Recombination, selection, and the evolution of tandem gene arrays

Abstract Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene famil...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 221; no. 3
Main Authors Otto, Moritz, Zheng, Yichen, Wiehe, Thomas
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 04.07.2022
Genetics Society of America
Subjects
Online AccessGet full text
ISSN1943-2631
0016-6731
1943-2631
DOI10.1093/genetics/iyac052

Cover

Abstract Abstract Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.
AbstractList Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.
Abstract Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.
Multigene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.Multigene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.
Multi-gene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favoured not only through balancing or frequency dependent selection at individual loci, but also by associating different alleles in multi copy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma-distributed at equilibrium, we derived also mean and shape of the limiting distribution under selection. Considering a more general model which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination and demographic parameters in maintaining allelic diversity and shaping mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of three genes in human and estimated recombination and selection parameters of our model.
Author Wiehe, Thomas
Otto, Moritz
Zheng, Yichen
Author_xml – sequence: 1
  givenname: Moritz
  orcidid: 0000-0001-5407-373X
  surname: Otto
  fullname: Otto, Moritz
– sequence: 2
  givenname: Yichen
  orcidid: 0000-0001-7998-0272
  surname: Zheng
  fullname: Zheng, Yichen
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0002-8932-2772
  surname: Wiehe
  fullname: Wiehe, Thomas
  email: twiehe@uni-koeln.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35460227$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHDEUx0OxdNX23lMZ8CLU1fyYZJOLIFK1IAilPYc38Y1mmUnWZEbY_96suyt2D-0pj-Tzfd_38j0geyEGJOQro6eMGnH2gAEH7_KZX4Kjkn8g-8zUYsqVYHvv6gk5yHlOKVVG6k9kImStKOezfXLxC13sGx9g8DGcVBk7dOsSwn01PGKFz7EbV1dVbKuh3GJfrYwrSAmW-TP52EKX8cvmPCR_rn78vryZ3t5d_7y8uJ264jVMW6alNmB0oyXnjDkJDKgWemYURQEA2DojEDUVoJuGU6xnDTbYKsmEaMQhOV_3XYxNj_cOw5Cgs4vke0hLG8Hbv1-Cf7QP8dkaXgw1Lw2ONw1SfBoxD7b32WHXQcA4ZsuVrLmZmZoW9GgHnccxhbJeobSSihlZF-rb-4neRtn-bgHoGnAp5pywfUMYtasA7TZAuwmwSNSOxPnhNZuyk-_-Jfy-FsZx8X-bFyR_s74
CitedBy_id crossref_primary_10_1016_j_tpb_2023_08_001
crossref_primary_10_3390_f14081519
crossref_primary_10_1038_s41598_024_63815_0
crossref_primary_10_1111_nph_20293
crossref_primary_10_1186_s12915_023_01673_4
crossref_primary_10_7554_eLife_98058
crossref_primary_10_1038_s41439_024_00293_w
Cites_doi 10.1126/sciadv.aaw9206
10.1186/s12711-015-0181-x
10.1017/S0016672300019194
10.1101/gr.10.5.613
10.1007/s10592-009-9993-y
10.1017/S0016672399004036
10.1098/rspb.2000.1145
10.1002/evl3.17
10.1007/s002510050593
10.1371/journal.pgen.1004418
10.1186/s12862-016-0722-0
10.1111/j.1744-313X.2008.00765.x
10.1101/gr.243311.118
10.1098/rsob.160009
10.1371/journal.pbio.3000131
10.1016/S0378-1119(00)00428-5
10.1007/BF01732983
10.1038/nature02399
10.1038/ng1885
10.1111/mec.15254
10.1186/1471-2148-9-269
10.1038/nature05329
10.1534/genetics.117.300123
10.1016/j.cell.2019.07.038
10.1007/s10709-009-9355-1
10.1038/hdy.2013.27
10.1186/1471-2105-12-426
10.1093/genetics/115.1.207
10.1016/j.biocon.2013.12.036
10.1038/ng.3015
10.1101/SQB.1974.038.01.055
10.1111/jeb.12476
10.1038/sj.hdy.6800892
10.1016/0040-5809(78)90027-8
10.1111/j.1365-294X.2007.03281.x
10.1006/rwgn.2001.0433
10.1017/S0016672300020437
10.1016/j.gene.2012.01.017
10.1016/j.tpb.2014.05.002
10.1111/j.1558-5646.1988.tb04140.x
10.1186/1471-2105-7-393
10.1017/S0016672300004535
10.1093/genetics/91.3.591
10.1111/j.1365-294X.2004.02368.x
10.1002/bies.080085
10.1093/genetics/147.3.1259
10.1016/S0022-5193(88)80027-4
10.4049/jimmunol.181.5.3393
10.1186/s12983-018-0266-9
10.1038/ng1562
10.1111/j.1600-065X.1999.tb01400.x
10.1007/s10592-009-9998-6
10.1038/263074a0
10.1086/280722
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
DBID TOX
AAYXX
CITATION
NPM
4T-
4U-
7QP
7SS
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1093/genetics/iyac052
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
Docstoc
University Readers
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
University Readers
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts

MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1943-2631
ExternalDocumentID PMC9252282
35460227
10_1093_genetics_iyac052
10.1093/genetics/iyac052
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: SPP-1590; DFG SFB-1211/B6
GroupedDBID ---
--Z
-DZ
-~X
.-4
.55
.GJ
0R~
186
18M
29H
2KS
2WC
34G
36B
39C
53G
5GY
5RE
5VS
5WD
7X2
7X7
85S
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
9M8
A8Z
AABZA
AACZT
AAPXW
AARHZ
AAUAY
AAUTI
AAVAP
AAYOK
ABDFA
ABDNZ
ABEJV
ABGNP
ABJNI
ABMNT
ABNHQ
ABPPZ
ABPTD
ABTAH
ABUWG
ABVGC
ABXVV
ABXZS
ACFRR
ACGOD
ACIHN
ACIPB
ACNCT
ACPRK
ACPVT
ACUTJ
ACVCV
ACYGS
ADBBV
ADGKP
ADIPN
ADQBN
ADVEK
AEAQA
AENEX
AEUYN
AFFDN
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AGMDO
AHMBA
AHMMS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AOIJS
APEBS
APJGH
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BHPHI
BKNYI
BKOMP
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CJ0
CS3
D0L
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
F8P
F9R
FD6
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HYE
H~9
INIJC
JXSIZ
K9-
KBUDW
KOP
KQ8
KSI
KSN
L7B
LK8
M0K
M0R
M1P
M2O
M2P
M7P
MV1
MVM
NHB
NOMLY
OBOKY
OCZFY
OHT
OJZSN
OK1
OMK
OPAEJ
OWPYF
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QN7
QO4
R0Z
RHI
ROX
RXW
SJN
SV3
TAE
TGS
TH9
TN5
TOX
TR2
TWZ
U5U
UHB
UKHRP
UKR
UNMZH
UPT
W8F
WH7
WHG
WOQ
X7M
XOL
XSW
YHG
YKV
YSK
YYP
YYQ
YZZ
ZCA
ZGI
ZXP
ZY4
~KM
AAYXX
AGORE
AHGBF
AJBYB
CITATION
NPM
4T-
4U-
7QP
7SS
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c460t-f18589a98b852211c5a1a08387960e3aaaefc93ee803a8bb20e47bebef65133b3
IEDL.DBID TOX
ISSN 1943-2631
0016-6731
IngestDate Thu Aug 21 14:30:07 EDT 2025
Mon Sep 08 03:08:53 EDT 2025
Fri Jul 25 19:17:48 EDT 2025
Thu Apr 03 06:54:29 EDT 2025
Tue Jul 01 00:33:04 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Wed Apr 02 07:03:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords gene families
epistasis
immune genes
balancing selection
unequal recombination
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc-nd/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-f18589a98b852211c5a1a08387960e3aaaefc93ee803a8bb20e47bebef65133b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Moritz Otto and Yichen Zheng contributed equally to this work.
ORCID 0000-0001-7998-0272
0000-0001-5407-373X
0000-0002-8932-2772
OpenAccessLink https://dx.doi.org/10.1093/genetics/iyac052
PMID 35460227
PQID 2686561954
PQPubID 47453
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9252282
proquest_miscellaneous_2654297940
proquest_journals_2686561954
pubmed_primary_35460227
crossref_primary_10_1093_genetics_iyac052
crossref_citationtrail_10_1093_genetics_iyac052
oup_primary_10_1093_genetics_iyac052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-04
PublicationDateYYYYMMDD 2022-07-04
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Genetics (Austin)
PublicationTitleAlternate Genetics
PublicationYear 2022
Publisher Oxford University Press
Genetics Society of America
Publisher_xml – name: Oxford University Press
– name: Genetics Society of America
References Haigh (2022102218572491000_iyac052-B15) 1978; 14
Traherne (2022102218572491000_iyac052-B54) 2008; 35
de Weyer (2022102218572491000_iyac052-B6) 2019; 178
Redon (2022102218572491000_iyac052-B45) 2006; 444
Grimwood (2022102218572491000_iyac052-B14) 2004; 428
Manczinger (2022102218572491000_iyac052-B30) 2019; 17
Ekblom (2022102218572491000_iyac052-B11) 2007; 16
Hess (2022102218572491000_iyac052-B18) 2000; 10
Howe (2022102218572491000_iyac052-B21) 2016; 6
Hosomichi (2022102218572491000_iyac052-B20) 2008; 181
Ejsmond (2022102218572491000_iyac052-B10) 2011; 12
Mason (2022102218572491000_iyac052-B32) 2011; 12
Herdegen (2022102218572491000_iyac052-B17) 2014; 27
Spence (2022102218572491000_iyac052-B51) 2019; 5
Kondrashov (2022102218572491000_iyac052-B24) 1982; 40
Milesi (2022102218572491000_iyac052-B34) 2017; 1
Schierup (2022102218572491000_iyac052-B47) 2000; 76
Ohta (2022102218572491000_iyac052-B37) 1979; 91
Martinsohn (2022102218572491000_iyac052-B31) 1999; 50
de Bakker (2022102218572491000_iyac052-B5) 2006; 38
Takahata (2022102218572491000_iyac052-B52) 1981; 38
Beeson (2022102218572491000_iyac052-B2) 2019; 29
Menashe (2022102218572491000_iyac052-B33) 2006; 7
Innan (2022102218572491000_iyac052-B23) 2009; 137
Liu (2022102218572491000_iyac052-B29) 2011; 12
Frankham (2022102218572491000_iyac052-B12) 2014; 170
Ohta (2022102218572491000_iyac052-B41) 1976; 263
Wiehe (2022102218572491000_iyac052-B57) 2000; 75
Ohta (2022102218572491000_iyac052-B39) 1988; 42
Schiffels (2022102218572491000_iyac052-B48) 2014; 46
Tuzun (2022102218572491000_iyac052-B55) 2005; 37
Fulton (2022102218572491000_iyac052-B13) 2016; 48
Bahr (2022102218572491000_iyac052-B1) 2012; 497
Dudek (2022102218572491000_iyac052-B8) 2019; 28
Lam (2022102218572491000_iyac052-B26) 2013; 111
Linnenbrink (2022102218572491000_iyac052-B28) 2018; 15
Miller (2022102218572491000_iyac052-B35) 2004; 13
Petit (2022102218572491000_iyac052-B43) 2017; 207
Ohta (2022102218572491000_iyac052-B38) 2000; 259
Chao (2022102218572491000_iyac052-B4) 1988; 133
Silver (2022102218572491000_iyac052-B49) 2001
Rafajlović (2022102218572491000_iyac052-B44) 2014; 95
Vahdati (2022102218572491000_iyac052-B56) 2016; 16
Tellier (2022102218572491000_iyac052-B53) 2014; 68
Brahmachary (2022102218572491000_iyac052-B3) 2014; 10
Nadeau (2022102218572491000_iyac052-B36) 1997; 147
Ohta (2022102218572491000_iyac052-B40) 1984
Eichler (2022102218572491000_iyac052-B9) 2008; 1
Krüger (2022102218572491000_iyac052-B25) 1975; 4
Lenz (2022102218572491000_iyac052-B27) 2009; 9
Smith (2022102218572491000_iyac052-B50) 1974; 38
Högstrand (2022102218572491000_iyac052-B19) 1999; 167
Ohta (2022102218572491000_iyac052-B42) 1987; 115
Schaschl (2022102218572491000_iyac052-B46) 2006; 97
Demuth (2022102218572491000_iyac052-B7) 2009; 31
Ingvarsson (2022102218572491000_iyac052-B22) 2000; 267
Haldane (2022102218572491000_iyac052-B16) 1937; 71
References_xml – volume: 5
  start-page: eaaw9206
  issue: 10
  year: 2019
  ident: 2022102218572491000_iyac052-B51
  article-title: Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaw9206
– volume: 48
  start-page: 1
  issue: 1
  year: 2016
  ident: 2022102218572491000_iyac052-B13
  article-title: A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex b region between BG2 and CD1a1
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-015-0181-x
– volume: 40
  start-page: 325
  issue: 3
  year: 1982
  ident: 2022102218572491000_iyac052-B24
  article-title: Selection against harmful mutations in large sexual and asexual populations
  publication-title: Genet Res
  doi: 10.1017/S0016672300019194
– volume: 10
  start-page: 613
  issue: 5
  year: 2000
  ident: 2022102218572491000_iyac052-B18
  article-title: MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus)
  publication-title: Genome Res
  doi: 10.1101/gr.10.5.613
– volume: 12
  start-page: 91
  issue: 1
  year: 2011
  ident: 2022102218572491000_iyac052-B32
  article-title: Reduced MHC class II diversity in island compared to mainland populations of the black-footed rock-wallaby (Petrogale lateralis lateralis)
  publication-title: Conserv Genet
  doi: 10.1007/s10592-009-9993-y
– volume: 75
  start-page: 61
  issue: 1
  year: 2000
  ident: 2022102218572491000_iyac052-B57
  article-title: Distinguishing recombination and intragenic gene conversion by linkage disequilibrium patterns
  publication-title: Genet Res
  doi: 10.1017/S0016672399004036
– volume: 267
  start-page: 1321
  issue: 1450
  year: 2000
  ident: 2022102218572491000_iyac052-B22
  article-title: Heterosis increases the effective migration rate
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2000.1145
– volume: 1
  start-page: 169
  issue: 3
  year: 2017
  ident: 2022102218572491000_iyac052-B34
  article-title: Heterogeneous gene duplications can be adaptive because they permanently associate overdominant alleles
  publication-title: Evol Lett
  doi: 10.1002/evl3.17
– volume: 50
  start-page: 168
  issue: 3–4
  year: 1999
  ident: 2022102218572491000_iyac052-B31
  article-title: The gene conversion hypothesis of MHC evolution: a review
  publication-title: Immunogenetics
  doi: 10.1007/s002510050593
– volume: 10
  start-page: e1004418
  issue: 6
  year: 2014
  ident: 2022102218572491000_iyac052-B3
  article-title: Digital genotyping of macrosatellites and multicopy genes reveals novel biological functions associated with copy number variation of large tandem repeats
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004418
– volume: 68
  start-page: 2211
  year: 2014
  ident: 2022102218572491000_iyac052-B53
  article-title: Speed of adaptation and genomic footprints of host-parasite coevolution under arms race and trench warfare dynamics
  publication-title: Evolution
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: 2022102218572491000_iyac052-B56
  article-title: Parallel or convergent evolution in human population genomic data revealed by genotype networks
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-016-0722-0
– volume: 35
  start-page: 179
  issue: 3
  year: 2008
  ident: 2022102218572491000_iyac052-B54
  article-title: Human MHC architecture and evolution: implications for disease association studies
  publication-title: Int J Immunogenet
  doi: 10.1111/j.1744-313X.2008.00765.x
– volume: 29
  start-page: 1744
  issue: 10
  year: 2019
  ident: 2022102218572491000_iyac052-B2
  article-title: Exploration of fine-scale recombination rate variation in the domestic horse
  publication-title: Genome Res
  doi: 10.1101/gr.243311.118
– volume: 6
  start-page: 160009
  issue: 4
  year: 2016
  ident: 2022102218572491000_iyac052-B21
  article-title: Structure and evolutionary history of a large family of NLR proteins in the zebrafish
  publication-title: Open Biol
  doi: 10.1098/rsob.160009
– volume: 17
  start-page: e3000131
  issue: 1
  year: 2019
  ident: 2022102218572491000_iyac052-B30
  article-title: Pathogen diversity drives the evolution of generalist MHC-II alleles in human populations
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3000131
– volume: 259
  start-page: 45
  issue: 1–2
  year: 2000
  ident: 2022102218572491000_iyac052-B38
  article-title: Evolution of gene families
  publication-title: Gene
  doi: 10.1016/S0378-1119(00)00428-5
– volume: 4
  start-page: 201
  issue: 3
  year: 1975
  ident: 2022102218572491000_iyac052-B25
  article-title: Population genetics of unequal crossing over
  publication-title: J Mol Evol
  doi: 10.1007/BF01732983
– volume: 428
  start-page: 529
  issue: 6982
  year: 2004
  ident: 2022102218572491000_iyac052-B14
  article-title: The DNA sequence and biology of human chromosome 19
  publication-title: Nature
  doi: 10.1038/nature02399
– volume: 38
  start-page: 1166
  issue: 10
  year: 2006
  ident: 2022102218572491000_iyac052-B5
  article-title: A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC
  publication-title: Nat Genet
  doi: 10.1038/ng1885
– volume: 28
  start-page: 4798
  issue: 21
  year: 2019
  ident: 2022102218572491000_iyac052-B8
  article-title: Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones
  publication-title: Mol Ecol
  doi: 10.1111/mec.15254
– volume: 9
  start-page: 269
  year: 2009
  ident: 2022102218572491000_iyac052-B27
  article-title: Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the long-tailed giant rat (Leopoldamys sabanus)
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-9-269
– volume: 444
  start-page: 444
  issue: 7118
  year: 2006
  ident: 2022102218572491000_iyac052-B45
  article-title: Global variation in copy number in the human genome
  publication-title: Nature
  doi: 10.1038/nature05329
– volume: 207
  start-page: 767
  issue: 2
  year: 2017
  ident: 2022102218572491000_iyac052-B43
  article-title: Variation in recombination rate and its genetic determinism in sheep populations
  publication-title: Genetics
  doi: 10.1534/genetics.117.300123
– volume: 178
  start-page: 1260
  issue: 5
  year: 2019
  ident: 2022102218572491000_iyac052-B6
  article-title: A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.038
– volume: 137
  start-page: 19
  issue: 1
  year: 2009
  ident: 2022102218572491000_iyac052-B23
  article-title: Population genetic models of duplicated genes
  publication-title: Genetica
  doi: 10.1007/s10709-009-9355-1
– volume: 111
  start-page: 131
  issue: 2
  year: 2013
  ident: 2022102218572491000_iyac052-B26
  article-title: Population-specific recombination sites within the human MHC region
  publication-title: Heredity (Edinb)
  doi: 10.1038/hdy.2013.27
– volume: 12
  start-page: 426
  year: 2011
  ident: 2022102218572491000_iyac052-B29
  article-title: A Bayesian model for gene family evolution
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-426
– volume: 115
  start-page: 207
  issue: 1
  year: 1987
  ident: 2022102218572491000_iyac052-B42
  article-title: Simulating evolution by gene duplication
  publication-title: Genetics
  doi: 10.1093/genetics/115.1.207
– volume: 170
  start-page: 56
  year: 2014
  ident: 2022102218572491000_iyac052-B12
  article-title: Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2013.12.036
– volume: 46
  start-page: 919
  issue: 8
  year: 2014
  ident: 2022102218572491000_iyac052-B48
  article-title: Inferring human population size and separation history from multiple genome sequences
  publication-title: Nat Genet
  doi: 10.1038/ng.3015
– volume: 38
  start-page: 507
  year: 1974
  ident: 2022102218572491000_iyac052-B50
  article-title: Unequal crossover and the evolution of multigene families
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1974.038.01.055
– volume: 27
  start-page: 2347
  issue: 11
  year: 2014
  ident: 2022102218572491000_iyac052-B17
  article-title: Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure
  publication-title: J Evol Biol
  doi: 10.1111/jeb.12476
– volume: 97
  start-page: 427
  issue: 6
  year: 2006
  ident: 2022102218572491000_iyac052-B46
  article-title: Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates
  publication-title: Heredity (Edinb)
  doi: 10.1038/sj.hdy.6800892
– volume: 14
  start-page: 251
  issue: 2
  year: 1978
  ident: 2022102218572491000_iyac052-B15
  article-title: The accumulation of deleterious genes in a population—muller’s ratchet
  publication-title: Theor Popul Biol
  doi: 10.1016/0040-5809(78)90027-8
– volume: 16
  start-page: 1439
  issue: 7
  year: 2007
  ident: 2022102218572491000_iyac052-B11
  article-title: Spatial pattern of MHC class II variation in the great snipe (Gallinago media)
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2007.03281.x
– start-page: 666
  volume-title: Encyclopedia of Genetics
  year: 2001
  ident: 2022102218572491000_iyac052-B49
  doi: 10.1006/rwgn.2001.0433
– volume: 38
  start-page: 97
  issue: 1
  year: 1981
  ident: 2022102218572491000_iyac052-B52
  article-title: A mathematical study on the distribution of the number of repeated genes per chromosome
  publication-title: Genet Res
  doi: 10.1017/S0016672300020437
– volume: 497
  start-page: 52
  issue: 1
  year: 2012
  ident: 2022102218572491000_iyac052-B1
  article-title: The evolution of MHC diversity: evidence of intralocus gene conversion and recombination in a single-locus system
  publication-title: Gene
  doi: 10.1016/j.gene.2012.01.017
– volume: 1
  start-page: 1
  year: 2008
  ident: 2022102218572491000_iyac052-B9
  article-title: Copy number variation and human disease
  publication-title: Nat Educ
– volume: 95
  start-page: 1
  year: 2014
  ident: 2022102218572491000_iyac052-B44
  article-title: Demography-adjusted tests of neutrality based on genome-wide SNP data
  publication-title: Theor Popul Biol
  doi: 10.1016/j.tpb.2014.05.002
– volume: 42
  start-page: 375
  issue: 2
  year: 1988
  ident: 2022102218572491000_iyac052-B39
  article-title: Further simulation studies on evolution by gene duplication
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1988.tb04140.x
– volume: 7
  start-page: 393
  year: 2006
  ident: 2022102218572491000_iyac052-B33
  article-title: A probabilistic classifier for olfactory receptor pseudogenes
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-393
– start-page: 133
  volume-title: Multigene Families and Their Implications for Evolutionary Theory
  year: 1984
  ident: 2022102218572491000_iyac052-B40
– volume: 76
  start-page: 51
  issue: 1
  year: 2000
  ident: 2022102218572491000_iyac052-B47
  article-title: The effect of subdivision on variation at multi-allelic loci under balancing selection
  publication-title: Genet Res
  doi: 10.1017/S0016672300004535
– volume: 91
  start-page: 591
  issue: 3
  year: 1979
  ident: 2022102218572491000_iyac052-B37
  article-title: An extension of a model for the evolution of multigene families by unequal crossing over
  publication-title: Genetics
  doi: 10.1093/genetics/91.3.591
– volume: 13
  start-page: 3709
  issue: 12
  year: 2004
  ident: 2022102218572491000_iyac052-B35
  article-title: Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae)
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2004.02368.x
– volume: 31
  start-page: 29
  issue: 1
  year: 2009
  ident: 2022102218572491000_iyac052-B7
  article-title: The life and death of gene families
  publication-title: Bioessays
  doi: 10.1002/bies.080085
– volume: 147
  start-page: 1259
  issue: 3
  year: 1997
  ident: 2022102218572491000_iyac052-B36
  article-title: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution
  publication-title: Genetics
  doi: 10.1093/genetics/147.3.1259
– volume: 133
  start-page: 99
  issue: 1
  year: 1988
  ident: 2022102218572491000_iyac052-B4
  article-title: Evolution of sex in RNA viruses
  publication-title: J Theor Biol
  doi: 10.1016/S0022-5193(88)80027-4
– volume: 181
  start-page: 3393
  issue: 5
  year: 2008
  ident: 2022102218572491000_iyac052-B20
  article-title: Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.5.3393
– volume: 15
  start-page: 15
  year: 2018
  ident: 2022102218572491000_iyac052-B28
  article-title: Meta-populational demes constitute a reservoir for large MHC allele diversity in wild house mice (Mus musculus)
  publication-title: Front Zool
  doi: 10.1186/s12983-018-0266-9
– volume: 37
  start-page: 727
  issue: 7
  year: 2005
  ident: 2022102218572491000_iyac052-B55
  article-title: Fine-scale structural variation of the human genome
  publication-title: Nat Genet
  doi: 10.1038/ng1562
– volume: 167
  start-page: 305
  year: 1999
  ident: 2022102218572491000_iyac052-B19
  article-title: Gene conversion can create new MHC allees
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.1999.tb01400.x
– volume: 12
  start-page: 129
  issue: 1
  year: 2011
  ident: 2022102218572491000_iyac052-B10
  article-title: MHC diversity in bottlenecked populations: a simulation model
  publication-title: Conserv Genet
  doi: 10.1007/s10592-009-9998-6
– volume: 263
  start-page: 74
  issue: 5572
  year: 1976
  ident: 2022102218572491000_iyac052-B41
  article-title: Simple model for treating evolution of multigene families
  publication-title: Nature
  doi: 10.1038/263074a0
– volume: 71
  start-page: 337
  issue: 735
  year: 1937
  ident: 2022102218572491000_iyac052-B16
  article-title: The effect of variation of fitness
  publication-title: Am Nat
  doi: 10.1086/280722
SSID ssj0006958
Score 2.431003
Snippet Abstract Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not...
Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only...
Multi-gene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favoured not only...
Multigene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favored not only...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Copy number
Empirical analysis
Epistasis
Evolutionary genetics
Fitness
Frequency dependence
Gene families
Genes
Genetic diversity
Genetics
Investigation
Mathematical models
Mean
Parameters
Population
Population (statistical)
Population genetics
Population number
Recombination
Reproductive fitness
Title Recombination, selection, and the evolution of tandem gene arrays
URI https://www.ncbi.nlm.nih.gov/pubmed/35460227
https://www.proquest.com/docview/2686561954
https://www.proquest.com/docview/2654297940
https://pubmed.ncbi.nlm.nih.gov/PMC9252282
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA4iCL6Iv53OEWEvgmVd0rTJ4xDHVNSXDfZWLlmKA9fJugn77720XdlkyN4KudD0uyT3Jde7I6QZCAZCS-MJGAkvAOCe0op5AZIDiwbRF7lH9-097A2Cl6EYlnm2sy0ufMVbCKSL58ta4yUYX7j9Fm2wm9P9j2G164ZKyNINua3ThtnZCGVbY5R_f4xcszTdY3JUUkTaKXR6QvZsekoOiqKRyzPScSfGCR5oc0wfaJZXsskfIR1RJHTU_pQTik4T6u4K7IS6oVKYzWCZnZNB96n_2PPKQgieCUJ_7iVoVKUCJbVEutRuGwFtQO4kIzx_WA4ANjGKWyt9DlJr5tsg0qieJHTlWzS_IPvpNLVXhCZSGGWUxWVsAs0iLUY6EW0IgZuQgV8jrRVOsSmzhLtiFV9x4a3m8QrZuES2Ru6rHt9Fhox_ZJsI_Q5i9ZVu4nJJZTELJXJPl6CuRu6qZlwMzsMBqZ0unIwrv4VbDH7HZaHK6mVcIJaMRTUSbSi5EnCJtjdb0vFnnnBbMYRdsuvdRn9DDpmLkXB3wEGd7M9nC3uLzGWuG8jZn18b-cT9Bao08uA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recombination%2C+selection%2C+and+the+evolution+of+tandem+gene+arrays&rft.jtitle=Genetics+%28Austin%29&rft.au=Otto%2C+Moritz&rft.au=Zheng%2C+Yichen&rft.au=Wiehe%2C+Thomas&rft.date=2022-07-04&rft.pub=Oxford+University+Press&rft.eissn=1943-2631&rft.volume=221&rft.issue=3&rft_id=info:doi/10.1093%2Fgenetics%2Fiyac052&rft.externalDocID=10.1093%2Fgenetics%2Fiyac052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon