Energy-Efficient Resource Allocation Algorithm for CR-WSN-Based Smart Irrigation System under Realistic Scenarios
Cognitive radio wireless sensor networks (CR-WSNs) are a type of WSNs that use cognitive radio technology to enhance the spectrum utilization and energy efficiency. This paper proposes an energy-efficient resource allocation algorithm (EERAA) to prolong the lifetime of a WSN-based smart irrigation s...
Saved in:
Published in | Agriculture (Basel) Vol. 13; no. 6; p. 1149 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2077-0472 2077-0472 |
DOI | 10.3390/agriculture13061149 |
Cover
Loading…
Abstract | Cognitive radio wireless sensor networks (CR-WSNs) are a type of WSNs that use cognitive radio technology to enhance the spectrum utilization and energy efficiency. This paper proposes an energy-efficient resource allocation algorithm (EERAA) to prolong the lifetime of a WSN-based smart irrigation system under realistic scenarios. In the proposed algorithm, power allocation and subcarrier assignment are performed consecutively. Considering the impact of the intercarrier interference (ICI) caused by timing offset, the problem of maximizing network-averaged capacity is formulated considering power and interference constraints in realistic scenarios. The obtained results reveal that the proposed algorithm attempts to maximize the averaged capacity of the CR-WSN subject to the total power constraint and tolerable interference. Numerically, the proposed algorithm can reduce the network energy consumption by up to 30%, compared with conventional approaches, while maintaining a high level of system performance in terms of secondary users’ (SUs) averaged capacity. |
---|---|
AbstractList | Cognitive radio wireless sensor networks (CR-WSNs) are a type of WSNs that use cognitive radio technology to enhance the spectrum utilization and energy efficiency. This paper proposes an energy-efficient resource allocation algorithm (EERAA) to prolong the lifetime of a WSN-based smart irrigation system under realistic scenarios. In the proposed algorithm, power allocation and subcarrier assignment are performed consecutively. Considering the impact of the intercarrier interference (ICI) caused by timing offset, the problem of maximizing network-averaged capacity is formulated considering power and interference constraints in realistic scenarios. The obtained results reveal that the proposed algorithm attempts to maximize the averaged capacity of the CR-WSN subject to the total power constraint and tolerable interference. Numerically, the proposed algorithm can reduce the network energy consumption by up to 30%, compared with conventional approaches, while maintaining a high level of system performance in terms of secondary users' (SUs) averaged capacity. |
Audience | Academic |
Author | Hassan, Emad S. |
Author_xml | – sequence: 1 givenname: Emad S. orcidid: 0000-0002-1840-4244 surname: Hassan fullname: Hassan, Emad S. |
BookMark | eNp9Uktv1DAQjlCRKKW_gEskLlxS_Ej8OC6rBVaqQOqCOEbOeBy8ysat7Rz232MahFCF8Bw8Gn3fN8-X1cUcZqyq15TccK7JOzNGD8uUl4iUE0Fpq59Vl4xI2ZBWsou__BfVdUpHUp6mXBFxWT3sZozjudk558HjnOs7TGGJgPVmmgKY7MNc3DFEn3-cahdivb1rvh8-N-9NQlsfTibmeh-jH1fs4ZwynuplthiLmJl8yh7qA-Bsog_pVfXcmSnh9e__qvr2Yfd1-6m5_fJxv93cNtAKkhtHQThGrFaDtc4Cl1xI7Jxxg7TEDgNaQajhUoNiAiRBpQgSgZ1wruOKX1X7VdcGc-zvoy-FnvtgfP8YCHHsS-UeJuyZHjrHO84HrlsqUFMAbhUOVmjgrCtab1et-xgeFky5P_kEOE1mxrCkniklBdUdYQX65gn0WMY5l04LimmhmeK6oG5W1GhKfj-7kKOBYhZPHsp-nS_xjexaLVnbkkLgKwFiSCmi-9MRJf2vM-j_cQaFpZ-wwOfHNZV0fvov9yc8R76R |
CitedBy_id | crossref_primary_10_1371_journal_pone_0300650 crossref_primary_10_3390_agriculture14081226 crossref_primary_10_3390_technologies12120248 crossref_primary_10_3390_w16050672 crossref_primary_10_1007_s11277_024_11695_y crossref_primary_10_1002_dac_6111 crossref_primary_10_3390_agriculture14071141 |
Cites_doi | 10.1155/2010/621808 10.1109/NetCIT57419.2022.00021 10.1109/iSES50453.2020.00019 10.1109/CCiCT56684.2022.00049 10.1109/SPAWC.2009.5161855 10.1109/ACCESS.2020.2981556 10.1049/iet-com.2018.5706 10.1007/s11277-023-10251-4 10.1109/MSP.2015.2481563 10.3390/agronomy13020342 10.1016/j.jfranklin.2018.10.028 10.1109/ACCESS.2017.2719704 10.1109/JSYST.2022.3171557 10.1109/ACCESS.2023.3235200 10.3390/electronics11131952 10.1201/b19273 10.1109/ICAIS56108.2023.10073799 10.1109/ISCCSP.2008.4537324 10.1109/ICOEI53556.2022.9777161 10.3390/app12094235 10.1155/2010/528378 10.1109/TWC.2016.2582876 10.3390/s23083875 10.1109/WCSP55476.2022.10039175 10.1109/IRASET52964.2022.9738345 10.1109/ACCESS.2018.2827022 10.1109/ICCCI54379.2022.9740842 10.1109/ACCESS.2022.3162288 10.1109/LSENS.2020.2994595 10.1109/TCCN.2022.3225165 10.3390/w15071394 10.3390/info14020075 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture13061149 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_29b5f3533b39416e91cc3d8ebd69c325 A754972440 10_3390_agriculture13061149 |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC PMFND 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c460t-f1c6f20d98bddfdc37367e5fafb7d0dbbed601a379c826c70e880e06e56ff5383 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:28:15 EDT 2025 Fri Sep 05 05:13:03 EDT 2025 Mon Jun 30 06:06:05 EDT 2025 Tue Jun 10 20:27:46 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Tue Jul 01 03:03:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-f1c6f20d98bddfdc37367e5fafb7d0dbbed601a379c826c70e880e06e56ff5383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1840-4244 |
OpenAccessLink | https://www.proquest.com/docview/2829692839?pq-origsite=%requestingapplication% |
PQID | 2829692839 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_29b5f3533b39416e91cc3d8ebd69c325 proquest_miscellaneous_2887619502 proquest_journals_2829692839 gale_infotracacademiconefile_A754972440 crossref_primary_10_3390_agriculture13061149 crossref_citationtrail_10_3390_agriculture13061149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bochem (ref_6) 2022; 10 Dang (ref_19) 2022; 9 Hassan (ref_27) 2023; 129 ref_14 ref_10 ref_32 ref_31 Jedidi (ref_4) 2023; 11 ref_18 Shaat (ref_22) 2010; 2010 ref_17 ref_16 ref_15 Zhang (ref_26) 2010; 2010 Wang (ref_13) 2017; 5 Hashim (ref_21) 2019; 15 Lu (ref_33) 2018; 6 Filippou (ref_29) 2016; 15 Ning (ref_12) 2020; 8 Rezaie (ref_20) 2023; 17 Hassan (ref_28) 2019; 13 ref_25 ref_24 ref_23 Hong (ref_30) 2016; 33 ref_1 ref_3 Sarthi (ref_11) 2020; 4 ref_2 ref_8 ref_5 Hassan (ref_9) 2019; 356 ref_7 |
References_xml | – volume: 2010 start-page: 14 year: 2010 ident: ref_26 article-title: Spectral Efficiency Comparison of OFDM/FBMC for Uplink Cognitive Radio Networks publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2010/621808 – ident: ref_7 doi: 10.1109/NetCIT57419.2022.00021 – ident: ref_14 doi: 10.1109/iSES50453.2020.00019 – ident: ref_10 doi: 10.1109/CCiCT56684.2022.00049 – ident: ref_32 doi: 10.1109/SPAWC.2009.5161855 – volume: 8 start-page: 58260 year: 2020 ident: ref_12 article-title: Resource Allocation in Multi-User Cognitive Radio Network with Stackelberg Game publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981556 – volume: 13 start-page: 1514 year: 2019 ident: ref_28 article-title: New multiple-input multiple-output-based filter bank multicarrier structure for cognitive radio networks publication-title: IET Commun. doi: 10.1049/iet-com.2018.5706 – volume: 129 start-page: 2653 year: 2023 ident: ref_27 article-title: Reduced-Complexity Selective Mapping for Improving Wireless Communication in Smart Irrigation Systems publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-023-10251-4 – volume: 33 start-page: 57 year: 2016 ident: ref_30 article-title: A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2481563 – ident: ref_1 doi: 10.3390/agronomy13020342 – volume: 356 start-page: 1640 year: 2019 ident: ref_9 article-title: Adaptive Threshold to Guarantee both Detection and False Alarm Probabilities in Multi-taper-based Spectrum Sensing publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.10.028 – volume: 5 start-page: 17618 year: 2017 ident: ref_13 article-title: Resource Allocation in Wireless Powered Cognitive Radio Networks Based on a Practical Non-Linear Energy Harvesting Model publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2719704 – volume: 17 start-page: 1137 year: 2023 ident: ref_20 article-title: Achievable Rates and Resource Allocation for CDMA-Based Overlay Cognitive Radio With RF Energy Harvesting publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2022.3171557 – volume: 11 start-page: 4079 year: 2023 ident: ref_4 article-title: Dual-Tier Cluster-Based Routing in Mobile Wireless Sensor Network for IoT Application publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3235200 – ident: ref_25 doi: 10.3390/electronics11131952 – ident: ref_15 doi: 10.1201/b19273 – ident: ref_8 doi: 10.1109/ICAIS56108.2023.10073799 – ident: ref_31 doi: 10.1109/ISCCSP.2008.4537324 – ident: ref_18 doi: 10.1109/ICOEI53556.2022.9777161 – ident: ref_2 doi: 10.3390/app12094235 – volume: 15 start-page: 1550147719851944 year: 2019 ident: ref_21 article-title: Resource allocation in heterogeneous cognitive radio sensor networks publication-title: Int. J. Distrib. Sens. Netw. – volume: 2010 start-page: 528378 year: 2010 ident: ref_22 article-title: Computationally Efficient Power Allocation Algorithm in Multicarrier-based Cognitive Radio Networks: OFDM and FBMC systems publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2010/528378 – volume: 15 start-page: 6321 year: 2016 ident: ref_29 article-title: Joint Sensing and Reception Design of SIMO Hybrid Cognitive Radio Systems publication-title: IEEE Trans Wirel. Commun. doi: 10.1109/TWC.2016.2582876 – ident: ref_24 doi: 10.3390/s23083875 – ident: ref_5 doi: 10.1109/WCSP55476.2022.10039175 – ident: ref_17 doi: 10.1109/IRASET52964.2022.9738345 – volume: 6 start-page: 22480 year: 2018 ident: ref_33 article-title: Joint Resource Allocation for Wireless Energy Harvesting Enabled Cognitive Sensor Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2827022 – ident: ref_16 doi: 10.1109/ICCCI54379.2022.9740842 – volume: 10 start-page: 33408 year: 2022 ident: ref_6 article-title: Robustness Enhanced Sensor Assisted Monte Carlo Localization for Wireless Sensor Networks and the Internet of Things publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3162288 – volume: 4 start-page: 7500704 year: 2020 ident: ref_11 article-title: Performance Impact of Hardware Impairments on Wireless Powered Cognitive Radio Sensor Networks publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.2994595 – volume: 9 start-page: 82 year: 2022 ident: ref_19 article-title: Throughput Optimization for Noma Energy Harvesting Cognitive Radio With Multi-UAV-Assisted Relaying Under Security Constraints publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2022.3225165 – ident: ref_3 doi: 10.3390/w15071394 – ident: ref_23 doi: 10.3390/info14020075 |
SSID | ssj0000913806 |
Score | 2.2871597 |
Snippet | Cognitive radio wireless sensor networks (CR-WSNs) are a type of WSNs that use cognitive radio technology to enhance the spectrum utilization and energy... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1149 |
SubjectTerms | agriculture Algorithms Bandwidths cognition Cognitive ability Cognitive radio Energy consumption Energy efficiency Energy management systems Energy use Environmental monitoring Harvest Interference Internet of Things Irrigation Irrigation systems Optimization techniques radio Radios Rain realistic scenarios Resource allocation Sensors Smart cities smart irrigation Spectrum allocation Unmanned aerial vehicles Water conservation Water shortages Wireless communications Wireless sensor networks |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfIqFgoyExAWr3jix4-O22qog0QNLRW9W_FUObRbS7f_njZNdisTHhVuU2M5kMva858TPjL1BDgqqC1ok0yVR-9CKFmlexNb72GatZKbVyB9P9clZ_eG8Ob-11Rf9EzbKA4-OO6isb7ICKPHKAjwkOw9BxTb5qHGXqqiXSitvkakyBtu5aqUeZYYUeP1BdzFMYhYJw7YGDbC_pKKi2P-ncbkkm-MH7P6EEvlitO4hu5P6R-ze4mfjj9n3ZVm1J5ZFAwKpg29n4vnikjIUeRyHF2vQ_69XHOCUH30SX1an4hCZK_LVFR6evx-GIrKBsqN4OadVZQMaI2VE3J6vQupBqNfXT9jZ8fLz0YmY9k8QodZyI_I86FzJaFsfY45BGaVNanKXvYkyep8i6FinjA0gGcHIhM6cpE6NzhkDoXrK9vp1n54xHlGjMbVuMgBWAKqJXtepjaExc1_5OGPV1pUuTOLitMfFpQPJIP-73_h_xt7tKn0btTX-XvyQ3tGuKAljlxMIFzeFi_tXuMzYW3rDjrovDAzdtAoBj0lCWG5hQJgNMI-csf1tELipX187-u6sLSAZrHm9u4weSZ9Zuj6tb6hMS3NDjaye_w-LX7C7tMX9-HvaPtvbDDfpJYDQxr8qMf8D6uMJ9A priority: 102 providerName: Directory of Open Access Journals |
Title | Energy-Efficient Resource Allocation Algorithm for CR-WSN-Based Smart Irrigation System under Realistic Scenarios |
URI | https://www.proquest.com/docview/2829692839 https://www.proquest.com/docview/2887619502 https://doaj.org/article/29b5f3533b39416e91cc3d8ebd69c325 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8RSBUhkJiQtWvXH8yAntVlsVJFaoS0VvVvzaHtqkzW7_PzOJdysk6C1KJk5sz9v2N4R8AhvkReMVi7qJrHLeMANmngXjXDBJCZ7wNPKPhTo9r75fyIuccFvnbZVbnTgo6tB5zJEf4YqfqsEY1l9vbhlWjcLV1VxC4zHZBxVsgM_3Z_PFz7NdlgVRLw1XI9yQgPj-qFn1GdQigvpWEA7Uf5mkAbn_f_p5MDonz8mz7C3S6Ti9L8ij2L4kT6f3jb8it_Ph9B6bD1gQYELoNiNPp1doqXDk4XIFndlcXlNwUunxGfu9XLAZWLBAl9fAPfRb3w9gG0A7gphTPF3WQ2OIkAifp0sfWwisu_Vrcn4y_3V8ynIdBeYrxTcsTbxKJQ-1cSGk4IUWSkeZmuR04MG5GCAsa4SuPQQbXvMIQh25ilKlBApRvCF7bdfGt4QGeEPqSskEjpYH7yY4VUUTvNQTV7pQkHI7lNZnkHGsdXFlIdjA8bf_GP-CfNm9dDNibDxMPsM52pEiQPZwo-tXNsubLWsnkwBf1okafM5YT7wXwUQXFDBnKQvyGWfYohjDD_omn0aAbiIglp1qCJw1-D68IAdbJrBZvtf2nhsL8nH3GCQTl1uaNnZ3SGMwRyR5-e7hJt6TJ1jEftyAdkD2Nv1d_ACuzsYdZn4-HFIFfwBZdAQj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE9hKLBIIC6suvHaa_uAUFJSJbSNUNOK3lzvKxzauHVSIf4Uv5EZP1IhQW-9Rc56nczOzvfNrudbgHeIQUYWRnGXFI5H2qQ8RZjnNtXapl5J4aka-WCqxsfR15P4ZAN-d7Uw9FplFxPrQG1LQ2vk27TjpzIEw-zzxSWnU6Nod7U7QqNxiz336yembMtPky84vu_DcHd0tDPm7akC3ERKrLjvG-VDYbNUW-utkYlUiYt94XVihdXaWUxSCplkBqm3SYRDF3dCuVh5j-FBYr93YDOiitYebA5H02-H61UdUtlMhWrkjaTMxHYxr1oRDYdwoTD9yP6CwPqkgP_hQQ1yuw_hQctO2aBxp0ew4RaP4f7guvMncDmqqwX5qNaeQMhi3Q4AG5wRMtJI48c5Gm_145whKWY7h_z7bMqHiJiWzc7RW9mkqmpxD2zbiKYzqmarsDNSZMTHs5lxC0zky-VTOL4VCz-D3qJcuOfALN4RJ5GKPRI7g2zKahW51Jo46etQ2wDCzpS5aUXN6WyNsxyTG7J__g_7B_BxfdNFo-lxc_MhjdG6KQly1xfKap638zsPMx17idxZyww5rsv6xkibOm0VToYwDuADjXBOYQN_oCna6gf8myTAlQ8STNQT5FoigK3OCfI2nizza-8P4O36a4wEtL1TLFx5RW1SWpOKRfji5i7ewN3x0cF-vj-Z7r2EeyHStublty3oraor9wpp1kq_bn2bweltT6c_k11B4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyFocAigbiwiuO1d-0DQkmbqKEQVQ0VvRnvKxzauHVSIf4av44ZP1IhQW-9Rcl6k8zOzDezu_MNwBvEICMKI7lTheOxNilPEea5TbW2qZci9FSN_GUm94_jTyfJyRb87mph6Fpl5xNrR21LQ3vkfTrxkxmCYdb37bWIw73Jx_MLTh2k6KS1a6fRqMiB-_UT07fVh-kervXbKJqMv-7u87bDADexDNfcD4z0UWizVFvrrRFKSOUSX3itbGi1dhYTlkKozGAYblToUN1dKF0ivUdXIXDeW7CtEBXjHmyPxrPDo80ODzFupqFsqI6EyMJ-sahaQg2H0CExFcn-gsO6a8D_sKEGvMl9uNdGqmzYqNYD2HLLh3B3eDX5I7gY15WDfFzzUCB8se40gA1PCSVp1fHlAoW3_nHGMEBmu0f823zGR4iels3PUHPZtKpqog8c2xCoM6psq3AyYmfEr2dz45aY1Jerx3B8IxJ-Ar1luXRPgVl8IlGxTDwGeQYjK6tl7FJrEjXQkbYBRJ0oc9MSnFOfjdMcEx2Sf_4P-QfwfvPQecPvcf3wEa3RZiiRc9dvlNUib209jzKdeIFxtBYZxrsuGxgjbOq0lWgYURLAO1rhnFwI_kBTtJUQ-DeJjCsfKkzaFcZdYQA7nRLkrW9Z5VeWEMDrzcfoFeiop1i68pLGpLQ_lYTRs-uneAW30Yzyz9PZwXO4E2EE19yD24Heurp0LzDiWuuXrWoz-H7T1vQHB6hGDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Resource+Allocation+Algorithm+for+CR-WSN-Based+Smart+Irrigation+System+under+Realistic+Scenarios&rft.jtitle=Agriculture+%28Basel%29&rft.au=Hassan%2C+Emad+S&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=13&rft.issue=6&rft.spage=1149&rft_id=info:doi/10.3390%2Fagriculture13061149&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |