Cell alignment by smectic liquid crystal elastomer coatings with nanogrooves
Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano‐ and microscale topogra...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 108; no. 5; pp. 1223 - 1230 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2020
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano‐ and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano‐topographies show a high potential for tissue engineering. |
---|---|
AbstractList | Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano- and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano-topographies show a high potential for tissue engineering.Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano- and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano-topographies show a high potential for tissue engineering. Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano‐ and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano‐topographies show a high potential for tissue engineering. Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano- and microscale topography requires processing by lithography, microprinting, etching, etc. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts (hDFs) over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano-topographies show a high potential for tissue engineering. |
Author | Li, Bing‐Xiang Lavrentovich, Oleg D. Kim, Min‐Ho Krieger, Jess Turiv, Taras Babakhanova, Greta |
Author_xml | – sequence: 1 givenname: Greta orcidid: 0000-0002-5027-5673 surname: Babakhanova fullname: Babakhanova, Greta organization: Kent State University – sequence: 2 givenname: Jess surname: Krieger fullname: Krieger, Jess organization: Kent State University – sequence: 3 givenname: Bing‐Xiang surname: Li fullname: Li, Bing‐Xiang organization: Kent State University – sequence: 4 givenname: Taras surname: Turiv fullname: Turiv, Taras organization: Kent State University – sequence: 5 givenname: Min‐Ho surname: Kim fullname: Kim, Min‐Ho organization: Kent State University – sequence: 6 givenname: Oleg D. orcidid: 0000-0002-0128-0708 surname: Lavrentovich fullname: Lavrentovich, Oleg D. email: olavrent@kent.edu organization: Kent State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32034939$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1597484$$D View this record in Osti.gov |
BookMark | eNp90T1vHCEQBmAUOYo_kip9hJImUrSXBRZuKZ1TvqyL0iQ1YmH2zIkFG9hY9--DvXZjWa6geGY0M-8pOgoxAEJvSbsibUs_74dppVdM9FK8QCeEc9p0UvCj238nG0alOEanOe8rFi2nr9Axoy3rJJMnaLsB77H2bhcmCAUPB5wnMMUZ7N317Cw26ZCL9hi8ziVOkLCJuriwy_jGlUscdIi7FOM_yK_Ry1H7DG_u3zP099vXP5sfzfb395-b821jOkFEQ2EYTQcDY-1oGWGM0oFAJ4FoYgRwCVoTYXWvuex5P1hu9Sg5WGpGa9eGnaH3S9-Yi1PZuALm0sQQ6uCKcLnu-q6ijwu6SvF6hlzU5LKp2-oAcc6KMk4FX_e0r_TDI7qPcwp1harWlXDJaFXv7tU8TGDVVXKTTgf1cMwKyAJMijknGFWdrJ4qhpK084q06jYwVQNTWt0FVms-Pap5aPu0pou-cR4Oz1F18eXX-VL0Hxjxpys |
CitedBy_id | crossref_primary_10_1098_rsif_2023_0160 crossref_primary_10_1002_adma_202300220 crossref_primary_10_1039_D0FD00032A crossref_primary_10_1002_adom_202201015 crossref_primary_10_1021_acs_chemrev_1c00761 crossref_primary_10_3390_ma13143094 crossref_primary_10_3390_cryst11050523 crossref_primary_10_1002_adma_202109063 crossref_primary_10_1039_D2MA00401A crossref_primary_10_1016_j_giant_2024_100327 crossref_primary_10_1002_marc_202300303 crossref_primary_10_1016_j_isci_2021_103077 crossref_primary_10_1103_PRXLife_1_013009 crossref_primary_10_1021_acsmaterialslett_0c00224 crossref_primary_10_1021_acsapm_2c01599 crossref_primary_10_1021_acs_langmuir_1c03359 crossref_primary_10_1002_advs_202303136 crossref_primary_10_1080_02678292_2024_2353383 crossref_primary_10_1021_acsami_3c00530 crossref_primary_10_1002_adma_202109198 crossref_primary_10_3390_ma14247686 crossref_primary_10_3390_cryst14100859 crossref_primary_10_1021_acsami_2c22892 crossref_primary_10_1063_5_0022193 crossref_primary_10_1080_21680396_2021_1919576 crossref_primary_10_1080_21680396_2025_2472163 crossref_primary_10_1063_5_0021143 crossref_primary_10_1002_mabi_202200343 crossref_primary_10_1016_j_isci_2024_108828 crossref_primary_10_1002_advs_202004749 crossref_primary_10_1039_D4SM00534A crossref_primary_10_1080_1358314X_2020_1855919 crossref_primary_10_1021_acsami_2c18993 crossref_primary_10_1016_j_smaim_2022_01_010 crossref_primary_10_1002_marc_202300717 |
Cites_doi | 10.1103/PhysRevLett.93.109401 10.1126/science.1261019 10.1016/j.biomaterials.2007.05.030 10.1080/02678290902814718 10.1007/BF00305243 10.1038/nmat2029 10.1016/j.aanat.2008.05.006 10.1080/09205063.2017.1297285 10.1103/PhysRevLett.91.033901 10.1557/jmr.2014.392 10.1080/21680396.2013.818515 10.1007/978-1-61779-246-5 10.1093/bioinformatics/btx180 10.1016/0092-8674(81)90038-6 10.1016/j.bioactmat.2018.05.005 10.1073/pnas.0407925101 10.1242/jcs.196162 10.1016/j.actbio.2015.11.027 10.1021/acsami.8b21638 10.1007/s10616-014-9771-7 10.1007/s100510050829 10.1002/adma.201506002 10.1002/smll.201702677 10.1007/s10237-011-0325-z 10.1002/adhm.201801489 10.1039/C0SM00747A 10.1002/adma.201606407 10.1016/0012-1606(88)90432-0 10.1051/jp2:1994135 10.1002/adma.201103791 10.1016/j.biomaterials.2012.03.079 10.1016/0092-8674(79)90300-3 10.1103/PhysRevE.79.011707 10.1103/PhysRevE.79.061701 10.1021/la802870z 10.1016/j.mattod.2017.07.002 10.1002/mabi.201600278 10.1103/PhysRevA.41.2252 10.1103/PhysRevE.78.061704 10.1083/jcb.88.3.473 10.1021/la0525224 10.1002/adma.201100821 10.1039/C8BM00019K 10.1016/j.biomaterials.2006.04.012 10.1016/j.biomaterials.2010.05.037 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2020 Wiley Periodicals, Inc. |
CorporateAuthor | Kent State Univ., Kent, OH (United States) |
CorporateAuthor_xml | – name: Kent State Univ., Kent, OH (United States) |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 OIOZB OTOTI |
DOI | 10.1002/jbm.a.36896 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 1230 |
ExternalDocumentID | 1597484 32034939 10_1002_jbm_a_36896 JBMA36896 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Office of Sciences, DOE funderid: DE‐SC0019105 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 1OB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI PQEST |
ID | FETCH-LOGICAL-c4616-2ebfc4eb330fd313322b1e49e1a1c6e59eaa16da8a59858bd5daf95ed2cfdd7c3 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Thu May 18 22:31:58 EDT 2023 Fri Jul 11 08:29:27 EDT 2025 Wed Aug 13 11:12:54 EDT 2025 Wed Feb 19 02:29:57 EST 2025 Tue Jul 01 00:57:48 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Wed Jan 22 16:34:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | human dermal fibroblast alignment nanotopography liquid crystal elastomer substrates |
Language | English |
License | 2020 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4616-2ebfc4eb330fd313322b1e49e1a1c6e59eaa16da8a59858bd5daf95ed2cfdd7c3 |
Notes | Funding information Office of Sciences, DOE, Grant/Award Number: DE‐SC0019105 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0019105 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-5027-5673 0000-0002-0128-0708 0000000201280708 0000000250275673 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1597484 |
PMID | 32034939 |
PQID | 2377825932 |
PQPubID | 2034572 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1597484 proquest_miscellaneous_2352657828 proquest_journals_2377825932 pubmed_primary_32034939 crossref_citationtrail_10_1002_jbm_a_36896 crossref_primary_10_1002_jbm_a_36896 wiley_primary_10_1002_jbm_a_36896_JBMA36896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J Biomed Mater Res A |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc – name: Wiley |
References | 1990; 108 2013; 1 2015; 347 2019; 11 2015; 30 2016; 30 2008; 78 2009a; 79 2012; 11 1993; 3 1990; 262 1981; 88 2007; 28 2018; 6 1990; 41 2018; 9 2018; 3 2004; 70 2003; 91 2006; 22 2017; 33 2006; 27 2007; 6 1999; 10 2011; 23 1988; 130 2012; 24 2004; 101 1979; 17 2019; 8 2009; 25 2010; 31 2011 2017; 28 2007 1981; 26 2017; 29 2017; 130 2018; 21 2012; 33 2011; 7 2009; 36 2009b; 79 2004; 93 2009; 191 2017; 17 2017; 13 2016; 28 2016; 68 1994; 4 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Babakhanova G. (e_1_2_8_6_1) 2018; 9 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_4_1 e_1_2_8_8_1 Michel J. P. (e_1_2_8_40_1) 2004; 70 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Abiko Y. (e_1_2_8_2_1) 1993; 3 e_1_2_8_18_1 e_1_2_8_39_1 Kleman M. (e_1_2_8_30_1) 2007 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Clark P. (e_1_2_8_12_1) 1990; 108 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – year: 2011 – volume: 78 year: 2008 article-title: Surface‐frustrated periodic textures of smectic‐ a liquid crystals on crystalline surfaces publication-title: Physical Review E – Statistical, Nonlinear, and Soft Matter Physics – volume: 11 start-page: 461 year: 2012 end-page: 473 article-title: Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy publication-title: Biomechanics and Modeling in Mechanobiology – volume: 24 start-page: 1461 year: 2012 end-page: 1465 article-title: Linear self‐assembly of nanoparticles within liquid crystal defect arrays publication-title: Advanced Materials – volume: 262 start-page: 467 year: 1990 end-page: 481 article-title: Deposition of extracellular matrix along the pathways of migrating fibroblasts publication-title: Cell and Tissue Research – volume: 30 start-page: 26 year: 2016 end-page: 48 article-title: Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype publication-title: Acta Biomaterialia – volume: 1 start-page: 83 year: 2013 end-page: 109 article-title: Ordering nano‐and microparticles assemblies with liquid crystals publication-title: Liquid Crystals Reviews – volume: 23 start-page: 3278 year: 2011 end-page: 3283 article-title: Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(Ïμ‐caprolactone) surfaces publication-title: Advanced Materials – volume: 28 start-page: 2353 year: 2016 end-page: 2358 article-title: High‐resolution and high‐throughput plasmonic photopatterning of complex molecular orientations in liquid crystals publication-title: Advanced Materials – volume: 41 start-page: 2252 year: 1990 end-page: 2255 article-title: Surface frustration and texture instability in smectic‐A liquid crystals publication-title: Physical Review A – volume: 4 start-page: 377 year: 1994 end-page: 404 article-title: Nucleation of focal conic domains in smectic A liquid crystals publication-title: Journal de Physique II – volume: 11 start-page: 7450 year: 2019 end-page: 7458 article-title: Contact guidance by microstructured gelatin hydrogels for prospective tissue engineering applications publication-title: ACS Applied Materials & Interfaces – volume: 27 start-page: 4340 year: 2006 end-page: 4347 article-title: The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes publication-title: Biomaterials – volume: 7 start-page: 1161 year: 2011 end-page: 1167 article-title: Self‐ordered arrays of linear defects and virtual singularities in thin smectic‐A films publication-title: Soft Matter – volume: 3 start-page: 355 year: 2018 end-page: 369 article-title: Micro and nanofabrication methods to control cell‐substrate interactions and cell behavior: A review from the tissue engineering perspective publication-title: Bioactive Materials – volume: 130 start-page: 51 year: 2017 end-page: 61 article-title: How cells respond to environmental cues – Insights from bio‐functionalized substrates publication-title: Journal of Cell Science – volume: 26 start-page: 107 year: 1981 end-page: 115 article-title: Multinucleation and inhibition of cytokinesis in suspended cells: Reversal upon reattachment to a substrate publication-title: Cell – volume: 17 start-page: 117 year: 1979 end-page: 129 article-title: Initial adhesion of human fibroblasts in serum‐free medium: Possible role of secreted fibronectin publication-title: Cell – volume: 9 year: 2018 article-title: Liquid crystal elastomer coatings with programmed response of surface profile publication-title: Nature Communications – volume: 21 start-page: 38 year: 2018 end-page: 59 article-title: Functional polymer surfaces for controlling cell behaviors publication-title: Materials Today – volume: 29 year: 2017 article-title: Light‐responsive hierarchically structured liquid crystal polymer networks for harnessing cell adhesion and migration publication-title: Advanced Materials – volume: 191 start-page: 126 year: 2009 end-page: 135 article-title: Effects of artificial micro‐ and nano‐structured surfaces on cell behaviour publication-title: Annals of Anatomy – Anatomischer Anzeiger – volume: 130 start-page: 259 year: 1988 end-page: 275 article-title: Migratory behavior of cells on embryonic retina basal lamina publication-title: Developmental Biology – volume: 13 year: 2017 article-title: Liquid crystalline networks toward regenerative medicine and tissue repair publication-title: Small – volume: 33 start-page: 5230 year: 2012 end-page: 5246 article-title: Engineering microscale topographies to control the cell‐substrate interface publication-title: Biomaterials – volume: 93 year: 2004 article-title: Comment on “self‐organized periodic photonic structure in a nonchiral liquid crystal” publication-title: Physical Review Letters – volume: 91 year: 2003 article-title: Self‐organized periodic photonic structure in a nonchiral liquid crystal publication-title: Physical Review Letters – year: 2007 – volume: 70 start-page: 12 year: 2004 article-title: Optical gratings formed in thin smectic films frustrated on a single crystalline substrate publication-title: Physical Review E – Statistical Physics, Plasmas, Fluids, Related Interdisciplinary Topics – volume: 25 start-page: 1685 year: 2009 end-page: 1691 article-title: Confined self‐assembly of toric focal conic domains (the effects of confined geometry on the feature size of toric focal conic domains) publication-title: Langmuir – volume: 101 start-page: 17340 year: 2004 end-page: 17344 article-title: Ordered patterns of liquid crystal toroidal defects by microchannel confinement publication-title: Proceedings of the National Academy of Sciences – volume: 88 start-page: 473 year: 1981 end-page: 485 article-title: Role of collagenous matrices in the adhesion and growth of cells publication-title: The Journal of Cell Biology – volume: 17 year: 2017 article-title: Effects of structural variations on the cellular response and mechanical properties of biocompatible, biodegradable, and porous Smectic liquid crystal elastomers publication-title: Macromolecular Bioscience – volume: 22 start-page: 363 year: 2006 end-page: 368 article-title: AFM study of defect‐induced depressions of the smectic‐A/air interface publication-title: Langmuir – volume: 3 start-page: 161 year: 1993 article-title: Immunohistochemical investigation of tracks left by the migration of fibroblasts on titanium surfaces publication-title: Cells & Materials – volume: 33 start-page: 2424 year: 2017 end-page: 2426 article-title: Trainable Weka segmentation: A machine learning tool for microscopy pixel classification publication-title: Bioinformatics – volume: 31 start-page: 6511 year: 2010 end-page: 6518 article-title: The control of stem cell morphology and differentiation by hydrogel surface wrinkles publication-title: Biomaterials – volume: 30 start-page: 453 year: 2015 end-page: 462 article-title: Stimuli‐responsive liquid crystal elastomers for dynamic cell culture publication-title: Journal of Materials Research – volume: 79 year: 2009b article-title: Influence of anchoring strength on focal conic domains in smectic films publication-title: Physical Review E – Statistical, Nonlinear, and Soft Matter Physics – volume: 6 start-page: 990 year: 2018 end-page: 995 article-title: Azobenzene‐based polymers: Emerging applications as cell culture platforms publication-title: Biomaterials Science – volume: 28 start-page: 3944 year: 2007 end-page: 3951 article-title: The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion publication-title: Biomaterials – volume: 347 start-page: 982 year: 2015 end-page: 984 article-title: Voxelated liquid crystal elastomers publication-title: Science – volume: 79 year: 2009a article-title: Influence of phase sequence on focal conic domains in smectic films publication-title: Physical Review E – Statistical, Nonlinear, and Soft Matter Physics – volume: 108 start-page: 635 year: 1990 end-page: 644 article-title: Topographical control of cell behaviour: II publication-title: Multiple Grooved Substrata Development – volume: 28 start-page: 1051 year: 2017 end-page: 1069 article-title: The development of polymeric biomaterials inspired by the extracellular matrix publication-title: Journal of Biomaterials Science. Polymer Edition – volume: 10 start-page: 53 year: 1999 end-page: 60 article-title: Curvature walls and focal conic domains in a lyotropic lamellar phase publication-title: European Physical Journal B – volume: 8 year: 2019 article-title: Liquid crystal‐induced myoblast alignment publication-title: Advanced Healthcare Materials – volume: 36 start-page: 1085 year: 2009 end-page: 1099 article-title: Liquids with conics publication-title: Liquid Crystals – volume: 6 start-page: 866 year: 2007 end-page: 870 article-title: Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals publication-title: Nature Materials – volume: 68 start-page: 223 year: 2016 end-page: 228 article-title: Fibroblast sources: Where can we get them? publication-title: Cytotechnology – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevLett.93.109401 – ident: e_1_2_8_48_1 doi: 10.1126/science.1261019 – ident: e_1_2_8_36_1 doi: 10.1016/j.biomaterials.2007.05.030 – volume: 9 year: 2018 ident: e_1_2_8_6_1 article-title: Liquid crystal elastomer coatings with programmed response of surface profile publication-title: Nature Communications – ident: e_1_2_8_31_1 doi: 10.1080/02678290902814718 – volume: 108 start-page: 635 year: 1990 ident: e_1_2_8_12_1 article-title: Topographical control of cell behaviour: II publication-title: Multiple Grooved Substrata Development – ident: e_1_2_8_26_1 doi: 10.1007/BF00305243 – ident: e_1_2_8_49_1 doi: 10.1038/nmat2029 – ident: e_1_2_8_39_1 doi: 10.1016/j.aanat.2008.05.006 – ident: e_1_2_8_27_1 doi: 10.1080/09205063.2017.1297285 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevLett.91.033901 – ident: e_1_2_8_3_1 doi: 10.1557/jmr.2014.392 – ident: e_1_2_8_8_1 doi: 10.1080/21680396.2013.818515 – ident: e_1_2_8_4_1 doi: 10.1007/978-1-61779-246-5 – ident: e_1_2_8_5_1 doi: 10.1093/bioinformatics/btx180 – ident: e_1_2_8_7_1 doi: 10.1016/0092-8674(81)90038-6 – ident: e_1_2_8_16_1 doi: 10.1016/j.bioactmat.2018.05.005 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.0407925101 – ident: e_1_2_8_45_1 doi: 10.1242/jcs.196162 – ident: e_1_2_8_15_1 doi: 10.1016/j.actbio.2015.11.027 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.8b21638 – ident: e_1_2_8_18_1 doi: 10.1007/s10616-014-9771-7 – ident: e_1_2_8_9_1 doi: 10.1007/s100510050829 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201506002 – ident: e_1_2_8_37_1 doi: 10.1002/smll.201702677 – ident: e_1_2_8_43_1 doi: 10.1007/s10237-011-0325-z – ident: e_1_2_8_38_1 doi: 10.1002/adhm.201801489 – ident: e_1_2_8_51_1 doi: 10.1039/C0SM00747A – ident: e_1_2_8_32_1 doi: 10.1002/adma.201606407 – ident: e_1_2_8_25_1 doi: 10.1016/0012-1606(88)90432-0 – ident: e_1_2_8_34_1 doi: 10.1051/jp2:1994135 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201103791 – ident: e_1_2_8_41_1 doi: 10.1016/j.biomaterials.2012.03.079 – ident: e_1_2_8_20_1 doi: 10.1016/0092-8674(79)90300-3 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevE.79.011707 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevE.79.061701 – ident: e_1_2_8_28_1 doi: 10.1021/la802870z – ident: e_1_2_8_10_1 doi: 10.1016/j.mattod.2017.07.002 – ident: e_1_2_8_46_1 doi: 10.1002/mabi.201600278 – volume: 3 start-page: 161 year: 1993 ident: e_1_2_8_2_1 article-title: Immunohistochemical investigation of tracks left by the migration of fibroblasts on titanium surfaces publication-title: Cells & Materials – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevA.41.2252 – volume-title: Soft matter physics: An introduction year: 2007 ident: e_1_2_8_30_1 – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevE.78.061704 – ident: e_1_2_8_29_1 doi: 10.1083/jcb.88.3.473 – ident: e_1_2_8_14_1 doi: 10.1021/la0525224 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201100821 – ident: e_1_2_8_17_1 doi: 10.1039/C8BM00019K – volume: 70 start-page: 12 year: 2004 ident: e_1_2_8_40_1 article-title: Optical gratings formed in thin smectic films frustrated on a single crystalline substrate publication-title: Physical Review E – Statistical Physics, Plasmas, Fluids, Related Interdisciplinary Topics – ident: e_1_2_8_33_1 doi: 10.1016/j.biomaterials.2006.04.012 – ident: e_1_2_8_24_1 doi: 10.1016/j.biomaterials.2010.05.037 |
SSID | ssj0026052 |
Score | 2.4594188 |
Snippet | Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1223 |
SubjectTerms | Alignment biological cell alignment Biomedical materials Coatings Crystals Elastic anisotropy Elastic properties Elastomers Etching Fabrication Fibroblasts Fibronectin Free surfaces human dermal fibroblast alignment Human performance liquid crystal elastomer substrates MATERIALS SCIENCE Microprinting nanotopography Photopolymerization Polymers Smectic liquid crystals Substrates Tissue engineering Topography |
Title | Cell alignment by smectic liquid crystal elastomer coatings with nanogrooves |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.36896 https://www.ncbi.nlm.nih.gov/pubmed/32034939 https://www.proquest.com/docview/2377825932 https://www.proquest.com/docview/2352657828 https://www.osti.gov/servlets/purl/1597484 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELbQO8GBfQktyEg9gfKKl2zHUlFVFeWAqNSb5WVSFfISeMlDKr-eGScNLaqQ4BbJk8jxeDzf2ONvGNsRzvk6xyBHo7dItXA2LcFhlILOHa1JOeFpH_L4Y354oo9Os9MpN4fuwoz8EPOGG1lGXK_JwK3rd3-Thn5xq6VdqrysiHCbsrUIEn2ayaMIqMezToyAUiWrfLqdhy27V9695o8WHdrVTVjzOnSNvufg3lhgtY-UhZRy8nW5GdzS__yD0PG_f-s-uzuhUr43TqMH7Ba0D9mdK1yFj9iHfWgajqj9LOYPcHfB-xWtlp43598354H79QVCzYYDAvKhW8Ga-85SVnXPabeXt7btzhCo_4D-MTs5eP95_zCdSjGkXuciTyW42msMvNXbOiiMa6V0AnQFwgqfQ1aBtSIPtrRZVWalC1mwdZVBkL4OofDqCVu0XQvPGIcCdBEwMMIP6cznlcMloSASICCwEhL2-lIhxk885VQuozEjw7I0OETGmjhECduZhb-N9Bw3i22RZg2iCqLG9ZRD5AcjKJoqdcK2LxVuJgvujVQFgqcM4W3CXs3NaHt0oGJb6DYkQ8UFUKxM2NNxosy9UJKYf1SVsDdR3X_rnjl6d7wXn57_k_QWuy0p_I_5l9tsMaw38AIx0uBeRlP4BbsPDOc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BcgAOvEtDCxipJ1C2OA8nOZaKaim7PaBW6s3yK1Uhm9DdLFL59cw42dCiCglukTyJHI_H_mY8_gZgh2ttSoFOToK7RZhwrcLcafRScHNHa4o1NxSHnB2JyUlyeJqe9gE3ugvT8UMMATeyDL9ek4FTQHr3N2voVz0fq3Es8kLchjtU09u7VF8G-iiC6v60E32gMI4K0d_Pw5bdKy9f25FGDVrWTWjzOnj1u8_BQ5DrfndJJ9_Gq1aPzc8_KB3__8cewYMemLK9biY9hluufgL3r9AVPoXpvqsqhsD9zKcQMH3JlnNaMA2rzi9W55aZxSWizYo5xORtM3cLZhpFidVLRgFfVqu6OUOs_sMtn8HJwcfj_UnYV2MITSK4CCOnS5Og7x2_L22Mrm0Uae6SwnHFjXBp4ZTiwqpcpUWe5tqmVpVF6mxkSmszE2_AqG5qtwnMZS7JLPpG-KEkNaLQuCpkxAPkCK_YAN6uNSJNT1VOFTMq2ZEsRxKHSCrphyiAnUH4e8fQcbPYFqlWIrAgdlxDaUSmlZwcqjwJYHutcdkb8VJGcYb4KUWEG8CboRnNj85UVO2aFclQfQEUywN43s2UoRdxROQ_cRHAO6_vv3VPHn6Y7fmnF_8k_RruTo5nUzn9dPR5C-5FFA3w6ZjbMGoXK_cSIVOrX3m7-AV2sBEC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BIiE48C6EFjBST6Bsm8RxkmNpWZXSVghRqTfLr1SFbFI2WaTy65lx0tCiCglukTyJHI_H_mY8_gZgPdLalAKdHI67RcgjrcLcafRScHNHa0p0ZCgOeXAodo_43nF6POTm0F2Ynh9iDLiRZfj1mgz8zJYbv0lDv-r5VE0TkRfiJtziYjOnSb3zeWSPIqTuDzvRBQqTuBDD9Txs2bj08pUNadKgYV0HNq9iV7_5zO73FVZbz1lIOSffpstOT83PPxgd__u_HsC9AZayrX4ePYQbrn4Edy-RFT6G_W1XVQxh-4lPIGD6nLVzWi4Nq06_L08tM4tzxJoVc4jIu2buFsw0itKqW0bhXlarujlBpP7DtU_gaPb-y_ZuONRiCA0XkQhjp0vD0fNONkuboGMbxzpyvHCRioxwaeGUioRVuUqLPM21Ta0qi9TZ2JTWZiZZgUnd1O4ZMJc5nln0jPBDPDWi0LgmZMQC5Ait2ADeXChEmoGonOplVLKnWI4lDpFU0g9RAOuj8FnPz3G92CppViKsIG5cQ0lEppMRuVM5D2DtQuFyMOFWxkmG6ClFfBvA67EZjY9OVFTtmiXJUHUBFMsDeNpPlLEXSUzUP0kRwFuv7r91T-69O9jyT8__SfoV3P60M5P7Hw4_rsKdmEIBPhdzDSbdYuleIF7q9EtvFb8AWPMPug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+alignment+by+smectic+liquid+crystal+elastomer+coatings+with+nanogrooves&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Babakhanova%2C+Greta&rft.au=Krieger%2C+Jess&rft.au=Li%2C+Bing-Xiang&rft.au=Turiv%2C+Taras&rft.date=2020-05-01&rft.issn=1552-4965&rft.eissn=1552-4965&rft.volume=108&rft.issue=5&rft.spage=1223&rft_id=info:doi/10.1002%2Fjbm.a.36896&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |