A Cooperative Copper Metal–Organic Framework‐Hydrogel System Improves Wound Healing in Diabetes

Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting an...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 1; pp. np - n/a
Main Authors Xiao, Jisheng, Chen, Siyu, Yi, Ji, Zhang, Hao F., Ameer, Guillermo A.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 05.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST‐1 NPs) embedded within an antioxidant thermoresponsive citrate‐based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST‐1 and poly‐(polyethyleneglycol citrate‐co‐N‐isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST‐1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST‐1 NPs disintegrated in protein solution while HKUST‐1 NPs embedded in PPCN (H‐HKUST‐1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H‐HKUST‐1 induced angiogenesis, collagen deposition, and re‐epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion‐releasing H‐HKUST‐1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. A copper ion‐eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST‐1) nanoparticles and poly(polyethylene glycol citrate‐co‐N‐isopropylacrylamide) is prepared and characterized (H‐HKUST‐1). H‐HKUST‐1 exhibits significantly reduced cytotoxicity and promotes the migration of dermal cells in vitro. In vivo, H‐HKUST‐1 promotes improved dermal wound closure rates in diabetic mice.
AbstractList Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NPs disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. A copper ion-eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST-1) nanoparticles and poly(polyethylene glycol citrate-co-N-isopropylacrylamide) is prepared and characterized (H-HKUST-1). H-HKUST-1 exhibits significantly reduced cytotoxicity and promotes the migration of dermal cells in vitro. In vivo, H-HKUST-1 promotes improved dermal wound closure rates in diabetic mice.
Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and migration processes were measured. Wound closure rates and wound blood perfusion were assessed using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration and wound closure rates were significantly enhanced. , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.
Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.
Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NPs disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.
Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST‐1 NPs) embedded within an antioxidant thermoresponsive citrate‐based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST‐1 and poly‐(polyethyleneglycol citrate‐ co ‐ N ‐isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST‐1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST‐1 NPs disintegrated in protein solution while HKUST‐1 NPs embedded in PPCN (H‐HKUST‐1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H‐HKUST‐1 induced angiogenesis, collagen deposition, and re‐epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion‐releasing H‐HKUST‐1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.
Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST‐1 NPs) embedded within an antioxidant thermoresponsive citrate‐based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST‐1 and poly‐(polyethyleneglycol citrate‐co‐N‐isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST‐1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST‐1 NPs disintegrated in protein solution while HKUST‐1 NPs embedded in PPCN (H‐HKUST‐1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H‐HKUST‐1 induced angiogenesis, collagen deposition, and re‐epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion‐releasing H‐HKUST‐1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. A copper ion‐eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST‐1) nanoparticles and poly(polyethylene glycol citrate‐co‐N‐isopropylacrylamide) is prepared and characterized (H‐HKUST‐1). H‐HKUST‐1 exhibits significantly reduced cytotoxicity and promotes the migration of dermal cells in vitro. In vivo, H‐HKUST‐1 promotes improved dermal wound closure rates in diabetic mice.
Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. A copper ion-eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST-1) nanoparticles (NPs) and poly(polyethylene glycol citrate-co- N -isopropylacrylamide) (PPCN) was prepared and characterized (H-HKUST-1). H-HKUST-1 exhibited significantly reduced cytotoxicity and promoted the migration of dermal cells in vitro. In vivo , H-HKUST-1 promoted improved dermal wound closure rates in diabetic mice.
Author Yi, Ji
Xiao, Jisheng
Ameer, Guillermo A.
Chen, Siyu
Zhang, Hao F.
AuthorAffiliation 4 Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611
3 Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208
2 Department of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States
1 Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
AuthorAffiliation_xml – name: 2 Department of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States
– name: 1 Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
– name: 4 Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611
– name: 3 Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208
Author_xml – sequence: 1
  givenname: Jisheng
  surname: Xiao
  fullname: Xiao, Jisheng
  organization: Northwestern University
– sequence: 2
  givenname: Siyu
  surname: Chen
  fullname: Chen, Siyu
  organization: Northwestern University
– sequence: 3
  givenname: Ji
  surname: Yi
  fullname: Yi, Ji
  organization: Northwestern University
– sequence: 4
  givenname: Hao F.
  surname: Zhang
  fullname: Zhang, Hao F.
  organization: Northwestern University
– sequence: 5
  givenname: Guillermo A.
  surname: Ameer
  fullname: Ameer, Guillermo A.
  email: g-ameer@northwestern.edu
  organization: Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28729818$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhS1URP_YskQjsekmwT8z8cwGKUobUqlVFxTBzrI9d4KLx57aM6my6yMg8YZ9EhylBKiEuvKV_Z3ja597iPacd4DQG4LHBGP6XtZNO6aYTHBecvoCHZAJmYwYpuXeriZf99FhjDcYE85Z_grt08RWJSkPkJ5mM-87CLI3K0h1l-rsEnppH-5_XoWldEZn8yBbuPPh-8P9j8W6Dn4JNvu0jj202XnbBb-CmH3xg6uzBUhr3DIzLjs1UkEP8Ri9bKSN8PpxPUKf52fXs8Xo4urj-Wx6MdL5hNCRYkxVVNWUV4UqcaEYKOCUa4YLmbZoXWGCG6nrildNhWteSNyAVjlJb6GSHaEPW99uUC3UGlwfpBVdMK0Ma-GlEf-eOPNNLP1KFAVhpKLJ4OTRIPjbAWIvWhM1WCsd-CGKxNACM8rZ82hZpngSXCb03RP0xg_BpZ_YGOKc0RRXot7-3fyu699RJWC8BXTwMQZodgjBYjMLYjMLYjcLSZA_EWjTp5j95vHG_l9WbWV3xsL6mUvE9HR--Uf7C1Czyvw
CitedBy_id crossref_primary_10_1002_advs_202301806
crossref_primary_10_1186_s12951_021_01130_w
crossref_primary_10_1039_D3RA04013E
crossref_primary_10_1166_mex_2021_1976
crossref_primary_10_1016_j_heliyon_2024_e38481
crossref_primary_10_1007_s43538_023_00183_9
crossref_primary_10_1016_j_surfin_2024_104698
crossref_primary_10_3389_fbioe_2021_718377
crossref_primary_10_1021_acsanm_3c00101
crossref_primary_10_1021_acsnano_1c06036
crossref_primary_10_1039_C9RA10031H
crossref_primary_10_1039_D2BM01443B
crossref_primary_10_1039_D4TB01666A
crossref_primary_10_1016_j_bioactmat_2023_07_011
crossref_primary_10_1016_j_cej_2022_138216
crossref_primary_10_1007_s12274_020_2846_1
crossref_primary_10_1016_j_biomaterials_2020_120300
crossref_primary_10_1021_acsami_2c15299
crossref_primary_10_1021_acsami_9b04750
crossref_primary_10_1002_adfm_202312499
crossref_primary_10_1002_adhm_202300887
crossref_primary_10_1016_j_cej_2021_129577
crossref_primary_10_1016_j_matchemphys_2023_128373
crossref_primary_10_1002_adfm_201701974
crossref_primary_10_1186_s12951_021_00869_6
crossref_primary_10_3390_polym14040724
crossref_primary_10_1016_j_ijbiomac_2023_129006
crossref_primary_10_1016_j_bioactmat_2021_04_042
crossref_primary_10_1002_slct_201702187
crossref_primary_10_1002_asia_202100102
crossref_primary_10_1021_acsami_1c19209
crossref_primary_10_1016_j_ijbiomac_2024_137374
crossref_primary_10_1021_acssuschemeng_9b05196
crossref_primary_10_3390_life11050391
crossref_primary_10_1016_j_ijbiomac_2025_139851
crossref_primary_10_3390_gels9090694
crossref_primary_10_1002_bab_2051
crossref_primary_10_1039_D1BM01179K
crossref_primary_10_1007_s13346_021_00966_x
crossref_primary_10_1002_adfm_202101804
crossref_primary_10_1021_acsabm_2c00138
crossref_primary_10_1002_adfm_202010461
crossref_primary_10_1016_j_bioactmat_2021_07_022
crossref_primary_10_1016_j_bioactmat_2023_03_005
crossref_primary_10_1016_j_ccr_2021_213929
crossref_primary_10_1016_j_mtbio_2022_100498
crossref_primary_10_1186_s12951_021_01151_5
crossref_primary_10_1016_j_ijbiomac_2022_01_080
crossref_primary_10_3390_molecules30061282
crossref_primary_10_1007_s10904_021_02011_3
crossref_primary_10_3389_fbioe_2021_603608
crossref_primary_10_1002_slct_202405715
crossref_primary_10_1016_j_biopha_2023_114366
crossref_primary_10_1039_C9NR03612A
crossref_primary_10_1039_D0DT02417A
crossref_primary_10_3390_gels9020138
crossref_primary_10_1016_j_ijbiomac_2022_07_150
crossref_primary_10_1016_j_jcis_2021_11_014
crossref_primary_10_1016_j_cej_2025_160642
crossref_primary_10_1089_wound_2019_1094
crossref_primary_10_1016_j_apsadv_2024_100607
crossref_primary_10_1021_acs_analchem_0c04956
crossref_primary_10_1016_j_mtchem_2024_102235
crossref_primary_10_1038_s41536_023_00331_1
crossref_primary_10_1021_acsnano_1c04206
crossref_primary_10_1016_j_carpta_2024_100564
crossref_primary_10_20517_ss_2024_32
crossref_primary_10_3390_ijms25073993
crossref_primary_10_1002_app_56783
crossref_primary_10_1039_D3CC03146B
crossref_primary_10_3390_pharmaceutics14091838
crossref_primary_10_3390_pharmaceutics15010010
crossref_primary_10_1016_j_biomaterials_2020_120199
crossref_primary_10_1002_adtp_202100075
crossref_primary_10_1021_acsbiomaterials_9b01233
crossref_primary_10_1016_j_bioactmat_2021_05_052
crossref_primary_10_1016_j_ijbiomac_2021_01_058
crossref_primary_10_1021_acsami_0c21543
crossref_primary_10_1016_j_apmt_2020_100735
crossref_primary_10_1016_j_cej_2019_122849
crossref_primary_10_1016_j_mtchem_2024_102300
crossref_primary_10_1016_j_cej_2020_124523
crossref_primary_10_1021_acsabm_4c00358
crossref_primary_10_1021_acsami_9b13267
crossref_primary_10_1039_D2BM00224H
crossref_primary_10_1002_adma_202402871
crossref_primary_10_1016_j_actbio_2018_02_010
crossref_primary_10_1021_acsnano_1c08411
crossref_primary_10_1016_j_ijbiomac_2024_132443
crossref_primary_10_1002_adhm_202101247
crossref_primary_10_1002_adhm_202001591
crossref_primary_10_1088_2399_1984_ac92f1
crossref_primary_10_1002_adfm_202106572
crossref_primary_10_1088_1748_605X_ad906b
crossref_primary_10_1186_s12951_022_01489_4
crossref_primary_10_2147_IJN_S408981
crossref_primary_10_1016_j_mtbio_2023_100621
crossref_primary_10_1021_jacs_9b03503
crossref_primary_10_1016_j_biomaterials_2018_08_044
crossref_primary_10_1016_j_jtemb_2019_06_015
crossref_primary_10_1021_acsnano_9b08930
crossref_primary_10_1007_s11814_021_1000_4
crossref_primary_10_1021_acsami_3c04733
crossref_primary_10_2147_IJN_S276001
crossref_primary_10_1016_j_addr_2017_12_012
crossref_primary_10_1016_j_jhazmat_2020_122126
crossref_primary_10_1002_adhm_202303297
crossref_primary_10_1039_D1BM01745D
crossref_primary_10_3390_gels10100621
crossref_primary_10_1016_j_cej_2022_137172
crossref_primary_10_1039_C9BM01635J
crossref_primary_10_34133_2021_4189516
crossref_primary_10_1002_admi_201801895
crossref_primary_10_1016_j_nantod_2023_101911
crossref_primary_10_1016_j_matdes_2023_112072
crossref_primary_10_3390_gels10080495
crossref_primary_10_2174_1389557522666220330152145
crossref_primary_10_1016_j_cej_2021_129025
crossref_primary_10_2147_JIR_S452609
crossref_primary_10_1002_smll_202104229
crossref_primary_10_1039_C9NR02955A
crossref_primary_10_1002_adma_202306326
crossref_primary_10_3389_fbioe_2023_1308184
crossref_primary_10_1016_j_cej_2021_130148
crossref_primary_10_1016_j_ccr_2024_216330
crossref_primary_10_1016_j_cej_2025_159617
crossref_primary_10_1016_j_ijpharm_2024_124206
crossref_primary_10_1016_j_addr_2018_07_019
crossref_primary_10_1002_adfm_202100924
crossref_primary_10_1016_j_engreg_2021_09_005
crossref_primary_10_2139_ssrn_4350215
crossref_primary_10_1016_j_cej_2024_157837
crossref_primary_10_1016_j_bioactmat_2022_11_019
crossref_primary_10_1002_adfm_201909389
crossref_primary_10_1021_acsami_0c04755
crossref_primary_10_1021_acsami_0c21854
crossref_primary_10_1002_term_2880
crossref_primary_10_1089_ars_2021_0134
crossref_primary_10_1016_j_ccr_2019_213016
crossref_primary_10_1039_D4MA01220H
crossref_primary_10_3390_met13091511
crossref_primary_10_1039_C8TB01078A
crossref_primary_10_3390_bioengineering9070298
crossref_primary_10_1073_pnas_2016268117
crossref_primary_10_1002_adfm_202416553
crossref_primary_10_1002_adhm_202301885
crossref_primary_10_1002_smll_202207057
crossref_primary_10_1016_j_msec_2020_111586
crossref_primary_10_1016_j_ejps_2020_105224
crossref_primary_10_1016_j_cej_2020_126273
crossref_primary_10_1016_j_ijbiomac_2023_128546
crossref_primary_10_1002_sstr_202400028
crossref_primary_10_1002_adhm_201700746
crossref_primary_10_1016_j_addr_2019_01_013
crossref_primary_10_1016_j_ijbiomac_2021_08_092
crossref_primary_10_1016_j_actbio_2019_03_018
crossref_primary_10_3390_molecules28166098
crossref_primary_10_1080_09205063_2024_2340819
crossref_primary_10_1016_j_ijbiomac_2024_131670
crossref_primary_10_1089_sur_2020_411
crossref_primary_10_3389_fbioe_2022_1060026
crossref_primary_10_1039_D2TA08841J
crossref_primary_10_3390_molecules26227031
crossref_primary_10_1016_j_carbpol_2023_120824
crossref_primary_10_1016_j_foodchem_2024_139440
crossref_primary_10_1039_D1BM01211H
crossref_primary_10_1039_D2NA00897A
crossref_primary_10_3390_ijms23147967
crossref_primary_10_1021_acsomega_4c08103
crossref_primary_10_3389_fendo_2023_1124027
crossref_primary_10_1016_j_colsurfa_2024_133777
crossref_primary_10_1016_j_bioactmat_2020_07_013
crossref_primary_10_1039_D1BM00622C
crossref_primary_10_1007_s10570_025_06435_9
crossref_primary_10_1016_j_heliyon_2024_e39611
crossref_primary_10_1038_s41467_023_35907_4
crossref_primary_10_1016_j_actbio_2021_09_056
crossref_primary_10_1021_acsanm_1c03034
crossref_primary_10_1039_D3RA03477A
crossref_primary_10_1002_adhm_202101556
crossref_primary_10_1002_ddr_21759
crossref_primary_10_1007_s12011_019_01868_3
crossref_primary_10_1016_j_bioactmat_2022_04_027
crossref_primary_10_1515_chem_2024_0061
crossref_primary_10_1016_j_matdes_2022_110598
crossref_primary_10_1039_D0DT02165B
crossref_primary_10_1021_acsami_1c11207
crossref_primary_10_1039_C8BM00807H
crossref_primary_10_1002_adfm_201809009
crossref_primary_10_1002_smll_202311903
crossref_primary_10_1039_D4MD00232F
crossref_primary_10_1007_s12274_022_4430_3
crossref_primary_10_1039_D1NR07611F
crossref_primary_10_1007_s10751_025_02277_w
crossref_primary_10_1039_D2TB02671F
crossref_primary_10_1016_j_jcis_2018_01_110
crossref_primary_10_1007_s10853_023_08730_x
crossref_primary_10_1016_j_jwpe_2022_103348
crossref_primary_10_1016_j_ijbiomac_2020_04_116
crossref_primary_10_3390_biom12091240
crossref_primary_10_1007_s12668_024_01314_2
crossref_primary_10_1039_D2BM02101C
crossref_primary_10_1039_D3TB02929H
crossref_primary_10_1016_j_reactfunctpolym_2019_05_002
crossref_primary_10_1016_j_ijbiomac_2023_126028
crossref_primary_10_1016_j_cej_2023_146613
crossref_primary_10_1007_s12274_020_2636_9
crossref_primary_10_1021_acsanm_2c05523
crossref_primary_10_1016_j_ijbiomac_2024_132741
crossref_primary_10_1016_j_ijbiomac_2024_135577
crossref_primary_10_1002_adhm_202401646
crossref_primary_10_1016_j_chroma_2021_462745
crossref_primary_10_3390_ijms19041179
crossref_primary_10_1016_j_actbio_2018_02_028
crossref_primary_10_1016_j_mtbio_2024_101292
crossref_primary_10_1016_j_mtnano_2023_100363
crossref_primary_10_1039_C9NJ02064K
crossref_primary_10_2147_IJN_S434693
crossref_primary_10_1021_acsami_0c03187
crossref_primary_10_3390_nano12020277
crossref_primary_10_1016_j_carbpol_2022_119522
crossref_primary_10_1016_j_carbpol_2022_119643
crossref_primary_10_1016_j_apsb_2024_03_014
crossref_primary_10_1016_j_ijbiomac_2021_07_139
crossref_primary_10_1016_j_matdes_2024_112638
crossref_primary_10_34133_2021_9780943
crossref_primary_10_1016_j_cej_2021_130634
crossref_primary_10_1134_S2635167622020045
crossref_primary_10_1021_acsami_0c13098
crossref_primary_10_1016_j_ijbiomac_2021_08_061
crossref_primary_10_1002_mabi_202200442
crossref_primary_10_1016_j_cclet_2020_03_005
crossref_primary_10_3390_molecules25245830
crossref_primary_10_1016_j_actbio_2022_04_041
crossref_primary_10_1016_j_ijbiomac_2022_11_320
crossref_primary_10_1186_s12951_023_02048_1
crossref_primary_10_1021_acsami_0c01792
crossref_primary_10_1146_annurev_bioeng_060418_052422
crossref_primary_10_3390_polym14214710
crossref_primary_10_1088_2043_6262_ac2b98
crossref_primary_10_1016_j_cej_2023_148220
crossref_primary_10_1016_j_ijbiomac_2023_128581
crossref_primary_10_1126_sciadv_adk3081
crossref_primary_10_1039_D1RA08824F
crossref_primary_10_1016_j_cej_2021_132926
crossref_primary_10_3389_fbioe_2020_576348
crossref_primary_10_1016_j_cej_2024_148978
crossref_primary_10_1002_adma_202302587
crossref_primary_10_1080_00914037_2022_2120876
crossref_primary_10_1039_C8SC04732D
crossref_primary_10_1039_D3BM01978K
crossref_primary_10_7759_cureus_39557
crossref_primary_10_1021_acsami_4c15674
crossref_primary_10_1039_C8MH00647D
crossref_primary_10_1186_s12951_023_02035_6
crossref_primary_10_3389_fchem_2020_00642
crossref_primary_10_1002_app_49216
crossref_primary_10_1016_j_cej_2024_155037
crossref_primary_10_1016_j_cej_2021_132039
crossref_primary_10_1021_acs_bioconjchem_3c00325
crossref_primary_10_3390_gels10010031
crossref_primary_10_1016_j_gendis_2019_09_008
crossref_primary_10_1021_acsami_4c22878
crossref_primary_10_1007_s12668_024_01708_2
crossref_primary_10_1016_j_fct_2024_114866
crossref_primary_10_1021_acsami_4c20219
crossref_primary_10_1016_j_carbpol_2024_123046
crossref_primary_10_1016_j_cej_2021_131506
crossref_primary_10_1039_D1BM00164G
crossref_primary_10_1016_j_biomaterials_2021_120918
crossref_primary_10_1002_smll_202207437
crossref_primary_10_1002_marc_202100025
crossref_primary_10_1021_acsami_8b21766
crossref_primary_10_1039_D3MA00682D
crossref_primary_10_1016_j_ijbiomac_2024_134578
crossref_primary_10_3390_cosmetics10040096
crossref_primary_10_1021_acsnano_7b01850
crossref_primary_10_1002_adhm_202303688
crossref_primary_10_1002_adfm_202308589
crossref_primary_10_3389_fbioe_2024_1429771
crossref_primary_10_1039_D0QI00840K
crossref_primary_10_1021_acsnano_7b08928
crossref_primary_10_1016_j_apsb_2020_07_018
crossref_primary_10_1016_j_jece_2021_106705
crossref_primary_10_1021_acsami_3c02825
crossref_primary_10_1021_acsnano_9b03656
crossref_primary_10_1016_j_cej_2021_130429
crossref_primary_10_1039_D2BM01906J
crossref_primary_10_1186_s12951_022_01403_y
crossref_primary_10_1007_s00289_021_03996_0
crossref_primary_10_2217_nnm_2019_0119
crossref_primary_10_1021_acsbiomaterials_4c01106
crossref_primary_10_1021_acsnano_0c03855
crossref_primary_10_1016_j_colsurfa_2023_132585
crossref_primary_10_1016_j_ijbiomac_2025_139864
crossref_primary_10_1016_j_msec_2019_02_081
crossref_primary_10_1021_acsami_1c16300
crossref_primary_10_1007_s40195_021_01335_w
crossref_primary_10_1007_s40820_020_00542_x
crossref_primary_10_1016_j_rechem_2022_100648
crossref_primary_10_1039_C9TB01467E
crossref_primary_10_1002_adhm_202302566
crossref_primary_10_1080_02670844_2022_2161230
crossref_primary_10_3389_fbioe_2022_901534
crossref_primary_10_1016_j_ntm_2023_100007
crossref_primary_10_1016_j_cis_2022_102686
crossref_primary_10_1016_j_molstruc_2024_138693
crossref_primary_10_1002_mame_202200469
crossref_primary_10_1016_j_mtchem_2021_100670
crossref_primary_10_1002_adhm_202400242
crossref_primary_10_1016_j_biomaterials_2018_12_012
crossref_primary_10_1002_adfm_202008054
crossref_primary_10_1016_j_actbio_2021_01_038
crossref_primary_10_1111_wrr_13122
crossref_primary_10_1002_smll_202407758
crossref_primary_10_2217_nnm_2020_0053
crossref_primary_10_1002_adfm_202002621
crossref_primary_10_1016_j_cej_2022_136948
crossref_primary_10_1007_s12274_020_3069_1
crossref_primary_10_1016_j_matdes_2023_112252
crossref_primary_10_1021_acsbiomaterials_4c00261
crossref_primary_10_1021_acsami_1c25014
Cites_doi 10.1371/journal.pone.0084548
10.1021/nn403202w
10.1016/j.actbio.2011.10.018
10.1002/adma.201400620
10.1002/adfm.201301178
10.1097/SAP.0000000000000342
10.1016/j.biopha.2014.10.020
10.1039/c3cc43689f
10.1073/pnas.1505951112
10.1073/pnas.1231994100
10.1111/j.1524-475X.2012.00822.x
10.1021/nn202966t
10.1152/ajpheart.01015.2001
10.1073/pnas.1115973108
10.1097/PRS.0b013e318230c521
10.1039/C4CS00003J
10.1021/ja509960n
10.4161/org.27405
10.1089/ten.tea.2015.0069
10.1007/s00726-012-1269-z
10.1073/pnas.1013942107
10.1002/adma.201403354
10.1021/ja309968u
10.1089/ten.tea.2009.0229
10.1111/j.1524-475X.2010.00573.x
10.1002/jbm.b.32962
10.1002/adfm.201000732
10.1021/acs.chemrev.5b00125
10.1021/ar200028a
10.1111/j.1067-1927.2004.12404.x
10.1038/cddis.2014.423
10.1172/JCI46475
10.1364/BOE.5.003603
10.1016/j.contraception.2015.08.014
10.1002/adfm.201002529
10.1089/ars.2008.2121
10.1016/j.biomaterials.2013.08.031
10.1371/journal.pone.0075877
10.1016/j.biomaterials.2015.02.112
10.1089/wound.2012.0401
10.1371/journal.pone.0144166
10.1097/PRS.0000000000000467
10.1021/jp8005553
10.1021/jacs.5b06637
10.1016/j.toxlet.2005.10.003
10.1016/j.msec.2014.12.068
10.1111/iwj.12238
10.1126/scitranslmed.3009337
10.1111/j.1440-0960.1973.tb01208.x
10.1016/j.biomaterials.2015.03.018
10.1089/wound.2013.0473
10.1038/nature15732
10.1016/j.contraception.2011.05.011
10.1021/bm5010004
10.4155/tde.13.74
10.1002/adfm.201503248
10.1002/adfm.201470162
10.1039/C4CS00010B
10.1161/ATVBAHA.108.178962
10.1016/j.biomaterials.2013.08.053
10.1002/adfm.201102157
10.3390/molecules171213704
10.1161/01.CIR.0000069330.41022.90
10.1039/b927601g
10.1111/j.1524-475X.2012.00793.x
10.2147/IJN.S54113
10.1111/wrr.12375
10.1021/ja508962m
10.1016/j.ejphar.2014.02.033
10.1002/9783527635856
10.1111/iwj.12230
10.1038/nmat2608
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1002/adfm.201604872
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
Materials Research Database
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID PMC5513192
28729818
10_1002_adfm_201604872
ADFM201604872
Genre article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health's National Center
  funderid: UL1TR000150
– fundername: NCRR NIH HHS
  grantid: S10 RR022494
– fundername: NCATS NIH HHS
  grantid: UL1 TR000150
– fundername: NCATS NIH HHS
  grantid: UL1 TR001422
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
1OB
7X8
5PM
ID FETCH-LOGICAL-c4612-b33b92bd2795b805b3ebe727c305a95b2d9010facd979f90d75a0fecb419812a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Aug 21 13:55:55 EDT 2025
Sun Aug 24 04:08:46 EDT 2025
Thu Aug 07 14:29:32 EDT 2025
Fri Jul 25 07:01:46 EDT 2025
Mon Jul 21 06:06:10 EDT 2025
Tue Jul 01 01:30:31 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Wed Jan 22 16:57:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords citric acid
wound healing
hydrogel
copper metal-organic framework
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4612-b33b92bd2795b805b3ebe727c305a95b2d9010facd979f90d75a0fecb419812a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28729818
PQID 1920432302
PQPubID 2045204
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5513192
proquest_miscellaneous_1922503273
proquest_miscellaneous_1880025038
proquest_journals_1920432302
pubmed_primary_28729818
crossref_primary_10_1002_adfm_201604872
crossref_citationtrail_10_1002_adfm_201604872
wiley_primary_10_1002_adfm_201604872_ADFM201604872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 5, 2017
PublicationDateYYYYMMDD 2017-01-05
PublicationDate_xml – month: 01
  year: 2017
  text: January 5, 2017
  day: 05
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv Funct Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010 2010 2013 2012 2015; 9 20 23 22 115
2010; 16
2015 2014; 48 10
2014 2010 2002; 9 18 282
2015; 53
2012 2011 2015 2015 2014 2015 2011 2012 2013; 20 128 24 21 5 70 121 43 8
2015 2014 2013 2012 2015; 74 134 8 20 10
2014; 26
2012 2015 2012 2013; 8 92 85 101
2015; 527
2008; 10
2015 2010; 137 12
2015 1973; 54 14
2011 2013; 49
2014; 136
2014; 731
2014; 43
2009; 29
2010 2011 2015 2013 2015; 107 108 27 4 25
2014; 5
2003; 107
2014; 3
2013; 34
2012 2008; 17 112
2004; 12
2006; 163
2014; 15
2011; 44
2013; 135
2014
2015 2013; 112 34
2015 2015 2014; 112 12 13
2014; 6
2003; 100
2013 2011; 7 5
2011 2014; 21 24
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_20_2
e_1_2_6_20_1
e_1_2_6_5_5
e_1_2_6_9_1
e_1_2_6_5_4
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_5_3
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_20_5
e_1_2_6_24_1
e_1_2_6_1_3
e_1_2_6_3_1
e_1_2_6_20_4
e_1_2_6_1_2
e_1_2_6_20_3
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_2
e_1_2_6_26_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_12_2
e_1_2_6_31_6
e_1_2_6_12_3
e_1_2_6_14_1
e_1_2_6_31_5
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_31_4
e_1_2_6_12_1
e_1_2_6_31_3
e_1_2_6_33_1
e_1_2_6_39_2
e_1_2_6_18_1
e_1_2_6_31_9
e_1_2_6_39_1
e_1_2_6_12_4
e_1_2_6_31_8
e_1_2_6_16_1
e_1_2_6_31_7
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_8_2
e_1_2_6_29_5
e_1_2_6_8_1
e_1_2_6_29_4
e_1_2_6_29_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_29_1
Centers for Disease Control and Prevention (e_1_2_6_2_1) 2014
e_1_2_6_27_1
e_1_2_6_25_2
References_xml – volume: 112 12 13
  start-page: 5573 4 82
  year: 2015 2015 2014
  publication-title: Proc. Natl. Acad. Sci. USA. Int. Wound. J. Int. Wound J.
– volume: 29
  start-page: 503
  year: 2009
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 137 12
  start-page: 10009 8092
  year: 2015 2010
  publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys.
– volume: 26
  start-page: 4056
  year: 2014
  publication-title: Adv. Mater.
– volume: 136
  start-page: 15485
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 445
  year: 2014
  publication-title: Adv. Wound Care
– volume: 731
  start-page: 8
  year: 2014
  publication-title: Eur. J. Pharmacol.
– volume: 7 5
  start-page: 8780 9326
  year: 2013 2011
  publication-title: ACS Nano ACS Nano
– volume: 136
  start-page: 16978
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 17 112
  start-page: 13704 10399
  year: 2012 2008
  publication-title: Molecules J. Phys. Chem. B
– volume: 163
  start-page: 109
  year: 2006
  publication-title: Toxicol. Lett.
– volume: 8 92 85 101
  start-page: 886 585 91 1428
  year: 2012 2015 2012 2013
  publication-title: Acta Biomater. Contraception Contraception J. Biomed. Mater. Res., Part B Appl. Biomater.
– volume: 21 24
  start-page: 1442 3837
  year: 2011 2014
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 16
  start-page: 695
  year: 2010
  publication-title: Tissue Eng. Part A
– volume: 100
  start-page: 6700
  year: 2003
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 43
  start-page: 5815
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 9 18 282
  start-page: 891 266 H1821
  year: 2014 2010 2002
  publication-title: Int. J. Nanomed. Wound Repair Regener. Am. J. Physiol.
– volume: 15
  start-page: 3942
  year: 2014
  publication-title: Biomacromolecules
– year: 2014
– volume: 54 14
  start-page: 126 127
  year: 2015 1973
  publication-title: Biomaterials Australas. J. Dermatol.
– volume: 53
  start-page: 379
  year: 2015
  publication-title: Biomaterials
– volume: 49
  start-page: 217 8208
  year: 2011 2013
  publication-title: Chem. Commun.
– volume: 5
  start-page: 3603
  year: 2014
  publication-title: Biomed. Opt. Express
– volume: 112 34
  start-page: 5573 9393
  year: 2015 2013
  publication-title: Proc. Natl. Acad. Sci. USA Biomaterials
– volume: 6
  start-page: 265sr266
  year: 2014
  publication-title: Sci. Transl. Med.
– volume: 74 134 8 20 10
  start-page: 114 402e e84548 715 e0144166
  year: 2015 2014 2013 2012 2015
  publication-title: Ann. Plast. Surg. Plast. Reconstr. Surg. PloS one Wound Repair Regener. PloS one
– volume: 107
  start-page: 2274
  year: 2003
  publication-title: Circulation
– volume: 43
  start-page: 5561
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 957
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 20 128 24 21 5 70 121 43 8
  start-page: 342 673e 65 2723 e1458 317 4348 127 e75877
  year: 2012 2011 2015 2015 2014 2015 2011 2012 2013
  publication-title: Wound Repair Regener. Plast. Reconstr. Surg. Wound Repair Regener. Tissue Eng. Part A Cell Death Dis. Biomed. Pharmacother. Biomed. Pharmacother. J. Clin. Investig. Amino Acids PloS One
– volume: 34
  start-page: 9071
  year: 2013
  publication-title: Biomaterials
– volume: 10
  start-page: 1869
  year: 2008
  publication-title: Antioxid. Redox. Signal.
– volume: 3
  start-page: 511
  year: 2014
  publication-title: Adv. Wound Care
– volume: 9 20 23 22 115
  start-page: 172 4091 5585 1698 11079
  year: 2010 2010 2013 2012 2015
  publication-title: Nat. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Chem. Rev.
– volume: 48 10
  start-page: 651 29
  year: 2015 2014
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. Organogenesis
– volume: 135
  start-page: 2256
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 485
  year: 2004
  publication-title: Wound Repair Regener.
– volume: 527
  start-page: 357
  year: 2015
  publication-title: Nature
– volume: 107 108 27 4 25
  start-page: 18611 20976 1143 1179 7189
  year: 2010 2011 2015 2013 2015
  publication-title: Proc. Natl. Acad. Sci. USA. Proc. Natl. Acad. Sci. USA. Adv. Mater. Ther. Delivery Adv. Funct. Mater.
– ident: e_1_2_6_29_3
  doi: 10.1371/journal.pone.0084548
– ident: e_1_2_6_10_1
  doi: 10.1021/nn403202w
– ident: e_1_2_6_12_1
  doi: 10.1016/j.actbio.2011.10.018
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201400620
– ident: e_1_2_6_20_3
  doi: 10.1002/adfm.201301178
– ident: e_1_2_6_29_1
  doi: 10.1097/SAP.0000000000000342
– ident: e_1_2_6_31_6
  doi: 10.1016/j.biopha.2014.10.020
– volume-title: National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States
  year: 2014
  ident: e_1_2_6_2_1
– ident: e_1_2_6_25_2
  doi: 10.1039/c3cc43689f
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.1505951112
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.1231994100
– ident: e_1_2_6_29_4
  doi: 10.1111/j.1524-475X.2012.00822.x
– ident: e_1_2_6_10_2
  doi: 10.1021/nn202966t
– ident: e_1_2_6_9_3
  doi: 10.1152/ajpheart.01015.2001
– ident: e_1_2_6_5_2
  doi: 10.1073/pnas.1115973108
– ident: e_1_2_6_31_2
  doi: 10.1097/PRS.0b013e318230c521
– ident: e_1_2_6_14_1
  doi: 10.1039/C4CS00003J
– ident: e_1_2_6_22_1
  doi: 10.1021/ja509960n
– ident: e_1_2_6_4_2
  doi: 10.4161/org.27405
– ident: e_1_2_6_31_4
  doi: 10.1089/ten.tea.2015.0069
– ident: e_1_2_6_31_8
  doi: 10.1007/s00726-012-1269-z
– ident: e_1_2_6_5_1
  doi: 10.1073/pnas.1013942107
– ident: e_1_2_6_5_3
  doi: 10.1002/adma.201403354
– ident: e_1_2_6_19_1
  doi: 10.1021/ja309968u
– ident: e_1_2_6_27_1
  doi: 10.1089/ten.tea.2009.0229
– ident: e_1_2_6_9_2
  doi: 10.1111/j.1524-475X.2010.00573.x
– ident: e_1_2_6_12_4
  doi: 10.1002/jbm.b.32962
– ident: e_1_2_6_20_2
  doi: 10.1002/adfm.201000732
– ident: e_1_2_6_20_5
  doi: 10.1021/acs.chemrev.5b00125
– ident: e_1_2_6_21_1
  doi: 10.1021/ar200028a
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1067-1927.2004.12404.x
– ident: e_1_2_6_31_5
  doi: 10.1038/cddis.2014.423
– ident: e_1_2_6_31_7
  doi: 10.1172/JCI46475
– ident: e_1_2_6_36_1
  doi: 10.1364/BOE.5.003603
– ident: e_1_2_6_12_2
  doi: 10.1016/j.contraception.2015.08.014
– ident: e_1_2_6_13_1
  doi: 10.1002/adfm.201002529
– ident: e_1_2_6_33_1
  doi: 10.1089/ars.2008.2121
– ident: e_1_2_6_23_1
  doi: 10.1016/j.biomaterials.2013.08.031
– ident: e_1_2_6_31_9
  doi: 10.1371/journal.pone.0075877
– ident: e_1_2_6_32_1
  doi: 10.1016/j.biomaterials.2015.02.112
– ident: e_1_2_6_38_1
  doi: 10.1089/wound.2012.0401
– ident: e_1_2_6_29_5
  doi: 10.1371/journal.pone.0144166
– ident: e_1_2_6_29_2
  doi: 10.1097/PRS.0000000000000467
– ident: e_1_2_6_26_2
  doi: 10.1021/jp8005553
– ident: e_1_2_6_39_1
  doi: 10.1021/jacs.5b06637
– ident: e_1_2_6_11_1
  doi: 10.1016/j.toxlet.2005.10.003
– ident: e_1_2_6_4_1
  doi: 10.1016/j.msec.2014.12.068
– ident: e_1_2_6_1_3
  doi: 10.1111/iwj.12238
– ident: e_1_2_6_35_1
  doi: 10.1126/scitranslmed.3009337
– ident: e_1_2_6_8_2
  doi: 10.1111/j.1440-0960.1973.tb01208.x
– ident: e_1_2_6_1_1
  doi: 10.1073/pnas.1505951112
– ident: e_1_2_6_8_1
  doi: 10.1016/j.biomaterials.2015.03.018
– ident: e_1_2_6_37_1
  doi: 10.1089/wound.2013.0473
– ident: e_1_2_6_15_1
  doi: 10.1038/nature15732
– ident: e_1_2_6_12_3
  doi: 10.1016/j.contraception.2011.05.011
– ident: e_1_2_6_24_1
  doi: 10.1021/bm5010004
– ident: e_1_2_6_5_4
  doi: 10.4155/tde.13.74
– ident: e_1_2_6_5_5
  doi: 10.1002/adfm.201503248
– ident: e_1_2_6_13_2
  doi: 10.1002/adfm.201470162
– ident: e_1_2_6_18_1
  doi: 10.1039/C4CS00010B
– ident: e_1_2_6_34_1
  doi: 10.1161/ATVBAHA.108.178962
– ident: e_1_2_6_3_2
  doi: 10.1016/j.biomaterials.2013.08.053
– ident: e_1_2_6_20_4
  doi: 10.1002/adfm.201102157
– ident: e_1_2_6_26_1
  doi: 10.3390/molecules171213704
– ident: e_1_2_6_28_1
  doi: 10.1161/01.CIR.0000069330.41022.90
– ident: e_1_2_6_39_2
  doi: 10.1039/b927601g
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1524-475X.2012.00793.x
– ident: e_1_2_6_9_1
  doi: 10.2147/IJN.S54113
– ident: e_1_2_6_31_3
  doi: 10.1111/wrr.12375
– ident: e_1_2_6_17_1
  doi: 10.1021/ja508962m
– ident: e_1_2_6_6_1
  doi: 10.1016/j.ejphar.2014.02.033
– ident: e_1_2_6_25_1
  doi: 10.1002/9783527635856
– ident: e_1_2_6_1_2
  doi: 10.1111/iwj.12230
– ident: e_1_2_6_20_1
  doi: 10.1038/nmat2608
SSID ssj0017734
Score 2.6400673
Snippet Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound...
Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms Angiogenesis
Apoptosis
Biocompatibility
Cell adhesion & migration
citric acid
Closures
Copper
copper metal–organic frameworks
Cytotoxicity
Diabetes
Diabetes mellitus
Disintegration
Hydrogels
In vitro methods and tests
Isopropylacrylamide
Materials science
Mice
Nanoparticles
Oxides
Releasing
Toxicity
Wound healing
Title A Cooperative Copper Metal–Organic Framework‐Hydrogel System Improves Wound Healing in Diabetes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604872
https://www.ncbi.nlm.nih.gov/pubmed/28729818
https://www.proquest.com/docview/1920432302
https://www.proquest.com/docview/1880025038
https://www.proquest.com/docview/1922503273
https://pubmed.ncbi.nlm.nih.gov/PMC5513192
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaq9lIOUP6XlspISJzSJs6P7eOqZbVCbA9Axd4i25nQiipZdXcPcOojIPGGfZLOxEnYpQKkcnPicRTbM_YXZ-Ybxl6LUqTOhTgDAtIAV0kItFFpoKwsLe7X2mmKRp6cZOPT5N00na5E8Xt-iP7AjSyjWa_JwI2dH_4iDTVFSZHkUYY6KGkRJoctQkUfev6oSEr_WzmLyMErmnasjaE4XG--vivdgpq3PSZXkWyzFY0eMNN1wnugfD1YLuyB-_4bv-P_9HKH3W9xKh96xXrINqB6xO6tsBc-Zm7Ij-p6Bp47HMszLPMJIJy_vvrpgzwdH3XeX9dXP8bfisv6C1xwz5PO_YkGzPlnSu7EKSQKn8zPK9466syfsNPR209H46DN2RC4JKN8PnFstbCFkDq1KkxtjFqCGMnhumLwlijIH6Q0rtBSlzosZGrCEpxNIo1Yw8RP2WZVV_CcccC7YOIiE9omoIzKSqsMxAoAvyITOWBBN2e5awnNKa_GRe6pmEVOg5f3gzdgb3r5mafy-KPkXqcCeWvS8xyhMNEXxiFWv-qr0RjpD4upoF6ijFINqIzVX2S0IAmEjQP2zGtV_zr4-SpwGLC1XNO3XoDIwNdrqvOzhhScEvXgowdMNOr0jx7mw-PRpL96cZdGu2xbEMSh46h0j20uLpfwEgHawu6zreHx5P3H_cYYbwBOBDeK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-G9ZKGAkEKe0ifNnHzisuqy2tNsDasXegu04UFFlV91doXLqIyDxJLwKj9AnYSZOQpcKkJB64ObEYyu2x-MZZ-YbgGe84LExPq4At7GHUtJ6UonYEzotNJ7X0kiKRh7uJYOD6PUoHi3BtyYWxuFDtBdutDMqeU0bnC6kN3-ihqq8oFDyIEEmTHntV7ljTz6h1TZ9ud3DJX7Oef_V_tbAqxMLeCZKKOlMGGrJdc5TGWvhxzrEoeBBbpD5Fb7iOTktFMrkMpWF9PM0Vn5hjY7QRA-4CrHfK3CV0ogTXH_vTYtYFaSp-5GdBORSFowanEifby5-7-I5eEG5veijeV53rg6__k343kyb83n5uDGf6Q3z-RdEyf9qXm_BjVoVZ123d27Dki3vwMo5gMa7YLpsazyeWAePjuUJltnQosVydvrVxbEa1m8c3M5OvwxO8uPxe3vEHBQ8c5c2dsreUv4qRlFf2DM7LFntizS9BweXMspVWC7Hpb0PzOJbq8I84VJHViiRFFooGwpr0VCO0g54DZNkpsZsp9QhR5lDm-YZLVbWLlYHXrT0E4dW8lvK9YbnslpqTTPU9gmhMfSx-mlbjfKGfiKp0o7nSCNEpTeH4g80khMFasYdWHNs3H4OWugcpwFbpwsM3hIQ3vliTXn4ocI9p1xE2HUHeMW_fxlh1u31h-3Tg39p9ASuDfaHu9nu9t7OQ7jOSaOj27d4HZZnx3P7CPXRmX5cSQAG7y57a_wABEmTqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P-zUMBIIE5ps86ffeCw6hJtKVshRMXegu04UFElq-6uUDn1EZB4EV6FV-iTMBMnoUsFSEg9cHPisRXbM_aMM_MNwGNe8MgYH1eA28jDXdJ6UonIEzopNJ7X0kiKRh7vxKPd8MUkmqzAtzYWxuFDdBduJBn1fk0CPs2LjZ-goSovKJK8HyMPJrxxq9y2h5_QaJs92xriCj_hPH3-ZnPkNXkFPBPGlHMmCLTkOueJjLTwIx3gSPAcN8j7Cl_xnHwWCmVymchC-nkSKb-wRodoofe5CrDfc3A-jH1JySKGrzvAqn6SuP_YcZ88yvqTFibS5xvL37t8DJ7SbU-7aJ5UneuzL70C39tZcy4vH9cXc71uPv8CKPk_TetVuNwo4mzgJOcarNjyOlw6Ac94A8yAbVbV1DpwdCxPsczGFu2V46OvLorVsLR1bzs--jI6zA-q93afOSB45q5s7Iy9pexVjGK-sGe2V7LGE2l2E3bPZJS3YLWsSnsHmMW3VgV5zKUOrVAiLrRQNhDWopkcJj3wWh7JTIPYTolD9jOHNc0zWqysW6wePO3opw6r5LeUay3LZc2eNctQ1yd8xsDH6kddNe429AtJlbZaII0QtdYciD_QSE4UqBf34Lbj4u5z0D7nOA3YOlni746A0M6Xa8q9DzXqOWUiwq57wGv2_csIs8EwHXdPd_-l0UO48GqYZi-3drbvwUVO6hxdvUVrsDo_WNj7qIzO9YNa_hm8O2vJ-AGoxZJX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cooperative+Copper+Metal-Organic+Framework-Hydrogel+System+Improves+Wound+Healing+in+Diabetes&rft.jtitle=Advanced+functional+materials&rft.au=Xiao%2C+Jisheng&rft.au=Chen%2C+Siyu&rft.au=Yi%2C+Ji&rft.au=Zhang%2C+Hao&rft.date=2017-01-05&rft.issn=1616-301X&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201604872&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon