066533 |
PQPubID | 946344 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1808065778 proquest_miscellaneous_1787982508 proquest_miscellaneous_1784749004 proquest_journals_1790066533 pubmed_primary_27111133 crossref_primary_10_1111_nyas_13066 crossref_citationtrail_10_1111_nyas_13066 wiley_primary_10_1111_nyas_13066_NYAS13066 istex_primary_ark_67375_WNG_VP3MWS97_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2016 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann. N.Y. Acad. Sci |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Kumar, G., S.L. Clark, J.L. McClay, et al. 2015. Refinement of schizophrenia GWAS loci using methylome-wide association data. Hum. Genet. 134: 77-87. Ruderfer, D.M., A.H. Fanous, S. Ripke, et al. 2014. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry 19: 1017-1024. Zhao, W., P. Langfelder, T. Fuller, et al. 2010. Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20: 281-300. Euesden, J., C.M. Lewis & P.F. O'Reilly. 2015. PRSice: polygenic risk score software. Bioinformatics 31: 1466-1468. Richmond, R.C., A.J. Simpkin, G. Woodward, et al. 2014. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 24: 2201-2217. International Schizophrenia Consortium; S.M. Purcell, N.R. Wray, J.L. Stone, et al. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748-752. Maniatis, N., A. Collins, N.E. Morton 2007. Effects of single SNPs, haplotypes, and whole-genome LD maps on accuracy of association mapping. Genet. Epidemiol. 31: 179-188. Elding, H., W. Lau, D.M. Swallow & N. Maniatis. 2013. Refinement in localization and identification of gene regions associated with Crohn disease. Am. J. Hum. Genet. 92: 107-113. McCarthy, D.J., P. Humburg, A. Kanapin, et al. 2014. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6: 26. Cao, C. & J. Moult. 2014. GWAS and drug targets. BMC Genomics 15(Suppl. 4): S5. Kingsmore, S.F., I.E. Lindquist, J. Mudge, et al. 2008. Genome-wide association studies: progress and potential for drug discovery and development. Nat. Rev. Drug Discov. 7: 221-230. Bulik-Sullivan, B., H.K. Finucane, V. Anttila, et al. 2015. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47: 1236-1241. Grati, F.R., D. Molina Gomes, J.C. Ferreira, et al. 2015. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat. Diagn. 35: 801-809. Birnbaum, R., A.E. Jaffe, Q. Chen, et al. 2015. Investigation of the prenatal expression patterns of 108 schizophrenia-associated genetic loci. Biol. Psychiatry 77: e43-e51. Zeilinger, S., B. Kuhnel, N. Klopp, et al. 2013. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8: e63812. Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511: 421-427. Elding, H., W. Lau, D.M. Swallow & N. Maniatis. 2011. Dissecting the genetics of complex inheritance: linkage disequilibrium mapping provides insight into Crohn disease. Am. J. Hum. Genet. 89: 798-805. Langfelder, P. & S. Horvath. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. Purcell, S.M., J.L. Moran, M. Fromer, et al. 2014. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506: 185-190. Mills, S.M., J. Mallmann, A.M. Santacruz, et al. 2013. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. Rev. Neurol. (Paris) 169: 737-743. Grover, M.P., S. Ballouz, K.A. Mohanasundaram, et al. 2014 Identification of novel therapeutics for complex diseases from genome-wide association data. BMC Med. Genomics 7(Suppl. 1): S8. Conn, P.J. & C.K. Jones. 2009. Promise of mGluR2/3 activators in psychiatry. Neuropsychopharmacology 34: 248-249. Sanseau, P., P. Agarwal, M.R. Barnes, et al. 2012. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30: 317-320. Horikoshi, M., R. Mӓgi, van M. de Bunt, et al. 2015. Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation. PLoS Genet. 11: e1005230. Okada, Y., D. Wu, G. Trynka, et al. 2013. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506: 376-381. Mirnics, K., F.A. Middleton, D.A. Lewis & P. Levitt. 2001. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 24: 479-486. Jaffe, A.E., J. Shin, L. Collado-Torres, et al. 2015. Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nat. Neurosci. 18: 154-161. Hollingworth, P., D. Harold, R. Sims, et al. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43: 429-435. Sieberts, S.K. & E.E. Schadt. 2007. Moving toward a system genetics view of disease. Mamm. Genome 18: 389-401. Lichtenstein, P., B.H. Yip, C. Björk, et al. 2009. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373: 234-239. Guna, A., N.J. Butcher & A.S. Bassett. 2015. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. J. Neurodev. Disord. 7: 18. Zhang, B., C. Gaiteri, L.G. Bodea, et al. 2013. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153: 707-720. Cross-Disorder Group of the Psychiatric Genomics Consortium. 2013. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381: 1371-1379. Sperling, R.A., D.M. Rentz, K.A. Johnson, et al. 2014. The A4 study: stopping AD before symptoms begin? Sci. Transl. Med. 6: 228fs13. Pidsley, R., J. Viana, E. Hannon, et al. 2014. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 15: 483. Zhang, B., L. Tran, V. Emilsson & J. Zhu. 2016. Characterization of genetic networks associated with Alzheimer's disease. Methods Mol. Biol. 1303: 459-477. Sullivan, P.; 96 Psychiatric Genetics Investigators. 2012. Don't give up on GWAS. Mol. Psychiatry 17: 2-3. Szatkiewicz, J.P., C. O'Dushlaine, G. Chen, et al. 2014. Copy number variation in schizophrenia in Sweden. Mol. Psychiatry 19: 762-773. Wei, G.H., D.P. Liu & C.C. Liang. 2004. Charting gene regulatory networks: strategies, challenges and perspectives. Biochem. J. 381(Pt. 1): 1-12. Cohen, J.C. & H.H. Hobbs. 2013. Genetics. Simple genetics for a complex disease. Science 340: 689-690. Ginovart, N. & S. Kapur. 2012. Role of dopamine D2 receptors for antipsychotic activity. Handb. Exp. Pharmacol. 212: 27-52. Lim, E.T., P. Würtz, A.S. Havulinna, et al. 2014. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10: e1004494. Sedeño-Cortés, A.E. & P. Pavlidis. 2014. Pitfalls in the application of gene-set analysis to genetics studies. Trends Genet. 30: 513-514. Pocklington, A.J., E. Rees, J.T. Walters, et al. 2015. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86: 1203-1214. Kaiser, J. 2014. The hunt for missing genes. Science 344: 687-689. Sekar, A., A.R. Bialas, de H. Rivera, et al. 2016. Schizophrenia risk from complex variation of complement component 4. Nature 530: 177-183. Segrè, A.V., N. Wei; DIAGRAM Consortium; MAGIC Investigators, D. Altshuler & J.C. Florez. 2015. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk. Diabetes 64: 1470-1483. Finucane, H.K., B. Bulik-Sullivan, A. Gusev, et al. 2015. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47: 1228-1235. Scheltens, P., K. Blennow, M.M. Breteler, et al. 2016. Alzheimer's disease. Lancet pii: S0140-6736(15)01124-1. Kircher, M., D.M. Witten, P. Jain, et al. 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46: 310-315. Richards, J.B., H.F. Zheng & T.D. Spector. 2012. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13: 576-588. Flannick, J., G. Thorleifsson, N.L. Beer, et al. 2014. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 46: 357-363. Aberg, K.A., J.L. McClay, S. Nerella, et al. 2014. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry 71: 255-264. Malhotra, D. & J. Sebat. 2012. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148: 1223-1241. Smith, T.E., C.A. Weston & J.A. Lieberman. 2009. Schizophrenia (maintenance treatment). BMJ Clin. Evid. 2009: 1007. Leucht, S., A. Cipriani, L. Spineli, et al. 2013. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 382: 951-962. Wray, N.R., S.H. Lee, D. Mehta, et al. 2014. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry. 55: 1068-1087. Lamb, J., E.D. Crawford, D. Peck, et al. 2006. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929-1935. Schneider, M., M. Debbané, A.S. Bassett, et al. 2014. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 171: 627-639. Steinberg, S., H. Stefansson, T. Jonsson, et al. 2015. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nat. Genet. 47: 445-447. Fromer, M., A.J. Pocklington, D.H. Kavanagh, et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506: 179-184. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. 2015. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18: 199-209. 2015; 35 2015; 31 2015; 77 2008; 9 2008; 7 2013; 169 2014; 24 2012; 17 2014; 171 2007; 31 2012; 13 2013; 8 2009; 2009 2015; 47 2010; 20 2012; 212 2015; 86 2015; 134 2014; 15 2014; 19 2013; 153 2014; 7 2014; 6 2014; 55 2014; 10 2007; 18 2015; 18 2013; 506 2015; 11 2004; 381 2014; 46 2013; 92 2016; 1303 2013; 382 2013; 340 2009; 373 2012; 148 2006; 313 2001; 24 2013; 381 2015; 7 2014; 511 2012; 30 2009; 34 2014; 506 2015; 64 2016; 530 2011; 43 2016 2011; 89 2009; 460 2014; 30 2014; 71 2014; 344 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Smith T.E. (e_1_2_10_2_1) 2009; 2009 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – reference: Scheltens, P., K. Blennow, M.M. Breteler, et al. 2016. Alzheimer's disease. Lancet pii: S0140-6736(15)01124-1. – reference: Horikoshi, M., R. Mӓgi, van M. de Bunt, et al. 2015. Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation. PLoS Genet. 11: e1005230. – reference: Hollingworth, P., D. Harold, R. Sims, et al. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43: 429-435. – reference: Sieberts, S.K. & E.E. Schadt. 2007. Moving toward a system genetics view of disease. Mamm. Genome 18: 389-401. – reference: Bulik-Sullivan, B., H.K. Finucane, V. Anttila, et al. 2015. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47: 1236-1241. – reference: Sanseau, P., P. Agarwal, M.R. Barnes, et al. 2012. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30: 317-320. – reference: Mirnics, K., F.A. Middleton, D.A. Lewis & P. Levitt. 2001. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 24: 479-486. – reference: Elding, H., W. Lau, D.M. Swallow & N. Maniatis. 2011. Dissecting the genetics of complex inheritance: linkage disequilibrium mapping provides insight into Crohn disease. Am. J. Hum. Genet. 89: 798-805. – reference: Birnbaum, R., A.E. Jaffe, Q. Chen, et al. 2015. Investigation of the prenatal expression patterns of 108 schizophrenia-associated genetic loci. Biol. Psychiatry 77: e43-e51. – reference: Cross-Disorder Group of the Psychiatric Genomics Consortium. 2013. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381: 1371-1379. – reference: Purcell, S.M., J.L. Moran, M. Fromer, et al. 2014. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506: 185-190. – reference: Guna, A., N.J. Butcher & A.S. Bassett. 2015. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. J. Neurodev. Disord. 7: 18. – reference: Maniatis, N., A. Collins, N.E. Morton 2007. Effects of single SNPs, haplotypes, and whole-genome LD maps on accuracy of association mapping. Genet. Epidemiol. 31: 179-188. – reference: Leucht, S., A. Cipriani, L. Spineli, et al. 2013. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 382: 951-962. – reference: Mills, S.M., J. Mallmann, A.M. Santacruz, et al. 2013. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. Rev. Neurol. (Paris) 169: 737-743. – reference: Euesden, J., C.M. Lewis & P.F. O'Reilly. 2015. PRSice: polygenic risk score software. Bioinformatics 31: 1466-1468. – reference: Kaiser, J. 2014. The hunt for missing genes. Science 344: 687-689. – reference: Richards, J.B., H.F. Zheng & T.D. Spector. 2012. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13: 576-588. – reference: Zhang, B., L. Tran, V. Emilsson & J. Zhu. 2016. Characterization of genetic networks associated with Alzheimer's disease. Methods Mol. Biol. 1303: 459-477. – reference: Sperling, R.A., D.M. Rentz, K.A. Johnson, et al. 2014. The A4 study: stopping AD before symptoms begin? Sci. Transl. Med. 6: 228fs13. – reference: Pocklington, A.J., E. Rees, J.T. Walters, et al. 2015. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86: 1203-1214. – reference: Sekar, A., A.R. Bialas, de H. Rivera, et al. 2016. Schizophrenia risk from complex variation of complement component 4. Nature 530: 177-183. – reference: Segrè, A.V., N. Wei; DIAGRAM Consortium; MAGIC Investigators, D. Altshuler & J.C. Florez. 2015. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk. Diabetes 64: 1470-1483. – reference: Kircher, M., D.M. Witten, P. Jain, et al. 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46: 310-315. – reference: Cao, C. & J. Moult. 2014. GWAS and drug targets. BMC Genomics 15(Suppl. 4): S5. – reference: Wei, G.H., D.P. Liu & C.C. Liang. 2004. Charting gene regulatory networks: strategies, challenges and perspectives. Biochem. J. 381(Pt. 1): 1-12. – reference: Pidsley, R., J. Viana, E. Hannon, et al. 2014. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 15: 483. – reference: Lim, E.T., P. Würtz, A.S. Havulinna, et al. 2014. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10: e1004494. – reference: Fromer, M., A.J. Pocklington, D.H. Kavanagh, et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506: 179-184. – reference: Langfelder, P. & S. Horvath. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. – reference: Finucane, H.K., B. Bulik-Sullivan, A. Gusev, et al. 2015. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47: 1228-1235. – reference: Aberg, K.A., J.L. McClay, S. Nerella, et al. 2014. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry 71: 255-264. – reference: Flannick, J., G. Thorleifsson, N.L. Beer, et al. 2014. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 46: 357-363. – reference: Steinberg, S., H. Stefansson, T. Jonsson, et al. 2015. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nat. Genet. 47: 445-447. – reference: Smith, T.E., C.A. Weston & J.A. Lieberman. 2009. Schizophrenia (maintenance treatment). BMJ Clin. Evid. 2009: 1007. – reference: Schneider, M., M. Debbané, A.S. Bassett, et al. 2014. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 171: 627-639. – reference: Zhang, B., C. Gaiteri, L.G. Bodea, et al. 2013. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153: 707-720. – reference: Ginovart, N. & S. Kapur. 2012. Role of dopamine D2 receptors for antipsychotic activity. Handb. Exp. Pharmacol. 212: 27-52. – reference: Kingsmore, S.F., I.E. Lindquist, J. Mudge, et al. 2008. Genome-wide association studies: progress and potential for drug discovery and development. Nat. Rev. Drug Discov. 7: 221-230. – reference: Sullivan, P.; 96 Psychiatric Genetics Investigators. 2012. Don't give up on GWAS. Mol. Psychiatry 17: 2-3. – reference: Wray, N.R., S.H. Lee, D. Mehta, et al. 2014. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry. 55: 1068-1087. – reference: Ruderfer, D.M., A.H. Fanous, S. Ripke, et al. 2014. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry 19: 1017-1024. – reference: Sedeño-Cortés, A.E. & P. Pavlidis. 2014. Pitfalls in the application of gene-set analysis to genetics studies. Trends Genet. 30: 513-514. – reference: Lamb, J., E.D. Crawford, D. Peck, et al. 2006. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929-1935. – reference: Elding, H., W. Lau, D.M. Swallow & N. Maniatis. 2013. Refinement in localization and identification of gene regions associated with Crohn disease. Am. J. Hum. Genet. 92: 107-113. – reference: Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. 2015. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18: 199-209. – reference: Conn, P.J. & C.K. Jones. 2009. Promise of mGluR2/3 activators in psychiatry. Neuropsychopharmacology 34: 248-249. – reference: Zhao, W., P. Langfelder, T. Fuller, et al. 2010. Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20: 281-300. – reference: Kumar, G., S.L. Clark, J.L. McClay, et al. 2015. Refinement of schizophrenia GWAS loci using methylome-wide association data. Hum. Genet. 134: 77-87. – reference: McCarthy, D.J., P. Humburg, A. Kanapin, et al. 2014. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6: 26. – reference: Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511: 421-427. – reference: International Schizophrenia Consortium; S.M. Purcell, N.R. Wray, J.L. Stone, et al. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748-752. – reference: Szatkiewicz, J.P., C. O'Dushlaine, G. Chen, et al. 2014. Copy number variation in schizophrenia in Sweden. Mol. Psychiatry 19: 762-773. – reference: Zeilinger, S., B. Kuhnel, N. Klopp, et al. 2013. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8: e63812. – reference: Richmond, R.C., A.J. Simpkin, G. Woodward, et al. 2014. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 24: 2201-2217. – reference: Jaffe, A.E., J. Shin, L. Collado-Torres, et al. 2015. Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nat. Neurosci. 18: 154-161. – reference: Malhotra, D. & J. Sebat. 2012. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148: 1223-1241. – reference: Okada, Y., D. Wu, G. Trynka, et al. 2013. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506: 376-381. – reference: Cohen, J.C. & H.H. Hobbs. 2013. Genetics. Simple genetics for a complex disease. Science 340: 689-690. – reference: Grover, M.P., S. Ballouz, K.A. Mohanasundaram, et al. 2014 Identification of novel therapeutics for complex diseases from genome-wide association data. BMC Med. Genomics 7(Suppl. 1): S8. – reference: Grati, F.R., D. Molina Gomes, J.C. Ferreira, et al. 2015. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat. Diagn. 35: 801-809. – reference: Lichtenstein, P., B.H. Yip, C. Björk, et al. 2009. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373: 234-239. – volume: 7 start-page: 18 year: 2015 article-title: Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms publication-title: J. Neurodev. Disord. – volume: 506 start-page: 376 year: 2013 end-page: 381 article-title: Genetics of rheumatoid arthritis contributes to biology and drug discovery publication-title: Nature – volume: 8 start-page: e63812 year: 2013 article-title: Tobacco smoking leads to extensive genome‐wide changes in DNA methylation publication-title: PLoS One – volume: 506 start-page: 185 year: 2014 end-page: 190 article-title: A polygenic burden of rare disruptive mutations in schizophrenia publication-title: Nature – volume: 17 start-page: 2 year: 2012 end-page: 3 article-title: Don't give up on GWAS publication-title: Mol. Psychiatry – volume: 34 start-page: 248 year: 2009 end-page: 249 article-title: Promise of mGluR2/3 activators in psychiatry publication-title: Neuropsychopharmacology – volume: 506 start-page: 179 year: 2014 end-page: 184 article-title: mutations in schizophrenia implicate synaptic networks publication-title: Nature – volume: 11 start-page: e1005230 year: 2015 article-title: Discovery and fine‐mapping of glycaemic and obesity‐related trait loci using high‐density imputation publication-title: PLoS Genet – volume: 47 start-page: 445 year: 2015 end-page: 447 article-title: Loss‐of‐function variants in confer risk of Alzheimer's disease publication-title: Nat. Genet. – volume: 19 start-page: 1017 year: 2014 end-page: 1024 article-title: Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia publication-title: Mol. Psychiatry – volume: 169 start-page: 737 year: 2013 end-page: 743 article-title: Preclinical trials in autosomal dominant AD: implementation of the DIAN‐TU trial publication-title: Rev. Neurol. (Paris) – volume: 46 start-page: 357 year: 2014 end-page: 363 article-title: Loss‐of‐function mutations in protect against type 2 diabetes publication-title: Nat. Genet. – volume: 31 start-page: 179 year: 2007 end-page: 188 article-title: Effects of single SNPs, haplotypes, and whole‐genome LD maps on accuracy of association mapping publication-title: Genet. Epidemiol. – volume: 382 start-page: 951 year: 2013 end-page: 962 article-title: Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple‐treatments meta‐analysis publication-title: Lancet – volume: 18 start-page: 199 year: 2015 end-page: 209 article-title: Psychiatric genome‐wide association study analyses implicate neuronal, immune and histone pathways publication-title: Nat. Neurosci. – volume: 10 start-page: e1004494 year: 2014 article-title: Distribution and medical impact of loss‐of‐function variants in the Finnish founder population publication-title: PLoS Genet – volume: 64 start-page: 1470 year: 2015 end-page: 1483 article-title: Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk publication-title: Diabetes – volume: 20 start-page: 281 year: 2010 end-page: 300 article-title: Weighted gene coexpression network analysis: state of the art publication-title: J. Biopharm. Stat. – volume: 30 start-page: 317 year: 2012 end-page: 320 article-title: Use of genome‐wide association studies for drug repositioning publication-title: Nat. Biotechnol. – volume: 6 start-page: 228fs13 year: 2014 article-title: The A4 study: stopping AD before symptoms begin publication-title: Sci. Transl. Med. – volume: 460 start-page: 748 year: 2009 end-page: 752 article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder publication-title: Nature – volume: 71 start-page: 255 year: 2014 end-page: 264 article-title: Methylome‐wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults publication-title: JAMA Psychiatry – volume: 381 start-page: 1371 year: 2013 end-page: 1379 article-title: Identification of risk loci with shared effects on five major psychiatric disorders: a genome‐wide analysis publication-title: Lancet – volume: 55 start-page: 1068 year: 2014 end-page: 1087 article-title: Research review: polygenic methods and their application to psychiatric traits publication-title: J. Child Psychol. Psychiatry. – volume: 92 start-page: 107 year: 2013 end-page: 113 article-title: Refinement in localization and identification of gene regions associated with Crohn disease publication-title: Am. J. Hum. Genet. – volume: 7 start-page: S8 issue: Suppl. 1 year: 2014 article-title: Identification of novel therapeutics for complex diseases from genome‐wide association data publication-title: BMC Med. Genomics – volume: 47 start-page: 1228 year: 2015 end-page: 1235 article-title: Partitioning heritability by functional annotation using genome‐wide association summary statistics publication-title: Nat. Genet. – volume: 313 start-page: 1929 year: 2006 end-page: 1935 article-title: The connectivity map: using gene‐expression signatures to connect small molecules, genes, and disease publication-title: Science – volume: 18 start-page: 154 year: 2015 end-page: 161 article-title: Developmental regulation of human cortex transcription and its clinical relevance at single base resolution publication-title: Nat. Neurosci. – volume: 35 start-page: 801 year: 2015 end-page: 809 article-title: Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies publication-title: Prenat. Diagn. – volume: 18 start-page: 389 year: 2007 end-page: 401 article-title: Moving toward a system genetics view of disease publication-title: Mamm. Genome – volume: 6 start-page: 26 year: 2014 article-title: Choice of transcripts and software has a large effect on variant annotation publication-title: Genome Med – volume: 89 start-page: 798 year: 2011 end-page: 805 article-title: Dissecting the genetics of complex inheritance: linkage disequilibrium mapping provides insight into Crohn disease publication-title: Am. J. Hum. Genet. – volume: 381 start-page: 1 issue: Pt. 1 year: 2004 end-page: 12 article-title: Charting gene regulatory networks: strategies, challenges and perspectives publication-title: Biochem. J. – volume: 46 start-page: 310 year: 2014 end-page: 315 article-title: A general framework for estimating the relative pathogenicity of human genetic variants publication-title: Nat. Genet. – volume: 530 start-page: 177 year: 2016 end-page: 183 article-title: Schizophrenia risk from complex variation of complement component 4 publication-title: Nature – volume: 19 start-page: 762 year: 2014 end-page: 773 article-title: Copy number variation in schizophrenia in Sweden publication-title: Mol. Psychiatry – volume: 2009 start-page: 1007 year: 2009 article-title: Schizophrenia (maintenance treatment) publication-title: BMJ Clin. Evid. – volume: 1303 start-page: 459 year: 2016 end-page: 477 article-title: Characterization of genetic networks associated with Alzheimer's disease publication-title: Methods Mol. Biol. – volume: 13 start-page: 576 year: 2012 end-page: 588 article-title: Genetics of osteoporosis from genome‐wide association studies: advances and challenges publication-title: Nat. Rev. Genet. – volume: 24 start-page: 2201 year: 2014 end-page: 2217 article-title: Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) publication-title: Hum. Mol. Genet. – volume: 171 start-page: 627 year: 2014 end-page: 639 article-title: Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome publication-title: Am. J. Psychiatry – volume: 511 start-page: 421 year: 2014 end-page: 427 article-title: Biological insights from 108 schizophrenia‐associated genetic loci publication-title: Nature – volume: 148 start-page: 1223 year: 2012 end-page: 1241 article-title: CNVs: harbingers of a rare variant revolution in psychiatric genetics publication-title: Cell – volume: 15 start-page: S5 issue: Suppl. 4 year: 2014 article-title: GWAS and drug targets publication-title: BMC Genomics – volume: 7 start-page: 221 year: 2008 end-page: 230 article-title: Genome‐wide association studies: progress and potential for drug discovery and development publication-title: Nat. Rev. Drug Discov. – volume: 153 start-page: 707 year: 2013 end-page: 720 article-title: Integrated systems approach identifies genetic nodes and networks in late‐onset Alzheimer's disease publication-title: Cell – volume: 77 start-page: e43 year: 2015 end-page: e51 article-title: Investigation of the prenatal expression patterns of 108 schizophrenia‐associated genetic loci publication-title: Biol. Psychiatry – volume: 212 start-page: 27 year: 2012 end-page: 52 article-title: Role of dopamine D receptors for antipsychotic activity publication-title: Handb. Exp. Pharmacol. – volume: 373 start-page: 234 year: 2009 end-page: 239 article-title: Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population‐based study publication-title: Lancet – volume: 340 start-page: 689 year: 2013 end-page: 690 article-title: Genetics. Simple genetics for a complex disease publication-title: Science – volume: 24 start-page: 479 year: 2001 end-page: 486 article-title: Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse publication-title: Trends Neurosci – volume: 43 start-page: 429 year: 2011 end-page: 435 article-title: Common variants at , / , , and are associated with Alzheimer's disease publication-title: Nat. Genet. – volume: 30 start-page: 513 year: 2014 end-page: 514 article-title: Pitfalls in the application of gene‐set analysis to genetics studies publication-title: Trends Genet – volume: 31 start-page: 1466 year: 2015 end-page: 1468 article-title: PRSice: polygenic risk score software publication-title: Bioinformatics – volume: 47 start-page: 1236 year: 2015 end-page: 1241 article-title: An atlas of genetic correlations across human diseases and traits publication-title: Nat. Genet. – volume: 86 start-page: 1203 year: 2015 end-page: 1214 article-title: Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia publication-title: Neuron – volume: 134 start-page: 77 year: 2015 end-page: 87 article-title: Refinement of schizophrenia GWAS loci using methylome‐wide association data publication-title: Hum. Genet. – year: 2016 article-title: Alzheimer's disease publication-title: Lancet – volume: 9 start-page: 559 year: 2008 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics – volume: 344 start-page: 687 year: 2014 end-page: 689 article-title: The hunt for missing genes publication-title: Science – volume: 15 start-page: 483 year: 2014 article-title: Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia publication-title: Genome Biol – ident: e_1_2_10_8_1 doi: 10.1371/journal.pgen.1004494 – ident: e_1_2_10_21_1 doi: 10.1038/nature13595 – ident: e_1_2_10_61_1 doi: 10.1016/j.cell.2013.03.030 – ident: e_1_2_10_15_1 doi: 10.1186/1755-8794-7-S1-S8 – ident: e_1_2_10_25_1 doi: 10.1002/gepi.20199 – ident: e_1_2_10_7_1 doi: 10.1038/ng.2915 – ident: e_1_2_10_42_1 doi: 10.1016/S0140-6736(12)62129-1 – ident: e_1_2_10_52_1 doi: 10.1016/j.cell.2012.02.039 – ident: e_1_2_10_49_1 doi: 10.1186/1471-2105-9-559 – ident: e_1_2_10_43_1 doi: 10.1038/ng.3406 – ident: e_1_2_10_11_1 doi: 10.1186/1471-2164-15-S4-S5 – ident: e_1_2_10_13_1 doi: 10.1038/nature12873 – ident: e_1_2_10_19_1 doi: 10.1186/s11689-015-9113-x – ident: e_1_2_10_53_1 doi: 10.1038/mp.2014.40 – ident: e_1_2_10_16_1 doi: 10.1016/j.neurol.2013.07.017 – ident: e_1_2_10_12_1 doi: 10.2337/db14-0703 – ident: e_1_2_10_24_1 doi: 10.1186/gm543 – ident: e_1_2_10_60_1 doi: 10.1016/j.biopsych.2014.10.008 – ident: e_1_2_10_38_1 doi: 10.1038/nn.3922 – ident: e_1_2_10_44_1 doi: 10.1038/ng.3404 – ident: e_1_2_10_6_1 doi: 10.1126/science.1239101 – ident: e_1_2_10_18_1 doi: 10.1176/appi.ajp.2013.13070864 – ident: e_1_2_10_28_1 doi: 10.1371/journal.pgen.1005230 – ident: e_1_2_10_54_1 doi: 10.1016/j.neuron.2015.04.022 – ident: e_1_2_10_39_1 doi: 10.1111/jcpp.12295 – ident: e_1_2_10_26_1 doi: 10.1016/j.ajhg.2012.11.004 – ident: e_1_2_10_46_1 doi: 10.1093/bioinformatics/btu848 – ident: e_1_2_10_57_1 doi: 10.1038/nature12929 – ident: e_1_2_10_22_1 doi: 10.1038/npp.2008.156 – ident: e_1_2_10_34_1 doi: 10.1093/hmg/ddu739 – ident: e_1_2_10_58_1 doi: 10.1038/mp.2011.94 – ident: e_1_2_10_14_1 doi: 10.1038/nbt.2151 – ident: e_1_2_10_17_1 doi: 10.1126/scitranslmed.3007941 – volume: 2009 start-page: 1007 year: 2009 ident: e_1_2_10_2_1 article-title: Schizophrenia (maintenance treatment) publication-title: BMJ Clin. Evid. – ident: e_1_2_10_20_1 doi: 10.1016/S0140-6736(15)01124-1 – ident: e_1_2_10_31_1 doi: 10.1038/ng.803 – ident: e_1_2_10_5_1 doi: 10.1126/science.344.6185.687 – ident: e_1_2_10_35_1 doi: 10.1001/jamapsychiatry.2013.3730 – ident: e_1_2_10_29_1 doi: 10.1038/nature16549 – ident: e_1_2_10_36_1 doi: 10.1007/s00439-014-1494-5 – ident: e_1_2_10_62_1 doi: 10.1126/science.1132939 – ident: e_1_2_10_41_1 doi: 10.1016/S0140-6736(09)60072-6 – ident: e_1_2_10_47_1 doi: 10.1016/j.tig.2014.10.001 – ident: e_1_2_10_3_1 doi: 10.1016/S0140-6736(13)60733-3 – ident: e_1_2_10_45_1 doi: 10.1038/mp.2013.138 – ident: e_1_2_10_48_1 doi: 10.1080/10543400903572753 – ident: e_1_2_10_59_1 doi: 10.1038/nn.3898 – ident: e_1_2_10_37_1 doi: 10.1186/s13059-014-0483-2 – ident: e_1_2_10_40_1 doi: 10.1038/nature08185 – ident: e_1_2_10_50_1 doi: 10.1007/s00335-007-9040-6 – ident: e_1_2_10_10_1 doi: 10.1038/nrg3228 – ident: e_1_2_10_55_1 doi: 10.1002/pd.4613 – ident: e_1_2_10_30_1 doi: 10.1016/S0166-2236(00)01862-2 – ident: e_1_2_10_33_1 doi: 10.1371/journal.pone.0063812 – ident: e_1_2_10_27_1 doi: 10.1016/j.ajhg.2011.11.006 – ident: e_1_2_10_23_1 doi: 10.1038/ng.2892 – ident: e_1_2_10_63_1 doi: 10.1042/BJ20040311 – ident: e_1_2_10_4_1 doi: 10.1007/978-3-642-25761-2_2 – ident: e_1_2_10_56_1 doi: 10.1038/nature12975 – ident: e_1_2_10_32_1 doi: 10.1038/ng.3246 – ident: e_1_2_10_9_1 doi: 10.1038/nrd2519 – ident: e_1_2_10_51_1 doi: 10.1007/978-1-4939-2627-5_28 |
SSID | ssj0012847 |
Score | 2.2635837 |
SecondaryResourceType | review_article |
Snippet | The spectacular advance in our understanding of the genetic basis of schizophrenia through genome‐wide association studies has the potential to identify new... The spectacular advance in our understanding of the genetic basis of schizophrenia through genome-wide association studies has the potential to identify new... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 61 |
SubjectTerms | Antipsychotic Agents - therapeutic use Biology drug discovery Drug Discovery - methods Drug Discovery - trends Drugs Gene Regulatory Networks - genetics Genes Genetic Variation - genetics Genetics genome-wide association Genome-Wide Association Study - methods Genome-Wide Association Study - trends Humans Mental disorders Networks Pathways Patients pharmacogenetics psychosis Schizophrenia Schizophrenia - diagnosis Schizophrenia - drug therapy Schizophrenia - genetics |
Title | Advances in the genetics of schizophrenia: toward a network and pathway view for drug discovery |
URI | https://api.istex.fr/ark:/67375/WNG-VP3MWS97-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.13066 https://www.ncbi.nlm.nih.gov/pubmed/27111133 https://www.proquest.com/docview/1790066533 https://www.proquest.com/docview/1784749004 https://www.proquest.com/docview/1787982508 https://www.proquest.com/docview/1808065778 |
Volume | 1366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxNBEB5Ki-AXtfUtWsuKIla4ci_7khO_pGosQoNYa-sHOXZvd0UqF8klaPz1zuy92EoJ6JdwkMmxuzcz90z22WcAHtsk8d64NDIi9xFPPI-M13HEvS4T7nRuSjrvfDiRB8f87ak4XYMX3VmYRh-i_8ONIiPkawpwbepzQV4tdU29jCXpbRNZixDR-147KuTdkIYVpmGEMa02KdF4_vz0wttogxb252VQ8yJyDa-e8XX43A26YZyc7S3mZq_89Zee4__O6gZcazEpGzVOtAlrrtqCK02XyuUWbLbxX7OnrUj17k0oRg15oGZfK4YgkqEj0nnImk09q88z-Z6zeaDmMs2qhnPOdGUZtUL-oZeMtiYYImdmZ4svjA4JE6l0eQuOx68_vDyI2mYNUcllIqNhJpXVykppsMQrJeYOxDbU_9PakiM4Tg1WmolwmXM-ztN4aBx-pjE36EfKZ7dhvZpW7i6wWCMM4ljp2RjLT5MZboRwwnJMOLlJ0gHsdg-tKFslc2qo8a3oKhpaxSKs4gAe9bbfG_2OS62ehGffm-jZGTHelChOJm-Kj--yw5OjXBViANudcxRtsOMtVB52sLJsAA_7rzFMae9FV266IBt0R452fKWNyrFij4crbEgHVAql0OZO45z9oFNF06JRPAsutmLCxeTT6Chc3fsX4_twFQFjy1rfhvX5bOEeICibmx3YGO2_2h_vhCD8DSykMrs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE4IXYONWGGAEQgwpUy6-NLxViFFgrRC78mTZsY3QUIqaVlB-Pec4btjQVAleqkj9EsXOOSffiT-fQ8gzm2XeG5cnhpc-YZlnifE6TZjXVcacLk2F-51HYzE8ZO9P-EnU5uBemLY-RPfBDT0jxGt0cPwgfcbL64VusJmxEJfJOrb0DhnVp656VIi8IRBLCMRAZGJ1UhTy_Dn33PtoHaf250Vk8zx3DS-f3Rtth9Um1CxEzcnpznxmdqpff1V0_O9x3STXIy2lg9aONsglV2-SK22jysUm2YghoKEvYp3q7VtEDVr9QEO_1hR4JAVbxC2RDZ142pwV872is6DOpZrWreyc6tpS7Ib8Qy8ork5QIM_UTudfKO4TRl3p4jY53H1z8HqYxH4NScVEJpJ-IaTV0gphIMurBIQPoDfYAtTaigE_zg0kmxl3hXM-LfO0bxz85ikzYErSF3fIWj2p3T1CUw1MiEGyZ1PIQE1hmOHcccsg5pQmy3tke_nUVBWLmWNPjW9qmdTgLKowiz3ytMN-b0t4XIh6Hh5-B9HTUxS9Sa6Ox2_V0cdidLxfSsV7ZGtpHSr6O1xClmERqyh65En3N3gqLr_o2k3miAF7ZIBjKzGyhKQ97a_AYClQwaUEzN3WOrubziUOC-_iZbCxFQNW48-D_XB0_1_Aj8nV4cFoT-29G394QK4Bf4wi9i2yNpvO3UPgaDPzKHjib5cmNWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTaB9ATZgFAYYgRBDypQXx24QXypGGS-rJsbY-IAsO7ERGkqnphWUX8-d88KGpkrwpYrUp5Ht3F2eqx_fATwuosg5Y-PApJkLeOR4YJwOA-50HnGrM5PTeee9kdg95G-P0-MleNGehanrQ3R_uJFn-HhNDn5auDNOXs51Rb2MhbgEK1yEfbLpnQ9d8SgfeH0clhiHkcc0xUlJx_Pnt-deRyu0sj8v4prnqat_9wyvwZd21LXk5GR7NjXb-a-_Cjr-77Suw9WGlLJBbUVrsGTLdbhct6mcr8NaEwAq9rSpUr11A9SgVg9U7FvJkEUytEQ6EFmxsWPVWSnfczb12lymWVmLzpkuC0a9kH_oOaO9CYbUmRWT2VdGp4RJVTq_CYfDVx9f7gZNt4Yg5yISQT8RstCyEMJgjpcLDB5IbqgBaFHkHNlxbDDVjFKbWOvCLA77xuJnHHKDhiRdcguWy3FpbwMLNfIgjqleEWL-aRLDTZratOAYcTITxT3Yah-ayptS5tRR47tqUxpaReVXsQePOuxpXcDjQtQT_-w7iJ6ckORNpupo9Fp92k_2jg4yqdIebLbGoRpvx1vIzG9hJUkPHnZfo5_S5osu7XhGGDRHjji-ECMzTNnD_gIMFQIVqZSI2aiNsxt0LGlaNIpn3sQWTFiNPg8O_NWdfwE_gCv7O0P1_s3o3V1YRfLYKNg3YXk6mdl7SNCm5r73w9_pxTQc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+genetics+of+schizophrenia%3A+toward+a+network+and+pathway+view+for+drug+discovery&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Collier%2C+David+A&rft.au=Eastwood%2C+Brian+J&rft.au=Malki%2C+Karim&rft.au=Mokrab%2C+Younes&rft.date=2016-02-01&rft.eissn=1749-6632&rft.volume=1366&rft.issue=1&rft.spage=61&rft.epage=75&rft_id=info:doi/10.1111%2Fnyas.13066&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |