A Cooperative Copper Metal–Organic Framework‐Hydrogel System Improves Wound Healing in Diabetes
Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting an...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 1; pp. np - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
05.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST‐1 NPs) embedded within an antioxidant thermoresponsive citrate‐based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST‐1 and poly‐(polyethyleneglycol citrate‐co‐N‐isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST‐1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST‐1 NPs disintegrated in protein solution while HKUST‐1 NPs embedded in PPCN (H‐HKUST‐1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H‐HKUST‐1 induced angiogenesis, collagen deposition, and re‐epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion‐releasing H‐HKUST‐1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.
A copper ion‐eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST‐1) nanoparticles and poly(polyethylene glycol citrate‐co‐N‐isopropylacrylamide) is prepared and characterized (H‐HKUST‐1). H‐HKUST‐1 exhibits significantly reduced cytotoxicity and promotes the migration of dermal cells in vitro. In vivo, H‐HKUST‐1 promotes improved dermal wound closure rates in diabetic mice. |
---|---|
AbstractList | Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NPs disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. A copper ion-eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST-1) nanoparticles and poly(polyethylene glycol citrate-co-N-isopropylacrylamide) is prepared and characterized (H-HKUST-1). H-HKUST-1 exhibits significantly reduced cytotoxicity and promotes the migration of dermal cells in vitro. In vivo, H-HKUST-1 promotes improved dermal wound closure rates in diabetic mice. Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and migration processes were measured. Wound closure rates and wound blood perfusion were assessed using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration and wound closure rates were significantly enhanced. , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NPs disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST‐1 NPs) embedded within an antioxidant thermoresponsive citrate‐based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST‐1 and poly‐(polyethyleneglycol citrate‐ co ‐ N ‐isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST‐1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST‐1 NPs disintegrated in protein solution while HKUST‐1 NPs embedded in PPCN (H‐HKUST‐1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H‐HKUST‐1 induced angiogenesis, collagen deposition, and re‐epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion‐releasing H‐HKUST‐1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST‐1 NPs) embedded within an antioxidant thermoresponsive citrate‐based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST‐1 and poly‐(polyethyleneglycol citrate‐co‐N‐isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST‐1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST‐1 NPs disintegrated in protein solution while HKUST‐1 NPs embedded in PPCN (H‐HKUST‐1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H‐HKUST‐1 induced angiogenesis, collagen deposition, and re‐epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion‐releasing H‐HKUST‐1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. A copper ion‐eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST‐1) nanoparticles and poly(polyethylene glycol citrate‐co‐N‐isopropylacrylamide) is prepared and characterized (H‐HKUST‐1). H‐HKUST‐1 exhibits significantly reduced cytotoxicity and promotes the migration of dermal cells in vitro. In vivo, H‐HKUST‐1 promotes improved dermal wound closure rates in diabetic mice. Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds. A copper ion-eluting thermoresponsive antioxidant hydrogel consisting of metal organic framework (HKUST-1) nanoparticles (NPs) and poly(polyethylene glycol citrate-co- N -isopropylacrylamide) (PPCN) was prepared and characterized (H-HKUST-1). H-HKUST-1 exhibited significantly reduced cytotoxicity and promoted the migration of dermal cells in vitro. In vivo , H-HKUST-1 promoted improved dermal wound closure rates in diabetic mice. |
Author | Yi, Ji Xiao, Jisheng Ameer, Guillermo A. Chen, Siyu Zhang, Hao F. |
AuthorAffiliation | 4 Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611 3 Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208 2 Department of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States 1 Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA |
AuthorAffiliation_xml | – name: 2 Department of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States – name: 1 Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA – name: 4 Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611 – name: 3 Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208 |
Author_xml | – sequence: 1 givenname: Jisheng surname: Xiao fullname: Xiao, Jisheng organization: Northwestern University – sequence: 2 givenname: Siyu surname: Chen fullname: Chen, Siyu organization: Northwestern University – sequence: 3 givenname: Ji surname: Yi fullname: Yi, Ji organization: Northwestern University – sequence: 4 givenname: Hao F. surname: Zhang fullname: Zhang, Hao F. organization: Northwestern University – sequence: 5 givenname: Guillermo A. surname: Ameer fullname: Ameer, Guillermo A. email: g-ameer@northwestern.edu organization: Northwestern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28729818$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhS1URP_YskQjsekmwT8z8cwGKUobUqlVFxTBzrI9d4KLx57aM6my6yMg8YZ9EhylBKiEuvKV_Z3ja597iPacd4DQG4LHBGP6XtZNO6aYTHBecvoCHZAJmYwYpuXeriZf99FhjDcYE85Z_grt08RWJSkPkJ5mM-87CLI3K0h1l-rsEnppH-5_XoWldEZn8yBbuPPh-8P9j8W6Dn4JNvu0jj202XnbBb-CmH3xg6uzBUhr3DIzLjs1UkEP8Ri9bKSN8PpxPUKf52fXs8Xo4urj-Wx6MdL5hNCRYkxVVNWUV4UqcaEYKOCUa4YLmbZoXWGCG6nrildNhWteSNyAVjlJb6GSHaEPW99uUC3UGlwfpBVdMK0Ma-GlEf-eOPNNLP1KFAVhpKLJ4OTRIPjbAWIvWhM1WCsd-CGKxNACM8rZ82hZpngSXCb03RP0xg_BpZ_YGOKc0RRXot7-3fyu699RJWC8BXTwMQZodgjBYjMLYjMLYjcLSZA_EWjTp5j95vHG_l9WbWV3xsL6mUvE9HR--Uf7C1Czyvw |
CitedBy_id | crossref_primary_10_1002_advs_202301806 crossref_primary_10_1186_s12951_021_01130_w crossref_primary_10_1039_D3RA04013E crossref_primary_10_1166_mex_2021_1976 crossref_primary_10_1016_j_heliyon_2024_e38481 crossref_primary_10_1007_s43538_023_00183_9 crossref_primary_10_1016_j_surfin_2024_104698 crossref_primary_10_3389_fbioe_2021_718377 crossref_primary_10_1021_acsanm_3c00101 crossref_primary_10_1021_acsnano_1c06036 crossref_primary_10_1039_C9RA10031H crossref_primary_10_1039_D2BM01443B crossref_primary_10_1039_D4TB01666A crossref_primary_10_1016_j_bioactmat_2023_07_011 crossref_primary_10_1016_j_cej_2022_138216 crossref_primary_10_1007_s12274_020_2846_1 crossref_primary_10_1016_j_biomaterials_2020_120300 crossref_primary_10_1021_acsami_2c15299 crossref_primary_10_1021_acsami_9b04750 crossref_primary_10_1002_adfm_202312499 crossref_primary_10_1002_adhm_202300887 crossref_primary_10_1016_j_cej_2021_129577 crossref_primary_10_1016_j_matchemphys_2023_128373 crossref_primary_10_1002_adfm_201701974 crossref_primary_10_1186_s12951_021_00869_6 crossref_primary_10_3390_polym14040724 crossref_primary_10_1016_j_ijbiomac_2023_129006 crossref_primary_10_1016_j_bioactmat_2021_04_042 crossref_primary_10_1002_slct_201702187 crossref_primary_10_1002_asia_202100102 crossref_primary_10_1021_acsami_1c19209 crossref_primary_10_1016_j_ijbiomac_2024_137374 crossref_primary_10_1021_acssuschemeng_9b05196 crossref_primary_10_3390_life11050391 crossref_primary_10_1016_j_ijbiomac_2025_139851 crossref_primary_10_3390_gels9090694 crossref_primary_10_1002_bab_2051 crossref_primary_10_1039_D1BM01179K crossref_primary_10_1007_s13346_021_00966_x crossref_primary_10_1002_adfm_202101804 crossref_primary_10_1021_acsabm_2c00138 crossref_primary_10_1002_adfm_202010461 crossref_primary_10_1016_j_bioactmat_2021_07_022 crossref_primary_10_1016_j_bioactmat_2023_03_005 crossref_primary_10_1016_j_ccr_2021_213929 crossref_primary_10_1016_j_mtbio_2022_100498 crossref_primary_10_1186_s12951_021_01151_5 crossref_primary_10_1016_j_ijbiomac_2022_01_080 crossref_primary_10_3390_molecules30061282 crossref_primary_10_1007_s10904_021_02011_3 crossref_primary_10_3389_fbioe_2021_603608 crossref_primary_10_1002_slct_202405715 crossref_primary_10_1016_j_biopha_2023_114366 crossref_primary_10_1039_C9NR03612A crossref_primary_10_1039_D0DT02417A crossref_primary_10_3390_gels9020138 crossref_primary_10_1016_j_ijbiomac_2022_07_150 crossref_primary_10_1016_j_jcis_2021_11_014 crossref_primary_10_1016_j_cej_2025_160642 crossref_primary_10_1089_wound_2019_1094 crossref_primary_10_1016_j_apsadv_2024_100607 crossref_primary_10_1021_acs_analchem_0c04956 crossref_primary_10_1016_j_mtchem_2024_102235 crossref_primary_10_1038_s41536_023_00331_1 crossref_primary_10_1021_acsnano_1c04206 crossref_primary_10_1016_j_carpta_2024_100564 crossref_primary_10_20517_ss_2024_32 crossref_primary_10_3390_ijms25073993 crossref_primary_10_1002_app_56783 crossref_primary_10_1039_D3CC03146B crossref_primary_10_3390_pharmaceutics14091838 crossref_primary_10_3390_pharmaceutics15010010 crossref_primary_10_1016_j_biomaterials_2020_120199 crossref_primary_10_1002_adtp_202100075 crossref_primary_10_1021_acsbiomaterials_9b01233 crossref_primary_10_1016_j_bioactmat_2021_05_052 crossref_primary_10_1016_j_ijbiomac_2021_01_058 crossref_primary_10_1021_acsami_0c21543 crossref_primary_10_1016_j_apmt_2020_100735 crossref_primary_10_1016_j_cej_2019_122849 crossref_primary_10_1016_j_mtchem_2024_102300 crossref_primary_10_1016_j_cej_2020_124523 crossref_primary_10_1021_acsabm_4c00358 crossref_primary_10_1021_acsami_9b13267 crossref_primary_10_1039_D2BM00224H crossref_primary_10_1002_adma_202402871 crossref_primary_10_1016_j_actbio_2018_02_010 crossref_primary_10_1021_acsnano_1c08411 crossref_primary_10_1016_j_ijbiomac_2024_132443 crossref_primary_10_1002_adhm_202101247 crossref_primary_10_1002_adhm_202001591 crossref_primary_10_1088_2399_1984_ac92f1 crossref_primary_10_1002_adfm_202106572 crossref_primary_10_1088_1748_605X_ad906b crossref_primary_10_1186_s12951_022_01489_4 crossref_primary_10_2147_IJN_S408981 crossref_primary_10_1016_j_mtbio_2023_100621 crossref_primary_10_1021_jacs_9b03503 crossref_primary_10_1016_j_biomaterials_2018_08_044 crossref_primary_10_1016_j_jtemb_2019_06_015 crossref_primary_10_1021_acsnano_9b08930 crossref_primary_10_1007_s11814_021_1000_4 crossref_primary_10_1021_acsami_3c04733 crossref_primary_10_2147_IJN_S276001 crossref_primary_10_1016_j_addr_2017_12_012 crossref_primary_10_1016_j_jhazmat_2020_122126 crossref_primary_10_1002_adhm_202303297 crossref_primary_10_1039_D1BM01745D crossref_primary_10_3390_gels10100621 crossref_primary_10_1016_j_cej_2022_137172 crossref_primary_10_1039_C9BM01635J crossref_primary_10_34133_2021_4189516 crossref_primary_10_1002_admi_201801895 crossref_primary_10_1016_j_nantod_2023_101911 crossref_primary_10_1016_j_matdes_2023_112072 crossref_primary_10_3390_gels10080495 crossref_primary_10_2174_1389557522666220330152145 crossref_primary_10_1016_j_cej_2021_129025 crossref_primary_10_2147_JIR_S452609 crossref_primary_10_1002_smll_202104229 crossref_primary_10_1039_C9NR02955A crossref_primary_10_1002_adma_202306326 crossref_primary_10_3389_fbioe_2023_1308184 crossref_primary_10_1016_j_cej_2021_130148 crossref_primary_10_1016_j_ccr_2024_216330 crossref_primary_10_1016_j_cej_2025_159617 crossref_primary_10_1016_j_ijpharm_2024_124206 crossref_primary_10_1016_j_addr_2018_07_019 crossref_primary_10_1002_adfm_202100924 crossref_primary_10_1016_j_engreg_2021_09_005 crossref_primary_10_2139_ssrn_4350215 crossref_primary_10_1016_j_cej_2024_157837 crossref_primary_10_1016_j_bioactmat_2022_11_019 crossref_primary_10_1002_adfm_201909389 crossref_primary_10_1021_acsami_0c04755 crossref_primary_10_1021_acsami_0c21854 crossref_primary_10_1002_term_2880 crossref_primary_10_1089_ars_2021_0134 crossref_primary_10_1016_j_ccr_2019_213016 crossref_primary_10_1039_D4MA01220H crossref_primary_10_3390_met13091511 crossref_primary_10_1039_C8TB01078A crossref_primary_10_3390_bioengineering9070298 crossref_primary_10_1073_pnas_2016268117 crossref_primary_10_1002_adfm_202416553 crossref_primary_10_1002_adhm_202301885 crossref_primary_10_1002_smll_202207057 crossref_primary_10_1016_j_msec_2020_111586 crossref_primary_10_1016_j_ejps_2020_105224 crossref_primary_10_1016_j_cej_2020_126273 crossref_primary_10_1016_j_ijbiomac_2023_128546 crossref_primary_10_1002_sstr_202400028 crossref_primary_10_1002_adhm_201700746 crossref_primary_10_1016_j_addr_2019_01_013 crossref_primary_10_1016_j_ijbiomac_2021_08_092 crossref_primary_10_1016_j_actbio_2019_03_018 crossref_primary_10_3390_molecules28166098 crossref_primary_10_1080_09205063_2024_2340819 crossref_primary_10_1016_j_ijbiomac_2024_131670 crossref_primary_10_1089_sur_2020_411 crossref_primary_10_3389_fbioe_2022_1060026 crossref_primary_10_1039_D2TA08841J crossref_primary_10_3390_molecules26227031 crossref_primary_10_1016_j_carbpol_2023_120824 crossref_primary_10_1016_j_foodchem_2024_139440 crossref_primary_10_1039_D1BM01211H crossref_primary_10_1039_D2NA00897A crossref_primary_10_3390_ijms23147967 crossref_primary_10_1021_acsomega_4c08103 crossref_primary_10_3389_fendo_2023_1124027 crossref_primary_10_1016_j_colsurfa_2024_133777 crossref_primary_10_1016_j_bioactmat_2020_07_013 crossref_primary_10_1039_D1BM00622C crossref_primary_10_1007_s10570_025_06435_9 crossref_primary_10_1016_j_heliyon_2024_e39611 crossref_primary_10_1038_s41467_023_35907_4 crossref_primary_10_1016_j_actbio_2021_09_056 crossref_primary_10_1021_acsanm_1c03034 crossref_primary_10_1039_D3RA03477A crossref_primary_10_1002_adhm_202101556 crossref_primary_10_1002_ddr_21759 crossref_primary_10_1007_s12011_019_01868_3 crossref_primary_10_1016_j_bioactmat_2022_04_027 crossref_primary_10_1515_chem_2024_0061 crossref_primary_10_1016_j_matdes_2022_110598 crossref_primary_10_1039_D0DT02165B crossref_primary_10_1021_acsami_1c11207 crossref_primary_10_1039_C8BM00807H crossref_primary_10_1002_adfm_201809009 crossref_primary_10_1002_smll_202311903 crossref_primary_10_1039_D4MD00232F crossref_primary_10_1007_s12274_022_4430_3 crossref_primary_10_1039_D1NR07611F crossref_primary_10_1007_s10751_025_02277_w crossref_primary_10_1039_D2TB02671F crossref_primary_10_1016_j_jcis_2018_01_110 crossref_primary_10_1007_s10853_023_08730_x crossref_primary_10_1016_j_jwpe_2022_103348 crossref_primary_10_1016_j_ijbiomac_2020_04_116 crossref_primary_10_3390_biom12091240 crossref_primary_10_1007_s12668_024_01314_2 crossref_primary_10_1039_D2BM02101C crossref_primary_10_1039_D3TB02929H crossref_primary_10_1016_j_reactfunctpolym_2019_05_002 crossref_primary_10_1016_j_ijbiomac_2023_126028 crossref_primary_10_1016_j_cej_2023_146613 crossref_primary_10_1007_s12274_020_2636_9 crossref_primary_10_1021_acsanm_2c05523 crossref_primary_10_1016_j_ijbiomac_2024_132741 crossref_primary_10_1016_j_ijbiomac_2024_135577 crossref_primary_10_1002_adhm_202401646 crossref_primary_10_1016_j_chroma_2021_462745 crossref_primary_10_3390_ijms19041179 crossref_primary_10_1016_j_actbio_2018_02_028 crossref_primary_10_1016_j_mtbio_2024_101292 crossref_primary_10_1016_j_mtnano_2023_100363 crossref_primary_10_1039_C9NJ02064K crossref_primary_10_2147_IJN_S434693 crossref_primary_10_1021_acsami_0c03187 crossref_primary_10_3390_nano12020277 crossref_primary_10_1016_j_carbpol_2022_119522 crossref_primary_10_1016_j_carbpol_2022_119643 crossref_primary_10_1016_j_apsb_2024_03_014 crossref_primary_10_1016_j_ijbiomac_2021_07_139 crossref_primary_10_1016_j_matdes_2024_112638 crossref_primary_10_34133_2021_9780943 crossref_primary_10_1016_j_cej_2021_130634 crossref_primary_10_1134_S2635167622020045 crossref_primary_10_1021_acsami_0c13098 crossref_primary_10_1016_j_ijbiomac_2021_08_061 crossref_primary_10_1002_mabi_202200442 crossref_primary_10_1016_j_cclet_2020_03_005 crossref_primary_10_3390_molecules25245830 crossref_primary_10_1016_j_actbio_2022_04_041 crossref_primary_10_1016_j_ijbiomac_2022_11_320 crossref_primary_10_1186_s12951_023_02048_1 crossref_primary_10_1021_acsami_0c01792 crossref_primary_10_1146_annurev_bioeng_060418_052422 crossref_primary_10_3390_polym14214710 crossref_primary_10_1088_2043_6262_ac2b98 crossref_primary_10_1016_j_cej_2023_148220 crossref_primary_10_1016_j_ijbiomac_2023_128581 crossref_primary_10_1126_sciadv_adk3081 crossref_primary_10_1039_D1RA08824F crossref_primary_10_1016_j_cej_2021_132926 crossref_primary_10_3389_fbioe_2020_576348 crossref_primary_10_1016_j_cej_2024_148978 crossref_primary_10_1002_adma_202302587 crossref_primary_10_1080_00914037_2022_2120876 crossref_primary_10_1039_C8SC04732D crossref_primary_10_1039_D3BM01978K crossref_primary_10_7759_cureus_39557 crossref_primary_10_1021_acsami_4c15674 crossref_primary_10_1039_C8MH00647D crossref_primary_10_1186_s12951_023_02035_6 crossref_primary_10_3389_fchem_2020_00642 crossref_primary_10_1002_app_49216 crossref_primary_10_1016_j_cej_2024_155037 crossref_primary_10_1016_j_cej_2021_132039 crossref_primary_10_1021_acs_bioconjchem_3c00325 crossref_primary_10_3390_gels10010031 crossref_primary_10_1016_j_gendis_2019_09_008 crossref_primary_10_1021_acsami_4c22878 crossref_primary_10_1007_s12668_024_01708_2 crossref_primary_10_1016_j_fct_2024_114866 crossref_primary_10_1021_acsami_4c20219 crossref_primary_10_1016_j_carbpol_2024_123046 crossref_primary_10_1016_j_cej_2021_131506 crossref_primary_10_1039_D1BM00164G crossref_primary_10_1016_j_biomaterials_2021_120918 crossref_primary_10_1002_smll_202207437 crossref_primary_10_1002_marc_202100025 crossref_primary_10_1021_acsami_8b21766 crossref_primary_10_1039_D3MA00682D crossref_primary_10_1016_j_ijbiomac_2024_134578 crossref_primary_10_3390_cosmetics10040096 crossref_primary_10_1021_acsnano_7b01850 crossref_primary_10_1002_adhm_202303688 crossref_primary_10_1002_adfm_202308589 crossref_primary_10_3389_fbioe_2024_1429771 crossref_primary_10_1039_D0QI00840K crossref_primary_10_1021_acsnano_7b08928 crossref_primary_10_1016_j_apsb_2020_07_018 crossref_primary_10_1016_j_jece_2021_106705 crossref_primary_10_1021_acsami_3c02825 crossref_primary_10_1021_acsnano_9b03656 crossref_primary_10_1016_j_cej_2021_130429 crossref_primary_10_1039_D2BM01906J crossref_primary_10_1186_s12951_022_01403_y crossref_primary_10_1007_s00289_021_03996_0 crossref_primary_10_2217_nnm_2019_0119 crossref_primary_10_1021_acsbiomaterials_4c01106 crossref_primary_10_1021_acsnano_0c03855 crossref_primary_10_1016_j_colsurfa_2023_132585 crossref_primary_10_1016_j_ijbiomac_2025_139864 crossref_primary_10_1016_j_msec_2019_02_081 crossref_primary_10_1021_acsami_1c16300 crossref_primary_10_1007_s40195_021_01335_w crossref_primary_10_1007_s40820_020_00542_x crossref_primary_10_1016_j_rechem_2022_100648 crossref_primary_10_1039_C9TB01467E crossref_primary_10_1002_adhm_202302566 crossref_primary_10_1080_02670844_2022_2161230 crossref_primary_10_3389_fbioe_2022_901534 crossref_primary_10_1016_j_ntm_2023_100007 crossref_primary_10_1016_j_cis_2022_102686 crossref_primary_10_1016_j_molstruc_2024_138693 crossref_primary_10_1002_mame_202200469 crossref_primary_10_1016_j_mtchem_2021_100670 crossref_primary_10_1002_adhm_202400242 crossref_primary_10_1016_j_biomaterials_2018_12_012 crossref_primary_10_1002_adfm_202008054 crossref_primary_10_1016_j_actbio_2021_01_038 crossref_primary_10_1111_wrr_13122 crossref_primary_10_1002_smll_202407758 crossref_primary_10_2217_nnm_2020_0053 crossref_primary_10_1002_adfm_202002621 crossref_primary_10_1016_j_cej_2022_136948 crossref_primary_10_1007_s12274_020_3069_1 crossref_primary_10_1016_j_matdes_2023_112252 crossref_primary_10_1021_acsbiomaterials_4c00261 crossref_primary_10_1021_acsami_1c25014 |
Cites_doi | 10.1371/journal.pone.0084548 10.1021/nn403202w 10.1016/j.actbio.2011.10.018 10.1002/adma.201400620 10.1002/adfm.201301178 10.1097/SAP.0000000000000342 10.1016/j.biopha.2014.10.020 10.1039/c3cc43689f 10.1073/pnas.1505951112 10.1073/pnas.1231994100 10.1111/j.1524-475X.2012.00822.x 10.1021/nn202966t 10.1152/ajpheart.01015.2001 10.1073/pnas.1115973108 10.1097/PRS.0b013e318230c521 10.1039/C4CS00003J 10.1021/ja509960n 10.4161/org.27405 10.1089/ten.tea.2015.0069 10.1007/s00726-012-1269-z 10.1073/pnas.1013942107 10.1002/adma.201403354 10.1021/ja309968u 10.1089/ten.tea.2009.0229 10.1111/j.1524-475X.2010.00573.x 10.1002/jbm.b.32962 10.1002/adfm.201000732 10.1021/acs.chemrev.5b00125 10.1021/ar200028a 10.1111/j.1067-1927.2004.12404.x 10.1038/cddis.2014.423 10.1172/JCI46475 10.1364/BOE.5.003603 10.1016/j.contraception.2015.08.014 10.1002/adfm.201002529 10.1089/ars.2008.2121 10.1016/j.biomaterials.2013.08.031 10.1371/journal.pone.0075877 10.1016/j.biomaterials.2015.02.112 10.1089/wound.2012.0401 10.1371/journal.pone.0144166 10.1097/PRS.0000000000000467 10.1021/jp8005553 10.1021/jacs.5b06637 10.1016/j.toxlet.2005.10.003 10.1016/j.msec.2014.12.068 10.1111/iwj.12238 10.1126/scitranslmed.3009337 10.1111/j.1440-0960.1973.tb01208.x 10.1016/j.biomaterials.2015.03.018 10.1089/wound.2013.0473 10.1038/nature15732 10.1016/j.contraception.2011.05.011 10.1021/bm5010004 10.4155/tde.13.74 10.1002/adfm.201503248 10.1002/adfm.201470162 10.1039/C4CS00010B 10.1161/ATVBAHA.108.178962 10.1016/j.biomaterials.2013.08.053 10.1002/adfm.201102157 10.3390/molecules171213704 10.1161/01.CIR.0000069330.41022.90 10.1039/b927601g 10.1111/j.1524-475X.2012.00793.x 10.2147/IJN.S54113 10.1111/wrr.12375 10.1021/ja508962m 10.1016/j.ejphar.2014.02.033 10.1002/9783527635856 10.1111/iwj.12230 10.1038/nmat2608 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1002/adfm.201604872 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | PMC5513192 28729818 10_1002_adfm_201604872 ADFM201604872 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health's National Center funderid: UL1TR000150 – fundername: NCRR NIH HHS grantid: S10 RR022494 – fundername: NCATS NIH HHS grantid: UL1 TR000150 – fundername: NCATS NIH HHS grantid: UL1 TR001422 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 1OB 7X8 5PM |
ID | FETCH-LOGICAL-c4612-b33b92bd2795b805b3ebe727c305a95b2d9010facd979f90d75a0fecb419812a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Aug 21 13:55:55 EDT 2025 Sun Aug 24 04:08:46 EDT 2025 Thu Aug 07 14:29:32 EDT 2025 Fri Jul 25 07:01:46 EDT 2025 Mon Jul 21 06:06:10 EDT 2025 Tue Jul 01 01:30:31 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Wed Jan 22 16:57:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | citric acid wound healing hydrogel copper metal-organic framework |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4612-b33b92bd2795b805b3ebe727c305a95b2d9010facd979f90d75a0fecb419812a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28729818 |
PQID | 1920432302 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5513192 proquest_miscellaneous_1922503273 proquest_miscellaneous_1880025038 proquest_journals_1920432302 pubmed_primary_28729818 crossref_primary_10_1002_adfm_201604872 crossref_citationtrail_10_1002_adfm_201604872 wiley_primary_10_1002_adfm_201604872_ADFM201604872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 5, 2017 |
PublicationDateYYYYMMDD | 2017-01-05 |
PublicationDate_xml | – month: 01 year: 2017 text: January 5, 2017 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv Funct Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010 2010 2013 2012 2015; 9 20 23 22 115 2010; 16 2015 2014; 48 10 2014 2010 2002; 9 18 282 2015; 53 2012 2011 2015 2015 2014 2015 2011 2012 2013; 20 128 24 21 5 70 121 43 8 2015 2014 2013 2012 2015; 74 134 8 20 10 2014; 26 2012 2015 2012 2013; 8 92 85 101 2015; 527 2008; 10 2015 2010; 137 12 2015 1973; 54 14 2011 2013; 49 2014; 136 2014; 731 2014; 43 2009; 29 2010 2011 2015 2013 2015; 107 108 27 4 25 2014; 5 2003; 107 2014; 3 2013; 34 2012 2008; 17 112 2004; 12 2006; 163 2014; 15 2011; 44 2013; 135 2014 2015 2013; 112 34 2015 2015 2014; 112 12 13 2014; 6 2003; 100 2013 2011; 7 5 2011 2014; 21 24 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_20_2 e_1_2_6_20_1 e_1_2_6_5_5 e_1_2_6_9_1 e_1_2_6_5_4 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_5_3 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_20_5 e_1_2_6_24_1 e_1_2_6_1_3 e_1_2_6_3_1 e_1_2_6_20_4 e_1_2_6_1_2 e_1_2_6_20_3 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_26_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_12_2 e_1_2_6_31_6 e_1_2_6_12_3 e_1_2_6_14_1 e_1_2_6_31_5 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_31_4 e_1_2_6_12_1 e_1_2_6_31_3 e_1_2_6_33_1 e_1_2_6_39_2 e_1_2_6_18_1 e_1_2_6_31_9 e_1_2_6_39_1 e_1_2_6_12_4 e_1_2_6_31_8 e_1_2_6_16_1 e_1_2_6_31_7 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_8_2 e_1_2_6_29_5 e_1_2_6_8_1 e_1_2_6_29_4 e_1_2_6_29_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_29_1 Centers for Disease Control and Prevention (e_1_2_6_2_1) 2014 e_1_2_6_27_1 e_1_2_6_25_2 |
References_xml | – volume: 112 12 13 start-page: 5573 4 82 year: 2015 2015 2014 publication-title: Proc. Natl. Acad. Sci. USA. Int. Wound. J. Int. Wound J. – volume: 29 start-page: 503 year: 2009 publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 137 12 start-page: 10009 8092 year: 2015 2010 publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys. – volume: 26 start-page: 4056 year: 2014 publication-title: Adv. Mater. – volume: 136 start-page: 15485 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 445 year: 2014 publication-title: Adv. Wound Care – volume: 731 start-page: 8 year: 2014 publication-title: Eur. J. Pharmacol. – volume: 7 5 start-page: 8780 9326 year: 2013 2011 publication-title: ACS Nano ACS Nano – volume: 136 start-page: 16978 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 17 112 start-page: 13704 10399 year: 2012 2008 publication-title: Molecules J. Phys. Chem. B – volume: 163 start-page: 109 year: 2006 publication-title: Toxicol. Lett. – volume: 8 92 85 101 start-page: 886 585 91 1428 year: 2012 2015 2012 2013 publication-title: Acta Biomater. Contraception Contraception J. Biomed. Mater. Res., Part B Appl. Biomater. – volume: 21 24 start-page: 1442 3837 year: 2011 2014 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. – volume: 16 start-page: 695 year: 2010 publication-title: Tissue Eng. Part A – volume: 100 start-page: 6700 year: 2003 publication-title: Proc. Natl. Acad. Sci. USA. – volume: 43 start-page: 5815 year: 2014 publication-title: Chem. Soc. Rev. – volume: 9 18 282 start-page: 891 266 H1821 year: 2014 2010 2002 publication-title: Int. J. Nanomed. Wound Repair Regener. Am. J. Physiol. – volume: 15 start-page: 3942 year: 2014 publication-title: Biomacromolecules – year: 2014 – volume: 54 14 start-page: 126 127 year: 2015 1973 publication-title: Biomaterials Australas. J. Dermatol. – volume: 53 start-page: 379 year: 2015 publication-title: Biomaterials – volume: 49 start-page: 217 8208 year: 2011 2013 publication-title: Chem. Commun. – volume: 5 start-page: 3603 year: 2014 publication-title: Biomed. Opt. Express – volume: 112 34 start-page: 5573 9393 year: 2015 2013 publication-title: Proc. Natl. Acad. Sci. USA Biomaterials – volume: 6 start-page: 265sr266 year: 2014 publication-title: Sci. Transl. Med. – volume: 74 134 8 20 10 start-page: 114 402e e84548 715 e0144166 year: 2015 2014 2013 2012 2015 publication-title: Ann. Plast. Surg. Plast. Reconstr. Surg. PloS one Wound Repair Regener. PloS one – volume: 107 start-page: 2274 year: 2003 publication-title: Circulation – volume: 43 start-page: 5561 year: 2014 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 957 year: 2011 publication-title: Acc. Chem. Res. – volume: 20 128 24 21 5 70 121 43 8 start-page: 342 673e 65 2723 e1458 317 4348 127 e75877 year: 2012 2011 2015 2015 2014 2015 2011 2012 2013 publication-title: Wound Repair Regener. Plast. Reconstr. Surg. Wound Repair Regener. Tissue Eng. Part A Cell Death Dis. Biomed. Pharmacother. Biomed. Pharmacother. J. Clin. Investig. Amino Acids PloS One – volume: 34 start-page: 9071 year: 2013 publication-title: Biomaterials – volume: 10 start-page: 1869 year: 2008 publication-title: Antioxid. Redox. Signal. – volume: 3 start-page: 511 year: 2014 publication-title: Adv. Wound Care – volume: 9 20 23 22 115 start-page: 172 4091 5585 1698 11079 year: 2010 2010 2013 2012 2015 publication-title: Nat. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Chem. Rev. – volume: 48 10 start-page: 651 29 year: 2015 2014 publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. Organogenesis – volume: 135 start-page: 2256 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 485 year: 2004 publication-title: Wound Repair Regener. – volume: 527 start-page: 357 year: 2015 publication-title: Nature – volume: 107 108 27 4 25 start-page: 18611 20976 1143 1179 7189 year: 2010 2011 2015 2013 2015 publication-title: Proc. Natl. Acad. Sci. USA. Proc. Natl. Acad. Sci. USA. Adv. Mater. Ther. Delivery Adv. Funct. Mater. – ident: e_1_2_6_29_3 doi: 10.1371/journal.pone.0084548 – ident: e_1_2_6_10_1 doi: 10.1021/nn403202w – ident: e_1_2_6_12_1 doi: 10.1016/j.actbio.2011.10.018 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201400620 – ident: e_1_2_6_20_3 doi: 10.1002/adfm.201301178 – ident: e_1_2_6_29_1 doi: 10.1097/SAP.0000000000000342 – ident: e_1_2_6_31_6 doi: 10.1016/j.biopha.2014.10.020 – volume-title: National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States year: 2014 ident: e_1_2_6_2_1 – ident: e_1_2_6_25_2 doi: 10.1039/c3cc43689f – ident: e_1_2_6_3_1 doi: 10.1073/pnas.1505951112 – ident: e_1_2_6_7_1 doi: 10.1073/pnas.1231994100 – ident: e_1_2_6_29_4 doi: 10.1111/j.1524-475X.2012.00822.x – ident: e_1_2_6_10_2 doi: 10.1021/nn202966t – ident: e_1_2_6_9_3 doi: 10.1152/ajpheart.01015.2001 – ident: e_1_2_6_5_2 doi: 10.1073/pnas.1115973108 – ident: e_1_2_6_31_2 doi: 10.1097/PRS.0b013e318230c521 – ident: e_1_2_6_14_1 doi: 10.1039/C4CS00003J – ident: e_1_2_6_22_1 doi: 10.1021/ja509960n – ident: e_1_2_6_4_2 doi: 10.4161/org.27405 – ident: e_1_2_6_31_4 doi: 10.1089/ten.tea.2015.0069 – ident: e_1_2_6_31_8 doi: 10.1007/s00726-012-1269-z – ident: e_1_2_6_5_1 doi: 10.1073/pnas.1013942107 – ident: e_1_2_6_5_3 doi: 10.1002/adma.201403354 – ident: e_1_2_6_19_1 doi: 10.1021/ja309968u – ident: e_1_2_6_27_1 doi: 10.1089/ten.tea.2009.0229 – ident: e_1_2_6_9_2 doi: 10.1111/j.1524-475X.2010.00573.x – ident: e_1_2_6_12_4 doi: 10.1002/jbm.b.32962 – ident: e_1_2_6_20_2 doi: 10.1002/adfm.201000732 – ident: e_1_2_6_20_5 doi: 10.1021/acs.chemrev.5b00125 – ident: e_1_2_6_21_1 doi: 10.1021/ar200028a – ident: e_1_2_6_30_1 doi: 10.1111/j.1067-1927.2004.12404.x – ident: e_1_2_6_31_5 doi: 10.1038/cddis.2014.423 – ident: e_1_2_6_31_7 doi: 10.1172/JCI46475 – ident: e_1_2_6_36_1 doi: 10.1364/BOE.5.003603 – ident: e_1_2_6_12_2 doi: 10.1016/j.contraception.2015.08.014 – ident: e_1_2_6_13_1 doi: 10.1002/adfm.201002529 – ident: e_1_2_6_33_1 doi: 10.1089/ars.2008.2121 – ident: e_1_2_6_23_1 doi: 10.1016/j.biomaterials.2013.08.031 – ident: e_1_2_6_31_9 doi: 10.1371/journal.pone.0075877 – ident: e_1_2_6_32_1 doi: 10.1016/j.biomaterials.2015.02.112 – ident: e_1_2_6_38_1 doi: 10.1089/wound.2012.0401 – ident: e_1_2_6_29_5 doi: 10.1371/journal.pone.0144166 – ident: e_1_2_6_29_2 doi: 10.1097/PRS.0000000000000467 – ident: e_1_2_6_26_2 doi: 10.1021/jp8005553 – ident: e_1_2_6_39_1 doi: 10.1021/jacs.5b06637 – ident: e_1_2_6_11_1 doi: 10.1016/j.toxlet.2005.10.003 – ident: e_1_2_6_4_1 doi: 10.1016/j.msec.2014.12.068 – ident: e_1_2_6_1_3 doi: 10.1111/iwj.12238 – ident: e_1_2_6_35_1 doi: 10.1126/scitranslmed.3009337 – ident: e_1_2_6_8_2 doi: 10.1111/j.1440-0960.1973.tb01208.x – ident: e_1_2_6_1_1 doi: 10.1073/pnas.1505951112 – ident: e_1_2_6_8_1 doi: 10.1016/j.biomaterials.2015.03.018 – ident: e_1_2_6_37_1 doi: 10.1089/wound.2013.0473 – ident: e_1_2_6_15_1 doi: 10.1038/nature15732 – ident: e_1_2_6_12_3 doi: 10.1016/j.contraception.2011.05.011 – ident: e_1_2_6_24_1 doi: 10.1021/bm5010004 – ident: e_1_2_6_5_4 doi: 10.4155/tde.13.74 – ident: e_1_2_6_5_5 doi: 10.1002/adfm.201503248 – ident: e_1_2_6_13_2 doi: 10.1002/adfm.201470162 – ident: e_1_2_6_18_1 doi: 10.1039/C4CS00010B – ident: e_1_2_6_34_1 doi: 10.1161/ATVBAHA.108.178962 – ident: e_1_2_6_3_2 doi: 10.1016/j.biomaterials.2013.08.053 – ident: e_1_2_6_20_4 doi: 10.1002/adfm.201102157 – ident: e_1_2_6_26_1 doi: 10.3390/molecules171213704 – ident: e_1_2_6_28_1 doi: 10.1161/01.CIR.0000069330.41022.90 – ident: e_1_2_6_39_2 doi: 10.1039/b927601g – ident: e_1_2_6_31_1 doi: 10.1111/j.1524-475X.2012.00793.x – ident: e_1_2_6_9_1 doi: 10.2147/IJN.S54113 – ident: e_1_2_6_31_3 doi: 10.1111/wrr.12375 – ident: e_1_2_6_17_1 doi: 10.1021/ja508962m – ident: e_1_2_6_6_1 doi: 10.1016/j.ejphar.2014.02.033 – ident: e_1_2_6_25_1 doi: 10.1002/9783527635856 – ident: e_1_2_6_1_2 doi: 10.1111/iwj.12230 – ident: e_1_2_6_20_1 doi: 10.1038/nmat2608 |
SSID | ssj0017734 |
Score | 2.6400673 |
Snippet | Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound... Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | np |
SubjectTerms | Angiogenesis Apoptosis Biocompatibility Cell adhesion & migration citric acid Closures Copper copper metal–organic frameworks Cytotoxicity Diabetes Diabetes mellitus Disintegration Hydrogels In vitro methods and tests Isopropylacrylamide Materials science Mice Nanoparticles Oxides Releasing Toxicity Wound healing |
Title | A Cooperative Copper Metal–Organic Framework‐Hydrogel System Improves Wound Healing in Diabetes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604872 https://www.ncbi.nlm.nih.gov/pubmed/28729818 https://www.proquest.com/docview/1920432302 https://www.proquest.com/docview/1880025038 https://www.proquest.com/docview/1922503273 https://pubmed.ncbi.nlm.nih.gov/PMC5513192 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaq9lIOUP6XlspISJzSJs6P7eOqZbVCbA9Axd4i25nQiipZdXcPcOojIPGGfZLOxEnYpQKkcnPicRTbM_YXZ-Ybxl6LUqTOhTgDAtIAV0kItFFpoKwsLe7X2mmKRp6cZOPT5N00na5E8Xt-iP7AjSyjWa_JwI2dH_4iDTVFSZHkUYY6KGkRJoctQkUfev6oSEr_WzmLyMErmnasjaE4XG--vivdgpq3PSZXkWyzFY0eMNN1wnugfD1YLuyB-_4bv-P_9HKH3W9xKh96xXrINqB6xO6tsBc-Zm7Ij-p6Bp47HMszLPMJIJy_vvrpgzwdH3XeX9dXP8bfisv6C1xwz5PO_YkGzPlnSu7EKSQKn8zPK9466syfsNPR209H46DN2RC4JKN8PnFstbCFkDq1KkxtjFqCGMnhumLwlijIH6Q0rtBSlzosZGrCEpxNIo1Yw8RP2WZVV_CcccC7YOIiE9omoIzKSqsMxAoAvyITOWBBN2e5awnNKa_GRe6pmEVOg5f3gzdgb3r5mafy-KPkXqcCeWvS8xyhMNEXxiFWv-qr0RjpD4upoF6ijFINqIzVX2S0IAmEjQP2zGtV_zr4-SpwGLC1XNO3XoDIwNdrqvOzhhScEvXgowdMNOr0jx7mw-PRpL96cZdGu2xbEMSh46h0j20uLpfwEgHawu6zreHx5P3H_cYYbwBOBDeK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAe-G9ZKGAkEKe0ifNnHzisuqy2tNsDasXegu04UFFlV91doXLqIyDxJLwKj9AnYSZOQpcKkJB64ObEYyu2x-MZZ-YbgGe84LExPq4At7GHUtJ6UonYEzotNJ7X0kiKRh7uJYOD6PUoHi3BtyYWxuFDtBdutDMqeU0bnC6kN3-ihqq8oFDyIEEmTHntV7ljTz6h1TZ9ud3DJX7Oef_V_tbAqxMLeCZKKOlMGGrJdc5TGWvhxzrEoeBBbpD5Fb7iOTktFMrkMpWF9PM0Vn5hjY7QRA-4CrHfK3CV0ogTXH_vTYtYFaSp-5GdBORSFowanEifby5-7-I5eEG5veijeV53rg6__k343kyb83n5uDGf6Q3z-RdEyf9qXm_BjVoVZ123d27Dki3vwMo5gMa7YLpsazyeWAePjuUJltnQosVydvrVxbEa1m8c3M5OvwxO8uPxe3vEHBQ8c5c2dsreUv4qRlFf2DM7LFntizS9BweXMspVWC7Hpb0PzOJbq8I84VJHViiRFFooGwpr0VCO0g54DZNkpsZsp9QhR5lDm-YZLVbWLlYHXrT0E4dW8lvK9YbnslpqTTPU9gmhMfSx-mlbjfKGfiKp0o7nSCNEpTeH4g80khMFasYdWHNs3H4OWugcpwFbpwsM3hIQ3vliTXn4ocI9p1xE2HUHeMW_fxlh1u31h-3Tg39p9ASuDfaHu9nu9t7OQ7jOSaOj27d4HZZnx3P7CPXRmX5cSQAG7y57a_wABEmTqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P-zUMBIIE5ps86ffeCw6hJtKVshRMXegu04UFElq-6uUDn1EZB4EV6FV-iTMBMnoUsFSEg9cHPisRXbM_aMM_MNwGNe8MgYH1eA28jDXdJ6UonIEzopNJ7X0kiKRh7vxKPd8MUkmqzAtzYWxuFDdBduJBn1fk0CPs2LjZ-goSovKJK8HyMPJrxxq9y2h5_QaJs92xriCj_hPH3-ZnPkNXkFPBPGlHMmCLTkOueJjLTwIx3gSPAcN8j7Cl_xnHwWCmVymchC-nkSKb-wRodoofe5CrDfc3A-jH1JySKGrzvAqn6SuP_YcZ88yvqTFibS5xvL37t8DJ7SbU-7aJ5UneuzL70C39tZcy4vH9cXc71uPv8CKPk_TetVuNwo4mzgJOcarNjyOlw6Ac94A8yAbVbV1DpwdCxPsczGFu2V46OvLorVsLR1bzs--jI6zA-q93afOSB45q5s7Iy9pexVjGK-sGe2V7LGE2l2E3bPZJS3YLWsSnsHmMW3VgV5zKUOrVAiLrRQNhDWopkcJj3wWh7JTIPYTolD9jOHNc0zWqysW6wePO3opw6r5LeUay3LZc2eNctQ1yd8xsDH6kddNe429AtJlbZaII0QtdYciD_QSE4UqBf34Lbj4u5z0D7nOA3YOlni746A0M6Xa8q9DzXqOWUiwq57wGv2_csIs8EwHXdPd_-l0UO48GqYZi-3drbvwUVO6hxdvUVrsDo_WNj7qIzO9YNa_hm8O2vJ-AGoxZJX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cooperative+Copper+Metal-Organic+Framework-Hydrogel+System+Improves+Wound+Healing+in+Diabetes&rft.jtitle=Advanced+functional+materials&rft.au=Xiao%2C+Jisheng&rft.au=Chen%2C+Siyu&rft.au=Yi%2C+Ji&rft.au=Zhang%2C+Hao&rft.date=2017-01-05&rft.issn=1616-301X&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.201604872&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |