Self-supervised learning of neighborhood embedding for longitudinal MRI

In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent represent...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 82; p. 102571
Main Authors Ouyang, Jiahong, Zhao, Qingyu, Adeli, Ehsan, Zaharchuk, Greg, Pohl, Kilian M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2022.102571

Cover

Loading…
Abstract In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent representations are explicitly associated with factors of interest. For example, we derived such a representation for capturing brain aging by applying self-supervised learning to longitudinal MRIs and then used the resulting encoding to automatically identify diseases accelerating the aging of the brain. We now propose a refinement of this representation by replacing the linear modeling of brain aging with one that is consistent in local neighborhoods in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain ages are in close proximity of each other) and progression-consistent, i.e., the latent space is defined by a smooth trajectory field where each trajectory captures changes in brain ages between a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally tractable, we further propose a strategy for mini-batch sampling so that the resulting local neighborhoods accurately approximate the ones that would be defined based on the whole cohort. We evaluate LNE on three different downstream tasks: (1) to predict chronological age from T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish Normal Control (NC) from Alzheimer’s Disease (AD) and stable Mild Cognitive Impairment (sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI); and (3) to distinguish no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the strength of the proposed method over existing self-supervised methods in extracting information related to brain aging, which could help study the impact of substance use and neurodegenerative disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-embedding. •Build neighborhoods in the latent space based on longitudinal brain MRIs.•Enforce brain age and progression consistency within neighborhoods.•Extract information associated with normal aging and neurodegenerative disorders.
AbstractList In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent representations are explicitly associated with factors of interest. For example, we derived such a representation for capturing brain aging by applying self-supervised learning to longitudinal MRIs and then used the resulting encoding to automatically identify diseases accelerating the aging of the brain. We now propose a refinement of this representation by replacing the linear modeling of brain aging with one that is consistent in local neighborhoods in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain ages are in close proximity of each other) and progression-consistent, i.e., the latent space is defined by a smooth trajectory field where each trajectory captures changes in brain ages between a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally tractable, we further propose a strategy for mini-batch sampling so that the resulting local neighborhoods accurately approximate the ones that would be defined based on the whole cohort. We evaluate LNE on three different downstream tasks: (1) to predict chronological age from T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish Normal Control (NC) from Alzheimer’s Disease (AD) and stable Mild Cognitive Impairment (sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI); and (3) to distinguish no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the strength of the proposed method over existing self-supervised methods in extracting information related to brain aging, which could help study the impact of substance use and neurodegenerative disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-embedding .
In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent representations are explicitly associated with factors of interest. For example, we derived such a representation for capturing brain aging by applying self-supervised learning to longitudinal MRIs and then used the resulting encoding to automatically identify diseases accelerating the aging of the brain. We now propose a refinement of this representation by replacing the linear modeling of brain aging with one that is consistent in local neighborhoods in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain ages are in close proximity of each other) and progression-consistent, i.e., the latent space is defined by a smooth trajectory field where each trajectory captures changes in brain ages between a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally tractable, we further propose a strategy for mini-batch sampling so that the resulting local neighborhoods accurately approximate the ones that would be defined based on the whole cohort. We evaluate LNE on three different downstream tasks: (1) to predict chronological age from T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish Normal Control (NC) from Alzheimer's Disease (AD) and stable Mild Cognitive Impairment (sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI); and (3) to distinguish no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the strength of the proposed method over existing self-supervised methods in extracting information related to brain aging, which could help study the impact of substance use and neurodegenerative disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-embedding.In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent representations are explicitly associated with factors of interest. For example, we derived such a representation for capturing brain aging by applying self-supervised learning to longitudinal MRIs and then used the resulting encoding to automatically identify diseases accelerating the aging of the brain. We now propose a refinement of this representation by replacing the linear modeling of brain aging with one that is consistent in local neighborhoods in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain ages are in close proximity of each other) and progression-consistent, i.e., the latent space is defined by a smooth trajectory field where each trajectory captures changes in brain ages between a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally tractable, we further propose a strategy for mini-batch sampling so that the resulting local neighborhoods accurately approximate the ones that would be defined based on the whole cohort. We evaluate LNE on three different downstream tasks: (1) to predict chronological age from T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish Normal Control (NC) from Alzheimer's Disease (AD) and stable Mild Cognitive Impairment (sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI); and (3) to distinguish no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the strength of the proposed method over existing self-supervised methods in extracting information related to brain aging, which could help study the impact of substance use and neurodegenerative disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-embedding.
In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent representations are explicitly associated with factors of interest. For example, we derived such a representation for capturing brain aging by applying self-supervised learning to longitudinal MRIs and then used the resulting encoding to automatically identify diseases accelerating the aging of the brain. We now propose a refinement of this representation by replacing the linear modeling of brain aging with one that is consistent in local neighborhoods in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain ages are in close proximity of each other) and progression-consistent, i.e., the latent space is defined by a smooth trajectory field where each trajectory captures changes in brain ages between a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally tractable, we further propose a strategy for mini-batch sampling so that the resulting local neighborhoods accurately approximate the ones that would be defined based on the whole cohort. We evaluate LNE on three different downstream tasks: (1) to predict chronological age from T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish Normal Control (NC) from Alzheimer’s Disease (AD) and stable Mild Cognitive Impairment (sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI); and (3) to distinguish no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the strength of the proposed method over existing self-supervised methods in extracting information related to brain aging, which could help study the impact of substance use and neurodegenerative disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-embedding. •Build neighborhoods in the latent space based on longitudinal brain MRIs.•Enforce brain age and progression consistency within neighborhoods.•Extract information associated with normal aging and neurodegenerative disorders.
In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream task of interest (such as classification or regression). The performance of the downstream task generally improves when these latent representations are explicitly associated with factors of interest. For example, we derived such a representation for capturing brain aging by applying self-supervised learning to longitudinal MRIs and then used the resulting encoding to automatically identify diseases accelerating the aging of the brain. We now propose a refinement of this representation by replacing the linear modeling of brain aging with one that is consistent in local neighborhoods in the latent space. Called Longitudinal Neighborhood Embedding (LNE), we derive an encoding so that neighborhoods are age-consistent (i.e., brain MRIs of different subjects with similar brain ages are in close proximity of each other) and progression-consistent, i.e., the latent space is defined by a smooth trajectory field where each trajectory captures changes in brain ages between a pair of MRIs extracted from a longitudinal sequence. To make the problem computationally tractable, we further propose a strategy for mini-batch sampling so that the resulting local neighborhoods accurately approximate the ones that would be defined based on the whole cohort. We evaluate LNE on three different downstream tasks: (1) to predict chronological age from T1-w MRI of 274 healthy subjects participating in a study at SRI International; (2) to distinguish Normal Control (NC) from Alzheimer's Disease (AD) and stable Mild Cognitive Impairment (sMCI) from progressive Mild Cognitive Impairment (pMCI) based on T1-w MRI of 632 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI); and (3) to distinguish no-to-low from moderate-to-heavy alcohol drinkers based on fractional anisotropy derived from diffusion tensor MRIs of 764 adolescents recruited by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Across the three data sets, the visualization of the smooth trajectory vector fields and superior accuracy on downstream tasks demonstrate the strength of the proposed method over existing self-supervised methods in extracting information related to brain aging, which could help study the impact of substance use and neurodegenerative disorders. The code is available at https://github.com/ouyangjiahong/longitudinal-neighbourhood-embedding.
ArticleNumber 102571
Author Ouyang, Jiahong
Adeli, Ehsan
Zhao, Qingyu
Pohl, Kilian M.
Zaharchuk, Greg
AuthorAffiliation d Center for Health Sciences, SRI International, Menlo Park, United States of America
c Department of Radiology, Stanford University, Stanford, United States of America
b Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States of America
a Department of Electrical Engineering, Stanford University, Stanford, United States of America
AuthorAffiliation_xml – name: c Department of Radiology, Stanford University, Stanford, United States of America
– name: d Center for Health Sciences, SRI International, Menlo Park, United States of America
– name: a Department of Electrical Engineering, Stanford University, Stanford, United States of America
– name: b Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States of America
Author_xml – sequence: 1
  givenname: Jiahong
  orcidid: 0000-0002-0434-5757
  surname: Ouyang
  fullname: Ouyang, Jiahong
  organization: Department of Electrical Engineering, Stanford University, Stanford, United States of America
– sequence: 2
  givenname: Qingyu
  surname: Zhao
  fullname: Zhao, Qingyu
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States of America
– sequence: 3
  givenname: Ehsan
  surname: Adeli
  fullname: Adeli, Ehsan
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States of America
– sequence: 4
  givenname: Greg
  surname: Zaharchuk
  fullname: Zaharchuk, Greg
  organization: Department of Radiology, Stanford University, Stanford, United States of America
– sequence: 5
  givenname: Kilian M.
  orcidid: 0000-0001-5416-5159
  surname: Pohl
  fullname: Pohl, Kilian M.
  email: kilian.pohl@stanford.edu
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36115098$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtPGzEQtipQebS_oFK1Ry6b-rW78aFCKAKKBEKi7dny2uPEkWOn9m4k_j0OoVHLAU72zHwP-5sTdBBiAIS-EDwhmLTflpMVGKcmFFNaOrTpyAd0TFhL6imn7GB_J80ROsl5iTHuOMcf0VHpkwaL6TG6_gne1nlcQ9q4DKbyoFJwYV5FWwVw80Uf0yJGU8GqB2O2ExtT5WOYu2EstfLV3cPNJ3Rolc_w-eU8Rb-vLn_NftS399c3s4vbWvMWD7XtsLDaGAGs7XvASoumNb2wzOqOUotLJRQDrhtlMOaixayjphFaU9YqzU7R-U53Pfbl-xrCkJSX6-RWKj3KqJz8fxLcQs7jRm4jm7ZTXhTOXhRS_DNCHuTKZQ3eqwBxzJJ2pOGckK4p0K__mu1d_sZXAGwH0CnmnMDuIQQ_O8qlfF6S3C5J7pZUWOIVS7tBDS5uX-z8O9zvOy6UkDcOkszaQdAFmEAP0kT3Jv8JEPevMg
CitedBy_id crossref_primary_10_1016_j_dcn_2023_101294
crossref_primary_10_1162_imag_a_00294
crossref_primary_10_1016_j_bspc_2024_106572
crossref_primary_10_1016_j_ymeth_2023_08_001
crossref_primary_10_1016_j_media_2024_103325
crossref_primary_10_1073_pnas_2411492122
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_1109_TMI_2024_3435855
crossref_primary_10_1186_s12880_024_01253_0
Cites_doi 10.1016/j.neuroimage.2014.06.077
10.1007/978-3-030-32251-9_69
10.1016/j.inffus.2020.08.023
10.1016/j.neuroimage.2012.10.065
10.1016/j.patrec.2005.10.010
10.1007/978-3-030-87196-3_6
10.1109/ICCV.2019.00810
10.1080/13854046.2015.1119312
10.1109/JBHI.2020.3042447
10.1007/s12013-010-9093-0
10.1001/archneurol.2011.167
10.1016/j.dcn.2017.12.005
10.1109/CVPR.2019.00144
10.1109/ICCV.2017.307
10.1109/CVPR.2018.00240
10.3389/fnins.2018.00777
10.1016/j.media.2019.01.004
10.1109/TMI.2019.2913158
10.1109/ICCV.2015.320
10.1080/03610927408827101
10.1016/j.neuroimage.2013.05.049
10.1007/978-3-319-46448-0_32
10.1002/hbm.21304
10.1016/j.nic.2005.09.008
10.1016/j.neuroimage.2016.01.061
10.1109/TCBB.2021.3053061
10.1007/978-3-319-46466-4_5
10.1109/CVPR.2019.00202
10.1016/j.media.2017.10.005
10.1007/978-3-030-87196-3_8
10.1145/3450439.3451872
10.1002/jmri.21049
10.1109/ICCV.2017.309
10.1007/s11910-017-0723-4
10.3233/JAD-161099
10.1007/978-3-319-70096-0_39
10.1001/jamapsychiatry.2020.4064
10.1007/978-3-030-58621-8_45
10.1016/j.neuroimage.2011.12.071
10.1523/JNEUROSCI.3252-09.2009
10.1016/j.media.2021.102051
10.1093/biomet/78.3.691
10.1007/978-3-030-00889-5_37
10.1007/978-3-030-87444-5_3
10.1016/j.neuroimage.2016.12.064
10.1016/0377-0427(87)90125-7
10.1037/a0025814
10.1007/978-3-030-32692-0_36
10.1007/978-3-030-32245-8_91
10.3389/fnins.2019.00509
10.1007/978-3-030-78191-0_44
10.1109/CVPR42600.2020.00975
10.1007/978-3-319-10593-2_13
10.1007/s11682-015-9480-7
10.1007/s11065-010-9146-6
10.1016/j.compmedimag.2019.01.005
10.1109/ICPR.2010.764
10.3389/fnagi.2017.00117
10.1109/CVPR.2019.00571
10.1007/978-3-030-87196-3_22
10.1007/978-3-319-46487-9_40
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.media.2022.102571
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 102571
ExternalDocumentID PMC10168684
36115098
10_1016_j_media_2022_102571
S1361841522002122
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH113406
– fundername: NIDA NIH HHS
  grantid: R01 DA057567
– fundername: NIAAA NIH HHS
  grantid: R01 AA005965
– fundername: NIAAA NIH HHS
  grantid: R01 AA017347
– fundername: NIAAA NIH HHS
  grantid: R01 AA010723
– fundername: NIAAA NIH HHS
  grantid: K99 AA028840
– fundername: NIAAA NIH HHS
  grantid: U01 AA021697
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c460t-f709fcdd9e36bbe0ac956db9f3fc722f056d9a3e4c5ad004960372d59cc236ac3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 18:37:10 EDT 2025
Fri Jul 11 02:26:38 EDT 2025
Mon Jul 21 05:59:41 EDT 2025
Tue Jul 01 02:49:33 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Fri Feb 23 02:40:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Longitudinal brain MRI
Self-supervised learning
Contrastive learning
Classification
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-f709fcdd9e36bbe0ac956db9f3fc722f056d9a3e4c5ad004960372d59cc236ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5416-5159
0000-0002-0434-5757
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10168684
PMID 36115098
PQID 2715441175
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10168684
proquest_miscellaneous_2715441175
pubmed_primary_36115098
crossref_primary_10_1016_j_media_2022_102571
crossref_citationtrail_10_1016_j_media_2022_102571
elsevier_sciencedirect_doi_10_1016_j_media_2022_102571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wei (b76) 2020
Zeng, Li, Peng (b80) 2021
Gao, R., et al., 2019. Distanced LSTM: Time-Distanced Gates in Long Short-Term Memory Models for Lung Cancer Detection. In: International Workshop on Machine Learning in Medical Imaging, Lecture Notes in Computer Science, vol. 11861. pp. 310–318.
Wang, X., Gupta, A., 2015. Unsupervised learning of visual representations using videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2794–2802.
Gray, Wolz, Heckemann, Aljabar, Hammers, Rueckert (b23) 2012; 60
Louis, Couronné, Koval, Charlier, Durrleman (b43) 2019
Nagelkerke (b50) 1991; 78
Rhodius-Meester (b62) 2017; 9
Liu, Zhang, Adeli, Shen (b42) 2018; 43
Zhang, R., Isola, P., Efros, A.A., 2016. Colorful image colorization. In: European Conference on Computer Vision. pp. 649–666.
Pohl (b59) 2022
Caron, Misra, Mairal, Goyal, Bojanowski, Joulin (b9) 2020; 33
Garcia, Marder (b21) 2017; 17
Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020. A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning. pp. 1597–1607.
Hassani, K., Khasahmadi, A.H., 2020. Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning. pp. 4116–4126.
Dufumier, B., et al., 2021. Contrastive Learning with Continuous Proxy Meta-Data for 3D MRI Classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 12902. pp. 58–68.
Zu (b88) 2016; 10
Bava, Tapert (b2) 2010; 20
Habeck, Stern (b27) 2010; 58
Pohl (b57) 2016; 130
Kolesnikov, A., Zhai, X., Beyer, L., 2019. Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1920–1929.
Klicpera, Weißenberger, Günnemann (b37) 2019; 32
Mueller (b49) 2005; 15
Santeramo, R., Withey, S., Montana, G., 2018. Longitudinal detection of radiological abnormalities with time-modulated LSTM. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Lecture Notes in Computer Science, vol. 11045. pp. 326–333.
Bernal-Rusiel, Greve, Reuter, Fischl, Sabuncu (b3) 2013; 66
Grill (b24) 2020; 33
Maas (b44) 2013; 30
Ouyang, J., et al., 2021. Self-Supervised Longitudinal Neighbourhood Embedding. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 12902. pp. 80–89.
Caliński, Harabasz (b7) 1974; 3
Carass (b8) 2017; 148
Zhou, Liu, Thung, Shen (b86) 2019; 38
Sabuncu (b65) 2011; 68
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A., 2018. Social GAN: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–2264.
Kingma, Welling (b36) 2013
Sasaki (b68) 2007; 1
Ellwood-Lowe, Humphreys, Ordaz, Camacho, Sacchet, Gotlib (b15) 2018; 30
Toepper (b73) 2017; 57
Suk, Lee, Shen (b70) 2014; 101
Zhao, Q., Adeli, E., Honnorat, N., Leng, T., Pohl, K.M., 2019a. Variational autoencoder for regression: Application to brain aging analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 11765. pp. 823–831.
Zhao, Liu, Adeli, Pohl (b84) 2021; 71
Kim, H., Mnih, A., 2018. Disentangling by factorising. In: International Conference on Machine Learning. pp. 2649–2658.
Platero, Tobar (b56) 2020
Bernal-Rusiel, Reuter, Greve, Fischl, Sabuncu (b4) 2013; 81
Frings, Mader, Landwehrmeyer, Weiller, Hüll, Huppertz (b19) 2012; 33
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S., 2019. Sophie: An attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1349–1358.
Ghazi (b22) 2019; 53
Van der Maaten, Hinton (b45) 2008; 9
Harwood, B., Kumar BG, V., Carneiro, G., Reid, I., Drummond, T., 2017. Smart mining for deep metric learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2821–2829.
Pohl (b60) 2022
Misra, I., Zitnick, C.L., Hebert, M., 2016. Shuffle and learn: unsupervised learning using temporal order verification. In: European Conference on Computer Vision. pp. 527–544.
Li, J., Zhou, P., Xiong, C., Hoi, S., 2020. Prototypical Contrastive Learning of Unsupervised Representations. In: International Conference on Learning Representations.
Kingma, Ba (b35) 2014
Fjell (b17) 2009; 29
Ouyang (b54) 2020; 25
Lin (b40) 2018; 12
Couronné, R., Vernhet, P., Durrleman, S., 2021. Longitudinal Self-supervision to Disentangle Inter-patient Variability from Disease Progression. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 12902. pp. 231–241.
Manduchi, L., Hüser, M., Faltys, M., Vogt, J., Rätsch, G., Fortuin, V., 2021. T-DPSOM: An interpretable clustering method for unsupervised learning of patient health states. In: Proceedings of the Conference on Health, Inference, and Learning. pp. 236–245.
Tan, Shiyko, Li, Li, Dierker (b71) 2012; 17
Lipton, Kale, Elkan, Wetzel (b41) 2015
Zhou, T., et al., 2019b. Deep multi-modal latent representation learning for automated dementia diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 11767. pp. 629–638.
Huang, Xu, Zhou, Tong, Zhuang (b32) 2019; 13
Zhao (b85) 2021; 78
Guo, X., Liu, X., Zhu, E., Yin, J., 2017. Deep clustering with convolutional autoencoders. In: International Conference on Neural Information Processing. pp. 373–382.
Rousseeuw (b63) 1987; 20
van den Oord, Li, Vinyals (b53) 2018
Wu, C.-Y., Manmatha, R., Smola, A.J., Krahenbuhl, P., 2017. Sampling matters in deep embedding learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2840–2848.
Dong, C., Loy, C.C., He, K., Tang, X., 2014. Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision. pp. 184–199.
Burgess (b6) 2018
Balsis, Benge, Lowe, Geraci, Doody (b1) 2015; 29
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738.
Noroozi, M., Favaro, P., 2016. Unsupervised learning of visual representations by solving jigsaw puzzles. In: European Conference on Computer Vision. pp. 69–84.
Zhao, H., Jiang, L., Fu, C.-W., Jia, J., 2019b. Pointweb: Enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5565–5573.
Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G., 2019. SOM-VAE: Interpretable Discrete Representation Learning on Time Series. In: International Conference on Learning Representations.
Sabokrou, M., Khalooei, M., Adeli, E., 2019. Self-supervised representation learning via neighborhood-relational encoding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8010–8019.
Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M., 2010. The balanced accuracy and its posterior distribution. In: 20th International Conference on Pattern Recognition. pp. 3121–3124.
Haykin (b30) 2004; 2
Xie, J., Girshick, R., Farhadi, A., 2016. Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning. pp. 478–487.
Jack (b33) 2008; 27
Poulet, P.-E., Durrleman, S., 2021. Mixture Modeling for Identifying Subtypes in Disease Course Mapping. In: International Conference on Information Processing in Medical Imaging, Lecture Notes in Computer Science, vol. 12729. pp. 571–582.
Manduchi, Hüser, Vogt, Rätsch, Fortuin (b47) 2019
Nguyen, H.-D., Clément, M., Mansencal, B., Coupé, P., 2021. Deep Grading Based on Collective Artificial Intelligence for AD Diagnosis and Prognosis. In: Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. pp. 24–33.
Shen (b69) 2021; 66
Yuan, Li, Wu, Sun (b79) 2021; 18
Fawcett (b16) 2006; 27
Wang, Yue, Huang, Sun, Zhang (b75) 2021; 34
Cui, Liu (b12) 2019; 73
Pohl (b58) 2022
Tian, Y., Krishnan, D., Isola, P., 2020. Contrastive multiview coding. In: European Conference on Computer Vision. pp. 776–794.
10.1016/j.media.2022.102571_b67
Pohl (10.1016/j.media.2022.102571_b60) 2022
10.1016/j.media.2022.102571_b66
10.1016/j.media.2022.102571_b20
10.1016/j.media.2022.102571_b64
Toepper (10.1016/j.media.2022.102571_b73) 2017; 57
10.1016/j.media.2022.102571_b61
van den Oord (10.1016/j.media.2022.102571_b53) 2018
Fawcett (10.1016/j.media.2022.102571_b16) 2006; 27
Cui (10.1016/j.media.2022.102571_b12) 2019; 73
Frings (10.1016/j.media.2022.102571_b19) 2012; 33
10.1016/j.media.2022.102571_b29
10.1016/j.media.2022.102571_b28
10.1016/j.media.2022.102571_b26
10.1016/j.media.2022.102571_b25
Jack (10.1016/j.media.2022.102571_b33) 2008; 27
Rhodius-Meester (10.1016/j.media.2022.102571_b62) 2017; 9
Burgess (10.1016/j.media.2022.102571_b6) 2018
Liu (10.1016/j.media.2022.102571_b42) 2018; 43
Lipton (10.1016/j.media.2022.102571_b41) 2015
10.1016/j.media.2022.102571_b5
Kingma (10.1016/j.media.2022.102571_b36) 2013
Zhao (10.1016/j.media.2022.102571_b84) 2021; 71
10.1016/j.media.2022.102571_b13
Wang (10.1016/j.media.2022.102571_b75) 2021; 34
Caron (10.1016/j.media.2022.102571_b9) 2020; 33
Fjell (10.1016/j.media.2022.102571_b17) 2009; 29
10.1016/j.media.2022.102571_b11
10.1016/j.media.2022.102571_b55
10.1016/j.media.2022.102571_b10
Garcia (10.1016/j.media.2022.102571_b21) 2017; 17
10.1016/j.media.2022.102571_b52
10.1016/j.media.2022.102571_b51
Tan (10.1016/j.media.2022.102571_b71) 2012; 17
Zhao (10.1016/j.media.2022.102571_b85) 2021; 78
Zhou (10.1016/j.media.2022.102571_b86) 2019; 38
10.1016/j.media.2022.102571_b18
Pohl (10.1016/j.media.2022.102571_b58) 2022
10.1016/j.media.2022.102571_b14
Platero (10.1016/j.media.2022.102571_b56) 2020
Klicpera (10.1016/j.media.2022.102571_b37) 2019; 32
Pohl (10.1016/j.media.2022.102571_b57) 2016; 130
Maas (10.1016/j.media.2022.102571_b44) 2013; 30
Haykin (10.1016/j.media.2022.102571_b30) 2004; 2
Van der Maaten (10.1016/j.media.2022.102571_b45) 2008; 9
Shen (10.1016/j.media.2022.102571_b69) 2021; 66
Bernal-Rusiel (10.1016/j.media.2022.102571_b3) 2013; 66
Bava (10.1016/j.media.2022.102571_b2) 2010; 20
10.1016/j.media.2022.102571_b46
Bernal-Rusiel (10.1016/j.media.2022.102571_b4) 2013; 81
Nagelkerke (10.1016/j.media.2022.102571_b50) 1991; 78
Suk (10.1016/j.media.2022.102571_b70) 2014; 101
10.1016/j.media.2022.102571_b87
Ellwood-Lowe (10.1016/j.media.2022.102571_b15) 2018; 30
10.1016/j.media.2022.102571_b83
Yuan (10.1016/j.media.2022.102571_b79) 2021; 18
Caliński (10.1016/j.media.2022.102571_b7) 1974; 3
Grill (10.1016/j.media.2022.102571_b24) 2020; 33
Manduchi (10.1016/j.media.2022.102571_b47) 2019
10.1016/j.media.2022.102571_b48
Zu (10.1016/j.media.2022.102571_b88) 2016; 10
Zeng (10.1016/j.media.2022.102571_b80) 2021
Huang (10.1016/j.media.2022.102571_b32) 2019; 13
Gray (10.1016/j.media.2022.102571_b23) 2012; 60
Lin (10.1016/j.media.2022.102571_b40) 2018; 12
10.1016/j.media.2022.102571_b34
10.1016/j.media.2022.102571_b78
10.1016/j.media.2022.102571_b77
10.1016/j.media.2022.102571_b31
10.1016/j.media.2022.102571_b74
10.1016/j.media.2022.102571_b72
Balsis (10.1016/j.media.2022.102571_b1) 2015; 29
Rousseeuw (10.1016/j.media.2022.102571_b63) 1987; 20
10.1016/j.media.2022.102571_b39
10.1016/j.media.2022.102571_b38
Pohl (10.1016/j.media.2022.102571_b59) 2022
Sabuncu (10.1016/j.media.2022.102571_b65) 2011; 68
Carass (10.1016/j.media.2022.102571_b8) 2017; 148
Sasaki (10.1016/j.media.2022.102571_b68) 2007; 1
Louis (10.1016/j.media.2022.102571_b43) 2019
Ghazi (10.1016/j.media.2022.102571_b22) 2019; 53
Ouyang (10.1016/j.media.2022.102571_b54) 2020; 25
10.1016/j.media.2022.102571_b82
Habeck (10.1016/j.media.2022.102571_b27) 2010; 58
10.1016/j.media.2022.102571_b81
Kingma (10.1016/j.media.2022.102571_b35) 2014
Wei (10.1016/j.media.2022.102571_b76) 2020
Mueller (10.1016/j.media.2022.102571_b49) 2005; 15
References_xml – reference: Li, J., Zhou, P., Xiong, C., Hoi, S., 2020. Prototypical Contrastive Learning of Unsupervised Representations. In: International Conference on Learning Representations.
– reference: Hassani, K., Khasahmadi, A.H., 2020. Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning. pp. 4116–4126.
– reference: Wu, C.-Y., Manmatha, R., Smola, A.J., Krahenbuhl, P., 2017. Sampling matters in deep embedding learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2840–2848.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b7
  article-title: A dendrite method for cluster analysis
  publication-title: Comm. Statist. Theory Methods
– volume: 130
  start-page: 194
  year: 2016
  end-page: 213
  ident: b57
  article-title: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study
  publication-title: NeuroImage
– reference: Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020. A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning. pp. 1597–1607.
– volume: 30
  start-page: 3
  year: 2013
  end-page: 8
  ident: b44
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Int. Conf. Mach. Learn.
– year: 2022
  ident: b59
  article-title: The ‘NCANDA_PUBLIC_6Y_DIFFUSION_V02’ data release of the national consortium on alcohol and NeuroDevelopment in adolescence (NCANDA)
  publication-title: Sage Bionetw. Synapse
– volume: 148
  start-page: 77
  year: 2017
  end-page: 102
  ident: b8
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource and challenge
  publication-title: NeuroImage
– volume: 33
  start-page: 1526
  year: 2012
  end-page: 1535
  ident: b19
  article-title: Quantifying change in individual subjects affected by frontotemporal lobar degeneration using automated longitudinal MRI volumetry
  publication-title: Hum. Brain Mapping
– volume: 18
  start-page: 2281
  year: 2021
  end-page: 2290
  ident: b79
  article-title: Classification of mild cognitive impairment with multimodal data using both labeled and unlabeled samples
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 25
  start-page: 2082
  year: 2020
  end-page: 2092
  ident: b54
  article-title: Longitudinal pooling & consistency regularization to model disease progression from MRIs
  publication-title: IEEE J. Biomed. Health Inf.
– reference: Dufumier, B., et al., 2021. Contrastive Learning with Continuous Proxy Meta-Data for 3D MRI Classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 12902. pp. 58–68.
– reference: Misra, I., Zitnick, C.L., Hebert, M., 2016. Shuffle and learn: unsupervised learning using temporal order verification. In: European Conference on Computer Vision. pp. 527–544.
– volume: 81
  start-page: 358
  year: 2013
  end-page: 370
  ident: b4
  article-title: Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
  publication-title: NeuroImage
– start-page: 1
  year: 2020
  end-page: 11
  ident: b56
  article-title: Predicting Alzheimer’s conversion in mild cognitive impairment patients using longitudinal neuroimaging and clinical markers
  publication-title: Brain Imaging Behav.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b63
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– volume: 34
  start-page: 18225
  year: 2021
  end-page: 18240
  ident: b75
  article-title: Self-supervised learning disentangled group representation as feature
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Zhao, H., Jiang, L., Fu, C.-W., Jia, J., 2019b. Pointweb: Enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5565–5573.
– volume: 13
  start-page: 509
  year: 2019
  end-page: 520
  ident: b32
  article-title: Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network
  publication-title: Front. Neurosci.
– reference: Manduchi, L., Hüser, M., Faltys, M., Vogt, J., Rätsch, G., Fortuin, V., 2021. T-DPSOM: An interpretable clustering method for unsupervised learning of patient health states. In: Proceedings of the Conference on Health, Inference, and Learning. pp. 236–245.
– year: 2014
  ident: b35
  article-title: Adam: A method for stochastic optimization
– year: 2018
  ident: b53
  article-title: Representation learning with contrastive predictive coding
– year: 2022
  ident: b58
  article-title: The ‘NCANDA_PUBLIC_6Y_STRUCTURAL_V01’ data release of the national consortium on alcohol and NeuroDevelopment in adolescence (NCANDA)
  publication-title: Sage Bionetw. Synapse
– volume: 73
  start-page: 1
  year: 2019
  end-page: 10
  ident: b12
  article-title: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
– volume: 17
  start-page: 61
  year: 2012
  ident: b71
  article-title: A time-varying effect model for intensive longitudinal data
  publication-title: Psychol. Methods
– reference: Guo, X., Liu, X., Zhu, E., Yin, J., 2017. Deep clustering with convolutional autoencoders. In: International Conference on Neural Information Processing. pp. 373–382.
– volume: 58
  start-page: 53
  year: 2010
  end-page: 67
  ident: b27
  article-title: Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease
  publication-title: Cell Biochem. Biophys.
– year: 2015
  ident: b41
  article-title: Learning to diagnose with LSTM recurrent neural networks
– volume: 10
  start-page: 1148
  year: 2016
  end-page: 1159
  ident: b88
  article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment
  publication-title: Brain Imaging Behav.
– reference: Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G., 2019. SOM-VAE: Interpretable Discrete Representation Learning on Time Series. In: International Conference on Learning Representations.
– volume: 66
  start-page: 249
  year: 2013
  end-page: 260
  ident: b3
  article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models
  publication-title: NeuroImage
– reference: Noroozi, M., Favaro, P., 2016. Unsupervised learning of visual representations by solving jigsaw puzzles. In: European Conference on Computer Vision. pp. 69–84.
– reference: Poulet, P.-E., Durrleman, S., 2021. Mixture Modeling for Identifying Subtypes in Disease Course Mapping. In: International Conference on Information Processing in Medical Imaging, Lecture Notes in Computer Science, vol. 12729. pp. 571–582.
– volume: 29
  start-page: 1002
  year: 2015
  end-page: 1009
  ident: b1
  article-title: How do scores on the ADAS-Cog, MMSE, and CDR-SOB correspond?
  publication-title: Clin. Neuropsychol.
– reference: Harwood, B., Kumar BG, V., Carneiro, G., Reid, I., Drummond, T., 2017. Smart mining for deep metric learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2821–2829.
– volume: 78
  start-page: 407
  year: 2021
  end-page: 415
  ident: b85
  article-title: Association of heavy drinking with deviant fiber tract development in frontal brain systems in adolescents
  publication-title: JAMA Psychiatry
– volume: 32
  start-page: 13366
  year: 2019
  end-page: 13378
  ident: b37
  article-title: Diffusion improves graph learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 66
  start-page: 54
  year: 2021
  end-page: 63
  ident: b69
  article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion
  publication-title: Inf. Fusion
– start-page: 1
  year: 2021
  end-page: 12
  ident: b80
  article-title: A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease
  publication-title: Neural Comput. Appl.
– reference: Couronné, R., Vernhet, P., Durrleman, S., 2021. Longitudinal Self-supervision to Disentangle Inter-patient Variability from Disease Progression. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 12902. pp. 231–241.
– volume: 60
  start-page: 221
  year: 2012
  end-page: 229
  ident: b23
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease
  publication-title: NeuroImage
– year: 2020
  ident: b76
  article-title: Can semantic labels assist self-supervised visual representation learning?
– reference: Kim, H., Mnih, A., 2018. Disentangling by factorising. In: International Conference on Machine Learning. pp. 2649–2658.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b16
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
– reference: Dong, C., Loy, C.C., He, K., Tang, X., 2014. Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision. pp. 184–199.
– reference: Zhang, R., Isola, P., Efros, A.A., 2016. Colorful image colorization. In: European Conference on Computer Vision. pp. 649–666.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: b33
  article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J. Magn. Resonance Imaging
– reference: Sabokrou, M., Khalooei, M., Adeli, E., 2019. Self-supervised representation learning via neighborhood-relational encoding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8010–8019.
– volume: 38
  start-page: 2411
  year: 2019
  end-page: 2422
  ident: b86
  article-title: Latent representation learning for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and genetic data
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 117
  year: 2017
  end-page: 128
  ident: b62
  article-title: MRI visual ratings of brain atrophy and white matter hyperintensities across the spectrum of cognitive decline are differently affected by age and diagnosis
  publication-title: Front. Aging Neurosci.
– reference: He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9729–9738.
– volume: 43
  start-page: 157
  year: 2018
  end-page: 168
  ident: b42
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
– reference: Xie, J., Girshick, R., Farhadi, A., 2016. Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning. pp. 478–487.
– reference: Zhao, Q., Adeli, E., Honnorat, N., Leng, T., Pohl, K.M., 2019a. Variational autoencoder for regression: Application to brain aging analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 11765. pp. 823–831.
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: b70
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
– year: 2019
  ident: b47
  article-title: DPSOM: Deep probabilistic clustering with self-organizing maps
– reference: Wang, X., Gupta, A., 2015. Unsupervised learning of visual representations using videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2794–2802.
– year: 2022
  ident: b60
  article-title: The ‘NCANDA_PUBLIC_6Y_REDCAP_V04’ data release of the national consortium on alcohol and NeuroDevelopment in adolescence (NCANDA)
  publication-title: Sage Bionetw. Synapse
– volume: 57
  start-page: 331
  year: 2017
  end-page: 352
  ident: b73
  article-title: Dissociating normal aging from Alzheimer’s disease: A view from cognitive neuroscience
  publication-title: J. Alzheimer’s Dis.
– volume: 71
  year: 2021
  ident: b84
  article-title: Longitudinal self-supervised learning
  publication-title: Med. Image Anal.
– volume: 30
  start-page: 41
  year: 2018
  end-page: 50
  ident: b15
  article-title: Time-varying effects of income on hippocampal volume trajectories in adolescent girls
  publication-title: Dev. Cognit. Neurosci.
– volume: 33
  start-page: 21271
  year: 2020
  end-page: 21284
  ident: b24
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Nguyen, H.-D., Clément, M., Mansencal, B., Coupé, P., 2021. Deep Grading Based on Collective Artificial Intelligence for AD Diagnosis and Prognosis. In: Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. pp. 24–33.
– reference: Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M., 2010. The balanced accuracy and its posterior distribution. In: 20th International Conference on Pattern Recognition. pp. 3121–3124.
– volume: 78
  start-page: 691
  year: 1991
  end-page: 692
  ident: b50
  article-title: A note on a general definition of the coefficient of determination
  publication-title: Biometrika
– volume: 12
  start-page: 777
  year: 2018
  end-page: 789
  ident: b40
  article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment
  publication-title: Front. Neurosci.
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: b49
  article-title: The Alzheimer’s Disease Neuroimaging Initiative
  publication-title: Neuroimaging Clin.
– reference: Kolesnikov, A., Zhai, X., Beyer, L., 2019. Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1920–1929.
– volume: 17
  start-page: 14
  year: 2017
  ident: b21
  article-title: Statistical approaches to longitudinal data analysis in neurodegenerative diseases: Huntington’s disease as a model
  publication-title: Curr. Neurol. Neurosci. Rep.
– year: 2013
  ident: b36
  article-title: Auto-encoding variational bayes
– reference: Zhou, T., et al., 2019b. Deep multi-modal latent representation learning for automated dementia diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 11767. pp. 629–638.
– year: 2018
  ident: b6
  article-title: Understanding disentangling in
– reference: Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A., 2018. Social GAN: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–2264.
– volume: 2
  start-page: 41
  year: 2004
  ident: b30
  article-title: A comprehensive foundation
  publication-title: Neural Netw.
– reference: Gao, R., et al., 2019. Distanced LSTM: Time-Distanced Gates in Long Short-Term Memory Models for Lung Cancer Detection. In: International Workshop on Machine Learning in Medical Imaging, Lecture Notes in Computer Science, vol. 11861. pp. 310–318.
– reference: Santeramo, R., Withey, S., Montana, G., 2018. Longitudinal detection of radiological abnormalities with time-modulated LSTM. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Lecture Notes in Computer Science, vol. 11045. pp. 326–333.
– volume: 1
  start-page: 1
  year: 2007
  end-page: 5
  ident: b68
  article-title: The truth of the F-measure
  publication-title: Teach. Tutor. Mater.
– volume: 33
  start-page: 9912
  year: 2020
  end-page: 9924
  ident: b9
  article-title: Unsupervised learning of visual features by contrasting cluster assignments
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 542
  year: 2019
  end-page: 553
  ident: b43
  article-title: Riemannian geometry learning for disease progression modelling
  publication-title: International Conference on Information Processing in Medical Imaging, Lecture Notes in Computer Science, vol. 11492
– reference: Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S., 2019. Sophie: An attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1349–1358.
– volume: 53
  start-page: 39
  year: 2019
  end-page: 46
  ident: b22
  article-title: Training recurrent neural networks robust to incomplete data: Application to Alzheimer’s disease progression modeling
  publication-title: Med. Image Anal.
– volume: 9
  year: 2008
  ident: b45
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 68
  start-page: 1040
  year: 2011
  end-page: 1048
  ident: b65
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease
  publication-title: Arch. Neurol.
– reference: Ouyang, J., et al., 2021. Self-Supervised Longitudinal Neighbourhood Embedding. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, vol. 12902. pp. 80–89.
– reference: Tian, Y., Krishnan, D., Isola, P., 2020. Contrastive multiview coding. In: European Conference on Computer Vision. pp. 776–794.
– volume: 29
  start-page: 15223
  year: 2009
  end-page: 15231
  ident: b17
  article-title: One-year brain atrophy evident in healthy aging
  publication-title: J. Neurosci.
– volume: 20
  start-page: 398
  year: 2010
  end-page: 413
  ident: b2
  article-title: Adolescent brain development and the risk for alcohol and other drug problems
  publication-title: Neuropsychol. Rev.
– volume: 32
  start-page: 13366
  year: 2019
  ident: 10.1016/j.media.2022.102571_b37
  article-title: Diffusion improves graph learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.media.2022.102571_b70
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: 10.1016/j.media.2022.102571_b87
  doi: 10.1007/978-3-030-32251-9_69
– volume: 66
  start-page: 54
  year: 2021
  ident: 10.1016/j.media.2022.102571_b69
  article-title: Heterogeneous data fusion for predicting mild cognitive impairment conversion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.08.023
– start-page: 542
  year: 2019
  ident: 10.1016/j.media.2022.102571_b43
  article-title: Riemannian geometry learning for disease progression modelling
– volume: 66
  start-page: 249
  year: 2013
  ident: 10.1016/j.media.2022.102571_b3
  article-title: Statistical analysis of longitudinal neuroimage data with linear mixed effects models
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.065
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.media.2022.102571_b16
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: 10.1016/j.media.2022.102571_b14
  doi: 10.1007/978-3-030-87196-3_6
– ident: 10.1016/j.media.2022.102571_b18
– ident: 10.1016/j.media.2022.102571_b64
  doi: 10.1109/ICCV.2019.00810
– volume: 29
  start-page: 1002
  issue: 7
  year: 2015
  ident: 10.1016/j.media.2022.102571_b1
  article-title: How do scores on the ADAS-Cog, MMSE, and CDR-SOB correspond?
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854046.2015.1119312
– volume: 25
  start-page: 2082
  issue: 6
  year: 2020
  ident: 10.1016/j.media.2022.102571_b54
  article-title: Longitudinal pooling & consistency regularization to model disease progression from MRIs
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3042447
– volume: 58
  start-page: 53
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2022.102571_b27
  article-title: Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-010-9093-0
– volume: 68
  start-page: 1040
  issue: 8
  year: 2011
  ident: 10.1016/j.media.2022.102571_b65
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2011.167
– ident: 10.1016/j.media.2022.102571_b10
– volume: 30
  start-page: 41
  year: 2018
  ident: 10.1016/j.media.2022.102571_b15
  article-title: Time-varying effects of income on hippocampal volume trajectories in adolescent girls
  publication-title: Dev. Cognit. Neurosci.
  doi: 10.1016/j.dcn.2017.12.005
– ident: 10.1016/j.media.2022.102571_b34
– year: 2018
  ident: 10.1016/j.media.2022.102571_b53
– ident: 10.1016/j.media.2022.102571_b66
  doi: 10.1109/CVPR.2019.00144
– ident: 10.1016/j.media.2022.102571_b28
  doi: 10.1109/ICCV.2017.307
– ident: 10.1016/j.media.2022.102571_b26
  doi: 10.1109/CVPR.2018.00240
– volume: 12
  start-page: 777
  year: 2018
  ident: 10.1016/j.media.2022.102571_b40
  article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00777
– year: 2022
  ident: 10.1016/j.media.2022.102571_b58
  article-title: The ‘NCANDA_PUBLIC_6Y_STRUCTURAL_V01’ data release of the national consortium on alcohol and NeuroDevelopment in adolescence (NCANDA)
  publication-title: Sage Bionetw. Synapse
– year: 2022
  ident: 10.1016/j.media.2022.102571_b60
  article-title: The ‘NCANDA_PUBLIC_6Y_REDCAP_V04’ data release of the national consortium on alcohol and NeuroDevelopment in adolescence (NCANDA)
  publication-title: Sage Bionetw. Synapse
– volume: 53
  start-page: 39
  year: 2019
  ident: 10.1016/j.media.2022.102571_b22
  article-title: Training recurrent neural networks robust to incomplete data: Application to Alzheimer’s disease progression modeling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.004
– volume: 38
  start-page: 2411
  issue: 10
  year: 2019
  ident: 10.1016/j.media.2022.102571_b86
  article-title: Latent representation learning for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and genetic data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2913158
– year: 2018
  ident: 10.1016/j.media.2022.102571_b6
– ident: 10.1016/j.media.2022.102571_b74
  doi: 10.1109/ICCV.2015.320
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.media.2022.102571_b7
  article-title: A dendrite method for cluster analysis
  publication-title: Comm. Statist. Theory Methods
  doi: 10.1080/03610927408827101
– volume: 81
  start-page: 358
  year: 2013
  ident: 10.1016/j.media.2022.102571_b4
  article-title: Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.049
– year: 2013
  ident: 10.1016/j.media.2022.102571_b36
– ident: 10.1016/j.media.2022.102571_b48
  doi: 10.1007/978-3-319-46448-0_32
– volume: 33
  start-page: 1526
  issue: 7
  year: 2012
  ident: 10.1016/j.media.2022.102571_b19
  article-title: Quantifying change in individual subjects affected by frontotemporal lobar degeneration using automated longitudinal MRI volumetry
  publication-title: Hum. Brain Mapping
  doi: 10.1002/hbm.21304
– volume: 15
  start-page: 869
  issue: 4
  year: 2005
  ident: 10.1016/j.media.2022.102571_b49
  article-title: The Alzheimer’s Disease Neuroimaging Initiative
  publication-title: Neuroimaging Clin.
  doi: 10.1016/j.nic.2005.09.008
– volume: 130
  start-page: 194
  year: 2016
  ident: 10.1016/j.media.2022.102571_b57
  article-title: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.061
– volume: 18
  start-page: 2281
  issue: 6
  year: 2021
  ident: 10.1016/j.media.2022.102571_b79
  article-title: Classification of mild cognitive impairment with multimodal data using both labeled and unlabeled samples
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2021.3053061
– ident: 10.1016/j.media.2022.102571_b52
  doi: 10.1007/978-3-319-46466-4_5
– volume: 2
  start-page: 41
  issue: 2004
  year: 2004
  ident: 10.1016/j.media.2022.102571_b30
  article-title: A comprehensive foundation
  publication-title: Neural Netw.
– ident: 10.1016/j.media.2022.102571_b38
  doi: 10.1109/CVPR.2019.00202
– volume: 43
  start-page: 157
  year: 2018
  ident: 10.1016/j.media.2022.102571_b42
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.005
– year: 2020
  ident: 10.1016/j.media.2022.102571_b76
– ident: 10.1016/j.media.2022.102571_b55
  doi: 10.1007/978-3-030-87196-3_8
– ident: 10.1016/j.media.2022.102571_b46
  doi: 10.1145/3450439.3451872
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.media.2022.102571_b33
  article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J. Magn. Resonance Imaging
  doi: 10.1002/jmri.21049
– ident: 10.1016/j.media.2022.102571_b77
  doi: 10.1109/ICCV.2017.309
– volume: 33
  start-page: 9912
  year: 2020
  ident: 10.1016/j.media.2022.102571_b9
  article-title: Unsupervised learning of visual features by contrasting cluster assignments
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  start-page: 14
  issue: 2
  year: 2017
  ident: 10.1016/j.media.2022.102571_b21
  article-title: Statistical approaches to longitudinal data analysis in neurodegenerative diseases: Huntington’s disease as a model
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-017-0723-4
– volume: 33
  start-page: 21271
  year: 2020
  ident: 10.1016/j.media.2022.102571_b24
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 331
  issue: 2
  year: 2017
  ident: 10.1016/j.media.2022.102571_b73
  article-title: Dissociating normal aging from Alzheimer’s disease: A view from cognitive neuroscience
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-161099
– ident: 10.1016/j.media.2022.102571_b25
  doi: 10.1007/978-3-319-70096-0_39
– ident: 10.1016/j.media.2022.102571_b29
– volume: 78
  start-page: 407
  issue: 4
  year: 2021
  ident: 10.1016/j.media.2022.102571_b85
  article-title: Association of heavy drinking with deviant fiber tract development in frontal brain systems in adolescents
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2020.4064
– year: 2014
  ident: 10.1016/j.media.2022.102571_b35
– ident: 10.1016/j.media.2022.102571_b72
  doi: 10.1007/978-3-030-58621-8_45
– volume: 60
  start-page: 221
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2022.102571_b23
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.12.071
– volume: 29
  start-page: 15223
  issue: 48
  year: 2009
  ident: 10.1016/j.media.2022.102571_b17
  article-title: One-year brain atrophy evident in healthy aging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3252-09.2009
– volume: 71
  year: 2021
  ident: 10.1016/j.media.2022.102571_b84
  article-title: Longitudinal self-supervised learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102051
– start-page: 1
  year: 2020
  ident: 10.1016/j.media.2022.102571_b56
  article-title: Predicting Alzheimer’s conversion in mild cognitive impairment patients using longitudinal neuroimaging and clinical markers
  publication-title: Brain Imaging Behav.
– volume: 78
  start-page: 691
  issue: 3
  year: 1991
  ident: 10.1016/j.media.2022.102571_b50
  article-title: A note on a general definition of the coefficient of determination
  publication-title: Biometrika
  doi: 10.1093/biomet/78.3.691
– volume: 34
  start-page: 18225
  year: 2021
  ident: 10.1016/j.media.2022.102571_b75
  article-title: Self-supervised learning disentangled group representation as feature
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.media.2022.102571_b39
– ident: 10.1016/j.media.2022.102571_b67
  doi: 10.1007/978-3-030-00889-5_37
– volume: 1
  start-page: 1
  issue: 5
  year: 2007
  ident: 10.1016/j.media.2022.102571_b68
  article-title: The truth of the F-measure
  publication-title: Teach. Tutor. Mater.
– ident: 10.1016/j.media.2022.102571_b51
  doi: 10.1007/978-3-030-87444-5_3
– year: 2022
  ident: 10.1016/j.media.2022.102571_b59
  article-title: The ‘NCANDA_PUBLIC_6Y_DIFFUSION_V02’ data release of the national consortium on alcohol and NeuroDevelopment in adolescence (NCANDA)
  publication-title: Sage Bionetw. Synapse
– volume: 148
  start-page: 77
  year: 2017
  ident: 10.1016/j.media.2022.102571_b8
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource and challenge
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.064
– ident: 10.1016/j.media.2022.102571_b78
– year: 2015
  ident: 10.1016/j.media.2022.102571_b41
– year: 2019
  ident: 10.1016/j.media.2022.102571_b47
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.media.2022.102571_b63
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 17
  start-page: 61
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2022.102571_b71
  article-title: A time-varying effect model for intensive longitudinal data
  publication-title: Psychol. Methods
  doi: 10.1037/a0025814
– ident: 10.1016/j.media.2022.102571_b20
  doi: 10.1007/978-3-030-32692-0_36
– ident: 10.1016/j.media.2022.102571_b82
  doi: 10.1007/978-3-030-32245-8_91
– start-page: 1
  year: 2021
  ident: 10.1016/j.media.2022.102571_b80
  article-title: A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease
  publication-title: Neural Comput. Appl.
– volume: 30
  start-page: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2022.102571_b44
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Int. Conf. Mach. Learn.
– volume: 13
  start-page: 509
  year: 2019
  ident: 10.1016/j.media.2022.102571_b32
  article-title: Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00509
– ident: 10.1016/j.media.2022.102571_b61
  doi: 10.1007/978-3-030-78191-0_44
– ident: 10.1016/j.media.2022.102571_b31
  doi: 10.1109/CVPR42600.2020.00975
– ident: 10.1016/j.media.2022.102571_b13
  doi: 10.1007/978-3-319-10593-2_13
– volume: 10
  start-page: 1148
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2022.102571_b88
  article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9480-7
– volume: 20
  start-page: 398
  issue: 4
  year: 2010
  ident: 10.1016/j.media.2022.102571_b2
  article-title: Adolescent brain development and the risk for alcohol and other drug problems
  publication-title: Neuropsychol. Rev.
  doi: 10.1007/s11065-010-9146-6
– volume: 73
  start-page: 1
  year: 2019
  ident: 10.1016/j.media.2022.102571_b12
  article-title: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.01.005
– ident: 10.1016/j.media.2022.102571_b5
  doi: 10.1109/ICPR.2010.764
– volume: 9
  start-page: 117
  year: 2017
  ident: 10.1016/j.media.2022.102571_b62
  article-title: MRI visual ratings of brain atrophy and white matter hyperintensities across the spectrum of cognitive decline are differently affected by age and diagnosis
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00117
– ident: 10.1016/j.media.2022.102571_b83
  doi: 10.1109/CVPR.2019.00571
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.media.2022.102571_b45
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.media.2022.102571_b11
  doi: 10.1007/978-3-030-87196-3_22
– ident: 10.1016/j.media.2022.102571_b81
  doi: 10.1007/978-3-319-46487-9_40
SSID ssj0007440
Score 2.4588702
Snippet In recent years, several deep learning models recommend first to represent Magnetic Resonance Imaging (MRI) as latent features before performing a downstream...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102571
SubjectTerms Adolescent
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Brain - diagnostic imaging
Brain - pathology
Classification
Cognitive Dysfunction - diagnostic imaging
Contrastive learning
Humans
Longitudinal brain MRI
Magnetic Resonance Imaging - methods
Neuroimaging - methods
Self-supervised learning
Supervised Machine Learning
Title Self-supervised learning of neighborhood embedding for longitudinal MRI
URI https://dx.doi.org/10.1016/j.media.2022.102571
https://www.ncbi.nlm.nih.gov/pubmed/36115098
https://www.proquest.com/docview/2715441175
https://pubmed.ncbi.nlm.nih.gov/PMC10168684
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRarggKDlER7VIvXYJc7a3rWPoaJNgfTQUtTbap8QFJyIJFd-OzN-hIaqPdQXy_ZaGs2MZ2a9s98HcCCczIVTjhtMZzzDg5uoFA_Se2sCEV3Riu74TI4us09X-dUWHHV7Yaitso39TUyvo3V7p99qsz-fTPoXg5TISjD_1H0GguJwliny8vd__rV5EABes_dqwGl0hzxU93jVuzNwkigEQRjkanBbdrpZff7fRHktKx0_gcdtOcmGjcRPYStUu_DoGsjgLuyM2-XzPTi5CNPIF6s5BYhF8KzljPjOZpFV9JMUPYJwjln4ZYOntMawqGXTGbEarTwxaLHx-ekzuDz--PVoxFsmBe4ymSx5VEkZnfdlSKW1ITEOp0XeljGNTgkRsQrypUlD5nLjadIgk1QJn5fOiVQalz6H7WpWhZfAZPCxyJPEmphjAgwWVW5jzNBespSl6IHoNKhdCzNObBdT3fWT_dS12jWpXTdq78Hh-qV5g7Jx93DZmUZvOIvGPHD3i-86Q2r8jGhtxFRhtlpooWo2NiymevCiMexaEnQdLJvLogfFhsnXAwiie_NJNflRQ3WTIIUsslf3lfg1PKSrZvfjG9he_l6Ft1gGLe1-7ef78GB4-nl0hueTD1--Df8C1VEJcg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-hIu3jYeJjYx2MeRKPs5o6iZ08IgS0g_ZhgMSb5U_o1KXV2v7_8yVORYfGw_IY25J1d7k7x3e_H8AJMzxnRhiqQjijWXio8kJQx63VyiHRFd7ojsZ8cJd9v8_vt-Cs7YXBssro-xufXnvr-KYXpdmbTya9m36KZCUh_tR1Biz44W1Ep8o7sH06vBqM1w4ZMfCa9qs-xQUt-FBd5lU3aIRzImOIYpCL_r8C1PME9O86yieB6WIH3sWMkpw2m96FLVftwdsnOIN78GoUb9D34fLGTT1drOboIxbOkkgb8UBmnlT4nzQYBUIdE_dLO4uRjYS8lkxnSGy0skiiRUY_hu_h7uL89mxAI5kCNRlPltSLpPTG2tKlXGuXKBNORlaXPvVGMOZDImRLlbrM5MriuYEnqWA2L41hKVcm_QCdala5j0C4s77Ik0Qrn4cY6HQmuPY-CyrjJS9ZF1grQWki0jgSXkxlW1L2U9Zilyh22Yi9C9_Wi-YN0MbL03mrGrlhLzKEgpcXfm0VKcOXhNcjqnKz1UIyUROyhXyqCweNYtc7CaYTMuey6EKxofL1BETp3hypJo81WjdupOBF9ul_d_wFXg9uR9fyeji-OoQ3ONI0Qx5BZ_l75T6HrGipj6PV_wGRMwqU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+learning+of+neighborhood+embedding+for+longitudinal+MRI&rft.jtitle=Medical+image+analysis&rft.au=Ouyang%2C+Jiahong&rft.au=Zhao%2C+Qingyu&rft.au=Adeli%2C+Ehsan&rft.au=Zaharchuk%2C+Greg&rft.date=2022-11-01&rft.eissn=1361-8423&rft.volume=82&rft.spage=102571&rft_id=info:doi/10.1016%2Fj.media.2022.102571&rft_id=info%3Apmid%2F36115098&rft.externalDocID=36115098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon