Muscular adaptations to fatiguing exercise with and without blood flow restriction
Summary The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle‐aged (42–62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance traini...
Saved in:
Published in | Clinical physiology and functional imaging Vol. 35; no. 3; pp. 167 - 176 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.05.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle‐aged (42–62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low‐load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle‐aged individuals. However, BFR enhanced the hypertrophic effect of low‐load training and reduced the volume of exercise needed to elicit increases in muscle function. |
---|---|
AbstractList | Summary The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function. The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction ( BFR ). Middle‐aged (42–62 years) men ( n = 12) and women ( n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR , and the contralateral limb trained without BFR [free flow ( FF )]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness ( MT h), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb ( P <0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more ( P <0·05) in the limb trained under BFR ( BFR : 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF : 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low‐load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle‐aged individuals. However, BFR enhanced the hypertrophic effect of low‐load training and reduced the volume of exercise needed to elicit increases in muscle function. The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function.The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function. The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle-aged (42-62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low-load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle-aged individuals. However, BFR enhanced the hypertrophic effect of low-load training and reduced the volume of exercise needed to elicit increases in muscle function. Summary The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow restriction (BFR). Middle‐aged (42–62 years) men (n = 12) and women (n = 6) completed 18 sessions of unilateral knee extensor resistance training to volitional fatigue over 6 weeks. One limb trained under BFR, and the contralateral limb trained without BFR [free flow (FF)]. Before and after the training, measures of anterior and lateral quadriceps muscle thickness (MTh), strength, power and endurance were assessed on each limb. The total exercise training volume was significantly greater for the FF limb compared with the BFR limb (P<0·001). Anterior quadriceps thickness and muscle function increased following the training in each limb with no differences between limbs. Lateral quadriceps MTh increased significantly more (P<0·05) in the limb trained under BFR (BFR: 3·50 ± 0·61 to 3·67 ± 0·62 cm; FF: 3·49 ± 0·73 to 3·56 ± 0·70 cm). Low‐load resistance training to volitional fatigue both with and without BFR is viable options for improving muscle function in middle‐aged individuals. However, BFR enhanced the hypertrophic effect of low‐load training and reduced the volume of exercise needed to elicit increases in muscle function. |
Author | Thiebaud, Robert S. Kim, Daeyeol Beck, Travis W. Feeback, Daniel L. Abe, Takashi Rossow, Lindy M. Bemben, Michael G. Fahs, Christopher A. Bemben, Debra A. Loenneke, Jeremy P. |
Author_xml | – sequence: 1 givenname: Christopher A. surname: Fahs fullname: Fahs, Christopher A. email: Christopher A. Fahs, 155 North Street #111, Fitchburg, MA 01420, USA, cfahs1@fitchburgstate.edu organization: Fitchburg State University, MA, Fitchburg, USA – sequence: 2 givenname: Jeremy P. surname: Loenneke fullname: Loenneke, Jeremy P. organization: The University of Oklahoma, OK, Norman, USA – sequence: 3 givenname: Robert S. surname: Thiebaud fullname: Thiebaud, Robert S. organization: The University of Oklahoma, OK, Norman, USA – sequence: 4 givenname: Lindy M. surname: Rossow fullname: Rossow, Lindy M. organization: Fitchburg State University, MA, Fitchburg, USA – sequence: 5 givenname: Daeyeol surname: Kim fullname: Kim, Daeyeol organization: The University of Oklahoma, OK, Norman, USA – sequence: 6 givenname: Takashi surname: Abe fullname: Abe, Takashi organization: Indiana University, IN, Bloomington, USA – sequence: 7 givenname: Travis W. surname: Beck fullname: Beck, Travis W. organization: The University of Oklahoma, OK, Norman, USA – sequence: 8 givenname: Daniel L. surname: Feeback fullname: Feeback, Daniel L. organization: The University of Oklahoma, OK, Norman, USA – sequence: 9 givenname: Debra A. surname: Bemben fullname: Bemben, Debra A. organization: The University of Oklahoma, OK, Norman, USA – sequence: 10 givenname: Michael G. surname: Bemben fullname: Bemben, Michael G. organization: The University of Oklahoma, OK, Norman, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24612120$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS3Uij5gwR9AltjAIq2d-JFZQkQf0lAQBcHOurFviksmHuxE0_57PJ2ZLirwxmfxnXOv7jkie0MYkJBXnJ3w_E7tsjvhJRf8GTnkQsuCzfTPvUet-AE5SumWMa4roZ-Tg1KozJfskHz9NCU79RApOFiOMPowJDoG2mV5M_nhhuIdRusT0pUff1EY3IMI00jbPgRHuz6saMQ0Rm_X9hdkv4M-4cvtf0y-n3381lwU88_nl837eWHzdF44wVtgWpcWoKqFK7F2AkQrsJKSiZmWWLZlDdbCTEPtWl5JFE66rq6wnonqmLzd5C5j-DPl-Wbhk8W-hwHDlAxXulRcCCUz-uYJehumOOTt1hTnSinGMvV6S03tAp1ZRr-AeG9218rA6QawMaQUsTPWb042RvC94cys-zC5D_PQR3a8e-LYhf6L3aavfI_3_wdN8-Vs5yg2Dp9GvHt0QPxtlK60ND-uzs38Wl58uG4ac1X9BWv9qFE |
CODEN | CPFICA |
CitedBy_id | crossref_primary_10_1016_j_ptsp_2020_01_013 crossref_primary_10_1007_s00421_018_3806_2 crossref_primary_10_1111_cpf_12557 crossref_primary_10_1080_15368378_2021_1907402 crossref_primary_10_1123_jsr_2020_0402 crossref_primary_10_1038_s41598_023_44523_7 crossref_primary_10_1556_2060_104_2017_3_2 crossref_primary_10_3389_fphys_2018_01269 crossref_primary_10_1002_mus_25626 crossref_primary_10_1055_a_2002_4352 crossref_primary_10_1519_JSC_0000000000004762 crossref_primary_10_3389_fphys_2018_01150 crossref_primary_10_1007_s00421_017_3663_4 crossref_primary_10_1161_CIRCHEARTFAILURE_119_006427 crossref_primary_10_52082_jssm_2024_778 crossref_primary_10_1080_07853890_2023_2240329 crossref_primary_10_1111_ggi_13010 crossref_primary_10_1113_EP092002 crossref_primary_10_1177_19417381221131533 crossref_primary_10_3389_fphys_2022_838115 crossref_primary_10_1007_s12576_018_0593_9 crossref_primary_10_1152_japplphysiol_00274_2023 crossref_primary_10_1007_s00421_017_3690_1 crossref_primary_10_1097_JSM_0000000000000991 crossref_primary_10_1016_j_jbiomech_2019_109465 crossref_primary_10_3389_fphys_2023_1252052 crossref_primary_10_3389_fspor_2021_663095 crossref_primary_10_1016_j_ptsp_2018_07_002 crossref_primary_10_1123_jsr_2020_0105 crossref_primary_10_1097_CORR_0000000000001090 crossref_primary_10_1177_0363546520962058 crossref_primary_10_1111_cpf_12852 crossref_primary_10_1519_JSC_0000000000004034 crossref_primary_10_1519_JSC_0000000000004397 crossref_primary_10_3389_fphys_2018_01448 crossref_primary_10_1007_s00421_019_04287_3 crossref_primary_10_1007_s00421_014_3073_9 crossref_primary_10_1080_17461391_2022_2039781 crossref_primary_10_1152_ajprenal_00576_2019 crossref_primary_10_1177_0363546520901539 crossref_primary_10_1519_JSC_0000000000003612 crossref_primary_10_1080_02640414_2014_992036 crossref_primary_10_1519_SSC_0000000000000585 crossref_primary_10_3389_fphys_2020_00817 crossref_primary_10_1123_jsr_2018_0030 crossref_primary_10_3389_fphys_2021_663665 crossref_primary_10_3389_fphys_2018_01796 crossref_primary_10_1007_s00421_017_3770_2 crossref_primary_10_1007_s00421_016_3359_1 crossref_primary_10_1007_s40279_015_0407_7 crossref_primary_10_1111_cpf_12720 crossref_primary_10_1007_s40279_016_0633_7 crossref_primary_10_4085_1062_6050_0603_20 crossref_primary_10_1519_JSC_0000000000002384 crossref_primary_10_1111_cpf_12291 crossref_primary_10_1113_EP091924 crossref_primary_10_1519_JSC_0000000000001044 crossref_primary_10_1123_ijspp_2024_0236 crossref_primary_10_1177_1358863X231200250 crossref_primary_10_1007_s00421_020_04401_w crossref_primary_10_1249_MSS_0000000000001984 crossref_primary_10_3389_fphys_2023_1089065 crossref_primary_10_26603_001c_68143 crossref_primary_10_7600_jpfsm_8_165 crossref_primary_10_1249_JES_0000000000000231 crossref_primary_10_1080_02640414_2025_2474329 crossref_primary_10_1371_journal_pone_0235377 crossref_primary_10_1136_bjsports_2016_096329 crossref_primary_10_1556_2060_105_2018_2_9 crossref_primary_10_1519_JSC_0000000000003478 crossref_primary_10_23736_S1973_9087_22_06691_6 crossref_primary_10_3390_rheumato3010003 crossref_primary_10_3233_IES_204198 crossref_primary_10_1111_cpf_12509 crossref_primary_10_3389_fresc_2021_697082 crossref_primary_10_1097_BTO_0000000000000252 crossref_primary_10_1002_mus_24448 crossref_primary_10_1080_17461391_2019_1664640 crossref_primary_10_1249_MSS_0000000000000833 crossref_primary_10_1249_MSS_0000000000002857 crossref_primary_10_1007_s00421_021_04862_7 crossref_primary_10_1111_cpf_12416 crossref_primary_10_1111_cpf_12414 crossref_primary_10_1111_cpf_12535 crossref_primary_10_1002_tsm2_184 crossref_primary_10_1016_j_jsams_2015_09_005 crossref_primary_10_1080_02701367_2023_2294092 crossref_primary_10_1519_JSC_0000000000004596 crossref_primary_10_1007_s40279_023_01900_6 crossref_primary_10_1080_17461391_2023_2184724 crossref_primary_10_1002_mus_24756 crossref_primary_10_1111_sms_13346 crossref_primary_10_3389_fphys_2019_00649 crossref_primary_10_1088_1361_6579_aaefc9 crossref_primary_10_1007_s00421_018_3877_0 crossref_primary_10_1556_2060_106_2019_15 crossref_primary_10_3389_fphys_2019_00533 crossref_primary_10_3389_fphys_2022_1046625 crossref_primary_10_1016_j_heliyon_2019_e02341 crossref_primary_10_1139_apnm_2018_0265 crossref_primary_10_1186_s12882_017_0713_4 crossref_primary_10_1111_cpf_12367 crossref_primary_10_1556_2060_2022_00223 crossref_primary_10_1152_ajpregu_00243_2019 crossref_primary_10_3389_fphys_2024_1379605 crossref_primary_10_1177_02692155241271040 crossref_primary_10_1519_SSC_0000000000000553 crossref_primary_10_1080_02640414_2024_2422205 crossref_primary_10_1123_jsr_2019_0217 |
Cites_doi | 10.1519/JSC.0b013e3181bc1c2a 10.1007/s00421-011-2172-0 10.1249/00005768-198810001-00009 10.1152/jappl.2000.88.6.2097 10.1152/japplphysiol.00307.2012 10.1007/s00421-009-1175-6 10.1249/MSS.0b013e318233b4bc 10.1007/s00421-009-1309-x 10.1007/s00421-001-0559-z 10.1249/01.MSS.0000074458.71025.71 10.1111/j.1600-0838.2010.01260.x 10.3806/ijktr.1.19 10.1007/s00421-001-0561-5 10.1007/s00421-011-2266-8 10.1249/mss.0b013e31815c6d7e 10.1093/gerona/60.5.638 10.1152/jappl.2001.90.4.1497 10.1123/japa.19.3.201 10.1007/s00421-006-0300-z 10.1080/02640414.2010.485647 10.1046/j.1532-5415.2002.50111.x 10.3806/ijktr.1.6 10.17338/trainology.1.1_14 10.1007/s00421-004-1072-y 10.1249/MSS.0b013e31826c6fa8 10.1046/j.1532-5415.2002.50159.x 10.3806/ijktr.4.1 10.1007/s00421-011-2167-x 10.1007/s00421-002-0681-6 10.1249/MSS.0b013e3181915670 10.1111/j.1475-097X.2010.00949.x 10.1007/s00421-012-2502-x |
ContentType | Journal Article |
Copyright | 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
Copyright_xml | – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. – notice: Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
DOI | 10.1111/cpf.12141 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Solid State and Superconductivity Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Advanced Technologies Database with Aerospace Physical Education Index MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-097X |
EndPage | 176 |
ExternalDocumentID | 3648863661 24612120 10_1111_cpf_12141 CPF12141 ark_67375_WNG_LS5HBSCC_N |
Genre | article Comparative Study Clinical Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: American College of Sports Medicine (ACSM) |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 ~IA ~WT AEUQT AFPWT ESX WRC AAYXX AEYWJ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
ID | FETCH-LOGICAL-c4611-d41ba0772caa384d2e8d4a4b4e35504975e2b28acca97a8db135e4d5df83e8943 |
IEDL.DBID | DR2 |
ISSN | 1475-0961 1475-097X |
IngestDate | Fri Jul 11 00:01:51 EDT 2025 Sun Jul 13 04:45:15 EDT 2025 Mon Jul 21 06:02:00 EDT 2025 Tue Jul 01 01:42:45 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Wed Jan 22 16:27:16 EST 2025 Mon Apr 07 06:05:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | muscle strength muscle hypertrophy muscle endurance muscle power low-load |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4611-d41ba0772caa384d2e8d4a4b4e35504975e2b28acca97a8db135e4d5df83e8943 |
Notes | American College of Sports Medicine (ACSM) ark:/67375/WNG-LS5HBSCC-N ArticleID:CPF12141 istex:72E426FC1541F83FFC4D36FAFB1F6C6F2573BD2D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24612120 |
PQID | 1671166600 |
PQPubID | 1006519 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1672614465 proquest_journals_1671166600 pubmed_primary_24612120 crossref_citationtrail_10_1111_cpf_12141 crossref_primary_10_1111_cpf_12141 wiley_primary_10_1111_cpf_12141_CPF12141 istex_primary_ark_67375_WNG_LS5HBSCC_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Clinical physiology and functional imaging |
PublicationTitleAlternate | Clin Physiol Funct Imaging |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (2012); 113: 71-77. Wernbom M, Jarrebring R, Andreasson MA, Augustsson J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res (2009); 23: 2389-2395. de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Fiatarone Singh MA. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci (2005); 60: 638-647. Patterson SD, Ferguson RA. Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. J Aging Phys Act (2011); 19: 201-213. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (2000); 88: 2097-2106. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol (2002); 86: 308-314. Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, Bemben DA, Bemben MG. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol (2012a); 112: 2903-2912. Wilkinson SB, Tarnopolsky MA, Grant EJ, Correia CE, Phillips SM. Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol (2006); 98: 546-555. Izquierdo M, Hakkinen K, Ibanez J, Garrues M, Anton A, Zuniga A, Larrion JL, Gorostiaga EM. Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol (2001); 90: 1497-1507. Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, Frontera WR, Fielding RA. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc (2002); 50: 461-467. Patterson SD, Ferguson RA. Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol (2010); 108: 1025-1033. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc (1988); 20: S135-S145. Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging (2010); 30: 338-343. Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. J Trainol (2012); 1: 14-22. Harman E, Garhammer J, Pandorf C. Essentials of Strength Training and Conditioning, 2nd edn. (2000). Human Kinetics, Champaign. Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc (2009); 41: 687-708. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, da Rocha Correa Fernandes A, Tricoli V. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc (2012); 44: 406-412. Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J KAATSU Training Res (2005a); 1: 19-23. Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol (2012b); 112: 1849-1859. Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, Fiatarone Singh MA. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc (2002); 50: 655-662. Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol (2004); 92: 399-406. Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc (2008); 40: 258-263. Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc (2013); 45: 67-74. Umbel JD, Hoffman RL, Dearth DJ, Chleboun GS, Manini TM, Clark BC. Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol (2009); 107: 687-695. Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports (2011); 21: 231-241. Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, Koizumi K, Ishii N. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily "KAATSU" resistance training. Int J KAATSU Training Res (2005b); 1: 6-12. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol (2002); 88: 50-60. Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol (2013); 113: 923-931. Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol (2011); 112: 2051-2063. Fujita T, Brechue WF, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int J KAATSU Training Res (2008); 4: 1-8. Shima N, Ishida K, Katayama K, Morotome Y, Sato Y, Miyamura M. Cross education of muscular strength during unilateral resistance training and detraining. Eur J Appl Physiol (2002); 86: 287-294. Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc (2003); 35: 1203-1208. Evans C, Vance S, Brown M. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J Sports Sci (2010); 28: 999-1007. Abe T, Kawakami Y, Suzuki Y, Gunji A, Fukunaga T. Effects of 20 days bed rest on muscle morphology. J Gravit Physiol (1997); 4: 10-14. 2009; 23 2009; 41 2001; 90 2010; 108 2002; 50 2006; 98 2005b; 1 2013; 45 2000; 88 2003; 35 2005; 60 2008; 4 2012a; 112 2011; 19 1997; 4 2011; 112 2004; 92 2012; 1 2012; 113 2005a; 1 2000 2002; 86 2010; 28 2012b; 112 2002; 88 2011; 21 2013; 113 1988; 20 2009; 107 2008; 40 2012; 44 2010; 30 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Harman E (e_1_2_7_13_1) 2000 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Abe T (e_1_2_7_2_1) 1997; 4 |
References_xml | – reference: Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc (2008); 40: 258-263. – reference: Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol (2002); 88: 50-60. – reference: Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol (2011); 112: 2051-2063. – reference: Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc (2013); 45: 67-74. – reference: Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. Methodological considerations for blood flow restricted resistance exercise. J Trainol (2012); 1: 14-22. – reference: Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (2000); 88: 2097-2106. – reference: Abe T, Kawakami Y, Suzuki Y, Gunji A, Fukunaga T. Effects of 20 days bed rest on muscle morphology. J Gravit Physiol (1997); 4: 10-14. – reference: Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, Frontera WR, Fielding RA. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc (2002); 50: 461-467. – reference: Fujita T, Brechue WF, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int J KAATSU Training Res (2008); 4: 1-8. – reference: Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc (2009); 41: 687-708. – reference: Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J KAATSU Training Res (2005a); 1: 19-23. – reference: Izquierdo M, Hakkinen K, Ibanez J, Garrues M, Anton A, Zuniga A, Larrion JL, Gorostiaga EM. Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol (2001); 90: 1497-1507. – reference: de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, Fiatarone Singh MA. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci (2005); 60: 638-647. – reference: Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports (2011); 21: 231-241. – reference: Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, Bemben DA, Bemben MG. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol (2012a); 112: 2903-2912. – reference: Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol (2004); 92: 399-406. – reference: Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (2012); 113: 71-77. – reference: Abe T, Yasuda T, Midorikawa T, Sato Y, Kearns CF, Inoue K, Koizumi K, Ishii N. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily "KAATSU" resistance training. Int J KAATSU Training Res (2005b); 1: 6-12. – reference: Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, da Rocha Correa Fernandes A, Tricoli V. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc (2012); 44: 406-412. – reference: Harman E, Garhammer J, Pandorf C. Essentials of Strength Training and Conditioning, 2nd edn. (2000). Human Kinetics, Champaign. – reference: Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, Fiatarone Singh MA. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc (2002); 50: 655-662. – reference: Wernbom M, Jarrebring R, Andreasson MA, Augustsson J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res (2009); 23: 2389-2395. – reference: Evans C, Vance S, Brown M. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J Sports Sci (2010); 28: 999-1007. – reference: Umbel JD, Hoffman RL, Dearth DJ, Chleboun GS, Manini TM, Clark BC. Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur J Appl Physiol (2009); 107: 687-695. – reference: Patterson SD, Ferguson RA. Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. J Aging Phys Act (2011); 19: 201-213. – reference: Shima N, Ishida K, Katayama K, Morotome Y, Sato Y, Miyamura M. Cross education of muscular strength during unilateral resistance training and detraining. Eur J Appl Physiol (2002); 86: 287-294. – reference: Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging (2010); 30: 338-343. – reference: Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc (2003); 35: 1203-1208. – reference: Loenneke JP, Thiebaud RS, Fahs CA, Rossow LM, Abe T, Bemben MG. Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol (2013); 113: 923-931. – reference: Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol (2002); 86: 308-314. – reference: Wilkinson SB, Tarnopolsky MA, Grant EJ, Correia CE, Phillips SM. Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol (2006); 98: 546-555. – reference: Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol (2012b); 112: 1849-1859. – reference: Patterson SD, Ferguson RA. Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol (2010); 108: 1025-1033. – reference: Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc (1988); 20: S135-S145. – volume: 92 start-page: 399 year: 2004 end-page: 406 article-title: Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion publication-title: Eur J Appl Physiol – volume: 108 start-page: 1025 year: 2010 end-page: 1033 article-title: Increase in calf post‐occlusive blood flow and strength following short‐term resistance exercise training with blood flow restriction in young women publication-title: Eur J Appl Physiol – volume: 50 start-page: 655 year: 2002 end-page: 662 article-title: High‐velocity resistance training increases skeletal muscle peak power in older women publication-title: J Am Geriatr Soc – volume: 113 start-page: 71 year: 2012 end-page: 77 article-title: Resistance exercise load does not determine training‐mediated hypertrophic gains in young men publication-title: J Appl Physiol – volume: 50 start-page: 461 year: 2002 end-page: 467 article-title: The relationship between leg power and physical performance in mobility‐limited older people publication-title: J Am Geriatr Soc – volume: 40 start-page: 258 year: 2008 end-page: 263 article-title: Cross‐transfer effects of resistance training with blood flow restriction publication-title: Med Sci Sports Exerc – volume: 44 start-page: 406 year: 2012 end-page: 412 article-title: Strength training with blood flow restriction diminishes myostatin gene expression publication-title: Med Sci Sports Exerc – volume: 30 start-page: 338 year: 2010 end-page: 343 article-title: Effects of low‐intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study publication-title: Clin Physiol Funct Imaging – volume: 1 start-page: 19 year: 2005a end-page: 23 article-title: Eight days KAATSU‐resistance training improved sprint but not jump performance in collegiate male track and field athletes publication-title: Int J KAATSU Training Res – volume: 4 start-page: 10 year: 1997 end-page: 14 article-title: Effects of 20 days bed rest on muscle morphology publication-title: J Gravit Physiol – volume: 1 start-page: 14 year: 2012 end-page: 22 article-title: Methodological considerations for blood flow restricted resistance exercise publication-title: J Trainol – volume: 112 start-page: 2051 year: 2011 end-page: 2063 article-title: Contractile function and sarcolemmal permeability after acute low‐load resistance exercise with blood flow restriction publication-title: Eur J Appl Physiol – volume: 107 start-page: 687 year: 2009 end-page: 695 article-title: Delayed‐onset muscle soreness induced by low‐load blood flow‐restricted exercise publication-title: Eur J Appl Physiol – volume: 28 start-page: 999 year: 2010 end-page: 1007 article-title: Short‐term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles publication-title: J Sports Sci – year: 2000 – volume: 90 start-page: 1497 year: 2001 end-page: 1507 article-title: Effects of strength training on muscle power and serum hormones in middle‐aged and older men publication-title: J Appl Physiol – volume: 4 start-page: 1 year: 2008 end-page: 8 article-title: Increased muscle volume and strength following six days of low‐intensity resistance training with restricted muscle blood flow publication-title: Int J KAATSU Training Res – volume: 21 start-page: 231 year: 2011 end-page: 241 article-title: Frequent low‐load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity publication-title: Scand J Med Sci Sports – volume: 35 start-page: 1203 year: 2003 end-page: 1208 article-title: Resistance training with vascular occlusion: metabolic adaptations in human muscle publication-title: Med Sci Sports Exerc – volume: 113 start-page: 923 year: 2013 end-page: 931 article-title: Blood flow restriction does not result in prolonged decrements in torque publication-title: Eur J Appl Physiol – volume: 23 start-page: 2389 year: 2009 end-page: 2395 article-title: Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load publication-title: J Strength Cond Res – volume: 19 start-page: 201 year: 2011 end-page: 213 article-title: Enhancing strength and postocclusive calf blood flow in older people with training with blood‐flow restriction publication-title: J Aging Phys Act – volume: 86 start-page: 308 year: 2002 end-page: 314 article-title: Effects of resistance exercise combined with vascular occlusion on muscle function in athletes publication-title: Eur J Appl Physiol – volume: 45 start-page: 67 year: 2013 end-page: 74 article-title: Neuromuscular function after a bout of low‐load blood flow‐restricted exercise publication-title: Med Sci Sports Exerc – volume: 1 start-page: 6 year: 2005b end-page: 12 article-title: Skeletal muscle size and circulating IGF‐1 are increased after two weeks of twice daily “KAATSU” resistance training publication-title: Int J KAATSU Training Res – volume: 88 start-page: 50 year: 2002 end-page: 60 article-title: Muscular adaptations in response to three different resistance‐training regimens: specificity of repetition maximum training zones publication-title: Eur J Appl Physiol – volume: 41 start-page: 687 year: 2009 end-page: 708 article-title: American College of Sports Medicine position stand. Progression models in resistance training for healthy adults publication-title: Med Sci Sports Exerc – volume: 88 start-page: 2097 year: 2000 end-page: 2106 article-title: Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans publication-title: J Appl Physiol – volume: 112 start-page: 2903 year: 2012a end-page: 2912 article-title: Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise publication-title: Eur J Appl Physiol – volume: 98 start-page: 546 year: 2006 end-page: 555 article-title: Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration publication-title: Eur J Appl Physiol – volume: 112 start-page: 1849 year: 2012b end-page: 1859 article-title: Low intensity blood flow restriction training: a meta‐analysis publication-title: Eur J Appl Physiol – volume: 60 start-page: 638 year: 2005 end-page: 647 article-title: Optimal load for increasing muscle power during explosive resistance training in older adults publication-title: J Gerontol A Biol Sci Med Sci – volume: 20 start-page: S135 year: 1988 end-page: S145 article-title: Neural adaptation to resistance training publication-title: Med Sci Sports Exerc – volume: 86 start-page: 287 year: 2002 end-page: 294 article-title: Cross education of muscular strength during unilateral resistance training and detraining publication-title: Eur J Appl Physiol – ident: e_1_2_7_32_1 doi: 10.1519/JSC.0b013e3181bc1c2a – ident: e_1_2_7_33_1 doi: 10.1007/s00421-011-2172-0 – ident: e_1_2_7_26_1 doi: 10.1249/00005768-198810001-00009 – ident: e_1_2_7_28_1 doi: 10.1152/jappl.2000.88.6.2097 – volume: 4 start-page: 10 year: 1997 ident: e_1_2_7_2_1 article-title: Effects of 20 days bed rest on muscle morphology publication-title: J Gravit Physiol – ident: e_1_2_7_21_1 doi: 10.1152/japplphysiol.00307.2012 – ident: e_1_2_7_30_1 doi: 10.1007/s00421-009-1175-6 – ident: e_1_2_7_16_1 doi: 10.1249/MSS.0b013e318233b4bc – ident: e_1_2_7_23_1 doi: 10.1007/s00421-009-1309-x – ident: e_1_2_7_27_1 doi: 10.1007/s00421-001-0559-z – ident: e_1_2_7_6_1 doi: 10.1249/01.MSS.0000074458.71025.71 – ident: e_1_2_7_15_1 doi: 10.1111/j.1600-0838.2010.01260.x – ident: e_1_2_7_3_1 doi: 10.3806/ijktr.1.19 – ident: e_1_2_7_29_1 doi: 10.1007/s00421-001-0561-5 – ident: e_1_2_7_17_1 doi: 10.1007/s00421-011-2266-8 – ident: e_1_2_7_20_1 doi: 10.1249/mss.0b013e31815c6d7e – ident: e_1_2_7_31_1 doi: 10.1093/gerona/60.5.638 – ident: e_1_2_7_14_1 doi: 10.1152/jappl.2001.90.4.1497 – ident: e_1_2_7_24_1 doi: 10.1123/japa.19.3.201 – ident: e_1_2_7_34_1 doi: 10.1007/s00421-006-0300-z – ident: e_1_2_7_9_1 doi: 10.1080/02640414.2010.485647 – ident: e_1_2_7_5_1 doi: 10.1046/j.1532-5415.2002.50111.x – ident: e_1_2_7_4_1 doi: 10.3806/ijktr.1.6 – volume-title: Essentials of Strength Training and Conditioning year: 2000 ident: e_1_2_7_13_1 – ident: e_1_2_7_10_1 doi: 10.17338/trainology.1.1_14 – ident: e_1_2_7_22_1 doi: 10.1007/s00421-004-1072-y – ident: e_1_2_7_8_1 doi: 10.1249/MSS.0b013e31826c6fa8 – ident: e_1_2_7_11_1 doi: 10.1046/j.1532-5415.2002.50159.x – ident: e_1_2_7_12_1 doi: 10.3806/ijktr.4.1 – ident: e_1_2_7_18_1 doi: 10.1007/s00421-011-2167-x – ident: e_1_2_7_7_1 doi: 10.1007/s00421-002-0681-6 – ident: e_1_2_7_25_1 doi: 10.1249/MSS.0b013e3181915670 – ident: e_1_2_7_35_1 doi: 10.1111/j.1475-097X.2010.00949.x – ident: e_1_2_7_19_1 doi: 10.1007/s00421-012-2502-x |
SSID | ssj0017347 |
Score | 2.4311028 |
Snippet | Summary
The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow... The purpose of this study was to determine the muscular adaptations to low‐load resistance training performed to fatigue with and without blood flow... The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow... Summary The purpose of this study was to determine the muscular adaptations to low-load resistance training performed to fatigue with and without blood flow... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Adaptation, Physiological Adult Female Humans low-load Male Middle Aged Muscle Contraction muscle endurance Muscle Fatigue muscle hypertrophy muscle power Muscle Strength Organ Size Quadriceps Muscle - blood supply Quadriceps Muscle - diagnostic imaging Quadriceps Muscle - physiology Regional Blood Flow Resistance Training Time Factors Ultrasonography Volition |
Title | Muscular adaptations to fatiguing exercise with and without blood flow restriction |
URI | https://api.istex.fr/ark:/67375/WNG-LS5HBSCC-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12141 https://www.ncbi.nlm.nih.gov/pubmed/24612120 https://www.proquest.com/docview/1671166600 https://www.proquest.com/docview/1672614465 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqGXPtJH3KRBLaXk4mDJki2TU7tku5TuUpKG5lAQejmEBHvZtUnpr48kP2hKCqU3gUdY1uizPkmjbwDe5aqk2OHG4VsXMTVpERckszG3mieZ0dyG_CnzRTY7o5_P2fkGHA13YTp9iHHDzSMj_K89wKVa_wZyvSy9NEK4tO5jtTwhOhmlo3CehuRimOYs9mlNelUhH8Uz1rwzFz3w3frzPqJ5l7eGiWf6GH4MTe7iTa4O20Yd6l9_qDn-5zc9gUc9IUUfuhH0FDZstQ1b8_7I_RmczNsuVhVJI5fdwf0aNTUqXfGidTMfGtI2Ib-pi2RlQqFuGxTC4lF5Xd8gnwNkdRluUTyHs-nxt8ks7hMxxJpmGMeGYiUTx8O1lCmnhlhuqKSKWsdW3BIjZ5YowqUbDUUuuVE4ZZYaZkqeWi_w_gI2q7qyO4CIYobk0jKuJC0yXTCLE6mUSsqMGEoiOBhcInSvUu6TZVyLYbXi-kiEPorg7Wi67KQ57jN6H_w6WsjVlY9ly5n4vvgkvpyy2cfTyUQsItgbHC96GK8FznLsz1WTJII342MHQH-qIitbt8GGhFU1i-BlN2DGl3mxPscNXO2D4Pa_t1NMvk5D4dW_m-7CQ0ffWBd-uQebzaq1rx1FatR-wMItYc0LmQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9UwFD-MDdQvvh_VTaOI7EtHkyZtCn5xF69Xvfcie-C-SMirIhvt5a7Fsb_eJH3gZIL4LdATmubkNL-Tc_I7AK9zVVLs7MbZty5iatIiLkhmY241TzKjuQ31UxbLbHZMP52wkw14O9yF6fghxgM3bxnhf-0N3B9I_2blelV6bgR_a33LV_QODtXBSB6F8zSUF8M0Z7EvbNLzCvk8nrHrld1oy0_sxXVQ8ypyDVvP9A58GwbdZZyc7rWN2tOXf_A5_u9X3YXbPSZF77pFdA82bHUfbiz6qPsDOFi0Xboqkkauutj9OWpqVLrm99Ztfmio3IT8uS6SlQmNum1QyIxH5Vn9E_kyIOsf4SLFQzievj-azOK-FkOsaYZxbChWMnFQXEuZcmqI5YZKqqh1gMV5GTmzRBEu3YIocsmNwimz1DBT8tR6jvdHsFnVlX0CiChmSC4t40rSItMFsziRSqmkzIihJILdQSdC90Tlvl7GmRgcFjdHIsxRBK9G0VXHznGd0Jug2FFCrk99OlvOxNflBzE_ZLP9w8lELCPYHjQveks-FzjLsQ-tJkkEL8fHzgZ9YEVWtm6DDAmONYvgcbdixpd5vj4HD1zv3aD3v49TTL5MQ-Ppv4u-gJuzo8VczD8uPz-DWw7NsS4bcxs2m3VrdxxiatTzYBi_AA1QD7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MDYYvfn9U54wispeOJk3aFJ-2O69X3b2MzeEehJCvimy0l7sWxb9-SfqBkwniW6AnNM05v-Yk5-R3AF7nqqTY4cbhWxcxNWkRFySzMbeaJ5nR3Ib6KfNFNjulH8_Y2Rq8He7CdPwQ44GbR0b4X3uAL035G8j1svTUCP7S-gbNEu5N-uB45I7CeRqqi2Gas9jXNelphXwaz9j12mK04ef1502e5nXHNaw80zvwdRhzl3Byvts2alf_-oPO8T8_6i7c7j1StNeZ0D1Ys9V92Jz3MfcHcDxvu2RVJI1cdpH7S9TUqHTNb61b-tBQtwn5U10kKxMaddugkBePyov6B_JFQFbfwzWKh3A6ffd5Mov7SgyxphnGsaFYycQ54lrKlFNDLDdUUkWtc1fcHiNnlijCpTOHIpfcKJwySw0zJU-tZ3h_BOtVXdkngIhihuTSMq4kLTJdMIsTqZRKyowYSiLYGVQidE9T7qtlXIhhu-LmSIQ5iuDVKLrsuDluEnoT9DpKyNW5T2bLmfiyeC8OT9hs_2QyEYsItgbFix7HlwJnOfaB1SSJ4OX42CHQh1VkZes2yJCwrWYRPO4MZnyZZ-tzzoHrvRPU_vdxisnRNDSe_rvoC9g8OpiKww-LT8_glnPlWJeKuQXrzaq1z5271KjtAIsr8OYObA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscular+adaptations+to+fatiguing+exercise+with+and+without+blood+flow+restriction&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Fahs%2C+Christopher+A.&rft.au=Loenneke%2C+Jeremy+P.&rft.au=Thiebaud%2C+Robert+S.&rft.au=Rossow%2C+Lindy+M.&rft.date=2015-05-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=35&rft.issue=3&rft.spage=167&rft.epage=176&rft_id=info:doi/10.1111%2Fcpf.12141&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cpf_12141 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon |