Recombination, selection, and the evolution of tandem gene arrays
Abstract Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene famil...
Saved in:
Published in | Genetics (Austin) Vol. 221; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
04.07.2022
Genetics Society of America |
Subjects | |
Online Access | Get full text |
ISSN | 1943-2631 0016-6731 1943-2631 |
DOI | 10.1093/genetics/iyac052 |
Cover
Abstract | Abstract
Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model. |
---|---|
AbstractList | Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model. Abstract Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model. Multigene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.Multigene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model. Multi-gene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favoured not only through balancing or frequency dependent selection at individual loci, but also by associating different alleles in multi copy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma-distributed at equilibrium, we derived also mean and shape of the limiting distribution under selection. Considering a more general model which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination and demographic parameters in maintaining allelic diversity and shaping mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of three genes in human and estimated recombination and selection parameters of our model. |
Author | Wiehe, Thomas Otto, Moritz Zheng, Yichen |
Author_xml | – sequence: 1 givenname: Moritz orcidid: 0000-0001-5407-373X surname: Otto fullname: Otto, Moritz – sequence: 2 givenname: Yichen orcidid: 0000-0001-7998-0272 surname: Zheng fullname: Zheng, Yichen – sequence: 3 givenname: Thomas orcidid: 0000-0002-8932-2772 surname: Wiehe fullname: Wiehe, Thomas email: twiehe@uni-koeln.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35460227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LHDEUx0OxdNX23lMZ8CLU1fyYZJOLIFK1IAilPYc38Y1mmUnWZEbY_96suyt2D-0pj-Tzfd_38j0geyEGJOQro6eMGnH2gAEH7_KZX4Kjkn8g-8zUYsqVYHvv6gk5yHlOKVVG6k9kImStKOezfXLxC13sGx9g8DGcVBk7dOsSwn01PGKFz7EbV1dVbKuh3GJfrYwrSAmW-TP52EKX8cvmPCR_rn78vryZ3t5d_7y8uJ264jVMW6alNmB0oyXnjDkJDKgWemYURQEA2DojEDUVoJuGU6xnDTbYKsmEaMQhOV_3XYxNj_cOw5Cgs4vke0hLG8Hbv1-Cf7QP8dkaXgw1Lw2ONw1SfBoxD7b32WHXQcA4ZsuVrLmZmZoW9GgHnccxhbJeobSSihlZF-rb-4neRtn-bgHoGnAp5pywfUMYtasA7TZAuwmwSNSOxPnhNZuyk-_-Jfy-FsZx8X-bFyR_s74 |
CitedBy_id | crossref_primary_10_1016_j_tpb_2023_08_001 crossref_primary_10_3390_f14081519 crossref_primary_10_1038_s41598_024_63815_0 crossref_primary_10_1111_nph_20293 crossref_primary_10_1186_s12915_023_01673_4 crossref_primary_10_7554_eLife_98058 crossref_primary_10_1038_s41439_024_00293_w |
Cites_doi | 10.1126/sciadv.aaw9206 10.1186/s12711-015-0181-x 10.1017/S0016672300019194 10.1101/gr.10.5.613 10.1007/s10592-009-9993-y 10.1017/S0016672399004036 10.1098/rspb.2000.1145 10.1002/evl3.17 10.1007/s002510050593 10.1371/journal.pgen.1004418 10.1186/s12862-016-0722-0 10.1111/j.1744-313X.2008.00765.x 10.1101/gr.243311.118 10.1098/rsob.160009 10.1371/journal.pbio.3000131 10.1016/S0378-1119(00)00428-5 10.1007/BF01732983 10.1038/nature02399 10.1038/ng1885 10.1111/mec.15254 10.1186/1471-2148-9-269 10.1038/nature05329 10.1534/genetics.117.300123 10.1016/j.cell.2019.07.038 10.1007/s10709-009-9355-1 10.1038/hdy.2013.27 10.1186/1471-2105-12-426 10.1093/genetics/115.1.207 10.1016/j.biocon.2013.12.036 10.1038/ng.3015 10.1101/SQB.1974.038.01.055 10.1111/jeb.12476 10.1038/sj.hdy.6800892 10.1016/0040-5809(78)90027-8 10.1111/j.1365-294X.2007.03281.x 10.1006/rwgn.2001.0433 10.1017/S0016672300020437 10.1016/j.gene.2012.01.017 10.1016/j.tpb.2014.05.002 10.1111/j.1558-5646.1988.tb04140.x 10.1186/1471-2105-7-393 10.1017/S0016672300004535 10.1093/genetics/91.3.591 10.1111/j.1365-294X.2004.02368.x 10.1002/bies.080085 10.1093/genetics/147.3.1259 10.1016/S0022-5193(88)80027-4 10.4049/jimmunol.181.5.3393 10.1186/s12983-018-0266-9 10.1038/ng1562 10.1111/j.1600-065X.1999.tb01400.x 10.1007/s10592-009-9998-6 10.1038/263074a0 10.1086/280722 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. |
DBID | TOX AAYXX CITATION NPM 4T- 4U- 7QP 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.1093/genetics/iyac052 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed Docstoc University Readers Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts University Readers Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
ExternalDocumentID | PMC9252282 35460227 10_1093_genetics_iyac052 10.1093/genetics/iyac052 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: SPP-1590; DFG SFB-1211/B6 |
GroupedDBID | --- --Z -DZ -~X .-4 .55 .GJ 0R~ 186 18M 29H 2KS 2WC 34G 36B 39C 53G 5GY 5RE 5VS 5WD 7X2 7X7 85S 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 9M8 A8Z AABZA AACZT AAPXW AARHZ AAUAY AAUTI AAVAP AAYOK ABDFA ABDNZ ABEJV ABGNP ABJNI ABMNT ABNHQ ABPPZ ABPTD ABTAH ABUWG ABVGC ABXVV ABXZS ACFRR ACGOD ACIHN ACIPB ACNCT ACPRK ACPVT ACUTJ ACVCV ACYGS ADBBV ADGKP ADIPN ADQBN ADVEK AEAQA AENEX AEUYN AFFDN AFFNX AFFZL AFGWE AFKRA AFRAH AGMDO AHMBA AHMMS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AOIJS APEBS APJGH ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BES BEYMZ BHPHI BKNYI BKOMP BPHCQ BTFSW BVXVI C1A CCPQU CJ0 CS3 D0L DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN F5P F8P F9R FD6 FLUFQ FOEOM FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HYE H~9 INIJC JXSIZ K9- KBUDW KOP KQ8 KSI KSN L7B LK8 M0K M0R M1P M2O M2P M7P MV1 MVM NHB NOMLY OBOKY OCZFY OHT OJZSN OK1 OMK OPAEJ OWPYF PHGZT PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QN7 QO4 R0Z RHI ROX RXW SJN SV3 TAE TGS TH9 TN5 TOX TR2 TWZ U5U UHB UKHRP UKR UNMZH UPT W8F WH7 WHG WOQ X7M XOL XSW YHG YKV YSK YYP YYQ YZZ ZCA ZGI ZXP ZY4 ~KM AAYXX AGORE AHGBF AJBYB CITATION NPM 4T- 4U- 7QP 7SS 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 ESTFP 5PM |
ID | FETCH-LOGICAL-c460t-f18589a98b852211c5a1a08387960e3aaaefc93ee803a8bb20e47bebef65133b3 |
IEDL.DBID | TOX |
ISSN | 1943-2631 0016-6731 |
IngestDate | Thu Aug 21 14:30:07 EDT 2025 Mon Sep 08 03:08:53 EDT 2025 Fri Jul 25 19:17:48 EDT 2025 Thu Apr 03 06:54:29 EDT 2025 Tue Jul 01 00:33:04 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Wed Apr 02 07:03:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | gene families epistasis immune genes balancing selection unequal recombination |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc-nd/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-f18589a98b852211c5a1a08387960e3aaaefc93ee803a8bb20e47bebef65133b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Moritz Otto and Yichen Zheng contributed equally to this work. |
ORCID | 0000-0001-7998-0272 0000-0001-5407-373X 0000-0002-8932-2772 |
OpenAccessLink | https://dx.doi.org/10.1093/genetics/iyac052 |
PMID | 35460227 |
PQID | 2686561954 |
PQPubID | 47453 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9252282 proquest_miscellaneous_2654297940 proquest_journals_2686561954 pubmed_primary_35460227 crossref_primary_10_1093_genetics_iyac052 crossref_citationtrail_10_1093_genetics_iyac052 oup_primary_10_1093_genetics_iyac052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-04 |
PublicationDateYYYYMMDD | 2022-07-04 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2022 |
Publisher | Oxford University Press Genetics Society of America |
Publisher_xml | – name: Oxford University Press – name: Genetics Society of America |
References | Haigh (2022102218572491000_iyac052-B15) 1978; 14 Traherne (2022102218572491000_iyac052-B54) 2008; 35 de Weyer (2022102218572491000_iyac052-B6) 2019; 178 Redon (2022102218572491000_iyac052-B45) 2006; 444 Grimwood (2022102218572491000_iyac052-B14) 2004; 428 Manczinger (2022102218572491000_iyac052-B30) 2019; 17 Ekblom (2022102218572491000_iyac052-B11) 2007; 16 Hess (2022102218572491000_iyac052-B18) 2000; 10 Howe (2022102218572491000_iyac052-B21) 2016; 6 Hosomichi (2022102218572491000_iyac052-B20) 2008; 181 Ejsmond (2022102218572491000_iyac052-B10) 2011; 12 Mason (2022102218572491000_iyac052-B32) 2011; 12 Herdegen (2022102218572491000_iyac052-B17) 2014; 27 Spence (2022102218572491000_iyac052-B51) 2019; 5 Kondrashov (2022102218572491000_iyac052-B24) 1982; 40 Milesi (2022102218572491000_iyac052-B34) 2017; 1 Schierup (2022102218572491000_iyac052-B47) 2000; 76 Ohta (2022102218572491000_iyac052-B37) 1979; 91 Martinsohn (2022102218572491000_iyac052-B31) 1999; 50 de Bakker (2022102218572491000_iyac052-B5) 2006; 38 Takahata (2022102218572491000_iyac052-B52) 1981; 38 Beeson (2022102218572491000_iyac052-B2) 2019; 29 Menashe (2022102218572491000_iyac052-B33) 2006; 7 Innan (2022102218572491000_iyac052-B23) 2009; 137 Liu (2022102218572491000_iyac052-B29) 2011; 12 Frankham (2022102218572491000_iyac052-B12) 2014; 170 Ohta (2022102218572491000_iyac052-B41) 1976; 263 Wiehe (2022102218572491000_iyac052-B57) 2000; 75 Ohta (2022102218572491000_iyac052-B39) 1988; 42 Schiffels (2022102218572491000_iyac052-B48) 2014; 46 Tuzun (2022102218572491000_iyac052-B55) 2005; 37 Fulton (2022102218572491000_iyac052-B13) 2016; 48 Bahr (2022102218572491000_iyac052-B1) 2012; 497 Dudek (2022102218572491000_iyac052-B8) 2019; 28 Lam (2022102218572491000_iyac052-B26) 2013; 111 Linnenbrink (2022102218572491000_iyac052-B28) 2018; 15 Miller (2022102218572491000_iyac052-B35) 2004; 13 Petit (2022102218572491000_iyac052-B43) 2017; 207 Ohta (2022102218572491000_iyac052-B38) 2000; 259 Chao (2022102218572491000_iyac052-B4) 1988; 133 Silver (2022102218572491000_iyac052-B49) 2001 Rafajlović (2022102218572491000_iyac052-B44) 2014; 95 Vahdati (2022102218572491000_iyac052-B56) 2016; 16 Tellier (2022102218572491000_iyac052-B53) 2014; 68 Brahmachary (2022102218572491000_iyac052-B3) 2014; 10 Nadeau (2022102218572491000_iyac052-B36) 1997; 147 Ohta (2022102218572491000_iyac052-B40) 1984 Eichler (2022102218572491000_iyac052-B9) 2008; 1 Krüger (2022102218572491000_iyac052-B25) 1975; 4 Lenz (2022102218572491000_iyac052-B27) 2009; 9 Smith (2022102218572491000_iyac052-B50) 1974; 38 Högstrand (2022102218572491000_iyac052-B19) 1999; 167 Ohta (2022102218572491000_iyac052-B42) 1987; 115 Schaschl (2022102218572491000_iyac052-B46) 2006; 97 Demuth (2022102218572491000_iyac052-B7) 2009; 31 Ingvarsson (2022102218572491000_iyac052-B22) 2000; 267 Haldane (2022102218572491000_iyac052-B16) 1937; 71 |
References_xml | – volume: 5 start-page: eaaw9206 issue: 10 year: 2019 ident: 2022102218572491000_iyac052-B51 article-title: Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations publication-title: Sci Adv doi: 10.1126/sciadv.aaw9206 – volume: 48 start-page: 1 issue: 1 year: 2016 ident: 2022102218572491000_iyac052-B13 article-title: A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex b region between BG2 and CD1a1 publication-title: Genet Sel Evol doi: 10.1186/s12711-015-0181-x – volume: 40 start-page: 325 issue: 3 year: 1982 ident: 2022102218572491000_iyac052-B24 article-title: Selection against harmful mutations in large sexual and asexual populations publication-title: Genet Res doi: 10.1017/S0016672300019194 – volume: 10 start-page: 613 issue: 5 year: 2000 ident: 2022102218572491000_iyac052-B18 article-title: MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus) publication-title: Genome Res doi: 10.1101/gr.10.5.613 – volume: 12 start-page: 91 issue: 1 year: 2011 ident: 2022102218572491000_iyac052-B32 article-title: Reduced MHC class II diversity in island compared to mainland populations of the black-footed rock-wallaby (Petrogale lateralis lateralis) publication-title: Conserv Genet doi: 10.1007/s10592-009-9993-y – volume: 75 start-page: 61 issue: 1 year: 2000 ident: 2022102218572491000_iyac052-B57 article-title: Distinguishing recombination and intragenic gene conversion by linkage disequilibrium patterns publication-title: Genet Res doi: 10.1017/S0016672399004036 – volume: 267 start-page: 1321 issue: 1450 year: 2000 ident: 2022102218572491000_iyac052-B22 article-title: Heterosis increases the effective migration rate publication-title: Proc Biol Sci doi: 10.1098/rspb.2000.1145 – volume: 1 start-page: 169 issue: 3 year: 2017 ident: 2022102218572491000_iyac052-B34 article-title: Heterogeneous gene duplications can be adaptive because they permanently associate overdominant alleles publication-title: Evol Lett doi: 10.1002/evl3.17 – volume: 50 start-page: 168 issue: 3–4 year: 1999 ident: 2022102218572491000_iyac052-B31 article-title: The gene conversion hypothesis of MHC evolution: a review publication-title: Immunogenetics doi: 10.1007/s002510050593 – volume: 10 start-page: e1004418 issue: 6 year: 2014 ident: 2022102218572491000_iyac052-B3 article-title: Digital genotyping of macrosatellites and multicopy genes reveals novel biological functions associated with copy number variation of large tandem repeats publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004418 – volume: 68 start-page: 2211 year: 2014 ident: 2022102218572491000_iyac052-B53 article-title: Speed of adaptation and genomic footprints of host-parasite coevolution under arms race and trench warfare dynamics publication-title: Evolution – volume: 16 start-page: 1 issue: 1 year: 2016 ident: 2022102218572491000_iyac052-B56 article-title: Parallel or convergent evolution in human population genomic data revealed by genotype networks publication-title: BMC Evol Biol doi: 10.1186/s12862-016-0722-0 – volume: 35 start-page: 179 issue: 3 year: 2008 ident: 2022102218572491000_iyac052-B54 article-title: Human MHC architecture and evolution: implications for disease association studies publication-title: Int J Immunogenet doi: 10.1111/j.1744-313X.2008.00765.x – volume: 29 start-page: 1744 issue: 10 year: 2019 ident: 2022102218572491000_iyac052-B2 article-title: Exploration of fine-scale recombination rate variation in the domestic horse publication-title: Genome Res doi: 10.1101/gr.243311.118 – volume: 6 start-page: 160009 issue: 4 year: 2016 ident: 2022102218572491000_iyac052-B21 article-title: Structure and evolutionary history of a large family of NLR proteins in the zebrafish publication-title: Open Biol doi: 10.1098/rsob.160009 – volume: 17 start-page: e3000131 issue: 1 year: 2019 ident: 2022102218572491000_iyac052-B30 article-title: Pathogen diversity drives the evolution of generalist MHC-II alleles in human populations publication-title: PLoS Biol doi: 10.1371/journal.pbio.3000131 – volume: 259 start-page: 45 issue: 1–2 year: 2000 ident: 2022102218572491000_iyac052-B38 article-title: Evolution of gene families publication-title: Gene doi: 10.1016/S0378-1119(00)00428-5 – volume: 4 start-page: 201 issue: 3 year: 1975 ident: 2022102218572491000_iyac052-B25 article-title: Population genetics of unequal crossing over publication-title: J Mol Evol doi: 10.1007/BF01732983 – volume: 428 start-page: 529 issue: 6982 year: 2004 ident: 2022102218572491000_iyac052-B14 article-title: The DNA sequence and biology of human chromosome 19 publication-title: Nature doi: 10.1038/nature02399 – volume: 38 start-page: 1166 issue: 10 year: 2006 ident: 2022102218572491000_iyac052-B5 article-title: A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC publication-title: Nat Genet doi: 10.1038/ng1885 – volume: 28 start-page: 4798 issue: 21 year: 2019 ident: 2022102218572491000_iyac052-B8 article-title: Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones publication-title: Mol Ecol doi: 10.1111/mec.15254 – volume: 9 start-page: 269 year: 2009 ident: 2022102218572491000_iyac052-B27 article-title: Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the long-tailed giant rat (Leopoldamys sabanus) publication-title: BMC Evol Biol doi: 10.1186/1471-2148-9-269 – volume: 444 start-page: 444 issue: 7118 year: 2006 ident: 2022102218572491000_iyac052-B45 article-title: Global variation in copy number in the human genome publication-title: Nature doi: 10.1038/nature05329 – volume: 207 start-page: 767 issue: 2 year: 2017 ident: 2022102218572491000_iyac052-B43 article-title: Variation in recombination rate and its genetic determinism in sheep populations publication-title: Genetics doi: 10.1534/genetics.117.300123 – volume: 178 start-page: 1260 issue: 5 year: 2019 ident: 2022102218572491000_iyac052-B6 article-title: A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana publication-title: Cell doi: 10.1016/j.cell.2019.07.038 – volume: 137 start-page: 19 issue: 1 year: 2009 ident: 2022102218572491000_iyac052-B23 article-title: Population genetic models of duplicated genes publication-title: Genetica doi: 10.1007/s10709-009-9355-1 – volume: 111 start-page: 131 issue: 2 year: 2013 ident: 2022102218572491000_iyac052-B26 article-title: Population-specific recombination sites within the human MHC region publication-title: Heredity (Edinb) doi: 10.1038/hdy.2013.27 – volume: 12 start-page: 426 year: 2011 ident: 2022102218572491000_iyac052-B29 article-title: A Bayesian model for gene family evolution publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-426 – volume: 115 start-page: 207 issue: 1 year: 1987 ident: 2022102218572491000_iyac052-B42 article-title: Simulating evolution by gene duplication publication-title: Genetics doi: 10.1093/genetics/115.1.207 – volume: 170 start-page: 56 year: 2014 ident: 2022102218572491000_iyac052-B12 article-title: Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses publication-title: Biol Conserv doi: 10.1016/j.biocon.2013.12.036 – volume: 46 start-page: 919 issue: 8 year: 2014 ident: 2022102218572491000_iyac052-B48 article-title: Inferring human population size and separation history from multiple genome sequences publication-title: Nat Genet doi: 10.1038/ng.3015 – volume: 38 start-page: 507 year: 1974 ident: 2022102218572491000_iyac052-B50 article-title: Unequal crossover and the evolution of multigene families publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/SQB.1974.038.01.055 – volume: 27 start-page: 2347 issue: 11 year: 2014 ident: 2022102218572491000_iyac052-B17 article-title: Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure publication-title: J Evol Biol doi: 10.1111/jeb.12476 – volume: 97 start-page: 427 issue: 6 year: 2006 ident: 2022102218572491000_iyac052-B46 article-title: Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates publication-title: Heredity (Edinb) doi: 10.1038/sj.hdy.6800892 – volume: 14 start-page: 251 issue: 2 year: 1978 ident: 2022102218572491000_iyac052-B15 article-title: The accumulation of deleterious genes in a population—muller’s ratchet publication-title: Theor Popul Biol doi: 10.1016/0040-5809(78)90027-8 – volume: 16 start-page: 1439 issue: 7 year: 2007 ident: 2022102218572491000_iyac052-B11 article-title: Spatial pattern of MHC class II variation in the great snipe (Gallinago media) publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2007.03281.x – start-page: 666 volume-title: Encyclopedia of Genetics year: 2001 ident: 2022102218572491000_iyac052-B49 doi: 10.1006/rwgn.2001.0433 – volume: 38 start-page: 97 issue: 1 year: 1981 ident: 2022102218572491000_iyac052-B52 article-title: A mathematical study on the distribution of the number of repeated genes per chromosome publication-title: Genet Res doi: 10.1017/S0016672300020437 – volume: 497 start-page: 52 issue: 1 year: 2012 ident: 2022102218572491000_iyac052-B1 article-title: The evolution of MHC diversity: evidence of intralocus gene conversion and recombination in a single-locus system publication-title: Gene doi: 10.1016/j.gene.2012.01.017 – volume: 1 start-page: 1 year: 2008 ident: 2022102218572491000_iyac052-B9 article-title: Copy number variation and human disease publication-title: Nat Educ – volume: 95 start-page: 1 year: 2014 ident: 2022102218572491000_iyac052-B44 article-title: Demography-adjusted tests of neutrality based on genome-wide SNP data publication-title: Theor Popul Biol doi: 10.1016/j.tpb.2014.05.002 – volume: 42 start-page: 375 issue: 2 year: 1988 ident: 2022102218572491000_iyac052-B39 article-title: Further simulation studies on evolution by gene duplication publication-title: Evolution doi: 10.1111/j.1558-5646.1988.tb04140.x – volume: 7 start-page: 393 year: 2006 ident: 2022102218572491000_iyac052-B33 article-title: A probabilistic classifier for olfactory receptor pseudogenes publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-393 – start-page: 133 volume-title: Multigene Families and Their Implications for Evolutionary Theory year: 1984 ident: 2022102218572491000_iyac052-B40 – volume: 76 start-page: 51 issue: 1 year: 2000 ident: 2022102218572491000_iyac052-B47 article-title: The effect of subdivision on variation at multi-allelic loci under balancing selection publication-title: Genet Res doi: 10.1017/S0016672300004535 – volume: 91 start-page: 591 issue: 3 year: 1979 ident: 2022102218572491000_iyac052-B37 article-title: An extension of a model for the evolution of multigene families by unequal crossing over publication-title: Genetics doi: 10.1093/genetics/91.3.591 – volume: 13 start-page: 3709 issue: 12 year: 2004 ident: 2022102218572491000_iyac052-B35 article-title: Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae) publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2004.02368.x – volume: 31 start-page: 29 issue: 1 year: 2009 ident: 2022102218572491000_iyac052-B7 article-title: The life and death of gene families publication-title: Bioessays doi: 10.1002/bies.080085 – volume: 147 start-page: 1259 issue: 3 year: 1997 ident: 2022102218572491000_iyac052-B36 article-title: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution publication-title: Genetics doi: 10.1093/genetics/147.3.1259 – volume: 133 start-page: 99 issue: 1 year: 1988 ident: 2022102218572491000_iyac052-B4 article-title: Evolution of sex in RNA viruses publication-title: J Theor Biol doi: 10.1016/S0022-5193(88)80027-4 – volume: 181 start-page: 3393 issue: 5 year: 2008 ident: 2022102218572491000_iyac052-B20 article-title: Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity publication-title: J Immunol doi: 10.4049/jimmunol.181.5.3393 – volume: 15 start-page: 15 year: 2018 ident: 2022102218572491000_iyac052-B28 article-title: Meta-populational demes constitute a reservoir for large MHC allele diversity in wild house mice (Mus musculus) publication-title: Front Zool doi: 10.1186/s12983-018-0266-9 – volume: 37 start-page: 727 issue: 7 year: 2005 ident: 2022102218572491000_iyac052-B55 article-title: Fine-scale structural variation of the human genome publication-title: Nat Genet doi: 10.1038/ng1562 – volume: 167 start-page: 305 year: 1999 ident: 2022102218572491000_iyac052-B19 article-title: Gene conversion can create new MHC allees publication-title: Immunol Rev doi: 10.1111/j.1600-065X.1999.tb01400.x – volume: 12 start-page: 129 issue: 1 year: 2011 ident: 2022102218572491000_iyac052-B10 article-title: MHC diversity in bottlenecked populations: a simulation model publication-title: Conserv Genet doi: 10.1007/s10592-009-9998-6 – volume: 263 start-page: 74 issue: 5572 year: 1976 ident: 2022102218572491000_iyac052-B41 article-title: Simple model for treating evolution of multigene families publication-title: Nature doi: 10.1038/263074a0 – volume: 71 start-page: 337 issue: 735 year: 1937 ident: 2022102218572491000_iyac052-B16 article-title: The effect of variation of fitness publication-title: Am Nat doi: 10.1086/280722 |
SSID | ssj0006958 |
Score | 2.431003 |
Snippet | Abstract
Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not... Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only... Multi-gene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favoured not only... Multigene families-immunity genes or sensory receptors, for instance-are often subject to diversifying selection. Allelic diversity may be favored not only... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Copy number Empirical analysis Epistasis Evolutionary genetics Fitness Frequency dependence Gene families Genes Genetic diversity Genetics Investigation Mathematical models Mean Parameters Population Population (statistical) Population genetics Population number Recombination Reproductive fitness |
Title | Recombination, selection, and the evolution of tandem gene arrays |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35460227 https://www.proquest.com/docview/2686561954 https://www.proquest.com/docview/2654297940 https://pubmed.ncbi.nlm.nih.gov/PMC9252282 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA4iCL6Iv53OEWEvgmVd0rTJ4xDHVNSXDfZWLlmKA9fJugn77720XdlkyN4KudD0uyT3Jde7I6QZCAZCS-MJGAkvAOCe0op5AZIDiwbRF7lH9-097A2Cl6EYlnm2sy0ufMVbCKSL58ta4yUYX7j9Fm2wm9P9j2G164ZKyNINua3ThtnZCGVbY5R_f4xcszTdY3JUUkTaKXR6QvZsekoOiqKRyzPScSfGCR5oc0wfaJZXsskfIR1RJHTU_pQTik4T6u4K7IS6oVKYzWCZnZNB96n_2PPKQgieCUJ_7iVoVKUCJbVEutRuGwFtQO4kIzx_WA4ANjGKWyt9DlJr5tsg0qieJHTlWzS_IPvpNLVXhCZSGGWUxWVsAs0iLUY6EW0IgZuQgV8jrRVOsSmzhLtiFV9x4a3m8QrZuES2Ru6rHt9Fhox_ZJsI_Q5i9ZVu4nJJZTELJXJPl6CuRu6qZlwMzsMBqZ0unIwrv4VbDH7HZaHK6mVcIJaMRTUSbSi5EnCJtjdb0vFnnnBbMYRdsuvdRn9DDpmLkXB3wEGd7M9nC3uLzGWuG8jZn18b-cT9Bao08uA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recombination%2C+selection%2C+and+the+evolution+of+tandem+gene+arrays&rft.jtitle=Genetics+%28Austin%29&rft.au=Otto%2C+Moritz&rft.au=Zheng%2C+Yichen&rft.au=Wiehe%2C+Thomas&rft.date=2022-07-04&rft.pub=Oxford+University+Press&rft.eissn=1943-2631&rft.volume=221&rft.issue=3&rft_id=info:doi/10.1093%2Fgenetics%2Fiyac052&rft.externalDocID=10.1093%2Fgenetics%2Fiyac052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon |