Direct real-time imaging of protein adsorption onto hydrophilic and hydrophobic surfaces

Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate un...

Full description

Saved in:
Bibliographic Details
Published inBiopolymers Vol. 93; no. 1; pp. 74 - 84
Main Authors Haward, Simon J., Shewry, Peter R., Miles, Mervyn J., Mcmaster, Terence J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For ω‐gliadin, a monolayer was formed on the mica substrate during a period of ∼2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the ω‐gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With γ‐gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 74–84, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
AbstractList Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For -gliadin, a monolayer was formed on the mica substrate during a period of 2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the -gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With -gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough.
Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For ω‐gliadin, a monolayer was formed on the mica substrate during a period of ∼2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the ω‐gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With γ‐gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 74–84, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
Abstract Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For ω‐gliadin, a monolayer was formed on the mica substrate during a period of ∼2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the ω‐gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With γ‐gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 74–84, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For omega-gliadin, a monolayer was formed on the mica substrate during a period of approximately 2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the omega-gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With gamma-gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough.
Author Haward, Simon J.
Shewry, Peter R.
Miles, Mervyn J.
Mcmaster, Terence J.
Author_xml – sequence: 1
  givenname: Simon J.
  surname: Haward
  fullname: Haward, Simon J.
  email: s.j.haward@bristol.ac.uk
  organization: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
– sequence: 2
  givenname: Peter R.
  surname: Shewry
  fullname: Shewry, Peter R.
  organization: Rothamsted Research Institute, Harpenden, Herts. AL5 2JQ, United Kingdom
– sequence: 3
  givenname: Mervyn J.
  surname: Miles
  fullname: Miles, Mervyn J.
  organization: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
– sequence: 4
  givenname: Terence J.
  surname: Mcmaster
  fullname: Mcmaster, Terence J.
  organization: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19728361$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKdDF_0DKDvEIu21rx_JEgY6rTRqWfDoznJspzVk4mBnBPPvCZ1pWaGyujrSd46uzjkiB33sPSEnFE4pADtrwnDKKAI8IzMKtSqBVeyAzABAliiYOCRHOX8D4BwpvCCHtFasQkln5OZ9SN6ORfKmK8ew9kVYm9vQ3xaxLYYURx_6wrgc0zCG2BexH2Nxt3UpDnehC7YwvXvQsZl03qTWWJ9fkuet6bI_3t85-Xz-4dPiolxdLy8Xb1el5ZJCaVCYRiqL3DJEcF7VjcWmEUzSVjLZcnCOMs68aEFUVnBQ0laOgmgqpzzOyetd7vTsj43Po16HbH3Xmd7HTdaKC1nVTNX_QaKUFQX5NImogOPU5py82ZE2xZyTb_WQpgLTVlPQf7bR0zb6fpuJfbVP3TRr7_6S-zEm4GwH_Ayd3_47Sb-7_PgQWe4cIY_-16PDpO9aKlRCf71a6vMVu1L4ZaGX-BsJVKiU
CitedBy_id crossref_primary_10_1016_j_tifs_2018_11_027
crossref_primary_10_1016_j_gca_2011_09_010
crossref_primary_10_1016_j_coelec_2019_03_008
crossref_primary_10_1021_ja1026858
crossref_primary_10_1016_j_foodhyd_2024_110154
crossref_primary_10_1016_j_jcs_2011_10_013
crossref_primary_10_1016_j_colsurfb_2013_05_032
crossref_primary_10_3390_molecules27154770
crossref_primary_10_3390_colloids5040051
crossref_primary_10_1016_j_bpc_2019_03_001
crossref_primary_10_1002_pssa_201200769
crossref_primary_10_1016_j_bios_2010_11_043
crossref_primary_10_1016_j_bioelechem_2012_08_004
Cites_doi 10.1021/la9712348
10.1021/la0259048
10.1016/S0733-5210(85)80021-7
10.1016/S0924-2244(01)00035-8
10.1002/jbm.a.10092
10.1063/1.1750380
10.1021/la00093a012
10.1021/la950639u
10.1016/j.susc.2004.01.046
10.1002/elps.1150150181
10.1021/la0256331
10.1021/la990008q
10.1016/S0733-5210(09)80177-X
10.1007/BF00252285
10.1016/0021-9797(92)90038-N
10.1016/0956-5663(96)87660-3
10.1042/bj2590471
10.1093/jexbot/52.356.541
10.1016/S0927-7765(02)00133-9
10.1116/1.1593056
10.1006/jcrs.1999.0297
10.1006/jcrs.2000.0307
10.1016/0304-3991(92)90425-J
10.1094/CCHEM.1997.74.3.193
10.1021/ma991207j
10.1021/la0202982
10.1016/S0733-5210(05)80002-5
10.1042/bj3190741
10.1002/bip.20252
10.1126/science.2928794
10.1006/jcrs.1999.0270
10.1021/la00092a036
10.1002/bip.20603
10.1016/S0927-7757(99)00409-4
ContentType Journal Article
Copyright Copyright © 2009 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7U5
8FD
L7M
7QO
FR3
P64
DOI 10.1002/bip.21300
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
Technology Research Database

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-0282
EndPage 84
ExternalDocumentID 10_1002_bip_21300
19728361
BIP21300
ark_67375_WNG_FL2N73VC_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BBSRC Exploiting Genomics Program
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/00004953
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: EGA17706
GroupedDBID .GA
.Y3
05W
10A
1OB
1OC
31~
4.4
4ZD
51W
51X
52N
52O
52P
52T
52W
52X
7PT
930
A03
AANLZ
AASGY
AAXRX
ABJNI
ACAHQ
ACCZN
ACXBN
ADOZA
AEUYR
AFBPY
AFZJQ
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATUGU
BRXPI
BSCLL
BY8
DCZOG
DRFUL
DRSTM
G-S
GNP
GODZA
HF~
HHZ
LATKE
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
P2W
P4D
QB0
RWI
SUPJJ
UB1
WIH
WIK
WJL
WQJ
WRC
XG1
XV2
ZZTAW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7U5
8FD
L7M
7QO
FR3
P64
ID FETCH-LOGICAL-c4610-a35ab67c34c2330de79bc3bb5261f626f40dd1242e5f058c54076c8d105b8d7e3
IEDL.DBID DR2
ISSN 0006-3525
IngestDate Fri Aug 16 05:19:00 EDT 2024
Fri Aug 16 21:31:18 EDT 2024
Fri Aug 16 22:01:08 EDT 2024
Fri Aug 23 02:38:17 EDT 2024
Sat Sep 28 08:26:16 EDT 2024
Sat Aug 24 00:53:38 EDT 2024
Wed Oct 30 09:57:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4610-a35ab67c34c2330de79bc3bb5261f626f40dd1242e5f058c54076c8d105b8d7e3
Notes BBSRC Exploiting Genomics Program
istex:E4B66206868EB9056D4321E901596F8D4427519C
ArticleID:BIP21300
ark:/67375/WNG-FL2N73VC-G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bip.21300
PMID 19728361
PQID 733704344
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_745689279
proquest_miscellaneous_743668106
proquest_miscellaneous_733704344
crossref_primary_10_1002_bip_21300
pubmed_primary_19728361
wiley_primary_10_1002_bip_21300_BIP21300
istex_primary_ark_67375_WNG_FL2N73VC_G
PublicationCentury 2000
PublicationDate 2010-01
January 2010
2010-Jan
2010-01-00
20100101
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Biopolymers
PublicationTitleAlternate Biopolymers
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Örnebro, J.;Nylander, T.;Eliasson, A.-C. J Cereal Sci 2000, 31, 195-221.
Shewry, P. R.;Popineau, Y.;Lafiandra, D.;Belton, P. Trends Food Sci Technol 2001, 11, 433-441.
Tatham, A. S.;Shewry, P. R. J Cereal Sci 1995, 22, 1-16.
Bergkvist, M.;Carlsson, J.;Oscarsson, S. J. Biomed Mater Res A 2002, 64, 349-356.
Kim, D. T.;Blanch, H. W.;Radke, C. J. Langmuir 2002, 18, 5841-5850.
McIntire, T. M.;Lew, E. J. L.;Adalsteins, A. E.;Blechl, A.;Anderson, O. D.;Brant, D. A.;Kasarda, D. D. Biopolymers 2005, 78, 53-61.
Miller, A. J.;Cookson, S. J.;Smith, S. J.;Wells, D. M. J Exp Bot 2001, 52, 541-549.
Almeida, A. T.;Salvadori, M. C.;Petri, D. F. S. Langmuir 2002, 18, 6914-6920.
Ying, P.;Yu, Y.;Jin, G.;Tao, Z. Colloids Surf B: Biointerfaces 2003, 32, 1-10.
Browne, M. M.;Lubarsky, G. V.;Davidson, M. R.;Bradley, R. H. Surf Sci 2004, 553, 155-167.
Avrami, M. J Chem Phys 1939, 7, 1103-1112.
Paananen, A.;Tappura, K.;Tatham, A. S.;Fido, R.;Shewry, P. R.;Miles, M.;McMaster, T. J. Biopolymers 2006, 83, 658-667.
Sodergaard, I.;Jensen, K.;Krath, B. N. Electrophoresis 1994, 15, 584-588.
Choi, K. H.;Friedt, J. M.;Laureyn, W.;Frederix, F.;Campitelli, A.;Borghs, G. J Vac Sci B 2003, 21, 1433-1436.
Tatham, A. S.;Drake, A. F.;Shewry, P. R. Biochem J 1989, 259, 471-476.
Raposo, M.;Oliveira, O. N. Langmuir 2002, 18, 6866-6874.
Stipp, S. L. S. Langmuir 1996, 12, 1884-1891.
Ta, T. C.;Sykes, M. T.;McDermott, M. T. Langmuir 1998, 14, 2435-2443.
Tatham, A. S.;Masson, P.;Popineau, Y. J. Cereal Sci 1990, 11, 1-13.
McMaster, T. J.;Miles, M. J.;Kasarda, D. D.;Shewry, P. R.;Tatham, A. S. J Cereal Sci 1999, 31, 281-286.
Örnebro, J.;Wahlgren, M.;Eliasson, A.-C.;Fido, R. J.;Tatham, A. S. J Cereal Sci 1999, 30, 105-114.
Nishimura, S.;Tateyama, H.;Tsunematu, K.;Jinnai, K. J Coll Int Sci 1992, 152, 359-367.
Shewry, P. R.;Miles, M. J.;Tatham, A. S. Prog Biophys Mol Biol 1994, 61, 37-59.
Bietz, J. A.;Burnouf, T. Theor Appl Genet 1985, 70, 599-609.
Talbot, J.;Tarjus, G.;Van Tassel, P. R.;Viot, P. Colloids Surf A 2000, 165, 287-324.
Thomson, N. H.;Miles, M. J.;Tatham, A. S.;Shewry, P. R. Ultramicroscopy 1992, 42, 1204-1213.
Wellner, N.;Belton, P. S.;Tatham, A. S. Biochem J 1996, 319, 741-747.
Raiteri, R.;Martinoia, S.;Grattarola, M. Biosens Bioelectron 1996, 11, 1009-1017.
Scales, P. J.;Grieser, F.;Healy, T. W. Langmuir 1990, 6, 582-589.
Abraham, T.;Giasson, S.;Gohy, J. F.;Jerome, R.;Muller, B.;Stamm, M. Macromolecules 2000, 6051-6059.
Lin, J. N.;Drake, B.;Lea, A. S.;Hansma, P. K.;Andrade, J. D. Langmuir 1990, 6, 509-511.
McMaster, T. J.;Miles, M. J.;Shewry, P. R.;Tatham, A. S. Langmuir 2000, 16, 1463-1468.
Dupont-Gillian, Ch. C.;Fauroux, C. M. J.;Gardner, D. C. J.;Leggett, G. J. J Biomed Mater Res 2003, 67, 548-558.
Drake, B.;Prater, C. B.;Weisenhorn, A. L.;Gould, S. A. C.;Albrecht, T. R.;Quate, C. F.;Cannell, D. S.;Hansma, H. G.;Hansma, P. K. Science 1989, 243, 1586-1589.
Shewry, P. R.;Miles, M. J.;Thomson, N. H.;Tatham, A. S. Cereal Chem 1997, 74, 193-199.
Tatham, A. S.;Shewry, P. R. J Cereal Sci 1985, 3, 103-113.
1989; 259
1990; 11
2002; 18
1985; 3
1994; 61
2003; 32
1996; 12
1996; 11
1996; 319
2000; 16
2006; 83
2004; 553
1992; 152
2000
2002; 64
1997; 74
1995; 22
1989; 243
2000; 31
1985; 70
1999; 31
1999; 30
1994; 15
2000; 165
2001; 11
1992; 42
1939; 7
1990; 6
2005; 78
2003; 21
2001; 52
1998; 14
2003; 67
e_1_2_5_26_2
e_1_2_5_27_2
e_1_2_5_25_2
e_1_2_5_22_2
e_1_2_5_23_2
e_1_2_5_21_2
e_1_2_5_28_2
Abraham T. (e_1_2_5_29_2) 2000
e_1_2_5_14_2
e_1_2_5_13_2
Sodergaard I. (e_1_2_5_30_2) 1994; 15
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_34_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
Shewry P. R. (e_1_2_5_8_2) 1994; 61
e_1_2_5_19_2
Stipp S. L. S. (e_1_2_5_5_2) 1996; 12
Dupont‐Gillian Ch. C. (e_1_2_5_24_2) 2003; 67
Thomson N. H. (e_1_2_5_20_2) 1992; 42
Bergkvist M. (e_1_2_5_37_2) 2002; 64
References_xml – volume: 78
  start-page: 53
  year: 2005
  end-page: 61
  publication-title: Biopolymers
– volume: 18
  start-page: 5841
  year: 2002
  end-page: 5850
  publication-title: Langmuir
– volume: 319
  start-page: 741
  year: 1996
  end-page: 747
  publication-title: Biochem J
– volume: 61
  start-page: 37
  year: 1994
  end-page: 59
  publication-title: Prog Biophys Mol Biol
– volume: 553
  start-page: 155
  year: 2004
  end-page: 167
  publication-title: Surf Sci
– start-page: 6051
  year: 2000
  end-page: 6059
  publication-title: Macromolecules
– volume: 3
  start-page: 103
  year: 1985
  end-page: 113
  publication-title: J Cereal Sci
– volume: 6
  start-page: 582
  year: 1990
  end-page: 589
  publication-title: Langmuir
– volume: 67
  start-page: 548
  year: 2003
  end-page: 558
  publication-title: J Biomed Mater Res
– volume: 11
  start-page: 1
  year: 1990
  end-page: 13
  publication-title: Cereal Sci
– volume: 31
  start-page: 281
  year: 1999
  end-page: 286
  publication-title: J Cereal Sci
– volume: 31
  start-page: 195
  year: 2000
  end-page: 221
  publication-title: J Cereal Sci
– volume: 74
  start-page: 193
  year: 1997
  end-page: 199
  publication-title: Cereal Chem
– volume: 7
  start-page: 1103
  year: 1939
  end-page: 1112
  publication-title: J Chem Phys
– volume: 42
  start-page: 1204
  year: 1992
  end-page: 1213
  publication-title: Ultramicroscopy
– volume: 152
  start-page: 359
  year: 1992
  end-page: 367
  publication-title: J Coll Int Sci
– volume: 30
  start-page: 105
  year: 1999
  end-page: 114
  publication-title: J Cereal Sci
– volume: 243
  start-page: 1586
  year: 1989
  end-page: 1589
  publication-title: Science
– volume: 11
  start-page: 1009
  year: 1996
  end-page: 1017
  publication-title: Biosens Bioelectron
– volume: 52
  start-page: 541
  year: 2001
  end-page: 549
  publication-title: J Exp Bot
– volume: 12
  start-page: 1884
  year: 1996
  end-page: 1891
  publication-title: Langmuir
– volume: 18
  start-page: 6914
  year: 2002
  end-page: 6920
  publication-title: Langmuir
– volume: 16
  start-page: 1463
  year: 2000
  end-page: 1468
  publication-title: Langmuir
– volume: 14
  start-page: 2435
  year: 1998
  end-page: 2443
  publication-title: Langmuir
– volume: 6
  start-page: 509
  year: 1990
  end-page: 511
  publication-title: Langmuir
– volume: 32
  start-page: 1
  year: 2003
  end-page: 10
  publication-title: Colloids Surf B: Biointerfaces
– volume: 83
  start-page: 658
  year: 2006
  end-page: 667
  publication-title: Biopolymers
– volume: 165
  start-page: 287
  year: 2000
  end-page: 324
  publication-title: Colloids Surf A
– volume: 70
  start-page: 599
  year: 1985
  end-page: 609
  publication-title: Theor Appl Genet
– volume: 11
  start-page: 433
  year: 2001
  end-page: 441
  publication-title: Trends Food Sci Technol
– volume: 22
  start-page: 1
  year: 1995
  end-page: 16
  publication-title: J Cereal Sci
– volume: 64
  start-page: 349
  year: 2002
  end-page: 356
  publication-title: Biomed Mater Res A
– volume: 21
  start-page: 1433
  year: 2003
  end-page: 1436
  publication-title: J Vac Sci B
– volume: 18
  start-page: 6866
  year: 2002
  end-page: 6874
  publication-title: Langmuir
– volume: 15
  start-page: 584
  year: 1994
  end-page: 588
  publication-title: Electrophoresis
– volume: 259
  start-page: 471
  year: 1989
  end-page: 476
  publication-title: Biochem J
– ident: e_1_2_5_6_2
  doi: 10.1021/la9712348
– ident: e_1_2_5_28_2
  doi: 10.1021/la0259048
– ident: e_1_2_5_26_2
  doi: 10.1016/S0733-5210(85)80021-7
– ident: e_1_2_5_11_2
  doi: 10.1016/S0924-2244(01)00035-8
– volume: 67
  start-page: 548
  year: 2003
  ident: e_1_2_5_24_2
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.10092
  contributor:
    fullname: Dupont‐Gillian Ch. C.
– ident: e_1_2_5_27_2
  doi: 10.1063/1.1750380
– ident: e_1_2_5_31_2
  doi: 10.1021/la00093a012
– volume: 64
  start-page: 349
  year: 2002
  ident: e_1_2_5_37_2
  publication-title: Biomed Mater Res A
  contributor:
    fullname: Bergkvist M.
– volume: 12
  start-page: 1884
  year: 1996
  ident: e_1_2_5_5_2
  publication-title: Langmuir
  doi: 10.1021/la950639u
  contributor:
    fullname: Stipp S. L. S.
– ident: e_1_2_5_23_2
  doi: 10.1016/j.susc.2004.01.046
– volume: 15
  start-page: 584
  year: 1994
  ident: e_1_2_5_30_2
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150150181
  contributor:
    fullname: Sodergaard I.
– ident: e_1_2_5_10_2
  doi: 10.1021/la0256331
– ident: e_1_2_5_7_2
  doi: 10.1021/la990008q
– ident: e_1_2_5_19_2
  doi: 10.1016/S0733-5210(09)80177-X
– volume: 61
  start-page: 37
  year: 1994
  ident: e_1_2_5_8_2
  publication-title: Prog Biophys Mol Biol
  contributor:
    fullname: Shewry P. R.
– ident: e_1_2_5_21_2
  doi: 10.1007/BF00252285
– ident: e_1_2_5_34_2
  doi: 10.1016/0021-9797(92)90038-N
– ident: e_1_2_5_32_2
  doi: 10.1016/0956-5663(96)87660-3
– ident: e_1_2_5_16_2
  doi: 10.1042/bj2590471
– ident: e_1_2_5_33_2
  doi: 10.1093/jexbot/52.356.541
– ident: e_1_2_5_22_2
  doi: 10.1016/S0927-7765(02)00133-9
– ident: e_1_2_5_25_2
  doi: 10.1116/1.1593056
– ident: e_1_2_5_13_2
  doi: 10.1006/jcrs.1999.0297
– ident: e_1_2_5_3_2
  doi: 10.1006/jcrs.2000.0307
– volume: 42
  start-page: 1204
  year: 1992
  ident: e_1_2_5_20_2
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(92)90425-J
  contributor:
    fullname: Thomson N. H.
– ident: e_1_2_5_18_2
  doi: 10.1094/CCHEM.1997.74.3.193
– start-page: 6051
  year: 2000
  ident: e_1_2_5_29_2
  publication-title: Macromolecules
  doi: 10.1021/ma991207j
  contributor:
    fullname: Abraham T.
– ident: e_1_2_5_36_2
  doi: 10.1021/la0202982
– ident: e_1_2_5_15_2
  doi: 10.1016/S0733-5210(05)80002-5
– ident: e_1_2_5_17_2
  doi: 10.1042/bj3190741
– ident: e_1_2_5_9_2
  doi: 10.1002/bip.20252
– ident: e_1_2_5_2_2
  doi: 10.1126/science.2928794
– ident: e_1_2_5_12_2
  doi: 10.1006/jcrs.1999.0270
– ident: e_1_2_5_4_2
  doi: 10.1021/la00092a036
– ident: e_1_2_5_14_2
  doi: 10.1002/bip.20603
– ident: e_1_2_5_35_2
  doi: 10.1016/S0927-7757(99)00409-4
SSID ssj0044310
ssj0011473
Score 2.069491
Snippet Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto...
Abstract Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 74
SubjectTerms Adsorption
AFM
Gliadin
Gliadin - chemistry
Gliadin - metabolism
Graphite - chemistry
Hydrophobic and Hydrophilic Interactions
Microscopy, Atomic Force
SPM
surface adsorption
tapping mode
Triticum - chemistry
Triticum aestivum
Water - chemistry
Title Direct real-time imaging of protein adsorption onto hydrophilic and hydrophobic surfaces
URI https://api.istex.fr/ark:/67375/WNG-FL2N73VC-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbip.21300
https://www.ncbi.nlm.nih.gov/pubmed/19728361
https://search.proquest.com/docview/733704344
https://search.proquest.com/docview/743668106
https://search.proquest.com/docview/745689279
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lPuiL98t4I0gpvsx2NieZZPBJV7e1yFLEahEh5IpLdWaZ3QX1yZ_gb_SXmGQ6UypaxLcEDiE5Jzn5kpx8B6EtxjUXrKA5E4rmwfvpXI19TCIQDtjgoAKTAmRn5d4h3T9iRxvoSf8XpuOHGC7c4spI_joucKWXO6ekoXq-GJH4GBP87xh4DOd6_nqgjgownw8umYZdsvuLEgO9GGE9xVBBdoZmzmxMF6KOv_wJdZ4FsWkXml5BH_r-d8Enx6P1So_Mt9-oHf9zgFfR5RN0ip920-ka2nD1dXRx0ieFu4Hedy4SB6j56ef3HzEzPZ5_TpmOcONxYn2Y11jZZdMmZ4QjPwL--NW2zSLe3RisatvXGx3qy3XrY1zYTXQ4ffFmspefpGfITSRpzxUwpUtugBoCUFjHK21AaxYOZT6ckzwtrA3wgTjmCyZMpPorjbAB0WlhuYNbaLNuancHYSIK74T3Y2GB2lB0YLgqSiWI9-B8hh71tpGLjoVDdnzLRAY1yaSmDG0nqw0Sqj2OYWucyXezXTl9RWYc3k7kboZwb1YZ1BdfSFTtmvVScgBeUKD0HBEKZeRwK88TYaWoCK8ydLubNKedrnjAc-U4Q4-T6f8-Gvns5UEq3P130XvoUhfcEG-I7qPNVbt2DwJmWumHaXH8ApHREFk
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7U9qG-eL-M1yAivsx2NpdJBnzR1e1W10Wk1VKQkGQSurTOLLO7oD75E_yN_hKTTGdLRYv4lkAYJufknHw5OfkOwGPGNRcsoykTiqbe--lU9V0oIuAP2MSSgpiYIDvJR3v09T7bX4Nn3VuYlh9iFXALlhH9dTDwEJDeOmUN1dNZD4fbmAuw4c2dhMINL9-vyKM80Ocrp0z9Ptm-RgmpXgyzjmQow1ur75zZmjaClL_8CXeehbFxHxpehk_dDNr0k6PecqF75ttv5I7_O8UrcOkEoKLn7Yq6Cmu2ugabg64u3HU4aL0k8mjz-Of3H6E4PZp-jsWOUO1QJH6YVkiV87qJ_ggFigR0-LVs6lkI3xikqrLr19r358vGhdSwG7A3fLU7GKUnFRpSE3jaU0WY0jk3hBpMSFZaXmhDtGb-XOb8UcnRrCw9gsCWuYwJE9j-ciNKD-q0KLklN2G9qit7GxAWmbPCub4oCS190xLDVZYrgZ0j1iXwqFOOnLVEHLKlXMbSi0lGMSXwJKptNUI1RyFzjTP5cbIth2M84eTDQG4ngDq9Si--cEmiKlsv55ITwjNKKD1nCCV5oHHLzxvCclFgXiRwq101pz9dcA_p8n4CT6Pu_z4b-WLnXWzc-fehD2FztPt2LMc7kzd34WKb6xACRvdgfdEs7X0PoRb6QbSUX3oqFHE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFtQX75fxGkTEl9nO5jLJ4JOublstSxGrRYSQKy7VmWV2F9Qnf4K_0V9ikulsqWgR3xI4DJNzck6-JCffAXjIuOaCFTRnQtE8RD-dq6GPRQTCBps4UhGTEmQn5fY-fXnADtbgSf8WpuOHWB24Rc9I8To6-Mz6zWPSUD2dDXC8jDkDG7QMyDciotcr7qiA8_kqJtOwTHaPUWKmF8Os5xgq8ObqOydWpo2o5C9_gp0nUWxahsYX4UM_gC775HCwXOiB-fYbt-N_jvASXDiCp-hpN58uw5qrr8C5UV8V7iq872IkCljz08_vP2JpejT9nEodocajRPswrZGy86ZN0QhFggT08attm1k8vDFI1bbvNzr058vWx8Swa7A_fvFmtJ0f1WfITWRpzxVhSpfcEGowIYV1vNKGaM3CrsyHjZKnhbUBP2DHfMGEiVx_pRE2QDotLHfkOqzXTe1uAsKi8E54PxSWUBuajhiuilIJ7D1xPoMHvW3krKPhkB3hMpZBTTKpKYNHyWorCdUexrw1zuS7yZYc7-IJJ29HcisD1JtVBvXFKxJVu2Y5l5wQXlBC6SkilJSRxK08TYSVosK8yuBGN2mOf7riAdCVwwweJ9P_fTTy2c5eatz6d9H7cHbv-Vju7kxe3YbzXaJDPC26A-uLdunuBvy00PeSn_wCMpYTIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+real-time+imaging+of+protein+adsorption+onto+hydrophilic+and+hydrophobic+surfaces&rft.jtitle=Biopolymers&rft.au=Haward%2C+Simon+J.&rft.au=Shewry%2C+Peter+R.&rft.au=Miles%2C+Mervyn+J.&rft.au=Mcmaster%2C+Terence+J.&rft.date=2010-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3525&rft.eissn=1097-0282&rft.volume=93&rft.issue=1&rft.spage=74&rft.epage=84&rft_id=info:doi/10.1002%2Fbip.21300&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FL2N73VC_G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3525&client=summon