Ghrelin promotes renal cell carcinoma metastasis via Snail activation and is associated with poor prognosis

Ghrelin is an appetite‐regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS‐R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tu...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pathology Vol. 237; no. 1; pp. 50 - 61
Main Authors Lin, Tsung-Chieh, Liu, Yu-Peng, Chan, Yung-Chieh, Su, Chia-Yi, Lin, Yuan-Feng, Hsu, Shih-Lan, Yang, Chung-Shi, Hsiao, Michael
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.09.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ghrelin is an appetite‐regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS‐R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up‐regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786–0, ACHN and A‐498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E‐cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter‐binding activity of Snail. Snail silencing blocked the ghrelin‐mediated effects on E‐cadherin repression and cell migration. Snail–E‐cadherin regulation was mediated by GHS‐R‐triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin‐induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS‐R–PI3K–Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset]. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
AbstractList Ghrelin is an appetite‐regulating molecule that promotes growth hormone ( GH ) release and food intake through growth hormone secretagogue receptor ( GHS ‐R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma ( RCC ) arises. However, whether ghrelin is up‐regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC . In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786–0, ACHN and A‐498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis ( IPA ) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E‐cadherin . We further observed that Ghrelin increased the expression, nuclear translocation and promoter‐binding activity of Snail. Snail silencing blocked the ghrelin‐mediated effects on E‐cadherin repression and cell migration. Snail–E‐cadherin regulation was mediated by GHS ‐R‐triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA , decreased ghrelin‐induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS ‐R– PI3K –Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas ( TCGA ) [ KIRC gene expression ( IlluminaHiSeq ) dataset]. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Ghrelin is an appetite-regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS-R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up-regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786-0, ACHN and A-498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E-cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter-binding activity of Snail. Snail silencing blocked the ghrelin-mediated effects on E-cadherin repression and cell migration. Snail-E-cadherin regulation was mediated by GHS-R-triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin-induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS-R-PI3K-Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset]. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Ghrelin is an appetite-regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS-R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up-regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786-0, ACHN and A-498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E-cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter-binding activity of Snail. Snail silencing blocked the ghrelin-mediated effects on E-cadherin repression and cell migration. Snail-E-cadherin regulation was mediated by GHS-R-triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin-induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS-R-PI3K-Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset].Ghrelin is an appetite-regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS-R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up-regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786-0, ACHN and A-498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E-cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter-binding activity of Snail. Snail silencing blocked the ghrelin-mediated effects on E-cadherin repression and cell migration. Snail-E-cadherin regulation was mediated by GHS-R-triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin-induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS-R-PI3K-Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset].
Ghrelin is an appetite-regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS-R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up-regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786-0, ACHN and A-498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E-cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter-binding activity of Snail. Snail silencing blocked the ghrelin-mediated effects on E-cadherin repression and cell migration. Snail-E-cadherin regulation was mediated by GHS-R-triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin-induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS-R-PI3K-Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset].
Author Hsu, Shih-Lan
Lin, Tsung-Chieh
Hsiao, Michael
Liu, Yu-Peng
Chan, Yung-Chieh
Su, Chia-Yi
Yang, Chung-Shi
Lin, Yuan-Feng
Author_xml – sequence: 1
  givenname: Tsung-Chieh
  surname: Lin
  fullname: Lin, Tsung-Chieh
  organization: Genomics Research Centre, Academia Sinica, Taipei, Taiwan
– sequence: 2
  givenname: Yu-Peng
  surname: Liu
  fullname: Liu, Yu-Peng
  organization: Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
– sequence: 3
  givenname: Yung-Chieh
  surname: Chan
  fullname: Chan, Yung-Chieh
  organization: Genomics Research Centre, Academia Sinica, Taipei, Taiwan
– sequence: 4
  givenname: Chia-Yi
  surname: Su
  fullname: Su, Chia-Yi
  organization: Genomics Research Centre, Academia Sinica, Taipei, Taiwan
– sequence: 5
  givenname: Yuan-Feng
  surname: Lin
  fullname: Lin, Yuan-Feng
  organization: Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
– sequence: 6
  givenname: Shih-Lan
  surname: Hsu
  fullname: Hsu, Shih-Lan
  email: mhsiao@gate.sinica.edu.tw
  organization: Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
– sequence: 7
  givenname: Chung-Shi
  surname: Yang
  fullname: Yang, Chung-Shi
  email: mhsiao@gate.sinica.edu.tw
  organization: Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
– sequence: 8
  givenname: Michael
  surname: Hsiao
  fullname: Hsiao, Michael
  email: mhsiao@gate.sinica.edu.tw
  organization: Genomics Research Centre, Academia Sinica, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25925728$$D View this record in MEDLINE/PubMed
BookMark eNp1kV9LHDEUxUOx1FX70C9QAn3Rh9EkM0lmHkXqWpBWqLKlL-FOJtONziTbJOufb2-mu_ZBWggJl_s755Jz99CO884g9IGSY0oIO1lBWh5XnLM3aEZJI4qmbsQOmuUeK8qKyl20F-MtIaRpOH-HdhlvGJesnqG7-TKYwTq8Cn70yUQcjIMBazPkC4K2zo-AR5Mg5mMjvreAvzuwAwad7D0k6x0G1-Hcgxi9tpBMhx9sWuKV92Fy_uV8lh6gtz0M0bzfvvvo5vzz9dlFcflt_uXs9LLQlaCsaCVv-wqINlSKrmKkZIIa0XV9XVd9z3SjCREcetoYwqsul9DzjsmqJW1Tk3IfHW588-TfaxOTGm2cPgTO-HVUVBImOKV1ndFPr9Bbvw45gA1FapFHZerjllq3o-nUKtgRwpN6iTEDJxtABx9jML3SNv1JJoWclKJETYtS06LUtKisOHqleDH9F7t1f7CDefo_qK5Ory-2imKjsDGZx78KCHdKyFJytfg6V_RnfS6vFj_UonwGhkuylA
CitedBy_id crossref_primary_10_1007_s00018_015_2048_2
crossref_primary_10_3892_ol_2021_13054
crossref_primary_10_1016_j_bbcan_2017_02_002
crossref_primary_10_1186_s40880_016_0178_z
crossref_primary_10_3390_biom12040517
crossref_primary_10_1158_1541_7786_MCR_16_0288
crossref_primary_10_1186_s12876_022_02510_8
crossref_primary_10_1038_s41388_018_0413_y
crossref_primary_10_1155_2021_5576808
crossref_primary_10_1186_s13062_021_00293_8
crossref_primary_10_18632_oncotarget_7681
crossref_primary_10_1016_j_bbrc_2018_03_031
crossref_primary_10_1590_2359_3997000000290
crossref_primary_10_1186_s13018_024_05261_2
crossref_primary_10_1016_j_arr_2023_102115
crossref_primary_10_1186_s12885_016_2237_x
crossref_primary_10_18632_oncotarget_14552
crossref_primary_10_1096_fj_202002159R
crossref_primary_10_1177_03936155221110247
crossref_primary_10_3892_mmr_2021_12302
crossref_primary_10_1016_j_bbcan_2022_188715
crossref_primary_10_3892_ol_2019_10821
crossref_primary_10_3390_ijms221910571
crossref_primary_10_1016_j_ajpath_2024_07_003
crossref_primary_10_1038_ctg_2016_64
crossref_primary_10_3390_cancers14010111
crossref_primary_10_1097_MD_0000000000020635
crossref_primary_10_1111_cen_13725
crossref_primary_10_1016_j_jbc_2021_101111
crossref_primary_10_3389_fonc_2019_01014
crossref_primary_10_3389_fcell_2021_595914
crossref_primary_10_1007_s10528_020_10022_x
crossref_primary_10_1038_srep20475
crossref_primary_10_3390_cancers11030303
crossref_primary_10_1111_neup_12315
crossref_primary_10_3892_etm_2019_8398
crossref_primary_10_1007_s13577_019_00245_5
crossref_primary_10_3390_biomedicines11123276
Cites_doi 10.1016/j.peptides.2011.11.001
10.1074/jbc.M600223200
10.1055/s-0029-1233462
10.1016/j.regpep.2004.08.031
10.1242/dev.00238
10.1158/0008-5472.CAN-07-2318
10.1016/j.ccr.2007.11.004
10.1158/1078-0432.CCR-05-2250
10.1016/j.ceb.2003.11.001
10.1210/jc.2003-032118
10.1016/S0022-5347(05)65640-6
10.1007/s11373-007-9230-y
10.1002/jcb.23209
10.1038/nrm1490
10.1158/0008-5472.CAN-09-4481
10.1016/S0014-5793(00)02308-5
10.1158/0008-5472.CAN-07-2938
10.1038/nrc1276
10.1038/nrm757
10.1016/0006-291X(90)91263-R
10.1158/0008-5472.CAN-07-0575
10.1158/0008-5472.CAN-04-3480
10.1056/NEJM199609193351207
10.1016/S1471-4892(02)00220-5
10.1073/pnas.1209590109
10.1016/S0022-5347(01)67725-5
10.1007/s11864-003-0037-4
10.1016/j.cellsig.2004.10.011
10.1038/nrc822
10.1002/path.2365
10.1038/32433
10.1038/35000025
10.1038/ncb1173
10.1016/j.bbrc.2003.08.024
10.1038/35038090
10.1038/sj.bjc.6605530
10.1111/j.1464-410X.2007.07238.x
10.1016/S0140-6736(09)60229-4
10.1371/journal.pone.0016654
10.1373/clinchem.2004.032482
10.1007/s10585-008-9174-2
10.1530/EJE-09-0073
10.1006/bbrc.2001.4518
10.1038/35086018
10.1083/jcb.200207165
10.1016/S0167-0115(01)00243-9
10.1126/science.1196154
10.1038/emboj.2008.178
10.1038/35096067
10.1245/s10434-012-2347-x
10.1158/1541-7786.MCR-12-0160
10.1158/0008-5472.CAN-07-2559
10.1038/35000034
10.1016/S0378-1119(00)00371-1
ContentType Journal Article
Copyright Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Copyright © 2015 Pathological Society of Great Britain and Ireland
Copyright_xml – notice: Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
– notice: Copyright © 2015 Pathological Society of Great Britain and Ireland
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1002/path.4552
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9896
EndPage 61
ExternalDocumentID 3770947621
25925728
10_1002_path_4552
PATH4552
ark_67375_WNG_1Z8F7PWX_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1KJ
1L6
1OB
1OC
1ZS
29L
31~
33P
3O-
3SF
3UE
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GSXLS
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M68
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
YQI
YQJ
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4612-b75bf4a0ce176d4203261e6ddf884ff2c9c0065af19e054d9c0af5d274b0b9803
IEDL.DBID DR2
ISSN 0022-3417
1096-9896
IngestDate Fri Jul 11 14:05:23 EDT 2025
Fri Jul 25 12:07:24 EDT 2025
Mon Jul 21 06:00:34 EDT 2025
Tue Jul 01 04:21:13 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Wed Jan 22 17:04:33 EST 2025
Wed Oct 30 09:52:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords migration
ghrelin
renal cell carcinoma
Snail
metastasis
E-cadherin
Language English
License Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4612-b75bf4a0ce176d4203261e6ddf884ff2c9c0065af19e054d9c0af5d274b0b9803
Notes ark:/67375/WNG-1Z8F7PWX-W
istex:0271617852D2D5AB2E414650516D0AB2D1438A18
Appendix S1 Supplementary materials and methodsExpression profile of ghrelin in matched renal clear cell carcinomas and adjacent normal tissue. Ghrelin levels in 48 matched renal clear cell carcinomas and adjacent normal tissue were compared. Raw data were retrieved from microarray dataset KIRC gene expression (IlluminaHiSeq); T, tumour; N, normal. Relative difference in ghrelin expression was obtained by GhrelinT - GhrelinN; differences above ± 0.5 were considered as threshold and are shownRelative expression of ghrelin in RCC cell lines. Expression of the molecules indicated was evaluated by western blot in cell lines 769-P, 786-0, A-498, A-704 and ACHNRCC cell proliferation is not affected by ghrelin: 1 × 104 cells of (A-C) 786-0, ACHN and A-498, with 0, 90, 180 and 360 nm ghrelin, and (D, E) 769-P and 786-0 cells with ghrelin knockdown were seeded in cell culture plates. Cell numbers were counted at time points of 48 and 96 h. NS, non-silence control; sh4 and sh6, ghrelin knockdown clonesGhrelin promotes RCC cell migration in vitro. Cells were treated with 0, 90, 180 and 360 nm ghrelin for 48 h. Level of cell migration was evaluated by wound-healing assay, and representative images of cell migration are shownGhrelin treatment-mediated cell migration is reduced upon ghrelin knockdown. The indicated 786-0 cells were treated with 360 nm ghrelin. Cell migration was evaluated by Transwell assay (A, B) and wound-healing assay (C, D)Bioinformatics analysis of gene expression profile identifies an association between ghrelin, EMT and Snail signalling. Representative network showing the regulation of ghrelin in relation to the knowledge-based interaction molecules of Snail. The network was built based on the Snail interactome in the IPA database overlaid with the microarray data from ghrelin treatment of 786-0 cells. The intensity of the node colour indicates the degree of (red) up- and (green) down-regulation following ghrelin treatment in 786-0 cells; symbols are illustrated in the table (right)Ghrelin induces EMT. Cells were treated with 180 nm ghrelin for 48 h prior to immunofluorescence staining. The expression and distribution of N-cadherin, MMP9 and Twist are shown. Nuclear twist and nuclei (Hoechst-stained) are indicated by arrows
ArticleID:PATH4552
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25925728
PQID 1702086006
PQPubID 1006392
PageCount 12
ParticipantIDs proquest_miscellaneous_1702651188
proquest_journals_1702086006
pubmed_primary_25925728
crossref_citationtrail_10_1002_path_4552
crossref_primary_10_1002_path_4552
wiley_primary_10_1002_path_4552_PATH4552
istex_primary_ark_67375_WNG_1Z8F7PWX_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Bognor Regis
PublicationTitle The Journal of pathology
PublicationTitleAlternate J. Pathol
PublicationYear 2015
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Ueberberg B, Unger N, Saeger W, et al. Expression of ghrelin and its receptor in human tissues. Horm Metab Res 2009; 41: 814-821.
Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76-83.
Hu CT, Wu JR, Chang TY, et al. The transcriptional factor Snail simultaneously triggers cell cycle arrest and migration of human hepatoma HepG2. J Biomed Sci 2008; 15: 343-355.
Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 2004; 50: 1511-1525.
Wu Y, Zhou BP. TNFα/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer 2010; 102: 639-644.
Cardiff RD. Epithelial to mesenchymal transition tumors: fallacious or Snail's pace? Clin Cancer Res 2005; 11: 8534-8537.
Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3: 155-166.
Aybar MJ, Nieto MA, Mayor R. Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 2003; 130: 483-494.
Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 2004; 16: 14-23.
Lehembre F, Yilmaz M, Wicki A, et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J 2008; 27: 2603-2615.
Park S, Jiang H, Zhang H, et al. Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. Proc Natl Acad Sci USA 2012; 109: 19003-19008.
Zhou BP, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931-940.
Mori K, Yoshimoto A, Takaya K, et al. Kidney produces a novel acylated peptide, ghrelin. FEBS Lett 2000; 486: 213-216.
Toshinai K, Mondal MS, Nakazato M, et al. Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 2001; 281: 1220-1225.
Lo HW, Hsu SC, Xia W, et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 2007; 67: 9066-9076.
Nagase Y, Takata K, Moriyama N, et al. Immunohistochemical localization of glucose transporters in human renal cell carcinoma. J Urol 1995; 153: 798-801.
Olson MF, Sahai E. The actin cytoskeleton in cancer cell motility. Clin Exp Metast 2009; 26: 273-287.
Inui A. Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nat Rev Neurosci 2001; 2: 551-560.
Tsolakis AV, Portela-Gomes GM, Stridsberg M, et al. Malignant gastric ghrelinoma with hyperghrelinemia. J Clin Endocrinol Metab 2004; 89: 3739-3744.
Dixit VD, Weeraratna AT, Yang H, et al. Ghrelin and the growth hormone secretagogue receptor constitute a novel autocrine pathway in astrocytoma motility. J Biol Chem 2006; 281: 16681-16690.
Scheid MP, Woodgett JR. PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2001; 2: 760-768.
Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet 2009; 373: 1119-1132.
Ho MY, Tang SJ, Chuang MJ, et al. TNFα induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Mol Cancer Res 2012; 10: 1109-1119.
Wang L, Chen Q, Li G, et al. Ghrelin stimulates angiogenesis via GHSR1a-dependent MEK/ERK and PI3K/Akt signal pathways in rat cardiac microvascular endothelial cells. Peptides 2012; 33: 92-100.
Kojima M, Kangawa K. Ghrelin, an orexigenic signaling molecule from the gastrointestinal tract. Curr Opin Pharmacol 2002; 2: 665-668.
Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84-89.
Dornonville de la Cour C, Bjorkqvist M, Sandvik AK, et al. A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control. Regul Pept 2001; 99: 141-150.
Yang Z, Rayala S, Nguyen D, et al. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res 2005; 65: 3179-3184.
Luo WR, Li SY, Cai LM, et al. High expression of nuclear Snail, but not cytoplasmic staining, predicts poor survival in nasopharyngeal carcinoma. Ann Surg Oncol 2012; 19: 2971-2979.
Lidgren A, Bergh A, Grankvist K, et al. Glucose transporter-1 expression in renal cell carcinoma and its correlation with hypoxia inducible factor-1α. BJU Int 2008; 101: 480-484.
Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 2003; 63: 2172-2178.
Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med 1996; 335: 865-875.
Usami Y, Satake S, Nakayama F, et al. Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol 2008; 215: 330-339.
Onder TT, Gupta PB, Mani SA, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645-3654.
Kageyama H, Funahashi H, Hirayama M, et al. Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept 2005; 126: 67-71.
Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004; 4: 118-132.
Acevedo VD, Gangula RD, Freeman KW, et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 2007; 12: 559-571.
Du C, Zhang C, Hassan S, et al. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 2010; 70: 7810-7819.
Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 2004; 5: 816-826.
Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol 2002; 159: 1029-1037.
Duxbury MS, Waseem T, Ito H, et al. Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness. Biochem Biophys Res Commun 2003; 309: 464-468.
Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392: 190-193.
Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 2000; 257: 1-12.
Barnett BP, Hwang Y, Taylor MS, et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 2010; 330: 1689-1692.
De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17: 535-547.
Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442-454.
Campbell SC, Flanigan RC, Clark JI. Nephrectomy in metastatic renal cell carcinoma. Curr Treat Options Oncol 2003; 4: 363-372.
Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000; 407: 908-913.
Walter T, Chardon L, Hervieu V, et al. Major hyperghrelinemia in advanced well-differentiated neuroendocrine carcinomas: report of three cases. Eur J Endocrinol 2009; 161: 639-645.
Graham TR, Zhau HE, Odero-Marah VA, et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2008; 68: 2479-2488.
Olmeda D, Moreno-Bueno G, Flores JM, et al. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res 2007; 67: 11721-11731.
Lin TC, Lee TC, Hsu SL, et al. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast. PLoS One 2011; 6: e16654.*Cited in Supplementary materials and methods
Chen JH, Huang SM, Chen CC, et al. Ghrelin induces cell migration through GHS-R, CaMKII, AMPK, and NF-κB signaling pathway in glioma cells. J Cell Biochem 2011; 112: 2931-2941.
Yamamoto T, Seino Y, Fukumoto H, et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990; 170: 223-230.
Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol 2001; 166: 1611-1623.
2009; 41
2000; 257
2010; 102
2004; 4
2004; 6
2002; 159
2004; 5
2012; 19
2005; 65
2000; 2
2008; 101
2011; 112
2012; 10
1998; 392
2000; 407
2008; 27
1990; 170
2003; 4
2008; 68
2009; 161
2000; 486
2006; 281
1996; 335
2001; 99
2010; 70
2007; 67
2001; 166
2001; 281
2004; 89
2002; 2
2008; 15
2002; 3
2009; 373
1995; 153
2011; 6
2007; 12
2012; 33
2009; 26
2012; 109
2003; 130
2003; 309
2004; 50
2004; 16
2005; 126
2010; 330
2008; 215
2001; 2
2005; 17
2003; 63
2005; 11
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
Grille SJ (e_1_2_7_49_1) 2003; 63
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – reference: Dornonville de la Cour C, Bjorkqvist M, Sandvik AK, et al. A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control. Regul Pept 2001; 99: 141-150.
– reference: Wang L, Chen Q, Li G, et al. Ghrelin stimulates angiogenesis via GHSR1a-dependent MEK/ERK and PI3K/Akt signal pathways in rat cardiac microvascular endothelial cells. Peptides 2012; 33: 92-100.
– reference: Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 2004; 16: 14-23.
– reference: Chen JH, Huang SM, Chen CC, et al. Ghrelin induces cell migration through GHS-R, CaMKII, AMPK, and NF-κB signaling pathway in glioma cells. J Cell Biochem 2011; 112: 2931-2941.
– reference: Yamamoto T, Seino Y, Fukumoto H, et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990; 170: 223-230.
– reference: Mori K, Yoshimoto A, Takaya K, et al. Kidney produces a novel acylated peptide, ghrelin. FEBS Lett 2000; 486: 213-216.
– reference: Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392: 190-193.
– reference: Yang Z, Rayala S, Nguyen D, et al. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res 2005; 65: 3179-3184.
– reference: Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 2000; 257: 1-12.
– reference: Olson MF, Sahai E. The actin cytoskeleton in cancer cell motility. Clin Exp Metast 2009; 26: 273-287.
– reference: Luo WR, Li SY, Cai LM, et al. High expression of nuclear Snail, but not cytoplasmic staining, predicts poor survival in nasopharyngeal carcinoma. Ann Surg Oncol 2012; 19: 2971-2979.
– reference: Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84-89.
– reference: Aybar MJ, Nieto MA, Mayor R. Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 2003; 130: 483-494.
– reference: Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet 2009; 373: 1119-1132.
– reference: Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76-83.
– reference: Tsolakis AV, Portela-Gomes GM, Stridsberg M, et al. Malignant gastric ghrelinoma with hyperghrelinemia. J Clin Endocrinol Metab 2004; 89: 3739-3744.
– reference: Nagase Y, Takata K, Moriyama N, et al. Immunohistochemical localization of glucose transporters in human renal cell carcinoma. J Urol 1995; 153: 798-801.
– reference: Lehembre F, Yilmaz M, Wicki A, et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J 2008; 27: 2603-2615.
– reference: Scheid MP, Woodgett JR. PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2001; 2: 760-768.
– reference: Toshinai K, Mondal MS, Nakazato M, et al. Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 2001; 281: 1220-1225.
– reference: Acevedo VD, Gangula RD, Freeman KW, et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 2007; 12: 559-571.
– reference: Cardiff RD. Epithelial to mesenchymal transition tumors: fallacious or Snail's pace? Clin Cancer Res 2005; 11: 8534-8537.
– reference: Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 2004; 5: 816-826.
– reference: Inui A. Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nat Rev Neurosci 2001; 2: 551-560.
– reference: Kageyama H, Funahashi H, Hirayama M, et al. Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept 2005; 126: 67-71.
– reference: Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3: 155-166.
– reference: Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol 2002; 159: 1029-1037.
– reference: Lo HW, Hsu SC, Xia W, et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 2007; 67: 9066-9076.
– reference: De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17: 535-547.
– reference: Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004; 4: 118-132.
– reference: Wu Y, Zhou BP. TNFα/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer 2010; 102: 639-644.
– reference: Usami Y, Satake S, Nakayama F, et al. Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol 2008; 215: 330-339.
– reference: Zhou BP, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931-940.
– reference: Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med 1996; 335: 865-875.
– reference: Barnett BP, Hwang Y, Taylor MS, et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 2010; 330: 1689-1692.
– reference: *Lin TC, Lee TC, Hsu SL, et al. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast. PLoS One 2011; 6: e16654.*Cited in Supplementary materials and methods
– reference: Campbell SC, Flanigan RC, Clark JI. Nephrectomy in metastatic renal cell carcinoma. Curr Treat Options Oncol 2003; 4: 363-372.
– reference: Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442-454.
– reference: Du C, Zhang C, Hassan S, et al. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 2010; 70: 7810-7819.
– reference: Graham TR, Zhau HE, Odero-Marah VA, et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2008; 68: 2479-2488.
– reference: Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000; 407: 908-913.
– reference: Onder TT, Gupta PB, Mani SA, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645-3654.
– reference: Grille SJ, Bellacosa A, Upson J, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 2003; 63: 2172-2178.
– reference: Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 2004; 50: 1511-1525.
– reference: Duxbury MS, Waseem T, Ito H, et al. Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness. Biochem Biophys Res Commun 2003; 309: 464-468.
– reference: Hu CT, Wu JR, Chang TY, et al. The transcriptional factor Snail simultaneously triggers cell cycle arrest and migration of human hepatoma HepG2. J Biomed Sci 2008; 15: 343-355.
– reference: Ueberberg B, Unger N, Saeger W, et al. Expression of ghrelin and its receptor in human tissues. Horm Metab Res 2009; 41: 814-821.
– reference: Park S, Jiang H, Zhang H, et al. Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. Proc Natl Acad Sci USA 2012; 109: 19003-19008.
– reference: Ho MY, Tang SJ, Chuang MJ, et al. TNFα induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Mol Cancer Res 2012; 10: 1109-1119.
– reference: Lidgren A, Bergh A, Grankvist K, et al. Glucose transporter-1 expression in renal cell carcinoma and its correlation with hypoxia inducible factor-1α. BJU Int 2008; 101: 480-484.
– reference: Kojima M, Kangawa K. Ghrelin, an orexigenic signaling molecule from the gastrointestinal tract. Curr Opin Pharmacol 2002; 2: 665-668.
– reference: Dixit VD, Weeraratna AT, Yang H, et al. Ghrelin and the growth hormone secretagogue receptor constitute a novel autocrine pathway in astrocytoma motility. J Biol Chem 2006; 281: 16681-16690.
– reference: Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol 2001; 166: 1611-1623.
– reference: Walter T, Chardon L, Hervieu V, et al. Major hyperghrelinemia in advanced well-differentiated neuroendocrine carcinomas: report of three cases. Eur J Endocrinol 2009; 161: 639-645.
– reference: Olmeda D, Moreno-Bueno G, Flores JM, et al. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res 2007; 67: 11721-11731.
– volume: 11
  start-page: 8534
  year: 2005
  end-page: 8537
  article-title: Epithelial to mesenchymal transition tumors: fallacious or Snail's pace?
  publication-title: Clin Cancer Res
– volume: 99
  start-page: 141
  year: 2001
  end-page: 150
  article-title: A‐like cells in the rat stomach contain ghrelin and do not operate under gastrin control
  publication-title: Regul Pept
– volume: 89
  start-page: 3739
  year: 2004
  end-page: 3744
  article-title: Malignant gastric ghrelinoma with hyperghrelinemia
  publication-title: J Clin Endocrinol Metab
– volume: 309
  start-page: 464
  year: 2003
  end-page: 468
  article-title: Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness
  publication-title: Biochem Biophys Res Commun
– volume: 63
  start-page: 2172
  year: 2003
  end-page: 2178
  article-title: The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines
  publication-title: Cancer Res
– volume: 68
  start-page: 2479
  year: 2008
  end-page: 2488
  article-title: Insulin‐like growth factor‐I‐dependent up‐regulation of ZEB1 drives epithelial‐to‐mesenchymal transition in human prostate cancer cells
  publication-title: Cancer Res
– volume: 70
  start-page: 7810
  year: 2010
  end-page: 7819
  article-title: Protein kinase D1 suppresses epithelial‐to‐mesenchymal transition through phosphorylation of snail
  publication-title: Cancer Res
– volume: 41
  start-page: 814
  year: 2009
  end-page: 821
  article-title: Expression of ghrelin and its receptor in human tissues
  publication-title: Horm Metab Res
– volume: 50
  start-page: 1511
  year: 2004
  end-page: 1525
  article-title: Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin
  publication-title: Clin Chem
– volume: 109
  start-page: 19003
  year: 2012
  end-page: 19008
  article-title: Modification of ghrelin receptor signaling by somatostatin receptor‐5 regulates insulin release
  publication-title: Proc Natl Acad Sci USA
– volume: 170
  start-page: 223
  year: 1990
  end-page: 230
  article-title: Over‐expression of facilitative glucose transporter genes in human cancer
  publication-title: Biochem Biophys Res Commun
– volume: 335
  start-page: 865
  year: 1996
  end-page: 875
  article-title: Renal‐cell carcinoma
  publication-title: N Engl J Med
– volume: 67
  start-page: 11721
  year: 2007
  end-page: 11731
  article-title: SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA‐MB‐231 cells
  publication-title: Cancer Res
– volume: 161
  start-page: 639
  year: 2009
  end-page: 645
  article-title: Major hyperghrelinemia in advanced well‐differentiated neuroendocrine carcinomas: report of three cases
  publication-title: Eur J Endocrinol
– volume: 130
  start-page: 483
  year: 2003
  end-page: 494
  article-title: Snail precedes Slug in the genetic cascade required for the specification and migration of the neural crest
  publication-title: Development
– volume: 6
  start-page: 931
  year: 2004
  end-page: 940
  article-title: Dual regulation of Snail by GSK‐3β‐mediated phosphorylation in control of epithelial–mesenchymal transition
  publication-title: Nat Cell Biol
– volume: 126
  start-page: 67
  year: 2005
  end-page: 71
  article-title: Morphological analysis of ghrelin and its receptor distribution in the rat pancreas
  publication-title: Regul Pept
– volume: 68
  start-page: 3645
  year: 2008
  end-page: 3654
  article-title: Loss of E‐cadherin promotes metastasis via multiple downstream transcriptional pathways
  publication-title: Cancer Res
– volume: 19
  start-page: 2971
  year: 2012
  end-page: 2979
  article-title: High expression of nuclear Snail, but not cytoplasmic staining, predicts poor survival in nasopharyngeal carcinoma
  publication-title: Ann Surg Oncol
– volume: 166
  start-page: 1611
  year: 2001
  end-page: 1623
  article-title: The changing natural history of renal cell carcinoma
  publication-title: J Urol
– volume: 17
  start-page: 535
  year: 2005
  end-page: 547
  article-title: Unraveling signalling cascades for the Snail family of transcription factors
  publication-title: Cell Signal
– volume: 67
  start-page: 9066
  year: 2007
  end-page: 9076
  article-title: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up‐regulation of TWIST gene expression
  publication-title: Cancer Res
– volume: 6
  start-page: e16654
  year: 2011
  article-title: The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast
  publication-title: PLoS One
– volume: 26
  start-page: 273
  year: 2009
  end-page: 287
  article-title: The actin cytoskeleton in cancer cell motility
  publication-title: Clin Exp Metast
– volume: 330
  start-page: 1689
  year: 2010
  end-page: 1692
  article-title: Glucose and weight control in mice with a designed ghrelin ‐acyltransferase inhibitor
  publication-title: Science
– volume: 2
  start-page: 76
  year: 2000
  end-page: 83
  article-title: The transcription factor snail controls epithelial–mesenchymal transitions by repressing E‐cadherin expression
  publication-title: Nat Cell Biol
– volume: 12
  start-page: 559
  year: 2007
  end-page: 571
  article-title: Inducible FGFR‐1 activation leads to irreversible prostate adenocarcinoma and an epithelial‐to‐mesenchymal transition
  publication-title: Cancer Cell
– volume: 373
  start-page: 1119
  year: 2009
  end-page: 1132
  article-title: Renal cell carcinoma
  publication-title: Lancet
– volume: 112
  start-page: 2931
  year: 2011
  end-page: 2941
  article-title: Ghrelin induces cell migration through GHS‐R, CaMKII, AMPK, and NF‐κB signaling pathway in glioma cells
  publication-title: J Cell Biochem
– volume: 407
  start-page: 908
  year: 2000
  end-page: 913
  article-title: Ghrelin induces adiposity in rodents
  publication-title: Nature
– volume: 3
  start-page: 155
  year: 2002
  end-page: 166
  article-title: The snail superfamily of zinc‐finger transcription factors
  publication-title: Nat Rev Mol Cell Biol
– volume: 153
  start-page: 798
  year: 1995
  end-page: 801
  article-title: Immunohistochemical localization of glucose transporters in human renal cell carcinoma
  publication-title: J Urol
– volume: 2
  start-page: 84
  year: 2000
  end-page: 89
  article-title: The transcription factor snail is a repressor of E‐cadherin gene expression in epithelial tumour cells
  publication-title: Nat Cell Biol
– volume: 10
  start-page: 1109
  year: 2012
  end-page: 1119
  article-title: TNFα induces epithelial–mesenchymal transition of renal cell carcinoma cells via a GSK3β‐dependent mechanism
  publication-title: Mol Cancer Res
– volume: 2
  start-page: 551
  year: 2001
  end-page: 560
  article-title: Ghrelin: an orexigenic and somatotrophic signal from the stomach
  publication-title: Nat Rev Neurosci
– volume: 5
  start-page: 816
  year: 2004
  end-page: 826
  article-title: Integrin signalling during tumour progression
  publication-title: Nat Rev Mol Cell Biol
– volume: 392
  start-page: 190
  year: 1998
  end-page: 193
  article-title: A causal role for E‐cadherin in the transition from adenoma to carcinoma
  publication-title: Nature
– volume: 4
  start-page: 118
  year: 2004
  end-page: 132
  article-title: Cell adhesion and signalling by cadherins and Ig‐CAMs in cancer
  publication-title: Nat Rev Cancer
– volume: 27
  start-page: 2603
  year: 2008
  end-page: 2615
  article-title: NCAM‐induced focal adhesion assembly: a functional switch upon loss of E‐cadherin
  publication-title: EMBO J
– volume: 2
  start-page: 665
  year: 2002
  end-page: 668
  article-title: Ghrelin, an orexigenic signaling molecule from the gastrointestinal tract
  publication-title: Curr Opin Pharmacol
– volume: 15
  start-page: 343
  year: 2008
  end-page: 355
  article-title: The transcriptional factor Snail simultaneously triggers cell cycle arrest and migration of human hepatoma HepG2
  publication-title: J Biomed Sci
– volume: 16
  start-page: 14
  year: 2004
  end-page: 23
  article-title: Prespecification and plasticity: shifting mechanisms of cell migration
  publication-title: Curr Opin Cell Biol
– volume: 486
  start-page: 213
  year: 2000
  end-page: 216
  article-title: Kidney produces a novel acylated peptide, ghrelin
  publication-title: FEBS Lett
– volume: 101
  start-page: 480
  year: 2008
  end-page: 484
  article-title: Glucose transporter‐1 expression in renal cell carcinoma and its correlation with hypoxia inducible factor‐1α
  publication-title: BJU Int
– volume: 65
  start-page: 3179
  year: 2005
  end-page: 3184
  article-title: Pak1 phosphorylation of snail, a master regulator of epithelial‐to‐mesenchyme transition, modulates snail's subcellular localization and functions
  publication-title: Cancer Res
– volume: 215
  start-page: 330
  year: 2008
  end-page: 339
  article-title: Snail‐associated epithelial–mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression
  publication-title: J Pathol
– volume: 4
  start-page: 363
  year: 2003
  end-page: 372
  article-title: Nephrectomy in metastatic renal cell carcinoma
  publication-title: Curr Treat Options Oncol
– volume: 2
  start-page: 442
  year: 2002
  end-page: 454
  article-title: Epithelial–mesenchymal transitions in tumour progression
  publication-title: Nat Rev Cancer
– volume: 33
  start-page: 92
  year: 2012
  end-page: 100
  article-title: Ghrelin stimulates angiogenesis via GHSR1a‐dependent MEK/ERK and PI3K/Akt signal pathways in rat cardiac microvascular endothelial cells
  publication-title: Peptides
– volume: 102
  start-page: 639
  year: 2010
  end-page: 644
  article-title: TNFα/NF‐κB/Snail pathway in cancer cell migration and invasion
  publication-title: Br J Cancer
– volume: 281
  start-page: 16681
  year: 2006
  end-page: 16690
  article-title: Ghrelin and the growth hormone secretagogue receptor constitute a novel autocrine pathway in astrocytoma motility
  publication-title: J Biol Chem
– volume: 2
  start-page: 760
  year: 2001
  end-page: 768
  article-title: PKB/AKT: functional insights from genetic models
  publication-title: Nat Rev Mol Cell Biol
– volume: 281
  start-page: 1220
  year: 2001
  end-page: 1225
  article-title: Upregulation of Ghrelin expression in the stomach upon fasting, insulin‐induced hypoglycemia, and leptin administration
  publication-title: Biochem Biophys Res Commun
– volume: 257
  start-page: 1
  year: 2000
  end-page: 12
  article-title: Snail/slug family of repressors: slowly going into the fast lane of development and cancer
  publication-title: Gene
– volume: 159
  start-page: 1029
  year: 2002
  end-page: 1037
  article-title: Ghrelin and des‐acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3‐kinase/AKT
  publication-title: J Cell Biol
– ident: e_1_2_7_54_1
  doi: 10.1016/j.peptides.2011.11.001
– ident: e_1_2_7_14_1
  doi: 10.1074/jbc.M600223200
– ident: e_1_2_7_11_1
  doi: 10.1055/s-0029-1233462
– ident: e_1_2_7_10_1
  doi: 10.1016/j.regpep.2004.08.031
– ident: e_1_2_7_44_1
  doi: 10.1242/dev.00238
– ident: e_1_2_7_47_1
  doi: 10.1158/0008-5472.CAN-07-2318
– volume: 63
  start-page: 2172
  year: 2003
  ident: e_1_2_7_49_1
  article-title: The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines
  publication-title: Cancer Res
– ident: e_1_2_7_39_1
  doi: 10.1016/j.ccr.2007.11.004
– ident: e_1_2_7_43_1
  doi: 10.1158/1078-0432.CCR-05-2250
– ident: e_1_2_7_31_1
  doi: 10.1016/j.ceb.2003.11.001
– ident: e_1_2_7_12_1
  doi: 10.1210/jc.2003-032118
– ident: e_1_2_7_2_1
  doi: 10.1016/S0022-5347(05)65640-6
– ident: e_1_2_7_45_1
  doi: 10.1007/s11373-007-9230-y
– ident: e_1_2_7_15_1
  doi: 10.1002/jcb.23209
– ident: e_1_2_7_30_1
  doi: 10.1038/nrm1490
– ident: e_1_2_7_52_1
  doi: 10.1158/0008-5472.CAN-09-4481
– ident: e_1_2_7_8_1
  doi: 10.1016/S0014-5793(00)02308-5
– ident: e_1_2_7_36_1
  doi: 10.1158/0008-5472.CAN-07-2938
– ident: e_1_2_7_33_1
  doi: 10.1038/nrc1276
– ident: e_1_2_7_18_1
  doi: 10.1038/nrm757
– ident: e_1_2_7_21_1
  doi: 10.1016/0006-291X(90)91263-R
– ident: e_1_2_7_37_1
  doi: 10.1158/0008-5472.CAN-07-0575
– ident: e_1_2_7_53_1
  doi: 10.1158/0008-5472.CAN-04-3480
– ident: e_1_2_7_4_1
  doi: 10.1056/NEJM199609193351207
– ident: e_1_2_7_7_1
  doi: 10.1016/S1471-4892(02)00220-5
– ident: e_1_2_7_28_1
  doi: 10.1073/pnas.1209590109
– ident: e_1_2_7_22_1
  doi: 10.1016/S0022-5347(01)67725-5
– ident: e_1_2_7_3_1
  doi: 10.1007/s11864-003-0037-4
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cellsig.2004.10.011
– ident: e_1_2_7_16_1
  doi: 10.1038/nrc822
– ident: e_1_2_7_46_1
  doi: 10.1002/path.2365
– ident: e_1_2_7_34_1
  doi: 10.1038/32433
– ident: e_1_2_7_42_1
  doi: 10.1038/35000025
– ident: e_1_2_7_19_1
  doi: 10.1038/ncb1173
– ident: e_1_2_7_13_1
  doi: 10.1016/j.bbrc.2003.08.024
– ident: e_1_2_7_25_1
  doi: 10.1038/35038090
– ident: e_1_2_7_40_1
  doi: 10.1038/sj.bjc.6605530
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1464-410X.2007.07238.x
– ident: e_1_2_7_5_1
  doi: 10.1016/S0140-6736(09)60229-4
– ident: e_1_2_7_56_1
  doi: 10.1371/journal.pone.0016654
– ident: e_1_2_7_9_1
  doi: 10.1373/clinchem.2004.032482
– ident: e_1_2_7_32_1
  doi: 10.1007/s10585-008-9174-2
– ident: e_1_2_7_29_1
  doi: 10.1530/EJE-09-0073
– ident: e_1_2_7_27_1
  doi: 10.1006/bbrc.2001.4518
– ident: e_1_2_7_6_1
  doi: 10.1038/35086018
– ident: e_1_2_7_51_1
  doi: 10.1083/jcb.200207165
– ident: e_1_2_7_26_1
  doi: 10.1016/S0167-0115(01)00243-9
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1196154
– ident: e_1_2_7_35_1
  doi: 10.1038/emboj.2008.178
– ident: e_1_2_7_55_1
  doi: 10.1038/35096067
– ident: e_1_2_7_48_1
  doi: 10.1245/s10434-012-2347-x
– ident: e_1_2_7_50_1
  doi: 10.1158/1541-7786.MCR-12-0160
– ident: e_1_2_7_38_1
  doi: 10.1158/0008-5472.CAN-07-2559
– ident: e_1_2_7_41_1
  doi: 10.1038/35000034
– ident: e_1_2_7_20_1
  doi: 10.1016/S0378-1119(00)00371-1
SSID ssj0009955
Score 2.354995
Snippet Ghrelin is an appetite‐regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS‐R)....
Ghrelin is an appetite‐regulating molecule that promotes growth hormone ( GH ) release and food intake through growth hormone secretagogue receptor ( GHS ‐R)....
Ghrelin is an appetite-regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS-R)....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms Animals
Binding Sites
Cadherins - genetics
Cadherins - metabolism
Carcinoma, Renal Cell - genetics
Carcinoma, Renal Cell - metabolism
Carcinoma, Renal Cell - mortality
Carcinoma, Renal Cell - secondary
Cell Line, Tumor
Cell Movement - drug effects
E-cadherin
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic
ghrelin
Ghrelin - genetics
Ghrelin - metabolism
Humans
Kidney Neoplasms - genetics
Kidney Neoplasms - metabolism
Kidney Neoplasms - mortality
Kidney Neoplasms - pathology
Male
metastasis
Mice, Inbred NOD
Mice, SCID
migration
Neoplasm Invasiveness
Oligonucleotide Array Sequence Analysis
Phosphatidylinositol 3-Kinase - antagonists & inhibitors
Phosphatidylinositol 3-Kinase - metabolism
Phosphorylation
Promoter Regions, Genetic - drug effects
Protein Kinase Inhibitors - pharmacology
Proto-Oncogene Proteins c-akt - antagonists & inhibitors
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Receptors, Ghrelin - genetics
Receptors, Ghrelin - metabolism
renal cell carcinoma
RNA Interference
Signal Transduction
Snail
Snail Family Transcription Factors
Time Factors
Transcription Factors - genetics
Transcription Factors - metabolism
Transfection
Title Ghrelin promotes renal cell carcinoma metastasis via Snail activation and is associated with poor prognosis
URI https://api.istex.fr/ark:/67375/WNG-1Z8F7PWX-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.4552
https://www.ncbi.nlm.nih.gov/pubmed/25925728
https://www.proquest.com/docview/1702086006
https://www.proquest.com/docview/1702651188
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFH-MCeIvftfVTYkisl96a7ukTfGnId4OYWPoxh0ihHyF47b2uN4N8a83r2k7JhPEX0pLXtI0eS_5JH35PID3ylpb-okj9pMTXrSMVZYVsdXGZH714zKHB4VPTvPJBf0yY7Mt-NifhQn8EMOGG1pGO16jgUvVHNyQhmLE3hFlDMdf9NVCQPT1hjqqLBkbmMJpWvSsQkl2MOS8NRfdw2b9eRfQvI1b24ln_Ah-9FUO_iaL0WatRvrXH2yO__lNj-FhB0jJUdCgJ7Blq6dw_6T75f4MFse-t33JZNk67tmGrCxmwB1_ojESUVVfSXJl19IDzWbekOu5JN8qOb8keGgibPkSWRni02SnDdYQ3AEmy7peYcno7jdvnsPF-PP5p0ncRWiINc0xek_BlKMy0TYtckMxGnue2twYxzl1LtOlRowjXVpajw2Nf5SOGb8SVokqeXL4ArarurI7QGySoNLow4Lm1BmpOJdKe7zEuOFUywj2-74SuqMvxygalyIQL2cCG09g40XwbhBdBs6Ou4Q-tB0-SMjVAp3cCiamp8ci_c7Hxdl0JqYR7PUaITr7bkRaYHBTDxbzCN4Oyd4ysfFlZetNkMlxAccjeBk0aXiZX3T6sTLzKfutPvy9nuLs6HyCN6_-XXQXHnhcx4Ir3B5sr1cb-9pjp7V60xrJb_yqFt0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KC9te1n22XttNG2P0xantSv6AvZSyNNuaULaUhMEQsiRDSGuHOBljf_3u_FU6Ohh7CQk624p0J_3ufPodwNvUWpvgxuHi5kQfWrlpEESu1cYE6P1kQUYHhYejcHDJP03FdAPet2dhan6ILuBGllGt12TgFJA-umENpZK9PS4ELsBbVNG7cqi-3JBHJYkQHVc496OWV8gLjrpLb-1GWzSwP--CmreRa7X19Lfhe9vpOuNk3luv0p7-9Qef4__-q0fwsMGk7KRWosewYfMncG_YvHV_CvMznHC8NVtUuXu2ZEtLF1DQn2kqRpQX14pd25VCrFnOSvZjptjXXM2uGJ2bqKO-TOWGYZtqFMIaRkFgtiiKJd2ZMv5m5TO47H8Ynw7cpkiDq3lIBXwikWZcedr6UWg4FWQPfRsak8Uxz7JAJ5pgjsr8xCI8NPhTZcKgM5x6aRJ7x89hMy9yuwvMeh7pjT6OeMgzo9I4VqlGyCRiE3OtHDhsJ0vqhsGcCmlcyZp7OZA0eJIGz4E3neiipu24S-hdNeOdhFrOKc8tEnIyOpP-t7gfXUymcuLAfqsSsjHxUvoR1TdFvBg68LprRuOkwVe5Lda1TEg-XOzATq1K3cPQ78TlMsCWw0oh_t5PeXEyHtCXF_8u-gruD8bDc3n-cfR5Dx4gzBN1Ztw-bK6Wa3uAUGqVvqws5jdOBRr4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UFspetnZXr12njTH64tR2JVtmT6Vtml0awtaSUAZC1gVCWjvEyRj79dPxrXR0MPZibHQky9I50if56DsA7zJjTOomDt9NTnhR0s-iKPGN0jpyqx8bWTwofD6MB5f004RN1uBDexam5ofoNtzQMqrxGg18ru3BLWkoRuztUcbc-LtB44CjSp98veWOSlPGOqpwGiYtrVAQHXRZ70xGG9iuP-9DmneBazXz9B_B97bOtcPJrLdaZj316w86x__8qC142CBSclSr0DasmfwxbJ43_9yfwOzMdbcrmcwrzz1TkoXBDLjlTxSGIsqLG0luzFI6pFlOS_JjKsm3XE6vCZ6aqPd8icw1cWmyUQejCW4Bk3lRLLBk9Peblk_hsn96cTzwmxANvqIxhu9JWGapDJQJk1hTDMcehybW2nJOrY1UqhDkSBumxoFD7R6lZdothbMgS3lw-AzW8yI3L4CYIECtUYcJjanVMuNcZsoBJsY1p0p6sN_2lVANfzmG0bgWNfNyJLDxBDaeB2870XlN2nGf0PuqwzsJuZihl1vCxHh4JsIr3k9G44kYe7DbaoRoDLwUYYLRTR1ajD140yU708TGl7kpVrVMjCs47sHzWpO6l7lVpxssI5eyX-nD3-spRkcXA7x5-e-ir2FzdNIXXz4OP-_AA4fxWO0Wtwvry8XKvHI4apntVfbyGw62GbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ghrelin+promotes+renal+cell+carcinoma+metastasis+via+Snail+activation+and+is+associated+with+poor+prognosis&rft.jtitle=The+Journal+of+pathology&rft.au=Lin%2C+Tsung-Chieh&rft.au=Liu%2C+Yu-Peng&rft.au=Chan%2C+Yung-Chieh&rft.au=Su%2C+Chia-Yi&rft.date=2015-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0022-3417&rft.eissn=1096-9896&rft.volume=237&rft.issue=1&rft.spage=50&rft.epage=61&rft_id=info:doi/10.1002%2Fpath.4552&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_1Z8F7PWX_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon