Comprehensive assessment of 2G bioethanol production

•Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The biochemical route must tackle with both pentose and hexose conversion.•The evaluation of a treatment pathway includes process simulation.•Agro-reso...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 313; p. 123630
Main Authors Sharma, Bhawna, Larroche, Christian, Dussap, Claude-Gilles
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The biochemical route must tackle with both pentose and hexose conversion.•The evaluation of a treatment pathway includes process simulation.•Agro-resource renewal and soil impacts are added for a complete LCA. The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource.
AbstractList •Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The biochemical route must tackle with both pentose and hexose conversion.•The evaluation of a treatment pathway includes process simulation.•Agro-resource renewal and soil impacts are added for a complete LCA. The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource.
The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource.
The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource.The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource.
ArticleNumber 123630
Author Dussap, Claude-Gilles
Sharma, Bhawna
Larroche, Christian
Author_xml – sequence: 1
  givenname: Bhawna
  surname: Sharma
  fullname: Sharma, Bhawna
– sequence: 2
  givenname: Christian
  surname: Larroche
  fullname: Larroche, Christian
– sequence: 3
  givenname: Claude-Gilles
  surname: Dussap
  fullname: Dussap, Claude-Gilles
  email: c-gilles.dussap@uca.fr
BackLink https://hal.science/hal-03492215$$DView record in HAL
BookMark eNqFkUtLw0AUhQepYFv9C5KlLlLvPPIYcKEUX1Bwo-thMrkhU9JMnZkW_PcmRDduurpw-c7h3nMWZNa7Hgm5prCiQPO77aqyzkc07YoBG5aM5xzOyJyWBU-ZLPIZmYPMIS0zJi7IIoQtAHBasDkRa7fbe2yxD_aIiQ4BQ9hhHxPXJOwlGawxtrp3XbL3rj6YaF1_Sc4b3QW8-p1L8vn89LF-TTfvL2_rx01qRA4xxbLijcxMY6hAaWjNq5JXNZVZXZYyrzKmjawaUTUV4zoH5LIQVEMpGyoKTvmS3E6-re7U3tud9t_KaateHzdq3AEXkjGaHUf2ZmKHM78OGKLa2WCw63SP7hAUG35nEjiw06igGZOcFTCg9xNqvAvBY6OMjXrMIHptO0VBjR2orfrrQI0dqKmDQZ7_k_99cVL4MAlxiPdo0atgLPYGa-vRRFU7e8riB78cpUg
CitedBy_id crossref_primary_10_1007_s10668_021_01753_x
crossref_primary_10_3390_catal10111279
crossref_primary_10_1016_j_seppur_2022_122840
crossref_primary_10_3389_fbioe_2021_659472
crossref_primary_10_1016_j_renene_2021_05_016
crossref_primary_10_1039_D3NJ01773G
crossref_primary_10_1016_j_micres_2020_126534
crossref_primary_10_1016_j_techfore_2022_121524
crossref_primary_10_1016_j_enconman_2020_113637
crossref_primary_10_1007_s43994_025_00212_x
crossref_primary_10_1016_j_jclepro_2020_124111
crossref_primary_10_1590_1807_1929_agriambi_v29n6e282185
crossref_primary_10_1016_j_procbio_2021_10_002
crossref_primary_10_1038_s41598_024_70727_6
crossref_primary_10_1016_j_renene_2024_120759
crossref_primary_10_1016_j_copbio_2023_103015
crossref_primary_10_1111_1751_7915_13912
crossref_primary_10_1186_s13068_021_01949_3
crossref_primary_10_1038_s41598_023_46293_8
crossref_primary_10_3390_su14095062
crossref_primary_10_1007_s13399_021_01591_x
crossref_primary_10_1016_j_jobab_2025_01_002
crossref_primary_10_1016_j_mcat_2024_114666
crossref_primary_10_3390_fermentation9100920
crossref_primary_10_1016_j_copbio_2021_01_016
crossref_primary_10_1039_D4GC05662K
crossref_primary_10_15421_012405
crossref_primary_10_2478_ebtj_2023_0007
crossref_primary_10_1007_s10668_024_05692_1
crossref_primary_10_1007_s40243_024_00283_6
crossref_primary_10_1016_j_cej_2024_151713
crossref_primary_10_3390_bioengineering9100557
crossref_primary_10_1080_17597269_2024_2432157
crossref_primary_10_1016_j_biortech_2021_126153
crossref_primary_10_1016_j_biortech_2023_129549
crossref_primary_10_1016_j_biortech_2022_127105
crossref_primary_10_1016_j_esd_2022_10_009
crossref_primary_10_1016_j_biombioe_2024_107439
crossref_primary_10_1007_s00253_024_13224_0
crossref_primary_10_3390_pr10091715
crossref_primary_10_1016_j_biortech_2022_126810
crossref_primary_10_1016_j_micres_2023_127367
crossref_primary_10_3390_antiox11061155
crossref_primary_10_1016_j_rser_2021_111108
crossref_primary_10_3390_fermentation9020181
crossref_primary_10_1016_j_biombioe_2021_106166
crossref_primary_10_3390_molecules26040806
crossref_primary_10_3390_nano11030579
crossref_primary_10_3390_app10175987
crossref_primary_10_1016_j_jclepro_2024_140717
crossref_primary_10_1016_j_biortech_2021_124808
crossref_primary_10_1002_er_8678
crossref_primary_10_14710_ijred_2022_43740
crossref_primary_10_1007_s00449_024_03010_7
crossref_primary_10_1016_j_biortech_2022_127251
crossref_primary_10_1016_j_rser_2023_114267
crossref_primary_10_1016_j_ijbiomac_2024_130448
crossref_primary_10_1051_e3sconf_202560202007
crossref_primary_10_1063_5_0143669
crossref_primary_10_1016_j_biortech_2023_128989
crossref_primary_10_3390_fermentation7040203
crossref_primary_10_1186_s13068_023_02354_8
crossref_primary_10_3390_fermentation7040288
crossref_primary_10_1016_j_biortech_2022_127774
crossref_primary_10_3390_en16176384
crossref_primary_10_1016_j_biortech_2020_124217
crossref_primary_10_1016_j_biortech_2021_126247
crossref_primary_10_1016_j_bej_2022_108404
crossref_primary_10_1016_j_biortech_2020_124586
crossref_primary_10_1080_01614940_2022_2054554
crossref_primary_10_3390_pr11040992
crossref_primary_10_3390_en17174484
crossref_primary_10_5772_geet_20240082
crossref_primary_10_1111_gcbb_12774
crossref_primary_10_1016_j_rser_2021_110949
crossref_primary_10_3390_pr9091583
crossref_primary_10_1016_j_bcab_2023_102877
crossref_primary_10_1088_1755_1315_724_1_012055
crossref_primary_10_1007_s42250_022_00563_6
crossref_primary_10_1002_cssc_202100765
crossref_primary_10_56845_terys_v1i1_251
crossref_primary_10_1016_j_biortech_2021_126250
crossref_primary_10_1016_j_biortech_2020_124209
crossref_primary_10_1016_j_seppur_2024_127392
crossref_primary_10_1016_j_biortech_2021_126415
crossref_primary_10_3390_ijms241613001
crossref_primary_10_3390_fermentation8120705
crossref_primary_10_3390_waste3020012
crossref_primary_10_1016_j_indcrop_2021_114471
crossref_primary_10_1016_j_fuel_2022_124624
crossref_primary_10_1038_s41598_022_06042_9
crossref_primary_10_1016_j_recm_2021_12_002
crossref_primary_10_1016_j_indcrop_2023_116297
crossref_primary_10_1007_s12155_023_10640_4
crossref_primary_10_1021_acsomega_4c06579
crossref_primary_10_7849_ksnre_2021_0008
crossref_primary_10_1002_cctc_202300733
crossref_primary_10_5802_crchim_226
crossref_primary_10_3390_su141912127
crossref_primary_10_1016_j_apenergy_2020_115884
crossref_primary_10_1016_j_biortech_2023_129174
crossref_primary_10_1016_j_jechem_2022_04_049
crossref_primary_10_1016_j_biortech_2021_126100
crossref_primary_10_2339_politeknik_1066167
crossref_primary_10_1016_j_biortech_2020_124559
crossref_primary_10_14710_ijred_2022_41774
crossref_primary_10_1016_j_biortech_2021_124833
crossref_primary_10_3390_en14030565
crossref_primary_10_1016_j_biortech_2021_125923
crossref_primary_10_1016_j_renene_2023_03_056
crossref_primary_10_1016_j_rser_2021_111817
crossref_primary_10_1016_j_nexus_2023_100254
crossref_primary_10_3390_su17010173
crossref_primary_10_1186_s42825_021_00074_z
crossref_primary_10_1002_bbb_2589
crossref_primary_10_1016_j_apcatb_2023_123550
crossref_primary_10_33667_2078_5631_2022_16_93_101
crossref_primary_10_1007_s13399_022_03307_1
crossref_primary_10_1016_j_nbt_2024_12_004
crossref_primary_10_3390_recycling9010019
crossref_primary_10_1007_s12155_023_10617_3
crossref_primary_10_1016_j_ijbiomac_2022_08_186
crossref_primary_10_3390_ma14040914
crossref_primary_10_1016_j_seta_2024_103722
crossref_primary_10_1016_j_jclepro_2025_145031
crossref_primary_10_1016_j_matpr_2023_08_379
crossref_primary_10_1016_j_indcrop_2022_115969
crossref_primary_10_1016_j_scitotenv_2022_158689
crossref_primary_10_1016_j_biteb_2024_101891
crossref_primary_10_1088_1755_1315_1312_1_012037
crossref_primary_10_3390_ma14195597
crossref_primary_10_1016_j_indcrop_2023_117048
crossref_primary_10_1016_j_bej_2021_108192
crossref_primary_10_1080_17597269_2023_2299090
crossref_primary_10_1021_acssuschemeng_1c08300
crossref_primary_10_1016_j_ijhydene_2021_07_141
crossref_primary_10_1186_s13068_021_02067_w
crossref_primary_10_1016_j_scitotenv_2024_175780
crossref_primary_10_1021_acssuschemeng_1c01513
crossref_primary_10_1016_j_renene_2023_01_063
crossref_primary_10_3390_fermentation8120734
crossref_primary_10_3390_en16124657
crossref_primary_10_1007_s44279_025_00163_1
crossref_primary_10_1016_j_fuel_2022_124532
crossref_primary_10_1007_s12155_022_10440_2
crossref_primary_10_1016_j_fuel_2022_123444
crossref_primary_10_3390_molecules27248717
crossref_primary_10_1002_ente_202200892
crossref_primary_10_3390_plants11202791
crossref_primary_10_1016_j_envres_2022_112710
crossref_primary_10_1007_s10668_022_02633_8
crossref_primary_10_1155_2021_3388067
crossref_primary_10_1007_s40974_024_00317_9
crossref_primary_10_1016_j_fuel_2022_123448
crossref_primary_10_1016_j_fuel_2022_125109
crossref_primary_10_1088_1742_6596_2616_1_012018
crossref_primary_10_2139_ssrn_4165811
crossref_primary_10_1016_j_biortech_2024_130470
crossref_primary_10_3389_fenrg_2021_684234
crossref_primary_10_1155_2023_6626513
crossref_primary_10_1002_cplu_202400566
crossref_primary_10_1016_j_biortech_2023_129486
crossref_primary_10_1002_cssc_202102628
crossref_primary_10_3389_fchem_2022_884398
crossref_primary_10_1007_s12155_021_10383_0
crossref_primary_10_1093_jambio_lxac061
crossref_primary_10_1016_j_biortech_2022_128012
crossref_primary_10_1039_D0SE01802C
crossref_primary_10_3390_ijerph18116001
crossref_primary_10_6090_jarq_56_405
crossref_primary_10_1016_j_biortech_2022_126903
crossref_primary_10_1007_s13399_023_03891_w
crossref_primary_10_3390_en15134876
crossref_primary_10_1016_j_biortech_2022_127836
crossref_primary_10_3389_fenrg_2022_836690
crossref_primary_10_1021_acssynbio_3c00289
crossref_primary_10_1186_s40643_022_00573_9
crossref_primary_10_3390_en15072582
crossref_primary_10_3390_fermentation9100906
crossref_primary_10_1016_j_jallcom_2023_173194
crossref_primary_10_1080_17597269_2023_2294593
crossref_primary_10_1134_S0040579523050469
Cites_doi 10.1007/978-94-007-6898-7_2
10.1039/c0ee00574f
10.1016/j.tplants.2008.12.006
10.2136/sssaj2008.0141
10.1016/j.enconman.2009.01.008
10.1016/j.ejbt.2016.07.006
10.1016/j.biombioe.2012.01.028
10.1016/j.biombioe.2012.10.017
10.1186/1754-6834-3-17
10.4061/2011/280696
10.1002/9781118642047
10.5772/52164
10.1007/978-981-10-0687-6_2
10.1016/j.tibtech.2007.01.001
10.1080/19443994.2015.1079249
10.1016/j.procbio.2012.05.004
10.1016/j.tibtech.2006.10.004
10.1099/mic.0.26089-0
10.1385/ABAB:129:1:55
10.1016/j.biombioe.2007.10.017
10.1016/j.biombioe.2004.11.004
10.1002/9780470750025.ch11
10.1016/j.renene.2016.03.045
10.1016/j.rser.2016.11.022
10.1016/S0961-9534(02)00006-5
10.1002/bbb.206
10.1016/j.indcrop.2003.12.015
10.1016/S0960-8524(97)00181-8
10.1016/j.pecs.2010.01.003
10.1162/108819803323059433
10.1093/jxb/erv130
10.1021/bp0340180
10.1007/s002530100624
10.4236/aer.2016.42005
10.1007/s13205-016-0584-6
10.1016/j.cep.2015.10.010
10.1016/B978-0-12-802392-1.00003-4
10.3389/fenrg.2018.00096
10.1016/B978-0-12-813766-6.00003-5
10.1016/j.rser.2009.01.016
10.1016/j.energy.2014.04.014
10.1016/j.rser.2017.02.018
10.1016/j.rser.2016.12.076
10.1016/0960-8524(94)90214-3
10.1016/j.enconman.2010.08.013
10.1002/prep.201700210
10.1007/978-3-319-56475-3_10
10.17113/ftb.56.02.18.5428
10.1002/bit.260250107
10.1021/es048293+
10.1016/j.biombioe.2005.06.004
10.1039/C4GC01124D
10.1007/978-3-319-30205-8_22
10.2172/1013269
10.1021/ie801542g
10.1111/j.1365-2486.2006.01163.x
10.1016/j.biombioe.2014.01.040
10.1016/B978-0-08-101023-5.00010-8
10.1016/B978-0-12-385099-7.00007-3
10.1515/bioeth-2016-0003
10.1016/j.enpol.2008.05.016
10.3390/biom4010117
10.1002/cite.330670827
10.1016/j.jclepro.2012.01.028
10.1016/j.biombioe.2008.12.001
10.1111/j.1467-7652.2004.00076.x
10.1155/2018/1503126
10.1073/pnas.0704767105
10.1002/bbb.26
10.5772/64979
10.1016/j.resconrec.2009.03.013
10.1186/s12934-018-0879-x
10.1016/j.biortech.2006.11.039
10.1016/j.psep.2014.02.012
10.1016/j.jclepro.2006.03.002
10.1016/j.apenergy.2009.08.024
10.1007/s11367-010-0177-2
10.1016/j.resconrec.2007.08.007
10.1007/s10295-003-0049-x
10.1016/j.trd.2006.01.001
10.1016/j.rser.2019.02.018
10.5772/30085
10.2134/agronj2005.0222
10.1016/j.rser.2010.08.003
10.1016/j.cej.2011.06.083
10.1016/j.psep.2009.11.005
10.1007/s13205-014-0246-5
10.1007/s00267-010-9494-2
10.1155/2014/631013
10.1021/es900250d
10.1007/s11367-014-0708-3
10.1007/978-3-319-26015-0
10.1016/j.enpol.2010.05.008
10.1186/s13068-016-0635-6
10.1186/s13068-016-0567-1
10.1016/j.biortech.2007.01.002
10.1007/978-1-4757-6970-8
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Ltd.
Attribution - NonCommercial
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Ltd.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7X8
7S9
L.6
1XC
VOOES
DOI 10.1016/j.biortech.2020.123630
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID oai_HAL_hal_03492215v1
10_1016_j_biortech_2020_123630
S0960852420309020
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c460t-e8b3f95cfc14e9c1d3b83bd195d8896b52ac9bf4bfb23a60e39741a089f147313
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri May 09 12:10:28 EDT 2025
Thu Jul 10 23:29:31 EDT 2025
Fri Jul 11 01:27:09 EDT 2025
Tue Jul 01 03:18:45 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Fri Feb 23 02:47:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fermentation
Lignocellulosic biomass
Environmental impact
Process simulation
2G (second generation) bioethanol
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-e8b3f95cfc14e9c1d3b83bd195d8896b52ac9bf4bfb23a60e39741a089f147313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7348-9191
OpenAccessLink https://hal.science/hal-03492215
PQID 2415293270
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_03492215v1
proquest_miscellaneous_2524290302
proquest_miscellaneous_2415293270
crossref_citationtrail_10_1016_j_biortech_2020_123630
crossref_primary_10_1016_j_biortech_2020_123630
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Bioresource technology
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hess, Wright, Kenney (b0235) 2007; 1
Wang, Q., 2013. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Green Process. Synth. https://doi.org/10.1515/gps-2013-0087.
Bajpai, P., 2016a. Structure of Lignocellulosic Biomass. https://doi.org/10.1007/978-981-10-0687-6_2.
Cooper, G., et al., 2019, 2019 Ethanol Industry Outlook, Renewable Fuels Association.
Liebig, Johnson, Hanson, Frank (b0310) 2005
Spatari, S., Zhang, Y., Maclean, H.L., 2005. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ. Sci. Technol. https://doi.org/10.1021/es048293.
Gabrielle, Gagnaire (b0180) 2008; 32
Blanco-Canqui, Lal (b0085) 2009
Bertrand, E., Pradel M., Dussap, C.G., 2016. Economic and Environmental Aspects of Biofuels. In: Green Fuels Technology, Soccol, C.R., Brar, S.K., Faulds, C., Ramos, L.P. eds. Springer, Chap 22, 525–555.
Hatti-Kaul, Törnvall, Gustafsson, Börjesson (b0225) 2007
Bai, Y., Luo, L., Van Der Voet, E., 2010. Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-010-0177-2.
Shafie, Masjuki, Mahlia (b0455) 2014
Hayashi, van Ierland, Zhu (b0230) 2014
Szczukowski, Tworkowski, Klasa, Stolarski (bib562) 2002; 48
Davis, Anderson-Teixeira, DeLucia (b0145) 2009
Sims, Hastings, Schlamadinger, Taylor, Smith (b0475) 2006; 12
Wyman, C.E., 1994. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresour. Technol. https://doi.org/10.1016/0960-8524(94)90214-3.
von Blottnitz, Curran (b0525) 2007; 15
Nagy, Mizsey, Hancsók, Boldyryev, Varbanov (b0355) 2015; 98
Chundawat, S.P.S., Donohoe, B.S., Sousa, L. da C., Elder, T., Agarwal, U.P., Lu, F., Ralph, J., Himmel, M.E., Balan, V., Dale, B.E., 2011. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 4, 973–984. https://doi.org/10.1039/C0EE00574F.
Saini, J.K., Saini, R., Tewari, L., 2015. Lignocellulosic agriculture wastes as biomass feedstock for second-generation bioethanol production: concepts and recent developments. 3 Biotech. https://doi.org/10.1007/s13205-014-0246-5.
Kim, Dale (b0285) 2005; 29
Mabee, W.E., Gregg, D.J., Arato, C., Berlin, A., Bura, R., Gilkes, N., Mirochnik, O., Pan, X., Pye, E.K., Saddler, J.N., 2006. Updates on softwood-to-ethanol process development, in: Applied Biochemistry and Biotechnology. https://doi.org/10.1385/ABAB:129:1:55.
Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Nelson, R., 2003b. Is Ethanol Made from Corn Stover a Sustainable Transportation Fuel?. In: Enzyme Sugar Platform (ESP) Project FY03 Review Meeting.
Nelson (b0360) 2002
Cherubini, F., Ulgiati, S., 2010. Crop residues as raw materials for biorefinery systems – A LCA case study. Appl. Energy. https://doi.org/10.1016/j.apenergy.2009.08.024.
Bennett, Phipps, Strange, Grey (b0075) 2004
Pfenning, A., 2004. Kirk-Othmer Encyclopedia of chemical technology. Chem. Ing. Tech. https://doi.org/10.1002/cite.330670827.
Sheehan, Aden, Paustian, Killian, Brenner, Walsh, Nelson (b0460) 2003; 7
Tomás-Pejó, E., Alvira, P., Ballesteros, M., Negro, M.J., 2011. Pretreatment technologies for lignocellulose-to-bioethanol conversion, in: Biofuels. https://doi.org/10.1016/B978-0-12-385099-7.00007-3.
González-García, Moreira, Feijoo, Murphy (b0190) 2012
Balat (b0060) 2011
Mu, Seager, Rao, Zhao (b0350) 2010; 46
Pereira Ramos (b0390) 2003
Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials, 2016. https://doi.org/10.1007/978-3-319-26015-0.
Dien, B.S., 2010. Mass Balances and Analytical Methods for Biomass Pretreatment Experiments. In: Biomass to Biofuels. John Wiley & Sons, Ltd, pp. 213–231. https://doi.org/10.1002/9780470750025.ch11.
Singh, Dhananjaya Singh, Krishnamurthy (bib567) 2014; 6
Gismatulina, Budaeva, Sakovich (bib564) 2018; 43
Sassner, Mårtensson, Galbe, Zacchi (b0445) 2008; 99
Adrio, Demain (b0015) 2014; 4
Taherzadeh, Karimi (b0490) 2007
Tan, Lee, Mohamed (b0495) 2008; 36
Lee, H.V., Hamid, S.B.A., Zain, S.K., 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process [WWW Document]. Sci. World J. https://doi.org/10.1155/2014/631013.
Fayoud, Tahiri, Alami Younssi, Albizane, Gallart-Mateu, Cervera, de la Guardia (bib563) 2016; 57
Chen, H., 2014. Chemical Composition and Structure of Natural Lignocellulose, in: Chen, H. (Ed.), Biotechnology of Lignocellulose: Theory and Practice. Springer Netherlands, Dordrecht, pp. 25–71. https://doi.org/10.1007/978-94-007-6898-7_2.
EU-28: 2018. Biofuels Annual: EU Biofuels Annual 2018. Flach B., Liebertz S., Lappin J., Bolla S., UDSA Foreign Agricultural Service.
Guo, Littlewood, Joyce, Murphy (b0210) 2014
Hahn-Hägerdal, Galbe, Gorwa-Grauslund, Lidén, Zacchi (b0215) 2006
Kaufman, A.S., Meier, P.J., Sinistore, J.C., Reinemann, D.J., 2010. Applying life-cycle assessment to low carbon fuel standards—How allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy, Special Section on Carbon Emissions and Carbon Management in Cities with Regular Papers 38, 5229–5241. https://doi.org/10.1016/j.enpol.2010.05.008.
Ojeda, K., Sánchez, E., El-Halwagi, M., Kafarov, V., 2011. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways. Chem. Eng. J. https://doi.org/10.1016/j.cej.2011.06.083.
Saliu, Sani (bib568) 2012
Walia, A., Guleria, S., Mehta, P., Chauhan, A., Parkash, J., 2017. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. https://doi.org/10.1007/s13205-016-0584-6.
Kapoor, M., Panwar, D., Kaira, G.S., 2016. Bioprocesses for enzyme production using agro-industrial wastes: Technical challenges and commercialization potential. In: Dhillon, G.S., Kaur, S. (Eds.), Agro-Industrial Wastes as Feedstock for Enzyme Production. vol. 3, pp. 61–93.
Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., Aminul Islam, A.K.M., 2017. Jatropha biofuel industry: the challenges, in: Frontiers in Bioenergy and Biofuels. https://doi.org/10.5772/64979.
Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. In: Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2003.12.015.
Fugelsang, K.C., Fugelsang, K.C., 1997. Fermentation and Post-fermentation Processing, in: Wine Microbiology. https://doi.org/10.1007/978-1-4757-6970-8_5.
Mooney, Mansfield, Touhy, Saddler (b0345) 1998
Jahnavi, G., Prashanthi, G.S., Sravanthi, K., Rao, L.V., 2017. Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.02.018.
Kuhad, Gupta, Singh (b0295) 2011
Alvira, Negro, Ballesteros, González, Ballesteros (b0025) 2016; 2
Zaldivar, J., Nielsen, J., Olsson, L., 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s002530100624.
Chen, Z., Wang, L., Qiu, S., Ge, S., 2018. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Res. Int. https://doi.org/10.1155/2018/1503126.
Williams, Inman, Aden, Heath (b0540) 2009
Baudry, Delrue, Legrand, Pruvost, Vallée (b0070) 2017; 69
Demirel (b0150) 2018
Imran, M., Anwar, Z., Irshad, M., Asad, M.J., Ashfaq, H., 2016. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv. Enzyme Res. https://doi.org/10.4236/aer.2016.42005.
Nitsche, Gbadamosi (b0370) 2017
Borrion, McManus, Hammond (b0095) 2012
Nigam, P.S., Singh, A., 2011. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. https://doi.org/10.1016/j.pecs.2010.01.003.
Soares, Pessoa, Mendes (b0480) 2015; 93
Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2016.12.076.
Abdullah, Syed Muhammad, Shokravi, Ismail, Kassim, Mahmood, Aziz (b0005) 2019; 107
Ravagnani, Reis, Filho, Wolf-Maciel (b0410) 2010; 88
Robak, Balcerek (b0425) 2018; 56
Sannigrahi, Ragauskas, Tuskan (bib561) 2010
Khan, M.I., Shin, J.H., Kim, J.D., 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories. https://doi.org/10.1186/s12934-018-0879-x.
Porzio, Prussi, Chiaramonti, Pari (b0405) 2012
Mohanty, S.K., Swain, M.R., 2019, Bioethanol Production From Corn and Wheat: Food, Fuels and Future, in: Bioethanol production From Food Crops, Ray, R.C., Ramachandran, S., editors, Elsevier, Chap 3, 45–59.
Bajpai (b0055) 2016
Simas-Rodrigues, Villela, Martins, Marques, Colepicolo, Tonon (b0470) 2015
Rosenbaum, R.K., Hauschild, M.Z., Boulay, A.M., Fantke, P., Laurent, A., Núñez, M., Vieira, M., 2017. Life cycle impact assessment, in: Life Cycle Assessment: Theory and Practice. https://doi.org/10.1007/978-3-319-56475-3_10.
Saha (b0435) 2003
Fleming, J.S., Habibi, S., MacLean, H.L., 2006. Investigating the sustainability of lignocellulose-derived fuels for light-duty vehicles. Transp. Res. Part Transp. Environ. https://doi.org/10.1016/j.trd.2006.01.001.
Soccol, Faraco, Karp, Vandenberghe, Thomaz-Soccol, Woiciechowski, Pandey (b0420) 2011
Bondesson, Galbe (b0090) 2016; 9
Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie801542g.
Owsianiak, M., Laurent, A., Bjørn, A., Hauschild, M.Z., 2014. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling i
10.1016/j.biortech.2020.123630_b0120
10.1016/j.biortech.2020.123630_b0240
10.1016/j.biortech.2020.123630_b0080
10.1016/j.biortech.2020.123630_bib566
Balat (10.1016/j.biortech.2020.123630_b0060) 2011
10.1016/j.biortech.2020.123630_b0125
Shafie (10.1016/j.biortech.2020.123630_b0455) 2014
Wingren (10.1016/j.biortech.2020.123630_b0545) 2003; 19
Barnett (10.1016/j.biortech.2020.123630_b0065) 2003
10.1016/j.biortech.2020.123630_b0245
Mu (10.1016/j.biortech.2020.123630_b0350) 2010; 46
Guo (10.1016/j.biortech.2020.123630_b0210) 2014
10.1016/j.biortech.2020.123630_b0365
10.1016/j.biortech.2020.123630_b0485
Bennett (10.1016/j.biortech.2020.123630_b0075) 2004
Tan (10.1016/j.biortech.2020.123630_b0495) 2008; 36
Kuhad (10.1016/j.biortech.2020.123630_b0295) 2011
10.1016/j.biortech.2020.123630_b0195
The International Standards Organisation (10.1016/j.biortech.2020.123630_b0500) 2006
Uihlein (10.1016/j.biortech.2020.123630_b0515) 2009; 33
Kuhad (10.1016/j.biortech.2020.123630_b0290) 2011
10.1016/j.biortech.2020.123630_b0115
Soares (10.1016/j.biortech.2020.123630_b0480) 2015; 93
10.1016/j.biortech.2020.123630_b0510
Hess (10.1016/j.biortech.2020.123630_b0235) 2007; 1
10.1016/j.biortech.2020.123630_b0110
Luo (10.1016/j.biortech.2020.123630_b0315) 2009; 13
10.1016/j.biortech.2020.123630_b0140
10.1016/j.biortech.2020.123630_b0260
Nagy (10.1016/j.biortech.2020.123630_b0355) 2015; 98
10.1016/j.biortech.2020.123630_b0020
Pereira Ramos (10.1016/j.biortech.2020.123630_b0390) 2003
Abdullah (10.1016/j.biortech.2020.123630_b0005) 2019; 107
Bajpai (10.1016/j.biortech.2020.123630_b0055) 2016
10.1016/j.biortech.2020.123630_b0265
Singh (10.1016/j.biortech.2020.123630_bib567) 2014; 6
10.1016/j.biortech.2020.123630_b0385
10.1016/j.biortech.2020.123630_b0300
10.1016/j.biortech.2020.123630_b0305
Simas-Rodrigues (10.1016/j.biortech.2020.123630_b0470) 2015
10.1016/j.biortech.2020.123630_b0250
Borrion (10.1016/j.biortech.2020.123630_b0095) 2012
10.1016/j.biortech.2020.123630_b0130
Mooney (10.1016/j.biortech.2020.123630_b0345) 1998
Sheehan (10.1016/j.biortech.2020.123630_b0460) 2003; 7
van Vliet (10.1016/j.biortech.2020.123630_b0520) 2009; 50
10.1016/j.biortech.2020.123630_b0535
Saliu (10.1016/j.biortech.2020.123630_bib568) 2012
Tian (10.1016/j.biortech.2020.123630_b0505) 2009; 27
10.1016/j.biortech.2020.123630_b0375
10.1016/j.biortech.2020.123630_b0530
10.1016/j.biortech.2020.123630_b0135
Liebig (10.1016/j.biortech.2020.123630_b0310) 2005
10.1016/j.biortech.2020.123630_b0255
Baudry (10.1016/j.biortech.2020.123630_b0070) 2017; 69
Gonçalves (10.1016/j.biortech.2020.123630_b0185) 2016; 94
10.1016/j.biortech.2020.123630_b0415
Mohd Azhar (10.1016/j.biortech.2020.123630_b0335) 2017
10.1016/j.biortech.2020.123630_b0040
Nitsche (10.1016/j.biortech.2020.123630_b0370) 2017
10.1016/j.biortech.2020.123630_b0560
Hasunuma (10.1016/j.biortech.2020.123630_b0220) 2012
10.1016/j.biortech.2020.123630_b0160
10.1016/j.biortech.2020.123630_b0205
10.1016/j.biortech.2020.123630_b0325
10.1016/j.biortech.2020.123630_b0045
10.1016/j.biortech.2020.123630_b0320
10.1016/j.biortech.2020.123630_b0165
Porzio (10.1016/j.biortech.2020.123630_b0405) 2012
10.1016/j.biortech.2020.123630_b0440
Kim (10.1016/j.biortech.2020.123630_bib565) 2018; 6
Adrio (10.1016/j.biortech.2020.123630_b0015) 2014; 4
Williams (10.1016/j.biortech.2020.123630_b0540) 2009
Nelson (10.1016/j.biortech.2020.123630_b0360) 2002
Cardona (10.1016/j.biortech.2020.123630_b0100) 2007
Davis (10.1016/j.biortech.2020.123630_b0145) 2009
Olofsson (10.1016/j.biortech.2020.123630_b0380) 2010; 3
Ravagnani (10.1016/j.biortech.2020.123630_b0410) 2010; 88
10.1016/j.biortech.2020.123630_b0030
Demirel (10.1016/j.biortech.2020.123630_b0150) 2018
10.1016/j.biortech.2020.123630_b0395
10.1016/j.biortech.2020.123630_b0270
10.1016/j.biortech.2020.123630_b0555
10.1016/j.biortech.2020.123630_b0155
10.1016/j.biortech.2020.123630_b0430
10.1016/j.biortech.2020.123630_b0275
10.1016/j.biortech.2020.123630_b0550
Graham (10.1016/j.biortech.2020.123630_b0200) 2007; 99
Hayashi (10.1016/j.biortech.2020.123630_b0230) 2014
Pielhop (10.1016/j.biortech.2020.123630_b0400) 2016; 9
Kim (10.1016/j.biortech.2020.123630_b0285) 2005; 29
Blanco-Canqui (10.1016/j.biortech.2020.123630_b0085) 2009
Hahn-Hägerdal (10.1016/j.biortech.2020.123630_b0215) 2006
10.1016/j.biortech.2020.123630_b0340
Taherzadeh (10.1016/j.biortech.2020.123630_b0490) 2007
Bondesson (10.1016/j.biortech.2020.123630_b0090) 2016; 9
von Blottnitz (10.1016/j.biortech.2020.123630_b0525) 2007; 15
10.1016/j.biortech.2020.123630_b0105
Alvira (10.1016/j.biortech.2020.123630_b0025) 2016; 2
Hatti-Kaul (10.1016/j.biortech.2020.123630_b0225) 2007
10.1016/j.biortech.2020.123630_b0465
González-García (10.1016/j.biortech.2020.123630_b0190) 2012
Schmer (10.1016/j.biortech.2020.123630_b0450) 2008; 105
Fayoud (10.1016/j.biortech.2020.123630_bib563) 2016; 57
Gabrielle (10.1016/j.biortech.2020.123630_b0180) 2008; 32
Achinas (10.1016/j.biortech.2020.123630_b0010) 2016; 23
10.1016/j.biortech.2020.123630_b0175
Sannigrahi (10.1016/j.biortech.2020.123630_bib561) 2010
Soccol (10.1016/j.biortech.2020.123630_b0420) 2011
10.1016/j.biortech.2020.123630_b0050
Avgerinos (10.1016/j.biortech.2020.123630_b0035) 1983; 25
10.1016/j.biortech.2020.123630_b0170
Sassner (10.1016/j.biortech.2020.123630_b0445) 2008; 99
Sims (10.1016/j.biortech.2020.123630_b0475) 2006; 12
Kim (10.1016/j.biortech.2020.123630_b0280) 2005
Szczukowski (10.1016/j.biortech.2020.123630_bib562) 2002; 48
10.1016/j.biortech.2020.123630_b0330
Robak (10.1016/j.biortech.2020.123630_b0425) 2018; 56
Saha (10.1016/j.biortech.2020.123630_b0435) 2003
Gismatulina (10.1016/j.biortech.2020.123630_bib564) 2018; 43
References_xml – volume: 25
  start-page: 67
  year: 1983
  end-page: 83
  ident: b0035
  article-title: Selective solvent delignification for fermentation enhancement
  publication-title: Biotechnol. Bioeng.
– year: 2002
  ident: b0360
  article-title: Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States – rainfall and wind-induced soil erosion methodology
  publication-title: Biomass Bioenergy
– volume: 93
  start-page: 147
  year: 2015
  end-page: 153
  ident: b0480
  article-title: Dehydration of ethanol with different salts in a packed distillation column
  publication-title: Process Saf. Environ. Prot.
– reference: Saini, J.K., Saini, R., Tewari, L., 2015. Lignocellulosic agriculture wastes as biomass feedstock for second-generation bioethanol production: concepts and recent developments. 3 Biotech. https://doi.org/10.1007/s13205-014-0246-5.
– reference: Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie801542g.
– volume: 99
  start-page: 137
  year: 2008
  end-page: 145
  ident: b0445
  article-title: Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol
  publication-title: Bioresour. Technol.
– year: 2005
  ident: b0280
  article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel
  publication-title: Biomass Bioenergy
– reference: Pfenning, A., 2004. Kirk-Othmer Encyclopedia of chemical technology. Chem. Ing. Tech. https://doi.org/10.1002/cite.330670827.
– reference: Dien, B.S., 2010. Mass Balances and Analytical Methods for Biomass Pretreatment Experiments. In: Biomass to Biofuels. John Wiley & Sons, Ltd, pp. 213–231. https://doi.org/10.1002/9780470750025.ch11.
– year: 2012
  ident: b0405
  article-title: Modelling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products
  publication-title: J. Clean. Prod.
– volume: 99
  start-page: 1
  year: 2007
  end-page: 11
  ident: b0200
  article-title: Current and potential U.S. Corn Stover Supplies
  publication-title: Agron. J.
– reference: Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials, 2016. https://doi.org/10.1007/978-3-319-26015-0.
– year: 2014
  ident: b0455
  article-title: Life cycle assessment of rice straw-based power generation in Malaysia
  publication-title: Energy
– year: 2003
  ident: b0065
  article-title: Beginnings of microbiology and biochemistry: the contribution of yeast research
  publication-title: Microbiology
– volume: 4
  start-page: 117
  year: 2014
  end-page: 139
  ident: b0015
  article-title: Microbial Enzymes: Tools for Biotechnological Processes
  publication-title: Biomolecules
– year: 2011
  ident: b0060
  article-title: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review
  publication-title: Energy Convers. Manag.
– year: 2007
  ident: b0225
  article-title: Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective
  publication-title: Trends Biotechnol.
– reference: Al-Riffai, P., Dimaranan, B., LaBorde, D.V., 2010. Global trade and environmental impact study of the EU biofuels mandate.
– year: 2014
  ident: b0230
  article-title: A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators
  publication-title: Biomass Bioenergy
– year: 2012
  ident: b0220
  article-title: Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
  publication-title: Process Biochem.
– volume: 19
  start-page: 1109
  year: 2003
  end-page: 1117
  ident: b0545
  article-title: Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks
  publication-title: Biotechnol. Prog.
– reference: Khan, M.I., Shin, J.H., Kim, J.D., 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories. https://doi.org/10.1186/s12934-018-0879-x.
– year: 2010
  ident: bib561
  article-title: Poplar as a feedstock for biofuels: A review of compositional characteristics
  publication-title: Biofuels, Bioprod. Biorefin.
– year: 2012
  ident: b0095
  article-title: Environmental life cycle assessment of bioethanol production from wheat straw
  publication-title: Biomass Bioenergy
– volume: 43
  start-page: 96
  year: 2018
  end-page: 100
  ident: bib564
  article-title: Nitrocellulose synthesis from
  publication-title: Propellants Explos. Pyrotech.
– reference: Griffiths, M.J., Dicks, R.G., Richardson, C., Harrison, S.T.L., 2011. Advantages and challenges of microalgae as a source of oil for biodiesel. Biodiesel – Feedstock Process. Technol. https://doi.org/10.5772/30085.
– reference: Wang, Q., 2013. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Green Process. Synth. https://doi.org/10.1515/gps-2013-0087.
– volume: 36
  start-page: 3360
  year: 2008
  end-page: 3365
  ident: b0495
  article-title: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol
  publication-title: Energy Policy
– reference: Nigam, P.S., Singh, A., 2011. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. https://doi.org/10.1016/j.pecs.2010.01.003.
– year: 2006
  ident: b0215
  article-title: Bio-ethanol – the fuel of tomorrow from the residues of today
  publication-title: Trends Biotechnol.
– reference: Axelsson, 2011. Separate Hydrolysis and Fermentation of Pretreated Spruce. Master Thesis Linköping Univ.
– year: 2003
  ident: b0435
  article-title: Hemicellulose bioconversion
  publication-title: J. Ind. Microbiol. Biotechnol.
– reference: Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2016.12.076.
– year: 2014
  ident: b0210
  article-title: The environmental profile of bioethanol produced from current and potential future poplar feedstock in the EU
  publication-title: Green Chem.
– volume: 107
  start-page: 37
  year: 2019
  end-page: 50
  ident: b0005
  article-title: Fourth generation biofuel: a review on risks and mitigation strategies
  publication-title: Renew. Sustain. Energy Rev.
– reference: Spatari, S., Zhang, Y., Maclean, H.L., 2005. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ. Sci. Technol. https://doi.org/10.1021/es048293.
– reference: Gouveia, L., Oliveira, A.C., Congestri, R., Bruno, L., Soares, A.T., Menezes, R.S., Filho, N.R.A., Tzovenis, I., 2017. Biodiesel from microalgae, in: Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products. https://doi.org/10.1016/B978-0-08-101023-5.00010-8.
– reference: Lee, H.V., Hamid, S.B.A., Zain, S.K., 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process [WWW Document]. Sci. World J. https://doi.org/10.1155/2014/631013.
– reference: Cooper, G., et al., 2019, 2019 Ethanol Industry Outlook, Renewable Fuels Association.
– reference: Min, F., Kopke, M., Dennis, S., 2013. Gas Fermentation for commercial biofuels production, in: Liquid, Gaseous and Solid Biofuels – Conversion Techniques. https://doi.org/10.5772/52164.
– volume: 46
  start-page: 565
  year: 2010
  end-page: 578
  ident: b0350
  article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion
  publication-title: Environ. Manage.
– reference: Owsianiak, M., Laurent, A., Bjørn, A., Hauschild, M.Z., 2014. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-014-0708-3.
– volume: 23
  start-page: 44
  year: 2016
  end-page: 53
  ident: b0010
  article-title: Consolidated briefing of biochemical ethanol production from lignocellulosic biomass
  publication-title: Electron. J. Biotechnol.
– reference: Kaufman, A.S., Meier, P.J., Sinistore, J.C., Reinemann, D.J., 2010. Applying life-cycle assessment to low carbon fuel standards—How allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy, Special Section on Carbon Emissions and Carbon Management in Cities with Regular Papers 38, 5229–5241. https://doi.org/10.1016/j.enpol.2010.05.008.
– reference: IEA-Bioenergy-Task-39, 2020, Implementation Agendas, https://task39.ieabioenergy.com/publications/ Agendas F.
– reference: Mohanty, S.K., Swain, M.R., 2019, Bioethanol Production From Corn and Wheat: Food, Fuels and Future, in: Bioethanol production From Food Crops, Ray, R.C., Ramachandran, S., editors, Elsevier, Chap 3, 45–59.
– reference: Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Nelson, R., 2003b. Is Ethanol Made from Corn Stover a Sustainable Transportation Fuel?. In: Enzyme Sugar Platform (ESP) Project FY03 Review Meeting.
– volume: 88
  start-page: 67
  year: 2010
  end-page: 73
  ident: b0410
  article-title: Anhydrous ethanol production by extractive distillation: as solvent case study
  publication-title: Process Saf. Environ. Prot.
– volume: 12
  start-page: 2054
  year: 2006
  end-page: 2076
  ident: b0475
  article-title: Energy crops: current status and future prospects
  publication-title: Glob. Change Biol.
– reference: Zaldivar, J., Nielsen, J., Olsson, L., 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s002530100624.
– reference: Chen, Z., Wang, L., Qiu, S., Ge, S., 2018. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Res. Int. https://doi.org/10.1155/2018/1503126.
– reference: Fugelsang, K.C., Fugelsang, K.C., 1997. Fermentation and Post-fermentation Processing, in: Wine Microbiology. https://doi.org/10.1007/978-1-4757-6970-8_5.
– volume: 98
  start-page: 86
  year: 2015
  end-page: 94
  ident: b0355
  article-title: Analysis of energy saving by combination of distillation and pervaporation for biofuel production
  publication-title: Chem. Eng. Process. Process Intensif.
– reference: Mabee, W.E., Gregg, D.J., Arato, C., Berlin, A., Bura, R., Gilkes, N., Mirochnik, O., Pan, X., Pye, E.K., Saddler, J.N., 2006. Updates on softwood-to-ethanol process development, in: Applied Biochemistry and Biotechnology. https://doi.org/10.1385/ABAB:129:1:55.
– year: 2006
  ident: b0500
  article-title: ISO 14044
  publication-title: Int. J. Life Cycle Assess.
– reference: Chen, H., 2014. Chemical Composition and Structure of Natural Lignocellulose, in: Chen, H. (Ed.), Biotechnology of Lignocellulose: Theory and Practice. Springer Netherlands, Dordrecht, pp. 25–71. https://doi.org/10.1007/978-94-007-6898-7_2.
– year: 2009
  ident: b0540
  article-title: Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know?
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 181
  year: 2007
  end-page: 190
  ident: b0235
  article-title: Cellulosic biomass feedstock and logistics for ethanol production
  publication-title: Biofuels Bioprod. Biorefining
– volume: 69
  start-page: 933
  year: 2017
  end-page: 947
  ident: b0070
  article-title: The challenge of measuring biofuel sustainability: a stakeholder-driven approach applied to the French case
  publication-title: Renew. Sustain. Energy Rev.
– volume: 9
  start-page: 222
  year: 2016
  ident: b0090
  article-title: Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw
  publication-title: Biotechnol. Biofuels
– reference: Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. In: Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2003.12.015.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib565
  article-title: Effect of non-structural organics and inorganics constituents of switchgrass during pyrolysis
  publication-title: Front. Energy Res.
– reference: Rosenbaum, R.K., Hauschild, M.Z., Boulay, A.M., Fantke, P., Laurent, A., Núñez, M., Vieira, M., 2017. Life cycle impact assessment, in: Life Cycle Assessment: Theory and Practice. https://doi.org/10.1007/978-3-319-56475-3_10.
– year: 2011
  ident: b0295
  article-title: Microbial cellulases and their industrial applications [WWW Document]
  publication-title: Enzyme Res.
– year: 2003
  ident: b0390
  article-title: The chemistry involved in the steam treatment of lignocellulosic materials
  publication-title: Quim. Nova
– volume: 94
  start-page: 353
  year: 2016
  end-page: 365
  ident: b0185
  article-title: Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept
  publication-title: Renew. Energy
– start-page: 468
  year: 2012
  end-page: 479
  ident: bib568
  article-title: Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens
  publication-title: EXCLI J.
– reference: European Union, 2009. Directive 2009/28/EC on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union. https://doi.org/10.3000/17252555.L_2009.140.eng.
– reference: Imran, M., Anwar, Z., Irshad, M., Asad, M.J., Ashfaq, H., 2016. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv. Enzyme Res. https://doi.org/10.4236/aer.2016.42005.
– volume: 13
  start-page: 2003
  year: 2009
  end-page: 2011
  ident: b0315
  article-title: An energy analysis of ethanol from cellulosic feedstock–Corn stover
  publication-title: Renew. Sustain. Energy Rev.
– volume: 56
  start-page: 174
  year: 2018
  ident: b0425
  article-title: Review of Second Generation Bioethanol Production from Residual Biomass
  publication-title: Food Technol. Biotechnol.
– volume: 33
  start-page: 793
  year: 2009
  end-page: 802
  ident: b0515
  article-title: Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment
  publication-title: Biomass Bioenergy
– reference: Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D., Dudgeon, D., 2011. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (No. NREL/TP-5100-47764, 1013269). https://doi.org/10.2172/1013269.
– volume: 2
  year: 2016
  ident: b0025
  article-title: Steam explosion for wheat straw pretreatment for sugars production
  publication-title: Bioethanol
– reference: Ojeda, K., Sánchez, E., El-Halwagi, M., Kafarov, V., 2011. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways. Chem. Eng. J. https://doi.org/10.1016/j.cej.2011.06.083.
– year: 2011
  ident: b0290
  article-title: Microbial cellulases and their industrial applications
  publication-title: Enzyme Res.
– year: 2015
  ident: b0470
  article-title: Microalgae for economic applications: advantages and perspectives for bioethanol
  publication-title: J. Exp. Bot.
– reference: Bajpai, P., 2016a. Structure of Lignocellulosic Biomass. https://doi.org/10.1007/978-981-10-0687-6_2.
– reference: Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S., 2009. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2009.03.013.
– volume: 48
  start-page: 413
  year: 2002
  end-page: 417
  ident: bib562
  article-title: Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land
  publication-title: Rostlinna Vyroba
– volume: 32
  start-page: 431
  year: 2008
  end-page: 441
  ident: b0180
  article-title: Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling
  publication-title: Biomass Bioenergy
– reference: Bai, Y., Luo, L., Van Der Voet, E., 2010. Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-010-0177-2.
– reference: Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., Aminul Islam, A.K.M., 2017. Jatropha biofuel industry: the challenges, in: Frontiers in Bioenergy and Biofuels. https://doi.org/10.5772/64979.
– reference: Damartzis, T., Zabaniotou, A., 2011. Thermochemical conversion of biomass to second generation biofuels through integrated process design – a review. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2010.08.003.
– volume: 15
  start-page: 607
  year: 2007
  end-page: 619
  ident: b0525
  article-title: A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective
  publication-title: J. Clean. Prod.
– reference: Tomás-Pejó, E., Alvira, P., Ballesteros, M., Negro, M.J., 2011. Pretreatment technologies for lignocellulose-to-bioethanol conversion, in: Biofuels. https://doi.org/10.1016/B978-0-12-385099-7.00007-3.
– year: 2009
  ident: b0085
  article-title: Corn stover removal for expanded uses reduces soil fertility and structural stability
  publication-title: Soil Sci. Soc. Am. J.
– year: 2012
  ident: b0190
  article-title: Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar)
  publication-title: Biomass Bioenergy
– volume: 9
  start-page: 152
  year: 2016
  ident: b0400
  article-title: Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility
  publication-title: Biotechnol. Biofuels
– reference: Chundawat, S.P.S., Donohoe, B.S., Sousa, L. da C., Elder, T., Agarwal, U.P., Lu, F., Ralph, J., Himmel, M.E., Balan, V., Dale, B.E., 2011. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 4, 973–984. https://doi.org/10.1039/C0EE00574F.
– reference: Jahnavi, G., Prashanthi, G.S., Sravanthi, K., Rao, L.V., 2017. Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.02.018.
– volume: 27
  start-page: 656
  year: 2009
  end-page: 660
  ident: b0505
  article-title: Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification
  publication-title: Biotechnol. Adv. Bioenergy Res. Develop. China
– volume: 105
  start-page: 464
  year: 2008
  end-page: 469
  ident: b0450
  article-title: Net energy of cellulosic ethanol from switchgrass
  publication-title: Proc. Natl. Acad. Sci.
– reference: Reijnders, L., 2008. Ethanol production from crop residues and soil organic carbon. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2007.08.007.
– volume: 57
  start-page: 16611
  year: 2016
  end-page: 16625
  ident: bib563
  article-title: Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials
  publication-title: Desalin. Water Treat.
– reference: EU-28: 2018. Biofuels Annual: EU Biofuels Annual 2018. Flach B., Liebertz S., Lappin J., Bolla S., UDSA Foreign Agricultural Service.
– year: 2005
  ident: b0310
  article-title: Soil carbon under switchgrass stands and cultivated cropland
  publication-title: Biomass Bioenergy
– volume: 7
  start-page: 117
  year: 2003
  end-page: 146
  ident: b0460
  article-title: Energy and environmental aspects of using corn stover for fuel ethanol
  publication-title: J. Ind. Ecol.
– year: 2007
  ident: b0490
  article-title: Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review
  publication-title: BioResources
– year: 2007
  ident: b0100
  article-title: Fuel ethanol production: Process design trends and integration opportunities
  publication-title: Bioresour. Technol.
– reference: Annual Ethanol Production, 2019. . Renew. Fuels Assoc. URL https://ethanolrfa.org/statistics/annual-ethanol-production/ (accessed 10.7.19).
– volume: 29
  start-page: 426
  year: 2005
  end-page: 439
  ident: b0285
  article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel
  publication-title: Biomass Bioenergy
– volume: 6
  start-page: 21
  year: 2014
  end-page: 27
  ident: bib567
  article-title: Grouping of advanced rice breeding lines based on grain yield and Na:K ratio under alkaline conditions
  publication-title: J. Soil Salinity and Water Qual.
– start-page: 153
  year: 2017
  end-page: 164
  ident: b0370
  article-title: Extractive and azeotropic distillation
  publication-title: Practical Column Design
– volume: 50
  start-page: 855
  year: 2009
  end-page: 876
  ident: b0520
  article-title: Fischer-Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis
  publication-title: Energy Convers. Manag.
– reference: Kapoor, M., Panwar, D., Kaira, G.S., 2016. Bioprocesses for enzyme production using agro-industrial wastes: Technical challenges and commercialization potential. In: Dhillon, G.S., Kaur, S. (Eds.), Agro-Industrial Wastes as Feedstock for Enzyme Production. vol. 3, pp. 61–93.
– volume: 3
  start-page: 17
  year: 2010
  ident: b0380
  article-title: Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding
  publication-title: Biotechnol. Biofuels
– reference: Bertrand, E., Pradel M., Dussap, C.G., 2016. Economic and Environmental Aspects of Biofuels. In: Green Fuels Technology, Soccol, C.R., Brar, S.K., Faulds, C., Ramos, L.P. eds. Springer, Chap 22, 525–555.
– reference: Walia, A., Guleria, S., Mehta, P., Chauhan, A., Parkash, J., 2017. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. https://doi.org/10.1007/s13205-016-0584-6.
– year: 2009
  ident: b0145
  article-title: Life-cycle analysis and the ecology of biofuels
  publication-title: Trends Plant Sci.
– reference: IEA-Bioenergy-Task-39, 2019, Comparison of Biofuel Life Cycle Analysis Tools: Phase 2.2: Biochemical 2G Ethanol Production and Distribution. http://task39.sites.olt.ubc.ca/files/2020/02/Task-39-Phase-2.2-Ethanol-2G-Comparison-of-Biofuel-Life-Cycle-Analysis-Tools.pdf.
– reference: Wyman, C.E., 1994. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresour. Technol. https://doi.org/10.1016/0960-8524(94)90214-3.
– year: 1998
  ident: b0345
  article-title: The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods
  publication-title: Bioresour. Technol.
– start-page: 7
  year: 2016
  end-page: 12
  ident: b0055
  article-title: Structure of Lignocellulosic Biomass
  publication-title: Pretreatment of Lignocellulosic Biomass for Biofuel Production, SpringerBriefs in Molecular Science
– reference: Fleming, J.S., Habibi, S., MacLean, H.L., 2006. Investigating the sustainability of lignocellulose-derived fuels for light-duty vehicles. Transp. Res. Part Transp. Environ. https://doi.org/10.1016/j.trd.2006.01.001.
– year: 2004
  ident: b0075
  article-title: Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment
  publication-title: Plant Biotechnol. J.
– start-page: 101
  year: 2011
  end-page: 122
  ident: b0420
  article-title: Chapter 5 – Lignocellulosic bioethanol: Current status and future perspectives
  publication-title: Biofuels
– reference: Cherubini, F., Ulgiati, S., 2010. Crop residues as raw materials for biorefinery systems – A LCA case study. Appl. Energy. https://doi.org/10.1016/j.apenergy.2009.08.024.
– start-page: 875
  year: 2018
  end-page: 908
  ident: b0150
  publication-title: Comprehensive Energy Systems
– year: 2017
  ident: b0335
  article-title: Yeasts in sustainable bioethanol production: a review
  publication-title: Biochem. Biophys. Rep.
– ident: 10.1016/j.biortech.2020.123630_b0110
  doi: 10.1007/978-94-007-6898-7_2
– ident: 10.1016/j.biortech.2020.123630_b0130
  doi: 10.1039/c0ee00574f
– year: 2009
  ident: 10.1016/j.biortech.2020.123630_b0145
  article-title: Life-cycle analysis and the ecology of biofuels
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.12.006
– year: 2009
  ident: 10.1016/j.biortech.2020.123630_b0085
  article-title: Corn stover removal for expanded uses reduces soil fertility and structural stability
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0141
– volume: 27
  start-page: 656
  year: 2009
  ident: 10.1016/j.biortech.2020.123630_b0505
  article-title: Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification
  publication-title: Biotechnol. Adv. Bioenergy Res. Develop. China
– volume: 50
  start-page: 855
  year: 2009
  ident: 10.1016/j.biortech.2020.123630_b0520
  article-title: Fischer-Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2009.01.008
– volume: 23
  start-page: 44
  year: 2016
  ident: 10.1016/j.biortech.2020.123630_b0010
  article-title: Consolidated briefing of biochemical ethanol production from lignocellulosic biomass
  publication-title: Electron. J. Biotechnol.
  doi: 10.1016/j.ejbt.2016.07.006
– year: 2012
  ident: 10.1016/j.biortech.2020.123630_b0190
  article-title: Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar)
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.028
– year: 2012
  ident: 10.1016/j.biortech.2020.123630_b0095
  article-title: Environmental life cycle assessment of bioethanol production from wheat straw
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.10.017
– volume: 3
  start-page: 17
  year: 2010
  ident: 10.1016/j.biortech.2020.123630_b0380
  article-title: Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-3-17
– year: 2017
  ident: 10.1016/j.biortech.2020.123630_b0335
  article-title: Yeasts in sustainable bioethanol production: a review
  publication-title: Biochem. Biophys. Rep.
– year: 2011
  ident: 10.1016/j.biortech.2020.123630_b0290
  article-title: Microbial cellulases and their industrial applications
  publication-title: Enzyme Res.
  doi: 10.4061/2011/280696
– ident: 10.1016/j.biortech.2020.123630_b0535
  doi: 10.1002/9781118642047
– ident: 10.1016/j.biortech.2020.123630_b0325
  doi: 10.5772/52164
– ident: 10.1016/j.biortech.2020.123630_b0050
  doi: 10.1007/978-981-10-0687-6_2
– year: 2007
  ident: 10.1016/j.biortech.2020.123630_b0225
  article-title: Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2007.01.001
– volume: 57
  start-page: 16611
  issue: 35
  year: 2016
  ident: 10.1016/j.biortech.2020.123630_bib563
  article-title: Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2015.1079249
– year: 2012
  ident: 10.1016/j.biortech.2020.123630_b0220
  article-title: Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.05.004
– year: 2006
  ident: 10.1016/j.biortech.2020.123630_b0215
  article-title: Bio-ethanol – the fuel of tomorrow from the residues of today
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2006.10.004
– ident: 10.1016/j.biortech.2020.123630_b0020
– year: 2003
  ident: 10.1016/j.biortech.2020.123630_b0065
  article-title: Beginnings of microbiology and biochemistry: the contribution of yeast research
  publication-title: Microbiology
  doi: 10.1099/mic.0.26089-0
– ident: 10.1016/j.biortech.2020.123630_b0320
  doi: 10.1385/ABAB:129:1:55
– year: 2011
  ident: 10.1016/j.biortech.2020.123630_b0295
  article-title: Microbial cellulases and their industrial applications [WWW Document]
  publication-title: Enzyme Res.
  doi: 10.4061/2011/280696
– volume: 32
  start-page: 431
  year: 2008
  ident: 10.1016/j.biortech.2020.123630_b0180
  article-title: Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2007.10.017
– year: 2005
  ident: 10.1016/j.biortech.2020.123630_b0310
  article-title: Soil carbon under switchgrass stands and cultivated cropland
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2004.11.004
– ident: 10.1016/j.biortech.2020.123630_b0155
  doi: 10.1002/9780470750025.ch11
– volume: 94
  start-page: 353
  year: 2016
  ident: 10.1016/j.biortech.2020.123630_b0185
  article-title: Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.03.045
– volume: 69
  start-page: 933
  year: 2017
  ident: 10.1016/j.biortech.2020.123630_b0070
  article-title: The challenge of measuring biofuel sustainability: a stakeholder-driven approach applied to the French case
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.022
– year: 2002
  ident: 10.1016/j.biortech.2020.123630_b0360
  article-title: Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States – rainfall and wind-induced soil erosion methodology
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(02)00006-5
– year: 2010
  ident: 10.1016/j.biortech.2020.123630_bib561
  article-title: Poplar as a feedstock for biofuels: A review of compositional characteristics
  publication-title: Biofuels, Bioprod. Biorefin.
  doi: 10.1002/bbb.206
– ident: 10.1016/j.biortech.2020.123630_b0265
  doi: 10.1016/j.indcrop.2003.12.015
– year: 1998
  ident: 10.1016/j.biortech.2020.123630_b0345
  article-title: The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(97)00181-8
– year: 2003
  ident: 10.1016/j.biortech.2020.123630_b0390
  article-title: The chemistry involved in the steam treatment of lignocellulosic materials
  publication-title: Quim. Nova
– ident: 10.1016/j.biortech.2020.123630_b0365
  doi: 10.1016/j.pecs.2010.01.003
– volume: 7
  start-page: 117
  year: 2003
  ident: 10.1016/j.biortech.2020.123630_b0460
  article-title: Energy and environmental aspects of using corn stover for fuel ethanol
  publication-title: J. Ind. Ecol.
  doi: 10.1162/108819803323059433
– year: 2015
  ident: 10.1016/j.biortech.2020.123630_b0470
  article-title: Microalgae for economic applications: advantages and perspectives for bioethanol
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv130
– volume: 19
  start-page: 1109
  year: 2003
  ident: 10.1016/j.biortech.2020.123630_b0545
  article-title: Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp0340180
– ident: 10.1016/j.biortech.2020.123630_b0560
  doi: 10.1007/s002530100624
– ident: 10.1016/j.biortech.2020.123630_b0255
  doi: 10.4236/aer.2016.42005
– ident: 10.1016/j.biortech.2020.123630_b0530
  doi: 10.1007/s13205-016-0584-6
– volume: 98
  start-page: 86
  year: 2015
  ident: 10.1016/j.biortech.2020.123630_b0355
  article-title: Analysis of energy saving by combination of distillation and pervaporation for biofuel production
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2015.10.010
– ident: 10.1016/j.biortech.2020.123630_bib566
  doi: 10.1016/B978-0-12-802392-1.00003-4
– ident: 10.1016/j.biortech.2020.123630_b0040
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.biortech.2020.123630_bib565
  article-title: Effect of non-structural organics and inorganics constituents of switchgrass during pyrolysis
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00096
– start-page: 875
  year: 2018
  ident: 10.1016/j.biortech.2020.123630_b0150
– ident: 10.1016/j.biortech.2020.123630_b0330
  doi: 10.1016/B978-0-12-813766-6.00003-5
– volume: 13
  start-page: 2003
  year: 2009
  ident: 10.1016/j.biortech.2020.123630_b0315
  article-title: An energy analysis of ethanol from cellulosic feedstock–Corn stover
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.01.016
– year: 2014
  ident: 10.1016/j.biortech.2020.123630_b0455
  article-title: Life cycle assessment of rice straw-based power generation in Malaysia
  publication-title: Energy
  doi: 10.1016/j.energy.2014.04.014
– ident: 10.1016/j.biortech.2020.123630_b0260
  doi: 10.1016/j.rser.2017.02.018
– ident: 10.1016/j.biortech.2020.123630_b0465
– ident: 10.1016/j.biortech.2020.123630_b0555
  doi: 10.1016/j.rser.2016.12.076
– ident: 10.1016/j.biortech.2020.123630_b0550
  doi: 10.1016/0960-8524(94)90214-3
– year: 2011
  ident: 10.1016/j.biortech.2020.123630_b0060
  article-title: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.08.013
– volume: 43
  start-page: 96
  issue: 1
  year: 2018
  ident: 10.1016/j.biortech.2020.123630_bib564
  article-title: Nitrocellulose synthesis from miscanthus cellulose
  publication-title: Propellants Explos. Pyrotech.
  doi: 10.1002/prep.201700210
– ident: 10.1016/j.biortech.2020.123630_b0430
  doi: 10.1007/978-3-319-56475-3_10
– volume: 56
  start-page: 174
  year: 2018
  ident: 10.1016/j.biortech.2020.123630_b0425
  article-title: Review of Second Generation Bioethanol Production from Residual Biomass
  publication-title: Food Technol. Biotechnol.
  doi: 10.17113/ftb.56.02.18.5428
– volume: 25
  start-page: 67
  year: 1983
  ident: 10.1016/j.biortech.2020.123630_b0035
  article-title: Selective solvent delignification for fermentation enhancement
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260250107
– ident: 10.1016/j.biortech.2020.123630_b0485
  doi: 10.1021/es048293+
– ident: 10.1016/j.biortech.2020.123630_b0250
– year: 2007
  ident: 10.1016/j.biortech.2020.123630_b0490
  article-title: Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review
  publication-title: BioResources
– volume: 29
  start-page: 426
  year: 2005
  ident: 10.1016/j.biortech.2020.123630_b0285
  article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2005.06.004
– year: 2014
  ident: 10.1016/j.biortech.2020.123630_b0210
  article-title: The environmental profile of bioethanol produced from current and potential future poplar feedstock in the EU
  publication-title: Green Chem.
  doi: 10.1039/C4GC01124D
– year: 2005
  ident: 10.1016/j.biortech.2020.123630_b0280
  article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2005.06.004
– ident: 10.1016/j.biortech.2020.123630_b0080
  doi: 10.1007/978-3-319-30205-8_22
– ident: 10.1016/j.biortech.2020.123630_b0240
  doi: 10.2172/1013269
– ident: 10.1016/j.biortech.2020.123630_b0300
  doi: 10.1021/ie801542g
– start-page: 468
  year: 2012
  ident: 10.1016/j.biortech.2020.123630_bib568
  article-title: Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens
  publication-title: EXCLI J.
– ident: 10.1016/j.biortech.2020.123630_b0245
– start-page: 153
  year: 2017
  ident: 10.1016/j.biortech.2020.123630_b0370
  article-title: Extractive and azeotropic distillation
– volume: 12
  start-page: 2054
  year: 2006
  ident: 10.1016/j.biortech.2020.123630_b0475
  article-title: Energy crops: current status and future prospects
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2006.01163.x
– year: 2014
  ident: 10.1016/j.biortech.2020.123630_b0230
  article-title: A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.01.040
– ident: 10.1016/j.biortech.2020.123630_b0195
  doi: 10.1016/B978-0-08-101023-5.00010-8
– ident: 10.1016/j.biortech.2020.123630_b0165
– ident: 10.1016/j.biortech.2020.123630_b0510
  doi: 10.1016/B978-0-12-385099-7.00007-3
– start-page: 7
  year: 2016
  ident: 10.1016/j.biortech.2020.123630_b0055
  article-title: Structure of Lignocellulosic Biomass
– volume: 2
  year: 2016
  ident: 10.1016/j.biortech.2020.123630_b0025
  article-title: Steam explosion for wheat straw pretreatment for sugars production
  publication-title: Bioethanol
  doi: 10.1515/bioeth-2016-0003
– volume: 6
  start-page: 21
  year: 2014
  ident: 10.1016/j.biortech.2020.123630_bib567
  article-title: Grouping of advanced rice breeding lines based on grain yield and Na:K ratio under alkaline conditions
  publication-title: J. Soil Salinity and Water Qual.
– volume: 36
  start-page: 3360
  year: 2008
  ident: 10.1016/j.biortech.2020.123630_b0495
  article-title: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.05.016
– volume: 4
  start-page: 117
  year: 2014
  ident: 10.1016/j.biortech.2020.123630_b0015
  article-title: Microbial Enzymes: Tools for Biotechnological Processes
  publication-title: Biomolecules
  doi: 10.3390/biom4010117
– ident: 10.1016/j.biortech.2020.123630_b0395
  doi: 10.1002/cite.330670827
– year: 2012
  ident: 10.1016/j.biortech.2020.123630_b0405
  article-title: Modelling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.01.028
– volume: 33
  start-page: 793
  year: 2009
  ident: 10.1016/j.biortech.2020.123630_b0515
  article-title: Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2008.12.001
– ident: 10.1016/j.biortech.2020.123630_b0030
– year: 2004
  ident: 10.1016/j.biortech.2020.123630_b0075
  article-title: Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2004.00076.x
– ident: 10.1016/j.biortech.2020.123630_b0115
  doi: 10.1155/2018/1503126
– volume: 105
  start-page: 464
  year: 2008
  ident: 10.1016/j.biortech.2020.123630_b0450
  article-title: Net energy of cellulosic ethanol from switchgrass
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0704767105
– volume: 1
  start-page: 181
  year: 2007
  ident: 10.1016/j.biortech.2020.123630_b0235
  article-title: Cellulosic biomass feedstock and logistics for ethanol production
  publication-title: Biofuels Bioprod. Biorefining
  doi: 10.1002/bbb.26
– ident: 10.1016/j.biortech.2020.123630_b0340
  doi: 10.5772/64979
– ident: 10.1016/j.biortech.2020.123630_b0160
– ident: 10.1016/j.biortech.2020.123630_b0120
  doi: 10.1016/j.resconrec.2009.03.013
– ident: 10.1016/j.biortech.2020.123630_b0275
  doi: 10.1186/s12934-018-0879-x
– volume: 99
  start-page: 137
  year: 2008
  ident: 10.1016/j.biortech.2020.123630_b0445
  article-title: Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.11.039
– volume: 93
  start-page: 147
  year: 2015
  ident: 10.1016/j.biortech.2020.123630_b0480
  article-title: Dehydration of ethanol with different salts in a packed distillation column
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2014.02.012
– volume: 15
  start-page: 607
  year: 2007
  ident: 10.1016/j.biortech.2020.123630_b0525
  article-title: A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2006.03.002
– ident: 10.1016/j.biortech.2020.123630_b0125
  doi: 10.1016/j.apenergy.2009.08.024
– ident: 10.1016/j.biortech.2020.123630_b0045
  doi: 10.1007/s11367-010-0177-2
– ident: 10.1016/j.biortech.2020.123630_b0415
  doi: 10.1016/j.resconrec.2007.08.007
– year: 2003
  ident: 10.1016/j.biortech.2020.123630_b0435
  article-title: Hemicellulose bioconversion
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-003-0049-x
– ident: 10.1016/j.biortech.2020.123630_b0170
  doi: 10.1016/j.trd.2006.01.001
– volume: 107
  start-page: 37
  year: 2019
  ident: 10.1016/j.biortech.2020.123630_b0005
  article-title: Fourth generation biofuel: a review on risks and mitigation strategies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.02.018
– ident: 10.1016/j.biortech.2020.123630_b0205
  doi: 10.5772/30085
– volume: 99
  start-page: 1
  year: 2007
  ident: 10.1016/j.biortech.2020.123630_b0200
  article-title: Current and potential U.S. Corn Stover Supplies
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0222
– volume: 48
  start-page: 413
  year: 2002
  ident: 10.1016/j.biortech.2020.123630_bib562
  article-title: Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land
  publication-title: Rostlinna Vyroba
– ident: 10.1016/j.biortech.2020.123630_b0140
  doi: 10.1016/j.rser.2010.08.003
– ident: 10.1016/j.biortech.2020.123630_b0375
  doi: 10.1016/j.cej.2011.06.083
– volume: 88
  start-page: 67
  year: 2010
  ident: 10.1016/j.biortech.2020.123630_b0410
  article-title: Anhydrous ethanol production by extractive distillation: as solvent case study
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2009.11.005
– ident: 10.1016/j.biortech.2020.123630_b0440
  doi: 10.1007/s13205-014-0246-5
– ident: 10.1016/j.biortech.2020.123630_b0135
– volume: 46
  start-page: 565
  year: 2010
  ident: 10.1016/j.biortech.2020.123630_b0350
  article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-010-9494-2
– ident: 10.1016/j.biortech.2020.123630_b0305
  doi: 10.1155/2014/631013
– year: 2009
  ident: 10.1016/j.biortech.2020.123630_b0540
  article-title: Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900250d
– ident: 10.1016/j.biortech.2020.123630_b0385
  doi: 10.1007/s11367-014-0708-3
– ident: 10.1016/j.biortech.2020.123630_b0105
  doi: 10.1007/978-3-319-26015-0
– start-page: 101
  year: 2011
  ident: 10.1016/j.biortech.2020.123630_b0420
  article-title: Chapter 5 – Lignocellulosic bioethanol: Current status and future perspectives
– ident: 10.1016/j.biortech.2020.123630_b0270
  doi: 10.1016/j.enpol.2010.05.008
– volume: 9
  start-page: 222
  year: 2016
  ident: 10.1016/j.biortech.2020.123630_b0090
  article-title: Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0635-6
– volume: 9
  start-page: 152
  year: 2016
  ident: 10.1016/j.biortech.2020.123630_b0400
  article-title: Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0567-1
– year: 2006
  ident: 10.1016/j.biortech.2020.123630_b0500
  article-title: ISO 14044
  publication-title: Int. J. Life Cycle Assess.
– year: 2007
  ident: 10.1016/j.biortech.2020.123630_b0100
  article-title: Fuel ethanol production: Process design trends and integration opportunities
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.01.002
– ident: 10.1016/j.biortech.2020.123630_b0175
  doi: 10.1007/978-1-4757-6970-8
SSID ssj0003172
Score 2.6750283
SecondaryResourceType review_article
Snippet •Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The...
The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123630
SubjectTerms 2G (second generation) bioethanol
bioethanol
biomass
computer simulation
energy
Environmental impact
ethanol production
feedstocks
Fermentation
hydrolysis
life cycle assessment
Life Sciences
lignocellulose
Lignocellulosic biomass
pollution control
Process simulation
Title Comprehensive assessment of 2G bioethanol production
URI https://dx.doi.org/10.1016/j.biortech.2020.123630
https://www.proquest.com/docview/2415293270
https://www.proquest.com/docview/2524290302
https://hal.science/hal-03492215
Volume 313
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQcKqCtWFpQinoNG8eOEx9Xq8L2ARdA4mb5WRah3dWycOS3M5PHFqoKDhzj2Io1M54ZZb75DPCNy8oZHlWKoVKmguUSz5xSaRl94TJvKmGpG_n4RI7Oxc-L4mIFhl0vDMEqW9_f-PTaW7cj_Vaa_dl43D-l5LsqMMRQlQCzHupgFyVZ-cH9X5gHxse6koCTU5r9qEv46sCOCdFaFyVyIlrgktDQ_w9Qby4JKfmPw66j0OEGvG_Tx2TQ7HATVsJkC9YHf-YthUbYgrfD7g43fPOIbvADCDr883DZYNYTsyTlTKYxyY8S3GegP-nT62TWEMGi0j7C-eH3s-EobW9NSJ2Q2SINlUXZFy46JoJyzHNbceuZKnxVKWmL3Dhlo7DR5tzILGBGIpjJKhWZKDnjn2B1Mp2EbUhU6fMYM48-oRSSRxO9lYYZZb1y-JEeFJ2otGspxelmi2vdYceudCdiTSLWjYh70F-umzWkGi-uUJ0m9BPz0Oj5X1y7j6pbfoj4tEeD35rGiJwnx6TnjvXga6dZjTqiqomZhOntja5THMxyy-yZOWSGCu0w33nFRj_DO3pqoIJfYHUxvw27mPIs7F5t03uwNvjxa3TyAHve_zQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB616aFwQG0BEZ4L4rpkvfZ618coomzbNBdaqTfLT5qqSqKQ8vuZ2UdUEGoPXNce2ZoZz3zaGX8G-Mxl5QyPKsVUKVPBcolnTqm0jL5wmTeVsHQb-Xwm60txelVc7cCkvwtDbZVd7G9jehOtuy-jTpuj1Xw--k7guyowxVCVAFHPLuwRO1UxgL3xyVk92wZkTJFNMQHnpyRw76LwzRc7p6bWpi6RE9cCl9QQ_e8ctXtNzZJ_xewmER0fwLMOQSbjdpOHsBMWR_B0_GPdsWiEI9if9M-44cg9xsHnIOj8r8N127aemC0vZ7KMSf4twX0G-pm-vE1WLRcs2u0FXB5_vZjUafdwQuqEzDZpqCyqv3DRMRGUY57bilvPVOGrSklb5MYpG4WNNudGZgFBiWAmq1RkouSMv4TBYrkIryBRpc9jzDyGhVJIHk30VhpmlPXK4SJDKHpVadexitPjFre6bx-70b2KNalYtyoewmgrt2p5NR6VUL0l9B8eojH4Pyr7CU23XYgotevxVNM34ufJEff8YkP42FtWo42ocGIWYXn3UzcoB4FumT0whzxRoSvmr_9jox9gv744n-rpyezsDTyhkbZz8C0MNuu78A4R0Ma-7zz8NzhKAfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+assessment+of+2G+bioethanol+production&rft.jtitle=Bioresource+technology&rft.au=Sharma%2C+Bhawna&rft.au=Larroche%2C+Christian&rft.au=Dussap%2C+Claude-Gilles&rft.date=2020-10-01&rft.issn=0960-8524&rft.volume=313&rft.spage=123630&rft_id=info:doi/10.1016%2Fj.biortech.2020.123630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2020_123630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon