Muscular adaptations to fatiguing exercise with and without blood flow restriction

Summary The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle‐aged (42–62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance traini...

Full description

Saved in:
Bibliographic Details
Published inClinical physiology and functional imaging Vol. 35; no. 3; pp. 167 - 176
Main Authors Fahs, Christopher A., Loenneke, Jeremy P., Thiebaud, Robert S., Rossow, Lindy M., Kim, Daeyeol, Abe, Takashi, Beck, Travis W., Feeback, Daniel L., Bemben, Debra A., Bemben, Michael G.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle‐aged (42–62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low‐load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle‐aged individuals. However, BFR enhanced the hypertrophic effect of low‐load training and reduced the volume of exercise needed to elicit increases in muscle function.
AbstractList Summary The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function.
The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction ( BFR ). Middle‐aged (42–62 years) men ( n  = 12) and women ( n  = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR , and the contralateral limb trained without BFR [free flow ( FF )]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness ( MT h), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb ( P <0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more ( P <0·05) in the limb trained under BFR ( BFR : 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF : 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low‐load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle‐aged individuals. However, BFR enhanced the hypertrophic effect of low‐load training and reduced the volume of exercise needed to elicit increases in muscle function.
The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function.The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function.
The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function.
Summary The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle‐aged (42–62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low‐load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle‐aged individuals. However, BFR enhanced the hypertrophic effect of low‐load training and reduced the volume of exercise needed to elicit increases in muscle function.
Author Thiebaud, Robert S.
Kim, Daeyeol
Beck, Travis W.
Feeback, Daniel L.
Abe, Takashi
Rossow, Lindy M.
Bemben, Michael G.
Fahs, Christopher A.
Bemben, Debra A.
Loenneke, Jeremy P.
Author_xml – sequence: 1
  givenname: Christopher A.
  surname: Fahs
  fullname: Fahs, Christopher A.
  email: Christopher A. Fahs, 155 North Street #111, Fitchburg, MA 01420, USA, cfahs1@fitchburgstate.edu
  organization: Fitchburg State University, MA, Fitchburg, USA
– sequence: 2
  givenname: Jeremy P.
  surname: Loenneke
  fullname: Loenneke, Jeremy P.
  organization: The University of Oklahoma, OK, Norman, USA
– sequence: 3
  givenname: Robert S.
  surname: Thiebaud
  fullname: Thiebaud, Robert S.
  organization: The University of Oklahoma, OK, Norman, USA
– sequence: 4
  givenname: Lindy M.
  surname: Rossow
  fullname: Rossow, Lindy M.
  organization: Fitchburg State University, MA, Fitchburg, USA
– sequence: 5
  givenname: Daeyeol
  surname: Kim
  fullname: Kim, Daeyeol
  organization: The University of Oklahoma, OK, Norman, USA
– sequence: 6
  givenname: Takashi
  surname: Abe
  fullname: Abe, Takashi
  organization: Indiana University, IN, Bloomington, USA
– sequence: 7
  givenname: Travis W.
  surname: Beck
  fullname: Beck, Travis W.
  organization: The University of Oklahoma, OK, Norman, USA
– sequence: 8
  givenname: Daniel L.
  surname: Feeback
  fullname: Feeback, Daniel L.
  organization: The University of Oklahoma, OK, Norman, USA
– sequence: 9
  givenname: Debra A.
  surname: Bemben
  fullname: Bemben, Debra A.
  organization: The University of Oklahoma, OK, Norman, USA
– sequence: 10
  givenname: Michael G.
  surname: Bemben
  fullname: Bemben, Michael G.
  organization: The University of Oklahoma, OK, Norman, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24612120$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS3Uij5gwR9AltjAIq2d-JFZQkQf0lAQBcHOurFviksmHuxE0_57PJ2ZLirwxmfxnXOv7jkie0MYkJBXnJ3w_E7tsjvhJRf8GTnkQsuCzfTPvUet-AE5SumWMa4roZ-Tg1KozJfskHz9NCU79RApOFiOMPowJDoG2mV5M_nhhuIdRusT0pUff1EY3IMI00jbPgRHuz6saMQ0Rm_X9hdkv4M-4cvtf0y-n3381lwU88_nl837eWHzdF44wVtgWpcWoKqFK7F2AkQrsJKSiZmWWLZlDdbCTEPtWl5JFE66rq6wnonqmLzd5C5j-DPl-Wbhk8W-hwHDlAxXulRcCCUz-uYJehumOOTt1hTnSinGMvV6S03tAp1ZRr-AeG9218rA6QawMaQUsTPWb042RvC94cys-zC5D_PQR3a8e-LYhf6L3aavfI_3_wdN8-Vs5yg2Dp9GvHt0QPxtlK60ND-uzs38Wl58uG4ac1X9BWv9qFE
CODEN CPFICA
CitedBy_id crossref_primary_10_1016_j_ptsp_2020_01_013
crossref_primary_10_1007_s00421_018_3806_2
crossref_primary_10_1111_cpf_12557
crossref_primary_10_1080_15368378_2021_1907402
crossref_primary_10_1123_jsr_2020_0402
crossref_primary_10_1038_s41598_023_44523_7
crossref_primary_10_1556_2060_104_2017_3_2
crossref_primary_10_3389_fphys_2018_01269
crossref_primary_10_1002_mus_25626
crossref_primary_10_1055_a_2002_4352
crossref_primary_10_1519_JSC_0000000000004762
crossref_primary_10_3389_fphys_2018_01150
crossref_primary_10_1007_s00421_017_3663_4
crossref_primary_10_1161_CIRCHEARTFAILURE_119_006427
crossref_primary_10_52082_jssm_2024_778
crossref_primary_10_1080_07853890_2023_2240329
crossref_primary_10_1111_ggi_13010
crossref_primary_10_1113_EP092002
crossref_primary_10_1177_19417381221131533
crossref_primary_10_3389_fphys_2022_838115
crossref_primary_10_1007_s12576_018_0593_9
crossref_primary_10_1152_japplphysiol_00274_2023
crossref_primary_10_1007_s00421_017_3690_1
crossref_primary_10_1097_JSM_0000000000000991
crossref_primary_10_1016_j_jbiomech_2019_109465
crossref_primary_10_3389_fphys_2023_1252052
crossref_primary_10_3389_fspor_2021_663095
crossref_primary_10_1016_j_ptsp_2018_07_002
crossref_primary_10_1123_jsr_2020_0105
crossref_primary_10_1097_CORR_0000000000001090
crossref_primary_10_1177_0363546520962058
crossref_primary_10_1111_cpf_12852
crossref_primary_10_1519_JSC_0000000000004034
crossref_primary_10_1519_JSC_0000000000004397
crossref_primary_10_3389_fphys_2018_01448
crossref_primary_10_1007_s00421_019_04287_3
crossref_primary_10_1007_s00421_014_3073_9
crossref_primary_10_1080_17461391_2022_2039781
crossref_primary_10_1152_ajprenal_00576_2019
crossref_primary_10_1177_0363546520901539
crossref_primary_10_1519_JSC_0000000000003612
crossref_primary_10_1080_02640414_2014_992036
crossref_primary_10_1519_SSC_0000000000000585
crossref_primary_10_3389_fphys_2020_00817
crossref_primary_10_1123_jsr_2018_0030
crossref_primary_10_3389_fphys_2021_663665
crossref_primary_10_3389_fphys_2018_01796
crossref_primary_10_1007_s00421_017_3770_2
crossref_primary_10_1007_s00421_016_3359_1
crossref_primary_10_1007_s40279_015_0407_7
crossref_primary_10_1111_cpf_12720
crossref_primary_10_1007_s40279_016_0633_7
crossref_primary_10_4085_1062_6050_0603_20
crossref_primary_10_1519_JSC_0000000000002384
crossref_primary_10_1111_cpf_12291
crossref_primary_10_1113_EP091924
crossref_primary_10_1519_JSC_0000000000001044
crossref_primary_10_1123_ijspp_2024_0236
crossref_primary_10_1177_1358863X231200250
crossref_primary_10_1007_s00421_020_04401_w
crossref_primary_10_1249_MSS_0000000000001984
crossref_primary_10_3389_fphys_2023_1089065
crossref_primary_10_26603_001c_68143
crossref_primary_10_7600_jpfsm_8_165
crossref_primary_10_1249_JES_0000000000000231
crossref_primary_10_1080_02640414_2025_2474329
crossref_primary_10_1371_journal_pone_0235377
crossref_primary_10_1136_bjsports_2016_096329
crossref_primary_10_1556_2060_105_2018_2_9
crossref_primary_10_1519_JSC_0000000000003478
crossref_primary_10_23736_S1973_9087_22_06691_6
crossref_primary_10_3390_rheumato3010003
crossref_primary_10_3233_IES_204198
crossref_primary_10_1111_cpf_12509
crossref_primary_10_3389_fresc_2021_697082
crossref_primary_10_1097_BTO_0000000000000252
crossref_primary_10_1002_mus_24448
crossref_primary_10_1080_17461391_2019_1664640
crossref_primary_10_1249_MSS_0000000000000833
crossref_primary_10_1249_MSS_0000000000002857
crossref_primary_10_1007_s00421_021_04862_7
crossref_primary_10_1111_cpf_12416
crossref_primary_10_1111_cpf_12414
crossref_primary_10_1111_cpf_12535
crossref_primary_10_1002_tsm2_184
crossref_primary_10_1016_j_jsams_2015_09_005
crossref_primary_10_1080_02701367_2023_2294092
crossref_primary_10_1519_JSC_0000000000004596
crossref_primary_10_1007_s40279_023_01900_6
crossref_primary_10_1080_17461391_2023_2184724
crossref_primary_10_1002_mus_24756
crossref_primary_10_1111_sms_13346
crossref_primary_10_3389_fphys_2019_00649
crossref_primary_10_1088_1361_6579_aaefc9
crossref_primary_10_1007_s00421_018_3877_0
crossref_primary_10_1556_2060_106_2019_15
crossref_primary_10_3389_fphys_2019_00533
crossref_primary_10_3389_fphys_2022_1046625
crossref_primary_10_1016_j_heliyon_2019_e02341
crossref_primary_10_1139_apnm_2018_0265
crossref_primary_10_1186_s12882_017_0713_4
crossref_primary_10_1111_cpf_12367
crossref_primary_10_1556_2060_2022_00223
crossref_primary_10_1152_ajpregu_00243_2019
crossref_primary_10_3389_fphys_2024_1379605
crossref_primary_10_1177_02692155241271040
crossref_primary_10_1519_SSC_0000000000000553
crossref_primary_10_1080_02640414_2024_2422205
crossref_primary_10_1123_jsr_2019_0217
Cites_doi 10.1519/JSC.0b013e3181bc1c2a
10.1007/s00421-011-2172-0
10.1249/00005768-198810001-00009
10.1152/jappl.2000.88.6.2097
10.1152/japplphysiol.00307.2012
10.1007/s00421-009-1175-6
10.1249/MSS.0b013e318233b4bc
10.1007/s00421-009-1309-x
10.1007/s00421-001-0559-z
10.1249/01.MSS.0000074458.71025.71
10.1111/j.1600-0838.2010.01260.x
10.3806/ijktr.1.19
10.1007/s00421-001-0561-5
10.1007/s00421-011-2266-8
10.1249/mss.0b013e31815c6d7e
10.1093/gerona/60.5.638
10.1152/jappl.2001.90.4.1497
10.1123/japa.19.3.201
10.1007/s00421-006-0300-z
10.1080/02640414.2010.485647
10.1046/j.1532-5415.2002.50111.x
10.3806/ijktr.1.6
10.17338/trainology.1.1_14
10.1007/s00421-004-1072-y
10.1249/MSS.0b013e31826c6fa8
10.1046/j.1532-5415.2002.50159.x
10.3806/ijktr.4.1
10.1007/s00421-011-2167-x
10.1007/s00421-002-0681-6
10.1249/MSS.0b013e3181915670
10.1111/j.1475-097X.2010.00949.x
10.1007/s00421-012-2502-x
ContentType Journal Article
Copyright 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine
Copyright_xml – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
– notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U5
8FD
K9.
L7M
7X8
DOI 10.1111/cpf.12141
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Advanced Technologies Database with Aerospace
Physical Education Index
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1475-097X
EndPage 176
ExternalDocumentID 3648863661
24612120
10_1111_cpf_12141
CPF12141
ark_67375_WNG_LS5HBSCC_N
Genre article
Comparative Study
Clinical Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: American College of Sports Medicine (ACSM)
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
~IA
~WT
AEUQT
AFPWT
ESX
WRC
AAYXX
AEYWJ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U5
8FD
K9.
L7M
7X8
ID FETCH-LOGICAL-c4611-d41ba0772caa384d2e8d4a4b4e35504975e2b28acca97a8db135e4d5df83e8943
IEDL.DBID DR2
ISSN 1475-0961
1475-097X
IngestDate Fri Jul 11 00:01:51 EDT 2025
Sun Jul 13 04:45:15 EDT 2025
Mon Jul 21 06:02:00 EDT 2025
Tue Jul 01 01:42:45 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Wed Jan 22 16:27:16 EST 2025
Mon Apr 07 06:05:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords muscle strength
muscle hypertrophy
muscle endurance
muscle power
low-load
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4611-d41ba0772caa384d2e8d4a4b4e35504975e2b28acca97a8db135e4d5df83e8943
Notes American College of Sports Medicine (ACSM)
ark:/67375/WNG-LS5HBSCC-N
ArticleID:CPF12141
istex:72E426FC1541F83FFC4D36FAFB1F6C6F2573BD2D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24612120
PQID 1671166600
PQPubID 1006519
PageCount 10
ParticipantIDs proquest_miscellaneous_1672614465
proquest_journals_1671166600
pubmed_primary_24612120
crossref_citationtrail_10_1111_cpf_12141
crossref_primary_10_1111_cpf_12141
wiley_primary_10_1111_cpf_12141_CPF12141
istex_primary_ark_67375_WNG_LS5HBSCC_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Clinical physiology and functional imaging
PublicationTitleAlternate Clin Physiol Funct Imaging
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (2012); 113: 71-77.
Wernbom M, Jarrebring R, Andreasson MA, Augustsson J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res (2009); 23: 2389-2395.
de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Fiatarone Singh MA. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci (2005); 60: 638-647.
Patterson SD, Ferguson RA. Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. J Aging Phys Act (2011); 19: 201-213.
Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (2000); 88: 2097-2106.
Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol (2002); 86: 308-314.
Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, Bemben DA, Bemben MG. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol (2012a); 112: 2903-2912.
Wilkinson SB, Tarnopolsky MA, Grant EJ, Correia CE, Phillips SM. Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol (2006); 98: 546-555.
Izquierdo M, Hakkinen K, Ibanez J, Garrues M, Anton A, Zuniga A, Larrion JL, Gorostiaga EM. Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol (2001); 90: 1497-1507.
Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, Frontera WR, Fielding RA. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc (2002); 50: 461-467.
Patterson SD, Ferguson RA. Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol (2010); 108: 1025-1033.
Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc (1988); 20: S135-S145.
Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging (2010); 30: 338-343.
Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. J Trainol (2012); 1: 14-22.
Harman E, Garhammer J, Pandorf C. Essentials of Strength Training and Conditioning, 2nd edn. (2000). Human Kinetics, Champaign.
Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc (2009); 41: 687-708.
Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, da Rocha Correa Fernandes A, Tricoli V. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc (2012); 44: 406-412.
Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J KAATSU Training Res (2005a); 1: 19-23.
Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol (2012b); 112: 1849-1859.
Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, Fiatarone Singh MA. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc (2002); 50: 655-662.
Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol (2004); 92: 399-406.
Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc (2008); 40: 258-263.
Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc (2013); 45: 67-74.
Umbel JD, Hoffman RL, Dearth DJ, Chleboun GS, Manini TM, Clark BC. Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol (2009); 107: 687-695.
Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports (2011); 21: 231-241.
Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, Koizumi K, Ishii N. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily "KAATSU" resistance training. Int J KAATSU Training Res (2005b); 1: 6-12.
Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol (2002); 88: 50-60.
Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol (2013); 113: 923-931.
Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol (2011); 112: 2051-2063.
Fujita T, Brechue WF, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int J KAATSU Training Res (2008); 4: 1-8.
Shima N, Ishida K, Katayama K, Morotome Y, Sato Y, Miyamura M. Cross education of muscular strength during unilateral resistance training and detraining. Eur J Appl Physiol (2002); 86: 287-294.
Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc (2003); 35: 1203-1208.
Evans C, Vance S, Brown M. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J Sports Sci (2010); 28: 999-1007.
Abe T, Kawakami Y, Suzuki Y, Gunji A, Fukunaga T. Effects of 20 days bed rest on muscle morphology. J Gravit Physiol (1997); 4: 10-14.
2009; 23
2009; 41
2001; 90
2010; 108
2002; 50
2006; 98
2005b; 1
2013; 45
2000; 88
2003; 35
2005; 60
2008; 4
2012a; 112
2011; 19
1997; 4
2011; 112
2004; 92
2012; 1
2012; 113
2005a; 1
2000
2002; 86
2010; 28
2012b; 112
2002; 88
2011; 21
2013; 113
1988; 20
2009; 107
2008; 40
2012; 44
2010; 30
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Harman E (e_1_2_7_13_1) 2000
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Abe T (e_1_2_7_2_1) 1997; 4
References_xml – reference: Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc (2008); 40: 258-263.
– reference: Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol (2002); 88: 50-60.
– reference: Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol (2011); 112: 2051-2063.
– reference: Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc (2013); 45: 67-74.
– reference: Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. J Trainol (2012); 1: 14-22.
– reference: Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (2000); 88: 2097-2106.
– reference: Abe T, Kawakami Y, Suzuki Y, Gunji A, Fukunaga T. Effects of 20 days bed rest on muscle morphology. J Gravit Physiol (1997); 4: 10-14.
– reference: Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, Frontera WR, Fielding RA. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc (2002); 50: 461-467.
– reference: Fujita T, Brechue WF, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int J KAATSU Training Res (2008); 4: 1-8.
– reference: Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc (2009); 41: 687-708.
– reference: Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J KAATSU Training Res (2005a); 1: 19-23.
– reference: Izquierdo M, Hakkinen K, Ibanez J, Garrues M, Anton A, Zuniga A, Larrion JL, Gorostiaga EM. Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol (2001); 90: 1497-1507.
– reference: de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Fiatarone Singh MA. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci (2005); 60: 638-647.
– reference: Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports (2011); 21: 231-241.
– reference: Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, Bemben DA, Bemben MG. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol (2012a); 112: 2903-2912.
– reference: Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol (2004); 92: 399-406.
– reference: Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (2012); 113: 71-77.
– reference: Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, Koizumi K, Ishii N. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily "KAATSU" resistance training. Int J KAATSU Training Res (2005b); 1: 6-12.
– reference: Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, da Rocha Correa Fernandes A, Tricoli V. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc (2012); 44: 406-412.
– reference: Harman E, Garhammer J, Pandorf C. Essentials of Strength Training and Conditioning, 2nd edn. (2000). Human Kinetics, Champaign.
– reference: Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, Fiatarone Singh MA. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc (2002); 50: 655-662.
– reference: Wernbom M, Jarrebring R, Andreasson MA, Augustsson J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res (2009); 23: 2389-2395.
– reference: Evans C, Vance S, Brown M. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J Sports Sci (2010); 28: 999-1007.
– reference: Umbel JD, Hoffman RL, Dearth DJ, Chleboun GS, Manini TM, Clark BC. Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol (2009); 107: 687-695.
– reference: Patterson SD, Ferguson RA. Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. J Aging Phys Act (2011); 19: 201-213.
– reference: Shima N, Ishida K, Katayama K, Morotome Y, Sato Y, Miyamura M. Cross education of muscular strength during unilateral resistance training and detraining. Eur J Appl Physiol (2002); 86: 287-294.
– reference: Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging (2010); 30: 338-343.
– reference: Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc (2003); 35: 1203-1208.
– reference: Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol (2013); 113: 923-931.
– reference: Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol (2002); 86: 308-314.
– reference: Wilkinson SB, Tarnopolsky MA, Grant EJ, Correia CE, Phillips SM. Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol (2006); 98: 546-555.
– reference: Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol (2012b); 112: 1849-1859.
– reference: Patterson SD, Ferguson RA. Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol (2010); 108: 1025-1033.
– reference: Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc (1988); 20: S135-S145.
– volume: 92
  start-page: 399
  year: 2004
  end-page: 406
  article-title: Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion
  publication-title: Eur J Appl Physiol
– volume: 108
  start-page: 1025
  year: 2010
  end-page: 1033
  article-title: Increase in calf post‐occlusive blood flow and strength following short‐term resistance exercise training with blood flow restriction in young women
  publication-title: Eur J Appl Physiol
– volume: 50
  start-page: 655
  year: 2002
  end-page: 662
  article-title: High‐velocity resistance training increases skeletal muscle peak power in older women
  publication-title: J Am Geriatr Soc
– volume: 113
  start-page: 71
  year: 2012
  end-page: 77
  article-title: Resistance exercise load does not determine training‐mediated hypertrophic gains in young men
  publication-title: J Appl Physiol
– volume: 50
  start-page: 461
  year: 2002
  end-page: 467
  article-title: The relationship between leg power and physical performance in mobility‐limited older people
  publication-title: J Am Geriatr Soc
– volume: 40
  start-page: 258
  year: 2008
  end-page: 263
  article-title: Cross‐transfer effects of resistance training with blood flow restriction
  publication-title: Med Sci Sports Exerc
– volume: 44
  start-page: 406
  year: 2012
  end-page: 412
  article-title: Strength training with blood flow restriction diminishes myostatin gene expression
  publication-title: Med Sci Sports Exerc
– volume: 30
  start-page: 338
  year: 2010
  end-page: 343
  article-title: Effects of low‐intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study
  publication-title: Clin Physiol Funct Imaging
– volume: 1
  start-page: 19
  year: 2005a
  end-page: 23
  article-title: Eight days KAATSU‐resistance training improved sprint but not jump performance in collegiate male track and field athletes
  publication-title: Int J KAATSU Training Res
– volume: 4
  start-page: 10
  year: 1997
  end-page: 14
  article-title: Effects of 20 days bed rest on muscle morphology
  publication-title: J Gravit Physiol
– volume: 1
  start-page: 14
  year: 2012
  end-page: 22
  article-title: Methodological considerations for blood flow restricted resistance exercise
  publication-title: J Trainol
– volume: 112
  start-page: 2051
  year: 2011
  end-page: 2063
  article-title: Contractile function and sarcolemmal permeability after acute low‐load resistance exercise with blood flow restriction
  publication-title: Eur J Appl Physiol
– volume: 107
  start-page: 687
  year: 2009
  end-page: 695
  article-title: Delayed‐onset muscle soreness induced by low‐load blood flow‐restricted exercise
  publication-title: Eur J Appl Physiol
– volume: 28
  start-page: 999
  year: 2010
  end-page: 1007
  article-title: Short‐term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles
  publication-title: J Sports Sci
– year: 2000
– volume: 90
  start-page: 1497
  year: 2001
  end-page: 1507
  article-title: Effects of strength training on muscle power and serum hormones in middle‐aged and older men
  publication-title: J Appl Physiol
– volume: 4
  start-page: 1
  year: 2008
  end-page: 8
  article-title: Increased muscle volume and strength following six days of low‐intensity resistance training with restricted muscle blood flow
  publication-title: Int J KAATSU Training Res
– volume: 21
  start-page: 231
  year: 2011
  end-page: 241
  article-title: Frequent low‐load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity
  publication-title: Scand J Med Sci Sports
– volume: 35
  start-page: 1203
  year: 2003
  end-page: 1208
  article-title: Resistance training with vascular occlusion: metabolic adaptations in human muscle
  publication-title: Med Sci Sports Exerc
– volume: 113
  start-page: 923
  year: 2013
  end-page: 931
  article-title: Blood flow restriction does not result in prolonged decrements in torque
  publication-title: Eur J Appl Physiol
– volume: 23
  start-page: 2389
  year: 2009
  end-page: 2395
  article-title: Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load
  publication-title: J Strength Cond Res
– volume: 19
  start-page: 201
  year: 2011
  end-page: 213
  article-title: Enhancing strength and postocclusive calf blood flow in older people with training with blood‐flow restriction
  publication-title: J Aging Phys Act
– volume: 86
  start-page: 308
  year: 2002
  end-page: 314
  article-title: Effects of resistance exercise combined with vascular occlusion on muscle function in athletes
  publication-title: Eur J Appl Physiol
– volume: 45
  start-page: 67
  year: 2013
  end-page: 74
  article-title: Neuromuscular function after a bout of low‐load blood flow‐restricted exercise
  publication-title: Med Sci Sports Exerc
– volume: 1
  start-page: 6
  year: 2005b
  end-page: 12
  article-title: Skeletal muscle size and circulating IGF‐1 are increased after two weeks of twice daily “KAATSU” resistance training
  publication-title: Int J KAATSU Training Res
– volume: 88
  start-page: 50
  year: 2002
  end-page: 60
  article-title: Muscular adaptations in response to three different resistance‐training regimens: specificity of repetition maximum training zones
  publication-title: Eur J Appl Physiol
– volume: 41
  start-page: 687
  year: 2009
  end-page: 708
  article-title: American College of Sports Medicine position stand. Progression models in resistance training for healthy adults
  publication-title: Med Sci Sports Exerc
– volume: 88
  start-page: 2097
  year: 2000
  end-page: 2106
  article-title: Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans
  publication-title: J Appl Physiol
– volume: 112
  start-page: 2903
  year: 2012a
  end-page: 2912
  article-title: Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise
  publication-title: Eur J Appl Physiol
– volume: 98
  start-page: 546
  year: 2006
  end-page: 555
  article-title: Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration
  publication-title: Eur J Appl Physiol
– volume: 112
  start-page: 1849
  year: 2012b
  end-page: 1859
  article-title: Low intensity blood flow restriction training: a meta‐analysis
  publication-title: Eur J Appl Physiol
– volume: 60
  start-page: 638
  year: 2005
  end-page: 647
  article-title: Optimal load for increasing muscle power during explosive resistance training in older adults
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 20
  start-page: S135
  year: 1988
  end-page: S145
  article-title: Neural adaptation to resistance training
  publication-title: Med Sci Sports Exerc
– volume: 86
  start-page: 287
  year: 2002
  end-page: 294
  article-title: Cross education of muscular strength during unilateral resistance training and detraining
  publication-title: Eur J Appl Physiol
– ident: e_1_2_7_32_1
  doi: 10.1519/JSC.0b013e3181bc1c2a
– ident: e_1_2_7_33_1
  doi: 10.1007/s00421-011-2172-0
– ident: e_1_2_7_26_1
  doi: 10.1249/00005768-198810001-00009
– ident: e_1_2_7_28_1
  doi: 10.1152/jappl.2000.88.6.2097
– volume: 4
  start-page: 10
  year: 1997
  ident: e_1_2_7_2_1
  article-title: Effects of 20 days bed rest on muscle morphology
  publication-title: J Gravit Physiol
– ident: e_1_2_7_21_1
  doi: 10.1152/japplphysiol.00307.2012
– ident: e_1_2_7_30_1
  doi: 10.1007/s00421-009-1175-6
– ident: e_1_2_7_16_1
  doi: 10.1249/MSS.0b013e318233b4bc
– ident: e_1_2_7_23_1
  doi: 10.1007/s00421-009-1309-x
– ident: e_1_2_7_27_1
  doi: 10.1007/s00421-001-0559-z
– ident: e_1_2_7_6_1
  doi: 10.1249/01.MSS.0000074458.71025.71
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1600-0838.2010.01260.x
– ident: e_1_2_7_3_1
  doi: 10.3806/ijktr.1.19
– ident: e_1_2_7_29_1
  doi: 10.1007/s00421-001-0561-5
– ident: e_1_2_7_17_1
  doi: 10.1007/s00421-011-2266-8
– ident: e_1_2_7_20_1
  doi: 10.1249/mss.0b013e31815c6d7e
– ident: e_1_2_7_31_1
  doi: 10.1093/gerona/60.5.638
– ident: e_1_2_7_14_1
  doi: 10.1152/jappl.2001.90.4.1497
– ident: e_1_2_7_24_1
  doi: 10.1123/japa.19.3.201
– ident: e_1_2_7_34_1
  doi: 10.1007/s00421-006-0300-z
– ident: e_1_2_7_9_1
  doi: 10.1080/02640414.2010.485647
– ident: e_1_2_7_5_1
  doi: 10.1046/j.1532-5415.2002.50111.x
– ident: e_1_2_7_4_1
  doi: 10.3806/ijktr.1.6
– volume-title: Essentials of Strength Training and Conditioning
  year: 2000
  ident: e_1_2_7_13_1
– ident: e_1_2_7_10_1
  doi: 10.17338/trainology.1.1_14
– ident: e_1_2_7_22_1
  doi: 10.1007/s00421-004-1072-y
– ident: e_1_2_7_8_1
  doi: 10.1249/MSS.0b013e31826c6fa8
– ident: e_1_2_7_11_1
  doi: 10.1046/j.1532-5415.2002.50159.x
– ident: e_1_2_7_12_1
  doi: 10.3806/ijktr.4.1
– ident: e_1_2_7_18_1
  doi: 10.1007/s00421-011-2167-x
– ident: e_1_2_7_7_1
  doi: 10.1007/s00421-002-0681-6
– ident: e_1_2_7_25_1
  doi: 10.1249/MSS.0b013e3181915670
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1475-097X.2010.00949.x
– ident: e_1_2_7_19_1
  doi: 10.1007/s00421-012-2502-x
SSID ssj0017347
Score 2.4311028
Snippet Summary The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow...
The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow...
The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow...
Summary The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms Adaptation, Physiological
Adult
Female
Humans
low-load
Male
Middle Aged
Muscle Contraction
muscle endurance
Muscle Fatigue
muscle hypertrophy
muscle power
Muscle Strength
Organ Size
Quadriceps Muscle - blood supply
Quadriceps Muscle - diagnostic imaging
Quadriceps Muscle - physiology
Regional Blood Flow
Resistance Training
Time Factors
Ultrasonography
Volition
Title Muscular adaptations to fatiguing exercise with and without blood flow restriction
URI https://api.istex.fr/ark:/67375/WNG-LS5HBSCC-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12141
https://www.ncbi.nlm.nih.gov/pubmed/24612120
https://www.proquest.com/docview/1671166600
https://www.proquest.com/docview/1672614465
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqGXPtJH3KRBLaXk4mDJki2TU7tku5TuUpKG5lAQejmEBHvZtUnpr48kP2hKCqU3gUdY1uizPkmjbwDe5aqk2OHG4VsXMTVpERckszG3mieZ0dyG_CnzRTY7o5_P2fkGHA13YTp9iHHDzSMj_K89wKVa_wZyvSy9NEK4tO5jtTwhOhmlo3CehuRimOYs9mlNelUhH8Uz1rwzFz3w3frzPqJ5l7eGiWf6GH4MTe7iTa4O20Yd6l9_qDn-5zc9gUc9IUUfuhH0FDZstQ1b8_7I_RmczNsuVhVJI5fdwf0aNTUqXfGidTMfGtI2Ib-pi2RlQqFuGxTC4lF5Xd8gnwNkdRluUTyHs-nxt8ks7hMxxJpmGMeGYiUTx8O1lCmnhlhuqKSKWsdW3BIjZ5YowqUbDUUuuVE4ZZYaZkqeWi_w_gI2q7qyO4CIYobk0jKuJC0yXTCLE6mUSsqMGEoiOBhcInSvUu6TZVyLYbXi-kiEPorg7Wi67KQ57jN6H_w6WsjVlY9ly5n4vvgkvpyy2cfTyUQsItgbHC96GK8FznLsz1WTJII342MHQH-qIitbt8GGhFU1i-BlN2DGl3mxPscNXO2D4Pa_t1NMvk5D4dW_m-7CQ0ffWBd-uQebzaq1rx1FatR-wMItYc0LmQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9UwFD-MDdQvvh_VTaOI7EtHkyZtCn5xF69Xvfcie-C-SMirIhvt5a7Fsb_eJH3gZIL4LdATmubkNL-Tc_I7AK9zVVLs7MbZty5iatIiLkhmY241TzKjuQ31UxbLbHZMP52wkw14O9yF6fghxgM3bxnhf-0N3B9I_2blelV6bgR_a33LV_QODtXBSB6F8zSUF8M0Z7EvbNLzCvk8nrHrld1oy0_sxXVQ8ypyDVvP9A58GwbdZZyc7rWN2tOXf_A5_u9X3YXbPSZF77pFdA82bHUfbiz6qPsDOFi0Xboqkkauutj9OWpqVLrm99Ztfmio3IT8uS6SlQmNum1QyIxH5Vn9E_kyIOsf4SLFQzievj-azOK-FkOsaYZxbChWMnFQXEuZcmqI5YZKqqh1gMV5GTmzRBEu3YIocsmNwimz1DBT8tR6jvdHsFnVlX0CiChmSC4t40rSItMFsziRSqmkzIihJILdQSdC90Tlvl7GmRgcFjdHIsxRBK9G0VXHznGd0Jug2FFCrk99OlvOxNflBzE_ZLP9w8lELCPYHjQveks-FzjLsQ-tJkkEL8fHzgZ9YEVWtm6DDAmONYvgcbdixpd5vj4HD1zv3aD3v49TTL5MQ-Ppv4u-gJuzo8VczD8uPz-DWw7NsS4bcxs2m3VrdxxiatTzYBi_AA1QD7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MDYYvfn9U54wispeOJk3aFJ-2O69X3b2MzeEehJCvimy0l7sWxb9-SfqBkwniW6AnNM05v-Yk5-R3AF7nqqTY4cbhWxcxNWkRFySzMbeaJ5nR3Ib6KfNFNjulH8_Y2Rq8He7CdPwQ44GbR0b4X3uAL035G8j1svTUCP7S-gbNEu5N-uB45I7CeRqqi2Gas9jXNelphXwaz9j12mK04ef1502e5nXHNaw80zvwdRhzl3Byvts2alf_-oPO8T8_6i7c7j1StNeZ0D1Ys9V92Jz3MfcHcDxvu2RVJI1cdpH7S9TUqHTNb61b-tBQtwn5U10kKxMaddugkBePyov6B_JFQFbfwzWKh3A6ffd5Mov7SgyxphnGsaFYycQ54lrKlFNDLDdUUkWtc1fcHiNnlijCpTOHIpfcKJwySw0zJU-tZ3h_BOtVXdkngIhihuTSMq4kLTJdMIsTqZRKyowYSiLYGVQidE9T7qtlXIhhu-LmSIQ5iuDVKLrsuDluEnoT9DpKyNW5T2bLmfiyeC8OT9hs_2QyEYsItgbFix7HlwJnOfaB1SSJ4OX42CHQh1VkZes2yJCwrWYRPO4MZnyZZ-tzzoHrvRPU_vdxisnRNDSe_rvoC9g8OpiKww-LT8_glnPlWJeKuQXrzaq1z5271KjtAIsr8OYObA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscular+adaptations+to+fatiguing+exercise+with+and+without+blood+flow+restriction&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Fahs%2C+Christopher+A.&rft.au=Loenneke%2C+Jeremy+P.&rft.au=Thiebaud%2C+Robert+S.&rft.au=Rossow%2C+Lindy+M.&rft.date=2015-05-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=35&rft.issue=3&rft.spage=167&rft.epage=176&rft_id=info:doi/10.1111%2Fcpf.12141&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cpf_12141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon