Direct real-time imaging of protein adsorption onto hydrophilic and hydrophobic surfaces
Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate un...
Saved in:
Published in | Biopolymers Vol. 93; no. 1; pp. 74 - 84 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For ω‐gliadin, a monolayer was formed on the mica substrate during a period of ∼2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the ω‐gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With γ‐gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 74–84, 2010.
This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com |
---|---|
AbstractList | Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For -gliadin, a monolayer was formed on the mica substrate during a period of 2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the -gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With -gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For ω‐gliadin, a monolayer was formed on the mica substrate during a period of ∼2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the ω‐gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With γ‐gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 74–84, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com Abstract Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For ω‐gliadin, a monolayer was formed on the mica substrate during a period of ∼2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the ω‐gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With γ‐gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 74–84, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto hydrophilic (mica) and hydrophobic (graphite) surfaces. The liquid cell of the microscope was used initially to acquire images of the substrate under a small quantity of pure solvent (1% acetic acid). Continuous imaging as an injection of gliadin solution entered the liquid cell enabled the adsorption process to be followed in situ from zero time. For omega-gliadin, a monolayer was formed on the mica substrate during a period of approximately 2000 s, with the protein molecules oriented in parallel to the mica surface. In contrast, the omega-gliadin had a relatively low affinity for the graphite substrate, as demonstrated by slow and weak adsorption to the surface. With gamma-gliadin, random deposition onto the mica surface was observed forming monodispersed structures, whereas on the graphite surface, monolayer islands of protein were formed with the protein molecules in a perpendicular orientation. Sequential adsorption experiments indicated strong interactions between the two proteins that, under certain circumstances, caused alterations to the surface morphologies of preadsorbed species. The results are relevant to our understanding of the interactions of proteins within the hydrated protein bodies of wheat grain and how these determine the processing properties of wheat gluten and dough. |
Author | Haward, Simon J. Shewry, Peter R. Miles, Mervyn J. Mcmaster, Terence J. |
Author_xml | – sequence: 1 givenname: Simon J. surname: Haward fullname: Haward, Simon J. email: s.j.haward@bristol.ac.uk organization: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom – sequence: 2 givenname: Peter R. surname: Shewry fullname: Shewry, Peter R. organization: Rothamsted Research Institute, Harpenden, Herts. AL5 2JQ, United Kingdom – sequence: 3 givenname: Mervyn J. surname: Miles fullname: Miles, Mervyn J. organization: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom – sequence: 4 givenname: Terence J. surname: Mcmaster fullname: Mcmaster, Terence J. organization: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19728361$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKdDF_0DKDvEIu21rx_JEgY6rTRqWfDoznJspzVk4mBnBPPvCZ1pWaGyujrSd46uzjkiB33sPSEnFE4pADtrwnDKKAI8IzMKtSqBVeyAzABAliiYOCRHOX8D4BwpvCCHtFasQkln5OZ9SN6ORfKmK8ew9kVYm9vQ3xaxLYYURx_6wrgc0zCG2BexH2Nxt3UpDnehC7YwvXvQsZl03qTWWJ9fkuet6bI_3t85-Xz-4dPiolxdLy8Xb1el5ZJCaVCYRiqL3DJEcF7VjcWmEUzSVjLZcnCOMs68aEFUVnBQ0laOgmgqpzzOyetd7vTsj43Po16HbH3Xmd7HTdaKC1nVTNX_QaKUFQX5NImogOPU5py82ZE2xZyTb_WQpgLTVlPQf7bR0zb6fpuJfbVP3TRr7_6S-zEm4GwH_Ayd3_47Sb-7_PgQWe4cIY_-16PDpO9aKlRCf71a6vMVu1L4ZaGX-BsJVKiU |
CitedBy_id | crossref_primary_10_1016_j_tifs_2018_11_027 crossref_primary_10_1016_j_gca_2011_09_010 crossref_primary_10_1016_j_coelec_2019_03_008 crossref_primary_10_1021_ja1026858 crossref_primary_10_1016_j_foodhyd_2024_110154 crossref_primary_10_1016_j_jcs_2011_10_013 crossref_primary_10_1016_j_colsurfb_2013_05_032 crossref_primary_10_3390_molecules27154770 crossref_primary_10_3390_colloids5040051 crossref_primary_10_1016_j_bpc_2019_03_001 crossref_primary_10_1002_pssa_201200769 crossref_primary_10_1016_j_bios_2010_11_043 crossref_primary_10_1016_j_bioelechem_2012_08_004 |
Cites_doi | 10.1021/la9712348 10.1021/la0259048 10.1016/S0733-5210(85)80021-7 10.1016/S0924-2244(01)00035-8 10.1002/jbm.a.10092 10.1063/1.1750380 10.1021/la00093a012 10.1021/la950639u 10.1016/j.susc.2004.01.046 10.1002/elps.1150150181 10.1021/la0256331 10.1021/la990008q 10.1016/S0733-5210(09)80177-X 10.1007/BF00252285 10.1016/0021-9797(92)90038-N 10.1016/0956-5663(96)87660-3 10.1042/bj2590471 10.1093/jexbot/52.356.541 10.1016/S0927-7765(02)00133-9 10.1116/1.1593056 10.1006/jcrs.1999.0297 10.1006/jcrs.2000.0307 10.1016/0304-3991(92)90425-J 10.1094/CCHEM.1997.74.3.193 10.1021/ma991207j 10.1021/la0202982 10.1016/S0733-5210(05)80002-5 10.1042/bj3190741 10.1002/bip.20252 10.1126/science.2928794 10.1006/jcrs.1999.0270 10.1021/la00092a036 10.1002/bip.20603 10.1016/S0927-7757(99)00409-4 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2009 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7U5 8FD L7M 7QO FR3 P64 |
DOI | 10.1002/bip.21300 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database Technology Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-0282 |
EndPage | 84 |
ExternalDocumentID | 10_1002_bip_21300 19728361 BIP21300 ark_67375_WNG_FL2N73VC_G |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: BBSRC Exploiting Genomics Program – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/00004953 – fundername: Biotechnology and Biological Sciences Research Council grantid: EGA17706 |
GroupedDBID | .GA .Y3 05W 10A 1OB 1OC 31~ 4.4 4ZD 51W 51X 52N 52O 52P 52T 52W 52X 7PT 930 A03 AANLZ AASGY AAXRX ABJNI ACAHQ ACCZN ACXBN ADOZA AEUYR AFBPY AFZJQ ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATUGU BRXPI BSCLL BY8 DCZOG DRFUL DRSTM G-S GNP GODZA HF~ HHZ LATKE LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM P2W P4D QB0 RWI SUPJJ UB1 WIH WIK WJL WQJ WRC XG1 XV2 ZZTAW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7U5 8FD L7M 7QO FR3 P64 |
ID | FETCH-LOGICAL-c4610-a35ab67c34c2330de79bc3bb5261f626f40dd1242e5f058c54076c8d105b8d7e3 |
IEDL.DBID | DR2 |
ISSN | 0006-3525 |
IngestDate | Fri Aug 16 05:19:00 EDT 2024 Fri Aug 16 21:31:18 EDT 2024 Fri Aug 16 22:01:08 EDT 2024 Fri Aug 23 02:38:17 EDT 2024 Sat Sep 28 08:26:16 EDT 2024 Sat Aug 24 00:53:38 EDT 2024 Wed Oct 30 09:57:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4610-a35ab67c34c2330de79bc3bb5261f626f40dd1242e5f058c54076c8d105b8d7e3 |
Notes | BBSRC Exploiting Genomics Program istex:E4B66206868EB9056D4321E901596F8D4427519C ArticleID:BIP21300 ark:/67375/WNG-FL2N73VC-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bip.21300 |
PMID | 19728361 |
PQID | 733704344 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_745689279 proquest_miscellaneous_743668106 proquest_miscellaneous_733704344 crossref_primary_10_1002_bip_21300 pubmed_primary_19728361 wiley_primary_10_1002_bip_21300_BIP21300 istex_primary_ark_67375_WNG_FL2N73VC_G |
PublicationCentury | 2000 |
PublicationDate | 2010-01 January 2010 2010-Jan 2010-01-00 20100101 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Biopolymers |
PublicationTitleAlternate | Biopolymers |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Örnebro, J.;Nylander, T.;Eliasson, A.-C. J Cereal Sci 2000, 31, 195-221. Shewry, P. R.;Popineau, Y.;Lafiandra, D.;Belton, P. Trends Food Sci Technol 2001, 11, 433-441. Tatham, A. S.;Shewry, P. R. J Cereal Sci 1995, 22, 1-16. Bergkvist, M.;Carlsson, J.;Oscarsson, S. J. Biomed Mater Res A 2002, 64, 349-356. Kim, D. T.;Blanch, H. W.;Radke, C. J. Langmuir 2002, 18, 5841-5850. McIntire, T. M.;Lew, E. J. L.;Adalsteins, A. E.;Blechl, A.;Anderson, O. D.;Brant, D. A.;Kasarda, D. D. Biopolymers 2005, 78, 53-61. Miller, A. J.;Cookson, S. J.;Smith, S. J.;Wells, D. M. J Exp Bot 2001, 52, 541-549. Almeida, A. T.;Salvadori, M. C.;Petri, D. F. S. Langmuir 2002, 18, 6914-6920. Ying, P.;Yu, Y.;Jin, G.;Tao, Z. Colloids Surf B: Biointerfaces 2003, 32, 1-10. Browne, M. M.;Lubarsky, G. V.;Davidson, M. R.;Bradley, R. H. Surf Sci 2004, 553, 155-167. Avrami, M. J Chem Phys 1939, 7, 1103-1112. Paananen, A.;Tappura, K.;Tatham, A. S.;Fido, R.;Shewry, P. R.;Miles, M.;McMaster, T. J. Biopolymers 2006, 83, 658-667. Sodergaard, I.;Jensen, K.;Krath, B. N. Electrophoresis 1994, 15, 584-588. Choi, K. H.;Friedt, J. M.;Laureyn, W.;Frederix, F.;Campitelli, A.;Borghs, G. J Vac Sci B 2003, 21, 1433-1436. Tatham, A. S.;Drake, A. F.;Shewry, P. R. Biochem J 1989, 259, 471-476. Raposo, M.;Oliveira, O. N. Langmuir 2002, 18, 6866-6874. Stipp, S. L. S. Langmuir 1996, 12, 1884-1891. Ta, T. C.;Sykes, M. T.;McDermott, M. T. Langmuir 1998, 14, 2435-2443. Tatham, A. S.;Masson, P.;Popineau, Y. J. Cereal Sci 1990, 11, 1-13. McMaster, T. J.;Miles, M. J.;Kasarda, D. D.;Shewry, P. R.;Tatham, A. S. J Cereal Sci 1999, 31, 281-286. Örnebro, J.;Wahlgren, M.;Eliasson, A.-C.;Fido, R. J.;Tatham, A. S. J Cereal Sci 1999, 30, 105-114. Nishimura, S.;Tateyama, H.;Tsunematu, K.;Jinnai, K. J Coll Int Sci 1992, 152, 359-367. Shewry, P. R.;Miles, M. J.;Tatham, A. S. Prog Biophys Mol Biol 1994, 61, 37-59. Bietz, J. A.;Burnouf, T. Theor Appl Genet 1985, 70, 599-609. Talbot, J.;Tarjus, G.;Van Tassel, P. R.;Viot, P. Colloids Surf A 2000, 165, 287-324. Thomson, N. H.;Miles, M. J.;Tatham, A. S.;Shewry, P. R. Ultramicroscopy 1992, 42, 1204-1213. Wellner, N.;Belton, P. S.;Tatham, A. S. Biochem J 1996, 319, 741-747. Raiteri, R.;Martinoia, S.;Grattarola, M. Biosens Bioelectron 1996, 11, 1009-1017. Scales, P. J.;Grieser, F.;Healy, T. W. Langmuir 1990, 6, 582-589. Abraham, T.;Giasson, S.;Gohy, J. F.;Jerome, R.;Muller, B.;Stamm, M. Macromolecules 2000, 6051-6059. Lin, J. N.;Drake, B.;Lea, A. S.;Hansma, P. K.;Andrade, J. D. Langmuir 1990, 6, 509-511. McMaster, T. J.;Miles, M. J.;Shewry, P. R.;Tatham, A. S. Langmuir 2000, 16, 1463-1468. Dupont-Gillian, Ch. C.;Fauroux, C. M. J.;Gardner, D. C. J.;Leggett, G. J. J Biomed Mater Res 2003, 67, 548-558. Drake, B.;Prater, C. B.;Weisenhorn, A. L.;Gould, S. A. C.;Albrecht, T. R.;Quate, C. F.;Cannell, D. S.;Hansma, H. G.;Hansma, P. K. Science 1989, 243, 1586-1589. Shewry, P. R.;Miles, M. J.;Thomson, N. H.;Tatham, A. S. Cereal Chem 1997, 74, 193-199. Tatham, A. S.;Shewry, P. R. J Cereal Sci 1985, 3, 103-113. 1989; 259 1990; 11 2002; 18 1985; 3 1994; 61 2003; 32 1996; 12 1996; 11 1996; 319 2000; 16 2006; 83 2004; 553 1992; 152 2000 2002; 64 1997; 74 1995; 22 1989; 243 2000; 31 1985; 70 1999; 31 1999; 30 1994; 15 2000; 165 2001; 11 1992; 42 1939; 7 1990; 6 2005; 78 2003; 21 2001; 52 1998; 14 2003; 67 e_1_2_5_26_2 e_1_2_5_27_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_23_2 e_1_2_5_21_2 e_1_2_5_28_2 Abraham T. (e_1_2_5_29_2) 2000 e_1_2_5_14_2 e_1_2_5_13_2 Sodergaard I. (e_1_2_5_30_2) 1994; 15 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_34_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 Shewry P. R. (e_1_2_5_8_2) 1994; 61 e_1_2_5_19_2 Stipp S. L. S. (e_1_2_5_5_2) 1996; 12 Dupont‐Gillian Ch. C. (e_1_2_5_24_2) 2003; 67 Thomson N. H. (e_1_2_5_20_2) 1992; 42 Bergkvist M. (e_1_2_5_37_2) 2002; 64 |
References_xml | – volume: 78 start-page: 53 year: 2005 end-page: 61 publication-title: Biopolymers – volume: 18 start-page: 5841 year: 2002 end-page: 5850 publication-title: Langmuir – volume: 319 start-page: 741 year: 1996 end-page: 747 publication-title: Biochem J – volume: 61 start-page: 37 year: 1994 end-page: 59 publication-title: Prog Biophys Mol Biol – volume: 553 start-page: 155 year: 2004 end-page: 167 publication-title: Surf Sci – start-page: 6051 year: 2000 end-page: 6059 publication-title: Macromolecules – volume: 3 start-page: 103 year: 1985 end-page: 113 publication-title: J Cereal Sci – volume: 6 start-page: 582 year: 1990 end-page: 589 publication-title: Langmuir – volume: 67 start-page: 548 year: 2003 end-page: 558 publication-title: J Biomed Mater Res – volume: 11 start-page: 1 year: 1990 end-page: 13 publication-title: Cereal Sci – volume: 31 start-page: 281 year: 1999 end-page: 286 publication-title: J Cereal Sci – volume: 31 start-page: 195 year: 2000 end-page: 221 publication-title: J Cereal Sci – volume: 74 start-page: 193 year: 1997 end-page: 199 publication-title: Cereal Chem – volume: 7 start-page: 1103 year: 1939 end-page: 1112 publication-title: J Chem Phys – volume: 42 start-page: 1204 year: 1992 end-page: 1213 publication-title: Ultramicroscopy – volume: 152 start-page: 359 year: 1992 end-page: 367 publication-title: J Coll Int Sci – volume: 30 start-page: 105 year: 1999 end-page: 114 publication-title: J Cereal Sci – volume: 243 start-page: 1586 year: 1989 end-page: 1589 publication-title: Science – volume: 11 start-page: 1009 year: 1996 end-page: 1017 publication-title: Biosens Bioelectron – volume: 52 start-page: 541 year: 2001 end-page: 549 publication-title: J Exp Bot – volume: 12 start-page: 1884 year: 1996 end-page: 1891 publication-title: Langmuir – volume: 18 start-page: 6914 year: 2002 end-page: 6920 publication-title: Langmuir – volume: 16 start-page: 1463 year: 2000 end-page: 1468 publication-title: Langmuir – volume: 14 start-page: 2435 year: 1998 end-page: 2443 publication-title: Langmuir – volume: 6 start-page: 509 year: 1990 end-page: 511 publication-title: Langmuir – volume: 32 start-page: 1 year: 2003 end-page: 10 publication-title: Colloids Surf B: Biointerfaces – volume: 83 start-page: 658 year: 2006 end-page: 667 publication-title: Biopolymers – volume: 165 start-page: 287 year: 2000 end-page: 324 publication-title: Colloids Surf A – volume: 70 start-page: 599 year: 1985 end-page: 609 publication-title: Theor Appl Genet – volume: 11 start-page: 433 year: 2001 end-page: 441 publication-title: Trends Food Sci Technol – volume: 22 start-page: 1 year: 1995 end-page: 16 publication-title: J Cereal Sci – volume: 64 start-page: 349 year: 2002 end-page: 356 publication-title: Biomed Mater Res A – volume: 21 start-page: 1433 year: 2003 end-page: 1436 publication-title: J Vac Sci B – volume: 18 start-page: 6866 year: 2002 end-page: 6874 publication-title: Langmuir – volume: 15 start-page: 584 year: 1994 end-page: 588 publication-title: Electrophoresis – volume: 259 start-page: 471 year: 1989 end-page: 476 publication-title: Biochem J – ident: e_1_2_5_6_2 doi: 10.1021/la9712348 – ident: e_1_2_5_28_2 doi: 10.1021/la0259048 – ident: e_1_2_5_26_2 doi: 10.1016/S0733-5210(85)80021-7 – ident: e_1_2_5_11_2 doi: 10.1016/S0924-2244(01)00035-8 – volume: 67 start-page: 548 year: 2003 ident: e_1_2_5_24_2 publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.10092 contributor: fullname: Dupont‐Gillian Ch. C. – ident: e_1_2_5_27_2 doi: 10.1063/1.1750380 – ident: e_1_2_5_31_2 doi: 10.1021/la00093a012 – volume: 64 start-page: 349 year: 2002 ident: e_1_2_5_37_2 publication-title: Biomed Mater Res A contributor: fullname: Bergkvist M. – volume: 12 start-page: 1884 year: 1996 ident: e_1_2_5_5_2 publication-title: Langmuir doi: 10.1021/la950639u contributor: fullname: Stipp S. L. S. – ident: e_1_2_5_23_2 doi: 10.1016/j.susc.2004.01.046 – volume: 15 start-page: 584 year: 1994 ident: e_1_2_5_30_2 publication-title: Electrophoresis doi: 10.1002/elps.1150150181 contributor: fullname: Sodergaard I. – ident: e_1_2_5_10_2 doi: 10.1021/la0256331 – ident: e_1_2_5_7_2 doi: 10.1021/la990008q – ident: e_1_2_5_19_2 doi: 10.1016/S0733-5210(09)80177-X – volume: 61 start-page: 37 year: 1994 ident: e_1_2_5_8_2 publication-title: Prog Biophys Mol Biol contributor: fullname: Shewry P. R. – ident: e_1_2_5_21_2 doi: 10.1007/BF00252285 – ident: e_1_2_5_34_2 doi: 10.1016/0021-9797(92)90038-N – ident: e_1_2_5_32_2 doi: 10.1016/0956-5663(96)87660-3 – ident: e_1_2_5_16_2 doi: 10.1042/bj2590471 – ident: e_1_2_5_33_2 doi: 10.1093/jexbot/52.356.541 – ident: e_1_2_5_22_2 doi: 10.1016/S0927-7765(02)00133-9 – ident: e_1_2_5_25_2 doi: 10.1116/1.1593056 – ident: e_1_2_5_13_2 doi: 10.1006/jcrs.1999.0297 – ident: e_1_2_5_3_2 doi: 10.1006/jcrs.2000.0307 – volume: 42 start-page: 1204 year: 1992 ident: e_1_2_5_20_2 publication-title: Ultramicroscopy doi: 10.1016/0304-3991(92)90425-J contributor: fullname: Thomson N. H. – ident: e_1_2_5_18_2 doi: 10.1094/CCHEM.1997.74.3.193 – start-page: 6051 year: 2000 ident: e_1_2_5_29_2 publication-title: Macromolecules doi: 10.1021/ma991207j contributor: fullname: Abraham T. – ident: e_1_2_5_36_2 doi: 10.1021/la0202982 – ident: e_1_2_5_15_2 doi: 10.1016/S0733-5210(05)80002-5 – ident: e_1_2_5_17_2 doi: 10.1042/bj3190741 – ident: e_1_2_5_9_2 doi: 10.1002/bip.20252 – ident: e_1_2_5_2_2 doi: 10.1126/science.2928794 – ident: e_1_2_5_12_2 doi: 10.1006/jcrs.1999.0270 – ident: e_1_2_5_4_2 doi: 10.1021/la00092a036 – ident: e_1_2_5_14_2 doi: 10.1002/bip.20603 – ident: e_1_2_5_35_2 doi: 10.1016/S0927-7757(99)00409-4 |
SSID | ssj0044310 ssj0011473 |
Score | 2.069491 |
Snippet | Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins onto... Abstract Atomic force microscopy has been used to follow in real time the adsorption from solution of two of the gliadin group of wheat seed storage proteins... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 74 |
SubjectTerms | Adsorption AFM Gliadin Gliadin - chemistry Gliadin - metabolism Graphite - chemistry Hydrophobic and Hydrophilic Interactions Microscopy, Atomic Force SPM surface adsorption tapping mode Triticum - chemistry Triticum aestivum Water - chemistry |
Title | Direct real-time imaging of protein adsorption onto hydrophilic and hydrophobic surfaces |
URI | https://api.istex.fr/ark:/67375/WNG-FL2N73VC-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbip.21300 https://www.ncbi.nlm.nih.gov/pubmed/19728361 https://search.proquest.com/docview/733704344 https://search.proquest.com/docview/743668106 https://search.proquest.com/docview/745689279 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lPuiL98t4I0gpvsx2NieZZPBJV7e1yFLEahEh5IpLdWaZ3QX1yZ_gb_SXmGQ6UypaxLcEDiE5Jzn5kpx8B6EtxjUXrKA5E4rmwfvpXI19TCIQDtjgoAKTAmRn5d4h3T9iRxvoSf8XpuOHGC7c4spI_joucKWXO6ekoXq-GJH4GBP87xh4DOd6_nqgjgownw8umYZdsvuLEgO9GGE9xVBBdoZmzmxMF6KOv_wJdZ4FsWkXml5BH_r-d8Enx6P1So_Mt9-oHf9zgFfR5RN0ip920-ka2nD1dXRx0ieFu4Hedy4SB6j56ef3HzEzPZ5_TpmOcONxYn2Y11jZZdMmZ4QjPwL--NW2zSLe3RisatvXGx3qy3XrY1zYTXQ4ffFmspefpGfITSRpzxUwpUtugBoCUFjHK21AaxYOZT6ckzwtrA3wgTjmCyZMpPorjbAB0WlhuYNbaLNuancHYSIK74T3Y2GB2lB0YLgqSiWI9-B8hh71tpGLjoVDdnzLRAY1yaSmDG0nqw0Sqj2OYWucyXezXTl9RWYc3k7kboZwb1YZ1BdfSFTtmvVScgBeUKD0HBEKZeRwK88TYaWoCK8ydLubNKedrnjAc-U4Q4-T6f8-Gvns5UEq3P130XvoUhfcEG-I7qPNVbt2DwJmWumHaXH8ApHREFk |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7U9qG-eL-M1yAivsx2NpdJBnzR1e1W10Wk1VKQkGQSurTOLLO7oD75E_yN_hKTTGdLRYv4lkAYJufknHw5OfkOwGPGNRcsoykTiqbe--lU9V0oIuAP2MSSgpiYIDvJR3v09T7bX4Nn3VuYlh9iFXALlhH9dTDwEJDeOmUN1dNZD4fbmAuw4c2dhMINL9-vyKM80Ocrp0z9Ptm-RgmpXgyzjmQow1ur75zZmjaClL_8CXeehbFxHxpehk_dDNr0k6PecqF75ttv5I7_O8UrcOkEoKLn7Yq6Cmu2ugabg64u3HU4aL0k8mjz-Of3H6E4PZp-jsWOUO1QJH6YVkiV87qJ_ggFigR0-LVs6lkI3xikqrLr19r358vGhdSwG7A3fLU7GKUnFRpSE3jaU0WY0jk3hBpMSFZaXmhDtGb-XOb8UcnRrCw9gsCWuYwJE9j-ciNKD-q0KLklN2G9qit7GxAWmbPCub4oCS190xLDVZYrgZ0j1iXwqFOOnLVEHLKlXMbSi0lGMSXwJKptNUI1RyFzjTP5cbIth2M84eTDQG4ngDq9Si--cEmiKlsv55ITwjNKKD1nCCV5oHHLzxvCclFgXiRwq101pz9dcA_p8n4CT6Pu_z4b-WLnXWzc-fehD2FztPt2LMc7kzd34WKb6xACRvdgfdEs7X0PoRb6QbSUX3oqFHE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFtQX75fxGkTEl9nO5jLJ4JOublstSxGrRYSQKy7VmWV2F9Qnf4K_0V9ikulsqWgR3xI4DJNzck6-JCffAXjIuOaCFTRnQtE8RD-dq6GPRQTCBps4UhGTEmQn5fY-fXnADtbgSf8WpuOHWB24Rc9I8To6-Mz6zWPSUD2dDXC8jDkDG7QMyDciotcr7qiA8_kqJtOwTHaPUWKmF8Os5xgq8ObqOydWpo2o5C9_gp0nUWxahsYX4UM_gC775HCwXOiB-fYbt-N_jvASXDiCp-hpN58uw5qrr8C5UV8V7iq872IkCljz08_vP2JpejT9nEodocajRPswrZGy86ZN0QhFggT08attm1k8vDFI1bbvNzr058vWx8Swa7A_fvFmtJ0f1WfITWRpzxVhSpfcEGowIYV1vNKGaM3CrsyHjZKnhbUBP2DHfMGEiVx_pRE2QDotLHfkOqzXTe1uAsKi8E54PxSWUBuajhiuilIJ7D1xPoMHvW3krKPhkB3hMpZBTTKpKYNHyWorCdUexrw1zuS7yZYc7-IJJ29HcisD1JtVBvXFKxJVu2Y5l5wQXlBC6SkilJSRxK08TYSVosK8yuBGN2mOf7riAdCVwwweJ9P_fTTy2c5eatz6d9H7cHbv-Vju7kxe3YbzXaJDPC26A-uLdunuBvy00PeSn_wCMpYTIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+real-time+imaging+of+protein+adsorption+onto+hydrophilic+and+hydrophobic+surfaces&rft.jtitle=Biopolymers&rft.au=Haward%2C+Simon+J.&rft.au=Shewry%2C+Peter+R.&rft.au=Miles%2C+Mervyn+J.&rft.au=Mcmaster%2C+Terence+J.&rft.date=2010-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3525&rft.eissn=1097-0282&rft.volume=93&rft.issue=1&rft.spage=74&rft.epage=84&rft_id=info:doi/10.1002%2Fbip.21300&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FL2N73VC_G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3525&client=summon |