Comprehensive assessment of 2G bioethanol production
•Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The biochemical route must tackle with both pentose and hexose conversion.•The evaluation of a treatment pathway includes process simulation.•Agro-reso...
Saved in:
Published in | Bioresource technology Vol. 313; p. 123630 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The biochemical route must tackle with both pentose and hexose conversion.•The evaluation of a treatment pathway includes process simulation.•Agro-resource renewal and soil impacts are added for a complete LCA.
The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource. |
---|---|
AbstractList | •Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The biochemical route must tackle with both pentose and hexose conversion.•The evaluation of a treatment pathway includes process simulation.•Agro-resource renewal and soil impacts are added for a complete LCA.
The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource. The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource. The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource.The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource. |
ArticleNumber | 123630 |
Author | Dussap, Claude-Gilles Sharma, Bhawna Larroche, Christian |
Author_xml | – sequence: 1 givenname: Bhawna surname: Sharma fullname: Sharma, Bhawna – sequence: 2 givenname: Christian surname: Larroche fullname: Larroche, Christian – sequence: 3 givenname: Claude-Gilles surname: Dussap fullname: Dussap, Claude-Gilles email: c-gilles.dussap@uca.fr |
BackLink | https://hal.science/hal-03492215$$DView record in HAL |
BookMark | eNqFkUtLw0AUhQepYFv9C5KlLlLvPPIYcKEUX1Bwo-thMrkhU9JMnZkW_PcmRDduurpw-c7h3nMWZNa7Hgm5prCiQPO77aqyzkc07YoBG5aM5xzOyJyWBU-ZLPIZmYPMIS0zJi7IIoQtAHBasDkRa7fbe2yxD_aIiQ4BQ9hhHxPXJOwlGawxtrp3XbL3rj6YaF1_Sc4b3QW8-p1L8vn89LF-TTfvL2_rx01qRA4xxbLijcxMY6hAaWjNq5JXNZVZXZYyrzKmjawaUTUV4zoH5LIQVEMpGyoKTvmS3E6-re7U3tud9t_KaateHzdq3AEXkjGaHUf2ZmKHM78OGKLa2WCw63SP7hAUG35nEjiw06igGZOcFTCg9xNqvAvBY6OMjXrMIHptO0VBjR2orfrrQI0dqKmDQZ7_k_99cVL4MAlxiPdo0atgLPYGa-vRRFU7e8riB78cpUg |
CitedBy_id | crossref_primary_10_1007_s10668_021_01753_x crossref_primary_10_3390_catal10111279 crossref_primary_10_1016_j_seppur_2022_122840 crossref_primary_10_3389_fbioe_2021_659472 crossref_primary_10_1016_j_renene_2021_05_016 crossref_primary_10_1039_D3NJ01773G crossref_primary_10_1016_j_micres_2020_126534 crossref_primary_10_1016_j_techfore_2022_121524 crossref_primary_10_1016_j_enconman_2020_113637 crossref_primary_10_1007_s43994_025_00212_x crossref_primary_10_1016_j_jclepro_2020_124111 crossref_primary_10_1590_1807_1929_agriambi_v29n6e282185 crossref_primary_10_1016_j_procbio_2021_10_002 crossref_primary_10_1038_s41598_024_70727_6 crossref_primary_10_1016_j_renene_2024_120759 crossref_primary_10_1016_j_copbio_2023_103015 crossref_primary_10_1111_1751_7915_13912 crossref_primary_10_1186_s13068_021_01949_3 crossref_primary_10_1038_s41598_023_46293_8 crossref_primary_10_3390_su14095062 crossref_primary_10_1007_s13399_021_01591_x crossref_primary_10_1016_j_jobab_2025_01_002 crossref_primary_10_1016_j_mcat_2024_114666 crossref_primary_10_3390_fermentation9100920 crossref_primary_10_1016_j_copbio_2021_01_016 crossref_primary_10_1039_D4GC05662K crossref_primary_10_15421_012405 crossref_primary_10_2478_ebtj_2023_0007 crossref_primary_10_1007_s10668_024_05692_1 crossref_primary_10_1007_s40243_024_00283_6 crossref_primary_10_1016_j_cej_2024_151713 crossref_primary_10_3390_bioengineering9100557 crossref_primary_10_1080_17597269_2024_2432157 crossref_primary_10_1016_j_biortech_2021_126153 crossref_primary_10_1016_j_biortech_2023_129549 crossref_primary_10_1016_j_biortech_2022_127105 crossref_primary_10_1016_j_esd_2022_10_009 crossref_primary_10_1016_j_biombioe_2024_107439 crossref_primary_10_1007_s00253_024_13224_0 crossref_primary_10_3390_pr10091715 crossref_primary_10_1016_j_biortech_2022_126810 crossref_primary_10_1016_j_micres_2023_127367 crossref_primary_10_3390_antiox11061155 crossref_primary_10_1016_j_rser_2021_111108 crossref_primary_10_3390_fermentation9020181 crossref_primary_10_1016_j_biombioe_2021_106166 crossref_primary_10_3390_molecules26040806 crossref_primary_10_3390_nano11030579 crossref_primary_10_3390_app10175987 crossref_primary_10_1016_j_jclepro_2024_140717 crossref_primary_10_1016_j_biortech_2021_124808 crossref_primary_10_1002_er_8678 crossref_primary_10_14710_ijred_2022_43740 crossref_primary_10_1007_s00449_024_03010_7 crossref_primary_10_1016_j_biortech_2022_127251 crossref_primary_10_1016_j_rser_2023_114267 crossref_primary_10_1016_j_ijbiomac_2024_130448 crossref_primary_10_1051_e3sconf_202560202007 crossref_primary_10_1063_5_0143669 crossref_primary_10_1016_j_biortech_2023_128989 crossref_primary_10_3390_fermentation7040203 crossref_primary_10_1186_s13068_023_02354_8 crossref_primary_10_3390_fermentation7040288 crossref_primary_10_1016_j_biortech_2022_127774 crossref_primary_10_3390_en16176384 crossref_primary_10_1016_j_biortech_2020_124217 crossref_primary_10_1016_j_biortech_2021_126247 crossref_primary_10_1016_j_bej_2022_108404 crossref_primary_10_1016_j_biortech_2020_124586 crossref_primary_10_1080_01614940_2022_2054554 crossref_primary_10_3390_pr11040992 crossref_primary_10_3390_en17174484 crossref_primary_10_5772_geet_20240082 crossref_primary_10_1111_gcbb_12774 crossref_primary_10_1016_j_rser_2021_110949 crossref_primary_10_3390_pr9091583 crossref_primary_10_1016_j_bcab_2023_102877 crossref_primary_10_1088_1755_1315_724_1_012055 crossref_primary_10_1007_s42250_022_00563_6 crossref_primary_10_1002_cssc_202100765 crossref_primary_10_56845_terys_v1i1_251 crossref_primary_10_1016_j_biortech_2021_126250 crossref_primary_10_1016_j_biortech_2020_124209 crossref_primary_10_1016_j_seppur_2024_127392 crossref_primary_10_1016_j_biortech_2021_126415 crossref_primary_10_3390_ijms241613001 crossref_primary_10_3390_fermentation8120705 crossref_primary_10_3390_waste3020012 crossref_primary_10_1016_j_indcrop_2021_114471 crossref_primary_10_1016_j_fuel_2022_124624 crossref_primary_10_1038_s41598_022_06042_9 crossref_primary_10_1016_j_recm_2021_12_002 crossref_primary_10_1016_j_indcrop_2023_116297 crossref_primary_10_1007_s12155_023_10640_4 crossref_primary_10_1021_acsomega_4c06579 crossref_primary_10_7849_ksnre_2021_0008 crossref_primary_10_1002_cctc_202300733 crossref_primary_10_5802_crchim_226 crossref_primary_10_3390_su141912127 crossref_primary_10_1016_j_apenergy_2020_115884 crossref_primary_10_1016_j_biortech_2023_129174 crossref_primary_10_1016_j_jechem_2022_04_049 crossref_primary_10_1016_j_biortech_2021_126100 crossref_primary_10_2339_politeknik_1066167 crossref_primary_10_1016_j_biortech_2020_124559 crossref_primary_10_14710_ijred_2022_41774 crossref_primary_10_1016_j_biortech_2021_124833 crossref_primary_10_3390_en14030565 crossref_primary_10_1016_j_biortech_2021_125923 crossref_primary_10_1016_j_renene_2023_03_056 crossref_primary_10_1016_j_rser_2021_111817 crossref_primary_10_1016_j_nexus_2023_100254 crossref_primary_10_3390_su17010173 crossref_primary_10_1186_s42825_021_00074_z crossref_primary_10_1002_bbb_2589 crossref_primary_10_1016_j_apcatb_2023_123550 crossref_primary_10_33667_2078_5631_2022_16_93_101 crossref_primary_10_1007_s13399_022_03307_1 crossref_primary_10_1016_j_nbt_2024_12_004 crossref_primary_10_3390_recycling9010019 crossref_primary_10_1007_s12155_023_10617_3 crossref_primary_10_1016_j_ijbiomac_2022_08_186 crossref_primary_10_3390_ma14040914 crossref_primary_10_1016_j_seta_2024_103722 crossref_primary_10_1016_j_jclepro_2025_145031 crossref_primary_10_1016_j_matpr_2023_08_379 crossref_primary_10_1016_j_indcrop_2022_115969 crossref_primary_10_1016_j_scitotenv_2022_158689 crossref_primary_10_1016_j_biteb_2024_101891 crossref_primary_10_1088_1755_1315_1312_1_012037 crossref_primary_10_3390_ma14195597 crossref_primary_10_1016_j_indcrop_2023_117048 crossref_primary_10_1016_j_bej_2021_108192 crossref_primary_10_1080_17597269_2023_2299090 crossref_primary_10_1021_acssuschemeng_1c08300 crossref_primary_10_1016_j_ijhydene_2021_07_141 crossref_primary_10_1186_s13068_021_02067_w crossref_primary_10_1016_j_scitotenv_2024_175780 crossref_primary_10_1021_acssuschemeng_1c01513 crossref_primary_10_1016_j_renene_2023_01_063 crossref_primary_10_3390_fermentation8120734 crossref_primary_10_3390_en16124657 crossref_primary_10_1007_s44279_025_00163_1 crossref_primary_10_1016_j_fuel_2022_124532 crossref_primary_10_1007_s12155_022_10440_2 crossref_primary_10_1016_j_fuel_2022_123444 crossref_primary_10_3390_molecules27248717 crossref_primary_10_1002_ente_202200892 crossref_primary_10_3390_plants11202791 crossref_primary_10_1016_j_envres_2022_112710 crossref_primary_10_1007_s10668_022_02633_8 crossref_primary_10_1155_2021_3388067 crossref_primary_10_1007_s40974_024_00317_9 crossref_primary_10_1016_j_fuel_2022_123448 crossref_primary_10_1016_j_fuel_2022_125109 crossref_primary_10_1088_1742_6596_2616_1_012018 crossref_primary_10_2139_ssrn_4165811 crossref_primary_10_1016_j_biortech_2024_130470 crossref_primary_10_3389_fenrg_2021_684234 crossref_primary_10_1155_2023_6626513 crossref_primary_10_1002_cplu_202400566 crossref_primary_10_1016_j_biortech_2023_129486 crossref_primary_10_1002_cssc_202102628 crossref_primary_10_3389_fchem_2022_884398 crossref_primary_10_1007_s12155_021_10383_0 crossref_primary_10_1093_jambio_lxac061 crossref_primary_10_1016_j_biortech_2022_128012 crossref_primary_10_1039_D0SE01802C crossref_primary_10_3390_ijerph18116001 crossref_primary_10_6090_jarq_56_405 crossref_primary_10_1016_j_biortech_2022_126903 crossref_primary_10_1007_s13399_023_03891_w crossref_primary_10_3390_en15134876 crossref_primary_10_1016_j_biortech_2022_127836 crossref_primary_10_3389_fenrg_2022_836690 crossref_primary_10_1021_acssynbio_3c00289 crossref_primary_10_1186_s40643_022_00573_9 crossref_primary_10_3390_en15072582 crossref_primary_10_3390_fermentation9100906 crossref_primary_10_1016_j_jallcom_2023_173194 crossref_primary_10_1080_17597269_2023_2294593 crossref_primary_10_1134_S0040579523050469 |
Cites_doi | 10.1007/978-94-007-6898-7_2 10.1039/c0ee00574f 10.1016/j.tplants.2008.12.006 10.2136/sssaj2008.0141 10.1016/j.enconman.2009.01.008 10.1016/j.ejbt.2016.07.006 10.1016/j.biombioe.2012.01.028 10.1016/j.biombioe.2012.10.017 10.1186/1754-6834-3-17 10.4061/2011/280696 10.1002/9781118642047 10.5772/52164 10.1007/978-981-10-0687-6_2 10.1016/j.tibtech.2007.01.001 10.1080/19443994.2015.1079249 10.1016/j.procbio.2012.05.004 10.1016/j.tibtech.2006.10.004 10.1099/mic.0.26089-0 10.1385/ABAB:129:1:55 10.1016/j.biombioe.2007.10.017 10.1016/j.biombioe.2004.11.004 10.1002/9780470750025.ch11 10.1016/j.renene.2016.03.045 10.1016/j.rser.2016.11.022 10.1016/S0961-9534(02)00006-5 10.1002/bbb.206 10.1016/j.indcrop.2003.12.015 10.1016/S0960-8524(97)00181-8 10.1016/j.pecs.2010.01.003 10.1162/108819803323059433 10.1093/jxb/erv130 10.1021/bp0340180 10.1007/s002530100624 10.4236/aer.2016.42005 10.1007/s13205-016-0584-6 10.1016/j.cep.2015.10.010 10.1016/B978-0-12-802392-1.00003-4 10.3389/fenrg.2018.00096 10.1016/B978-0-12-813766-6.00003-5 10.1016/j.rser.2009.01.016 10.1016/j.energy.2014.04.014 10.1016/j.rser.2017.02.018 10.1016/j.rser.2016.12.076 10.1016/0960-8524(94)90214-3 10.1016/j.enconman.2010.08.013 10.1002/prep.201700210 10.1007/978-3-319-56475-3_10 10.17113/ftb.56.02.18.5428 10.1002/bit.260250107 10.1021/es048293+ 10.1016/j.biombioe.2005.06.004 10.1039/C4GC01124D 10.1007/978-3-319-30205-8_22 10.2172/1013269 10.1021/ie801542g 10.1111/j.1365-2486.2006.01163.x 10.1016/j.biombioe.2014.01.040 10.1016/B978-0-08-101023-5.00010-8 10.1016/B978-0-12-385099-7.00007-3 10.1515/bioeth-2016-0003 10.1016/j.enpol.2008.05.016 10.3390/biom4010117 10.1002/cite.330670827 10.1016/j.jclepro.2012.01.028 10.1016/j.biombioe.2008.12.001 10.1111/j.1467-7652.2004.00076.x 10.1155/2018/1503126 10.1073/pnas.0704767105 10.1002/bbb.26 10.5772/64979 10.1016/j.resconrec.2009.03.013 10.1186/s12934-018-0879-x 10.1016/j.biortech.2006.11.039 10.1016/j.psep.2014.02.012 10.1016/j.jclepro.2006.03.002 10.1016/j.apenergy.2009.08.024 10.1007/s11367-010-0177-2 10.1016/j.resconrec.2007.08.007 10.1007/s10295-003-0049-x 10.1016/j.trd.2006.01.001 10.1016/j.rser.2019.02.018 10.5772/30085 10.2134/agronj2005.0222 10.1016/j.rser.2010.08.003 10.1016/j.cej.2011.06.083 10.1016/j.psep.2009.11.005 10.1007/s13205-014-0246-5 10.1007/s00267-010-9494-2 10.1155/2014/631013 10.1021/es900250d 10.1007/s11367-014-0708-3 10.1007/978-3-319-26015-0 10.1016/j.enpol.2010.05.008 10.1186/s13068-016-0635-6 10.1186/s13068-016-0567-1 10.1016/j.biortech.2007.01.002 10.1007/978-1-4757-6970-8 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Ltd. Attribution - NonCommercial |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Ltd. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.biortech.2020.123630 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | oai_HAL_hal_03492215v1 10_1016_j_biortech_2020_123630 S0960852420309020 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c460t-e8b3f95cfc14e9c1d3b83bd195d8896b52ac9bf4bfb23a60e39741a089f147313 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri May 09 12:10:28 EDT 2025 Thu Jul 10 23:29:31 EDT 2025 Fri Jul 11 01:27:09 EDT 2025 Tue Jul 01 03:18:45 EDT 2025 Thu Apr 24 22:53:01 EDT 2025 Fri Feb 23 02:47:13 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fermentation Lignocellulosic biomass Environmental impact Process simulation 2G (second generation) bioethanol |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-e8b3f95cfc14e9c1d3b83bd195d8896b52ac9bf4bfb23a60e39741a089f147313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7348-9191 |
OpenAccessLink | https://hal.science/hal-03492215 |
PQID | 2415293270 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_03492215v1 proquest_miscellaneous_2524290302 proquest_miscellaneous_2415293270 crossref_citationtrail_10_1016_j_biortech_2020_123630 crossref_primary_10_1016_j_biortech_2020_123630 elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Bioresource technology |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hess, Wright, Kenney (b0235) 2007; 1 Wang, Q., 2013. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Green Process. Synth. https://doi.org/10.1515/gps-2013-0087. Bajpai, P., 2016a. Structure of Lignocellulosic Biomass. https://doi.org/10.1007/978-981-10-0687-6_2. Cooper, G., et al., 2019, 2019 Ethanol Industry Outlook, Renewable Fuels Association. Liebig, Johnson, Hanson, Frank (b0310) 2005 Spatari, S., Zhang, Y., Maclean, H.L., 2005. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ. Sci. Technol. https://doi.org/10.1021/es048293. Gabrielle, Gagnaire (b0180) 2008; 32 Blanco-Canqui, Lal (b0085) 2009 Bertrand, E., Pradel M., Dussap, C.G., 2016. Economic and Environmental Aspects of Biofuels. In: Green Fuels Technology, Soccol, C.R., Brar, S.K., Faulds, C., Ramos, L.P. eds. Springer, Chap 22, 525–555. Hatti-Kaul, Törnvall, Gustafsson, Börjesson (b0225) 2007 Bai, Y., Luo, L., Van Der Voet, E., 2010. Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-010-0177-2. Shafie, Masjuki, Mahlia (b0455) 2014 Hayashi, van Ierland, Zhu (b0230) 2014 Szczukowski, Tworkowski, Klasa, Stolarski (bib562) 2002; 48 Davis, Anderson-Teixeira, DeLucia (b0145) 2009 Sims, Hastings, Schlamadinger, Taylor, Smith (b0475) 2006; 12 Wyman, C.E., 1994. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresour. Technol. https://doi.org/10.1016/0960-8524(94)90214-3. von Blottnitz, Curran (b0525) 2007; 15 Nagy, Mizsey, Hancsók, Boldyryev, Varbanov (b0355) 2015; 98 Chundawat, S.P.S., Donohoe, B.S., Sousa, L. da C., Elder, T., Agarwal, U.P., Lu, F., Ralph, J., Himmel, M.E., Balan, V., Dale, B.E., 2011. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 4, 973–984. https://doi.org/10.1039/C0EE00574F. Saini, J.K., Saini, R., Tewari, L., 2015. Lignocellulosic agriculture wastes as biomass feedstock for second-generation bioethanol production: concepts and recent developments. 3 Biotech. https://doi.org/10.1007/s13205-014-0246-5. Kim, Dale (b0285) 2005; 29 Mabee, W.E., Gregg, D.J., Arato, C., Berlin, A., Bura, R., Gilkes, N., Mirochnik, O., Pan, X., Pye, E.K., Saddler, J.N., 2006. Updates on softwood-to-ethanol process development, in: Applied Biochemistry and Biotechnology. https://doi.org/10.1385/ABAB:129:1:55. Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Nelson, R., 2003b. Is Ethanol Made from Corn Stover a Sustainable Transportation Fuel?. In: Enzyme Sugar Platform (ESP) Project FY03 Review Meeting. Nelson (b0360) 2002 Cherubini, F., Ulgiati, S., 2010. Crop residues as raw materials for biorefinery systems – A LCA case study. Appl. Energy. https://doi.org/10.1016/j.apenergy.2009.08.024. Bennett, Phipps, Strange, Grey (b0075) 2004 Pfenning, A., 2004. Kirk-Othmer Encyclopedia of chemical technology. Chem. Ing. Tech. https://doi.org/10.1002/cite.330670827. Sheehan, Aden, Paustian, Killian, Brenner, Walsh, Nelson (b0460) 2003; 7 Tomás-Pejó, E., Alvira, P., Ballesteros, M., Negro, M.J., 2011. Pretreatment technologies for lignocellulose-to-bioethanol conversion, in: Biofuels. https://doi.org/10.1016/B978-0-12-385099-7.00007-3. González-García, Moreira, Feijoo, Murphy (b0190) 2012 Balat (b0060) 2011 Mu, Seager, Rao, Zhao (b0350) 2010; 46 Pereira Ramos (b0390) 2003 Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials, 2016. https://doi.org/10.1007/978-3-319-26015-0. Dien, B.S., 2010. Mass Balances and Analytical Methods for Biomass Pretreatment Experiments. In: Biomass to Biofuels. John Wiley & Sons, Ltd, pp. 213–231. https://doi.org/10.1002/9780470750025.ch11. Singh, Dhananjaya Singh, Krishnamurthy (bib567) 2014; 6 Gismatulina, Budaeva, Sakovich (bib564) 2018; 43 Sassner, Mårtensson, Galbe, Zacchi (b0445) 2008; 99 Adrio, Demain (b0015) 2014; 4 Taherzadeh, Karimi (b0490) 2007 Tan, Lee, Mohamed (b0495) 2008; 36 Lee, H.V., Hamid, S.B.A., Zain, S.K., 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process [WWW Document]. Sci. World J. https://doi.org/10.1155/2014/631013. Fayoud, Tahiri, Alami Younssi, Albizane, Gallart-Mateu, Cervera, de la Guardia (bib563) 2016; 57 Chen, H., 2014. Chemical Composition and Structure of Natural Lignocellulose, in: Chen, H. (Ed.), Biotechnology of Lignocellulose: Theory and Practice. Springer Netherlands, Dordrecht, pp. 25–71. https://doi.org/10.1007/978-94-007-6898-7_2. EU-28: 2018. Biofuels Annual: EU Biofuels Annual 2018. Flach B., Liebertz S., Lappin J., Bolla S., UDSA Foreign Agricultural Service. Guo, Littlewood, Joyce, Murphy (b0210) 2014 Hahn-Hägerdal, Galbe, Gorwa-Grauslund, Lidén, Zacchi (b0215) 2006 Kaufman, A.S., Meier, P.J., Sinistore, J.C., Reinemann, D.J., 2010. Applying life-cycle assessment to low carbon fuel standards—How allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy, Special Section on Carbon Emissions and Carbon Management in Cities with Regular Papers 38, 5229–5241. https://doi.org/10.1016/j.enpol.2010.05.008. Ojeda, K., Sánchez, E., El-Halwagi, M., Kafarov, V., 2011. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways. Chem. Eng. J. https://doi.org/10.1016/j.cej.2011.06.083. Saliu, Sani (bib568) 2012 Walia, A., Guleria, S., Mehta, P., Chauhan, A., Parkash, J., 2017. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. https://doi.org/10.1007/s13205-016-0584-6. Kapoor, M., Panwar, D., Kaira, G.S., 2016. Bioprocesses for enzyme production using agro-industrial wastes: Technical challenges and commercialization potential. In: Dhillon, G.S., Kaur, S. (Eds.), Agro-Industrial Wastes as Feedstock for Enzyme Production. vol. 3, pp. 61–93. Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., Aminul Islam, A.K.M., 2017. Jatropha biofuel industry: the challenges, in: Frontiers in Bioenergy and Biofuels. https://doi.org/10.5772/64979. Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. In: Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2003.12.015. Fugelsang, K.C., Fugelsang, K.C., 1997. Fermentation and Post-fermentation Processing, in: Wine Microbiology. https://doi.org/10.1007/978-1-4757-6970-8_5. Mooney, Mansfield, Touhy, Saddler (b0345) 1998 Jahnavi, G., Prashanthi, G.S., Sravanthi, K., Rao, L.V., 2017. Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.02.018. Kuhad, Gupta, Singh (b0295) 2011 Alvira, Negro, Ballesteros, González, Ballesteros (b0025) 2016; 2 Zaldivar, J., Nielsen, J., Olsson, L., 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s002530100624. Chen, Z., Wang, L., Qiu, S., Ge, S., 2018. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Res. Int. https://doi.org/10.1155/2018/1503126. Williams, Inman, Aden, Heath (b0540) 2009 Baudry, Delrue, Legrand, Pruvost, Vallée (b0070) 2017; 69 Demirel (b0150) 2018 Imran, M., Anwar, Z., Irshad, M., Asad, M.J., Ashfaq, H., 2016. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv. Enzyme Res. https://doi.org/10.4236/aer.2016.42005. Nitsche, Gbadamosi (b0370) 2017 Borrion, McManus, Hammond (b0095) 2012 Nigam, P.S., Singh, A., 2011. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. https://doi.org/10.1016/j.pecs.2010.01.003. Soares, Pessoa, Mendes (b0480) 2015; 93 Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2016.12.076. Abdullah, Syed Muhammad, Shokravi, Ismail, Kassim, Mahmood, Aziz (b0005) 2019; 107 Ravagnani, Reis, Filho, Wolf-Maciel (b0410) 2010; 88 Robak, Balcerek (b0425) 2018; 56 Sannigrahi, Ragauskas, Tuskan (bib561) 2010 Khan, M.I., Shin, J.H., Kim, J.D., 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories. https://doi.org/10.1186/s12934-018-0879-x. Porzio, Prussi, Chiaramonti, Pari (b0405) 2012 Mohanty, S.K., Swain, M.R., 2019, Bioethanol Production From Corn and Wheat: Food, Fuels and Future, in: Bioethanol production From Food Crops, Ray, R.C., Ramachandran, S., editors, Elsevier, Chap 3, 45–59. Bajpai (b0055) 2016 Simas-Rodrigues, Villela, Martins, Marques, Colepicolo, Tonon (b0470) 2015 Rosenbaum, R.K., Hauschild, M.Z., Boulay, A.M., Fantke, P., Laurent, A., Núñez, M., Vieira, M., 2017. Life cycle impact assessment, in: Life Cycle Assessment: Theory and Practice. https://doi.org/10.1007/978-3-319-56475-3_10. Saha (b0435) 2003 Fleming, J.S., Habibi, S., MacLean, H.L., 2006. Investigating the sustainability of lignocellulose-derived fuels for light-duty vehicles. Transp. Res. Part Transp. Environ. https://doi.org/10.1016/j.trd.2006.01.001. Soccol, Faraco, Karp, Vandenberghe, Thomaz-Soccol, Woiciechowski, Pandey (b0420) 2011 Bondesson, Galbe (b0090) 2016; 9 Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie801542g. Owsianiak, M., Laurent, A., Bjørn, A., Hauschild, M.Z., 2014. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling i 10.1016/j.biortech.2020.123630_b0120 10.1016/j.biortech.2020.123630_b0240 10.1016/j.biortech.2020.123630_b0080 10.1016/j.biortech.2020.123630_bib566 Balat (10.1016/j.biortech.2020.123630_b0060) 2011 10.1016/j.biortech.2020.123630_b0125 Shafie (10.1016/j.biortech.2020.123630_b0455) 2014 Wingren (10.1016/j.biortech.2020.123630_b0545) 2003; 19 Barnett (10.1016/j.biortech.2020.123630_b0065) 2003 10.1016/j.biortech.2020.123630_b0245 Mu (10.1016/j.biortech.2020.123630_b0350) 2010; 46 Guo (10.1016/j.biortech.2020.123630_b0210) 2014 10.1016/j.biortech.2020.123630_b0365 10.1016/j.biortech.2020.123630_b0485 Bennett (10.1016/j.biortech.2020.123630_b0075) 2004 Tan (10.1016/j.biortech.2020.123630_b0495) 2008; 36 Kuhad (10.1016/j.biortech.2020.123630_b0295) 2011 10.1016/j.biortech.2020.123630_b0195 The International Standards Organisation (10.1016/j.biortech.2020.123630_b0500) 2006 Uihlein (10.1016/j.biortech.2020.123630_b0515) 2009; 33 Kuhad (10.1016/j.biortech.2020.123630_b0290) 2011 10.1016/j.biortech.2020.123630_b0115 Soares (10.1016/j.biortech.2020.123630_b0480) 2015; 93 10.1016/j.biortech.2020.123630_b0510 Hess (10.1016/j.biortech.2020.123630_b0235) 2007; 1 10.1016/j.biortech.2020.123630_b0110 Luo (10.1016/j.biortech.2020.123630_b0315) 2009; 13 10.1016/j.biortech.2020.123630_b0140 10.1016/j.biortech.2020.123630_b0260 Nagy (10.1016/j.biortech.2020.123630_b0355) 2015; 98 10.1016/j.biortech.2020.123630_b0020 Pereira Ramos (10.1016/j.biortech.2020.123630_b0390) 2003 Abdullah (10.1016/j.biortech.2020.123630_b0005) 2019; 107 Bajpai (10.1016/j.biortech.2020.123630_b0055) 2016 10.1016/j.biortech.2020.123630_b0265 Singh (10.1016/j.biortech.2020.123630_bib567) 2014; 6 10.1016/j.biortech.2020.123630_b0385 10.1016/j.biortech.2020.123630_b0300 10.1016/j.biortech.2020.123630_b0305 Simas-Rodrigues (10.1016/j.biortech.2020.123630_b0470) 2015 10.1016/j.biortech.2020.123630_b0250 Borrion (10.1016/j.biortech.2020.123630_b0095) 2012 10.1016/j.biortech.2020.123630_b0130 Mooney (10.1016/j.biortech.2020.123630_b0345) 1998 Sheehan (10.1016/j.biortech.2020.123630_b0460) 2003; 7 van Vliet (10.1016/j.biortech.2020.123630_b0520) 2009; 50 10.1016/j.biortech.2020.123630_b0535 Saliu (10.1016/j.biortech.2020.123630_bib568) 2012 Tian (10.1016/j.biortech.2020.123630_b0505) 2009; 27 10.1016/j.biortech.2020.123630_b0375 10.1016/j.biortech.2020.123630_b0530 10.1016/j.biortech.2020.123630_b0135 Liebig (10.1016/j.biortech.2020.123630_b0310) 2005 10.1016/j.biortech.2020.123630_b0255 Baudry (10.1016/j.biortech.2020.123630_b0070) 2017; 69 Gonçalves (10.1016/j.biortech.2020.123630_b0185) 2016; 94 10.1016/j.biortech.2020.123630_b0415 Mohd Azhar (10.1016/j.biortech.2020.123630_b0335) 2017 10.1016/j.biortech.2020.123630_b0040 Nitsche (10.1016/j.biortech.2020.123630_b0370) 2017 10.1016/j.biortech.2020.123630_b0560 Hasunuma (10.1016/j.biortech.2020.123630_b0220) 2012 10.1016/j.biortech.2020.123630_b0160 10.1016/j.biortech.2020.123630_b0205 10.1016/j.biortech.2020.123630_b0325 10.1016/j.biortech.2020.123630_b0045 10.1016/j.biortech.2020.123630_b0320 10.1016/j.biortech.2020.123630_b0165 Porzio (10.1016/j.biortech.2020.123630_b0405) 2012 10.1016/j.biortech.2020.123630_b0440 Kim (10.1016/j.biortech.2020.123630_bib565) 2018; 6 Adrio (10.1016/j.biortech.2020.123630_b0015) 2014; 4 Williams (10.1016/j.biortech.2020.123630_b0540) 2009 Nelson (10.1016/j.biortech.2020.123630_b0360) 2002 Cardona (10.1016/j.biortech.2020.123630_b0100) 2007 Davis (10.1016/j.biortech.2020.123630_b0145) 2009 Olofsson (10.1016/j.biortech.2020.123630_b0380) 2010; 3 Ravagnani (10.1016/j.biortech.2020.123630_b0410) 2010; 88 10.1016/j.biortech.2020.123630_b0030 Demirel (10.1016/j.biortech.2020.123630_b0150) 2018 10.1016/j.biortech.2020.123630_b0395 10.1016/j.biortech.2020.123630_b0270 10.1016/j.biortech.2020.123630_b0555 10.1016/j.biortech.2020.123630_b0155 10.1016/j.biortech.2020.123630_b0430 10.1016/j.biortech.2020.123630_b0275 10.1016/j.biortech.2020.123630_b0550 Graham (10.1016/j.biortech.2020.123630_b0200) 2007; 99 Hayashi (10.1016/j.biortech.2020.123630_b0230) 2014 Pielhop (10.1016/j.biortech.2020.123630_b0400) 2016; 9 Kim (10.1016/j.biortech.2020.123630_b0285) 2005; 29 Blanco-Canqui (10.1016/j.biortech.2020.123630_b0085) 2009 Hahn-Hägerdal (10.1016/j.biortech.2020.123630_b0215) 2006 10.1016/j.biortech.2020.123630_b0340 Taherzadeh (10.1016/j.biortech.2020.123630_b0490) 2007 Bondesson (10.1016/j.biortech.2020.123630_b0090) 2016; 9 von Blottnitz (10.1016/j.biortech.2020.123630_b0525) 2007; 15 10.1016/j.biortech.2020.123630_b0105 Alvira (10.1016/j.biortech.2020.123630_b0025) 2016; 2 Hatti-Kaul (10.1016/j.biortech.2020.123630_b0225) 2007 10.1016/j.biortech.2020.123630_b0465 González-García (10.1016/j.biortech.2020.123630_b0190) 2012 Schmer (10.1016/j.biortech.2020.123630_b0450) 2008; 105 Fayoud (10.1016/j.biortech.2020.123630_bib563) 2016; 57 Gabrielle (10.1016/j.biortech.2020.123630_b0180) 2008; 32 Achinas (10.1016/j.biortech.2020.123630_b0010) 2016; 23 10.1016/j.biortech.2020.123630_b0175 Sannigrahi (10.1016/j.biortech.2020.123630_bib561) 2010 Soccol (10.1016/j.biortech.2020.123630_b0420) 2011 10.1016/j.biortech.2020.123630_b0050 Avgerinos (10.1016/j.biortech.2020.123630_b0035) 1983; 25 10.1016/j.biortech.2020.123630_b0170 Sassner (10.1016/j.biortech.2020.123630_b0445) 2008; 99 Sims (10.1016/j.biortech.2020.123630_b0475) 2006; 12 Kim (10.1016/j.biortech.2020.123630_b0280) 2005 Szczukowski (10.1016/j.biortech.2020.123630_bib562) 2002; 48 10.1016/j.biortech.2020.123630_b0330 Robak (10.1016/j.biortech.2020.123630_b0425) 2018; 56 Saha (10.1016/j.biortech.2020.123630_b0435) 2003 Gismatulina (10.1016/j.biortech.2020.123630_bib564) 2018; 43 |
References_xml | – volume: 25 start-page: 67 year: 1983 end-page: 83 ident: b0035 article-title: Selective solvent delignification for fermentation enhancement publication-title: Biotechnol. Bioeng. – year: 2002 ident: b0360 article-title: Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States – rainfall and wind-induced soil erosion methodology publication-title: Biomass Bioenergy – volume: 93 start-page: 147 year: 2015 end-page: 153 ident: b0480 article-title: Dehydration of ethanol with different salts in a packed distillation column publication-title: Process Saf. Environ. Prot. – reference: Saini, J.K., Saini, R., Tewari, L., 2015. Lignocellulosic agriculture wastes as biomass feedstock for second-generation bioethanol production: concepts and recent developments. 3 Biotech. https://doi.org/10.1007/s13205-014-0246-5. – reference: Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie801542g. – volume: 99 start-page: 137 year: 2008 end-page: 145 ident: b0445 article-title: Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol publication-title: Bioresour. Technol. – year: 2005 ident: b0280 article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel publication-title: Biomass Bioenergy – reference: Pfenning, A., 2004. Kirk-Othmer Encyclopedia of chemical technology. Chem. Ing. Tech. https://doi.org/10.1002/cite.330670827. – reference: Dien, B.S., 2010. Mass Balances and Analytical Methods for Biomass Pretreatment Experiments. In: Biomass to Biofuels. John Wiley & Sons, Ltd, pp. 213–231. https://doi.org/10.1002/9780470750025.ch11. – year: 2012 ident: b0405 article-title: Modelling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products publication-title: J. Clean. Prod. – volume: 99 start-page: 1 year: 2007 end-page: 11 ident: b0200 article-title: Current and potential U.S. Corn Stover Supplies publication-title: Agron. J. – reference: Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials, 2016. https://doi.org/10.1007/978-3-319-26015-0. – year: 2014 ident: b0455 article-title: Life cycle assessment of rice straw-based power generation in Malaysia publication-title: Energy – year: 2003 ident: b0065 article-title: Beginnings of microbiology and biochemistry: the contribution of yeast research publication-title: Microbiology – volume: 4 start-page: 117 year: 2014 end-page: 139 ident: b0015 article-title: Microbial Enzymes: Tools for Biotechnological Processes publication-title: Biomolecules – year: 2011 ident: b0060 article-title: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review publication-title: Energy Convers. Manag. – year: 2007 ident: b0225 article-title: Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective publication-title: Trends Biotechnol. – reference: Al-Riffai, P., Dimaranan, B., LaBorde, D.V., 2010. Global trade and environmental impact study of the EU biofuels mandate. – year: 2014 ident: b0230 article-title: A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators publication-title: Biomass Bioenergy – year: 2012 ident: b0220 article-title: Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains publication-title: Process Biochem. – volume: 19 start-page: 1109 year: 2003 end-page: 1117 ident: b0545 article-title: Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks publication-title: Biotechnol. Prog. – reference: Khan, M.I., Shin, J.H., Kim, J.D., 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories. https://doi.org/10.1186/s12934-018-0879-x. – year: 2010 ident: bib561 article-title: Poplar as a feedstock for biofuels: A review of compositional characteristics publication-title: Biofuels, Bioprod. Biorefin. – year: 2012 ident: b0095 article-title: Environmental life cycle assessment of bioethanol production from wheat straw publication-title: Biomass Bioenergy – volume: 43 start-page: 96 year: 2018 end-page: 100 ident: bib564 article-title: Nitrocellulose synthesis from publication-title: Propellants Explos. Pyrotech. – reference: Griffiths, M.J., Dicks, R.G., Richardson, C., Harrison, S.T.L., 2011. Advantages and challenges of microalgae as a source of oil for biodiesel. Biodiesel – Feedstock Process. Technol. https://doi.org/10.5772/30085. – reference: Wang, Q., 2013. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Green Process. Synth. https://doi.org/10.1515/gps-2013-0087. – volume: 36 start-page: 3360 year: 2008 end-page: 3365 ident: b0495 article-title: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol publication-title: Energy Policy – reference: Nigam, P.S., Singh, A., 2011. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. https://doi.org/10.1016/j.pecs.2010.01.003. – year: 2006 ident: b0215 article-title: Bio-ethanol – the fuel of tomorrow from the residues of today publication-title: Trends Biotechnol. – reference: Axelsson, 2011. Separate Hydrolysis and Fermentation of Pretreated Spruce. Master Thesis Linköping Univ. – year: 2003 ident: b0435 article-title: Hemicellulose bioconversion publication-title: J. Ind. Microbiol. Biotechnol. – reference: Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G., 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2016.12.076. – year: 2014 ident: b0210 article-title: The environmental profile of bioethanol produced from current and potential future poplar feedstock in the EU publication-title: Green Chem. – volume: 107 start-page: 37 year: 2019 end-page: 50 ident: b0005 article-title: Fourth generation biofuel: a review on risks and mitigation strategies publication-title: Renew. Sustain. Energy Rev. – reference: Spatari, S., Zhang, Y., Maclean, H.L., 2005. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ. Sci. Technol. https://doi.org/10.1021/es048293. – reference: Gouveia, L., Oliveira, A.C., Congestri, R., Bruno, L., Soares, A.T., Menezes, R.S., Filho, N.R.A., Tzovenis, I., 2017. Biodiesel from microalgae, in: Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products. https://doi.org/10.1016/B978-0-08-101023-5.00010-8. – reference: Lee, H.V., Hamid, S.B.A., Zain, S.K., 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process [WWW Document]. Sci. World J. https://doi.org/10.1155/2014/631013. – reference: Cooper, G., et al., 2019, 2019 Ethanol Industry Outlook, Renewable Fuels Association. – reference: Min, F., Kopke, M., Dennis, S., 2013. Gas Fermentation for commercial biofuels production, in: Liquid, Gaseous and Solid Biofuels – Conversion Techniques. https://doi.org/10.5772/52164. – volume: 46 start-page: 565 year: 2010 end-page: 578 ident: b0350 article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion publication-title: Environ. Manage. – reference: Owsianiak, M., Laurent, A., Bjørn, A., Hauschild, M.Z., 2014. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-014-0708-3. – volume: 23 start-page: 44 year: 2016 end-page: 53 ident: b0010 article-title: Consolidated briefing of biochemical ethanol production from lignocellulosic biomass publication-title: Electron. J. Biotechnol. – reference: Kaufman, A.S., Meier, P.J., Sinistore, J.C., Reinemann, D.J., 2010. Applying life-cycle assessment to low carbon fuel standards—How allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy, Special Section on Carbon Emissions and Carbon Management in Cities with Regular Papers 38, 5229–5241. https://doi.org/10.1016/j.enpol.2010.05.008. – reference: IEA-Bioenergy-Task-39, 2020, Implementation Agendas, https://task39.ieabioenergy.com/publications/ Agendas F. – reference: Mohanty, S.K., Swain, M.R., 2019, Bioethanol Production From Corn and Wheat: Food, Fuels and Future, in: Bioethanol production From Food Crops, Ray, R.C., Ramachandran, S., editors, Elsevier, Chap 3, 45–59. – reference: Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Nelson, R., 2003b. Is Ethanol Made from Corn Stover a Sustainable Transportation Fuel?. In: Enzyme Sugar Platform (ESP) Project FY03 Review Meeting. – volume: 88 start-page: 67 year: 2010 end-page: 73 ident: b0410 article-title: Anhydrous ethanol production by extractive distillation: as solvent case study publication-title: Process Saf. Environ. Prot. – volume: 12 start-page: 2054 year: 2006 end-page: 2076 ident: b0475 article-title: Energy crops: current status and future prospects publication-title: Glob. Change Biol. – reference: Zaldivar, J., Nielsen, J., Olsson, L., 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s002530100624. – reference: Chen, Z., Wang, L., Qiu, S., Ge, S., 2018. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Res. Int. https://doi.org/10.1155/2018/1503126. – reference: Fugelsang, K.C., Fugelsang, K.C., 1997. Fermentation and Post-fermentation Processing, in: Wine Microbiology. https://doi.org/10.1007/978-1-4757-6970-8_5. – volume: 98 start-page: 86 year: 2015 end-page: 94 ident: b0355 article-title: Analysis of energy saving by combination of distillation and pervaporation for biofuel production publication-title: Chem. Eng. Process. Process Intensif. – reference: Mabee, W.E., Gregg, D.J., Arato, C., Berlin, A., Bura, R., Gilkes, N., Mirochnik, O., Pan, X., Pye, E.K., Saddler, J.N., 2006. Updates on softwood-to-ethanol process development, in: Applied Biochemistry and Biotechnology. https://doi.org/10.1385/ABAB:129:1:55. – year: 2006 ident: b0500 article-title: ISO 14044 publication-title: Int. J. Life Cycle Assess. – reference: Chen, H., 2014. Chemical Composition and Structure of Natural Lignocellulose, in: Chen, H. (Ed.), Biotechnology of Lignocellulose: Theory and Practice. Springer Netherlands, Dordrecht, pp. 25–71. https://doi.org/10.1007/978-94-007-6898-7_2. – year: 2009 ident: b0540 article-title: Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? publication-title: Environ. Sci. Technol. – volume: 1 start-page: 181 year: 2007 end-page: 190 ident: b0235 article-title: Cellulosic biomass feedstock and logistics for ethanol production publication-title: Biofuels Bioprod. Biorefining – volume: 69 start-page: 933 year: 2017 end-page: 947 ident: b0070 article-title: The challenge of measuring biofuel sustainability: a stakeholder-driven approach applied to the French case publication-title: Renew. Sustain. Energy Rev. – volume: 9 start-page: 222 year: 2016 ident: b0090 article-title: Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw publication-title: Biotechnol. Biofuels – reference: Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. In: Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2003.12.015. – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: bib565 article-title: Effect of non-structural organics and inorganics constituents of switchgrass during pyrolysis publication-title: Front. Energy Res. – reference: Rosenbaum, R.K., Hauschild, M.Z., Boulay, A.M., Fantke, P., Laurent, A., Núñez, M., Vieira, M., 2017. Life cycle impact assessment, in: Life Cycle Assessment: Theory and Practice. https://doi.org/10.1007/978-3-319-56475-3_10. – year: 2011 ident: b0295 article-title: Microbial cellulases and their industrial applications [WWW Document] publication-title: Enzyme Res. – year: 2003 ident: b0390 article-title: The chemistry involved in the steam treatment of lignocellulosic materials publication-title: Quim. Nova – volume: 94 start-page: 353 year: 2016 end-page: 365 ident: b0185 article-title: Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept publication-title: Renew. Energy – start-page: 468 year: 2012 end-page: 479 ident: bib568 article-title: Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens publication-title: EXCLI J. – reference: European Union, 2009. Directive 2009/28/EC on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union. https://doi.org/10.3000/17252555.L_2009.140.eng. – reference: Imran, M., Anwar, Z., Irshad, M., Asad, M.J., Ashfaq, H., 2016. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv. Enzyme Res. https://doi.org/10.4236/aer.2016.42005. – volume: 13 start-page: 2003 year: 2009 end-page: 2011 ident: b0315 article-title: An energy analysis of ethanol from cellulosic feedstock–Corn stover publication-title: Renew. Sustain. Energy Rev. – volume: 56 start-page: 174 year: 2018 ident: b0425 article-title: Review of Second Generation Bioethanol Production from Residual Biomass publication-title: Food Technol. Biotechnol. – volume: 33 start-page: 793 year: 2009 end-page: 802 ident: b0515 article-title: Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment publication-title: Biomass Bioenergy – reference: Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D., Dudgeon, D., 2011. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (No. NREL/TP-5100-47764, 1013269). https://doi.org/10.2172/1013269. – volume: 2 year: 2016 ident: b0025 article-title: Steam explosion for wheat straw pretreatment for sugars production publication-title: Bioethanol – reference: Ojeda, K., Sánchez, E., El-Halwagi, M., Kafarov, V., 2011. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways. Chem. Eng. J. https://doi.org/10.1016/j.cej.2011.06.083. – year: 2011 ident: b0290 article-title: Microbial cellulases and their industrial applications publication-title: Enzyme Res. – year: 2015 ident: b0470 article-title: Microalgae for economic applications: advantages and perspectives for bioethanol publication-title: J. Exp. Bot. – reference: Bajpai, P., 2016a. Structure of Lignocellulosic Biomass. https://doi.org/10.1007/978-981-10-0687-6_2. – reference: Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S., 2009. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2009.03.013. – volume: 48 start-page: 413 year: 2002 end-page: 417 ident: bib562 article-title: Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land publication-title: Rostlinna Vyroba – volume: 32 start-page: 431 year: 2008 end-page: 441 ident: b0180 article-title: Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling publication-title: Biomass Bioenergy – reference: Bai, Y., Luo, L., Van Der Voet, E., 2010. Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-010-0177-2. – reference: Moniruzzaman, M., Yaakob, Z., Shahinuzzaman, M., Khatun, R., Aminul Islam, A.K.M., 2017. Jatropha biofuel industry: the challenges, in: Frontiers in Bioenergy and Biofuels. https://doi.org/10.5772/64979. – reference: Damartzis, T., Zabaniotou, A., 2011. Thermochemical conversion of biomass to second generation biofuels through integrated process design – a review. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2010.08.003. – volume: 15 start-page: 607 year: 2007 end-page: 619 ident: b0525 article-title: A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective publication-title: J. Clean. Prod. – reference: Tomás-Pejó, E., Alvira, P., Ballesteros, M., Negro, M.J., 2011. Pretreatment technologies for lignocellulose-to-bioethanol conversion, in: Biofuels. https://doi.org/10.1016/B978-0-12-385099-7.00007-3. – year: 2009 ident: b0085 article-title: Corn stover removal for expanded uses reduces soil fertility and structural stability publication-title: Soil Sci. Soc. Am. J. – year: 2012 ident: b0190 article-title: Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar) publication-title: Biomass Bioenergy – volume: 9 start-page: 152 year: 2016 ident: b0400 article-title: Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility publication-title: Biotechnol. Biofuels – reference: Chundawat, S.P.S., Donohoe, B.S., Sousa, L. da C., Elder, T., Agarwal, U.P., Lu, F., Ralph, J., Himmel, M.E., Balan, V., Dale, B.E., 2011. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 4, 973–984. https://doi.org/10.1039/C0EE00574F. – reference: Jahnavi, G., Prashanthi, G.S., Sravanthi, K., Rao, L.V., 2017. Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2017.02.018. – volume: 27 start-page: 656 year: 2009 end-page: 660 ident: b0505 article-title: Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification publication-title: Biotechnol. Adv. Bioenergy Res. Develop. China – volume: 105 start-page: 464 year: 2008 end-page: 469 ident: b0450 article-title: Net energy of cellulosic ethanol from switchgrass publication-title: Proc. Natl. Acad. Sci. – reference: Reijnders, L., 2008. Ethanol production from crop residues and soil organic carbon. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2007.08.007. – volume: 57 start-page: 16611 year: 2016 end-page: 16625 ident: bib563 article-title: Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials publication-title: Desalin. Water Treat. – reference: EU-28: 2018. Biofuels Annual: EU Biofuels Annual 2018. Flach B., Liebertz S., Lappin J., Bolla S., UDSA Foreign Agricultural Service. – year: 2005 ident: b0310 article-title: Soil carbon under switchgrass stands and cultivated cropland publication-title: Biomass Bioenergy – volume: 7 start-page: 117 year: 2003 end-page: 146 ident: b0460 article-title: Energy and environmental aspects of using corn stover for fuel ethanol publication-title: J. Ind. Ecol. – year: 2007 ident: b0490 article-title: Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review publication-title: BioResources – year: 2007 ident: b0100 article-title: Fuel ethanol production: Process design trends and integration opportunities publication-title: Bioresour. Technol. – reference: Annual Ethanol Production, 2019. . Renew. Fuels Assoc. URL https://ethanolrfa.org/statistics/annual-ethanol-production/ (accessed 10.7.19). – volume: 29 start-page: 426 year: 2005 end-page: 439 ident: b0285 article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel publication-title: Biomass Bioenergy – volume: 6 start-page: 21 year: 2014 end-page: 27 ident: bib567 article-title: Grouping of advanced rice breeding lines based on grain yield and Na:K ratio under alkaline conditions publication-title: J. Soil Salinity and Water Qual. – start-page: 153 year: 2017 end-page: 164 ident: b0370 article-title: Extractive and azeotropic distillation publication-title: Practical Column Design – volume: 50 start-page: 855 year: 2009 end-page: 876 ident: b0520 article-title: Fischer-Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis publication-title: Energy Convers. Manag. – reference: Kapoor, M., Panwar, D., Kaira, G.S., 2016. Bioprocesses for enzyme production using agro-industrial wastes: Technical challenges and commercialization potential. In: Dhillon, G.S., Kaur, S. (Eds.), Agro-Industrial Wastes as Feedstock for Enzyme Production. vol. 3, pp. 61–93. – volume: 3 start-page: 17 year: 2010 ident: b0380 article-title: Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding publication-title: Biotechnol. Biofuels – reference: Bertrand, E., Pradel M., Dussap, C.G., 2016. Economic and Environmental Aspects of Biofuels. In: Green Fuels Technology, Soccol, C.R., Brar, S.K., Faulds, C., Ramos, L.P. eds. Springer, Chap 22, 525–555. – reference: Walia, A., Guleria, S., Mehta, P., Chauhan, A., Parkash, J., 2017. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. https://doi.org/10.1007/s13205-016-0584-6. – year: 2009 ident: b0145 article-title: Life-cycle analysis and the ecology of biofuels publication-title: Trends Plant Sci. – reference: IEA-Bioenergy-Task-39, 2019, Comparison of Biofuel Life Cycle Analysis Tools: Phase 2.2: Biochemical 2G Ethanol Production and Distribution. http://task39.sites.olt.ubc.ca/files/2020/02/Task-39-Phase-2.2-Ethanol-2G-Comparison-of-Biofuel-Life-Cycle-Analysis-Tools.pdf. – reference: Wyman, C.E., 1994. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresour. Technol. https://doi.org/10.1016/0960-8524(94)90214-3. – year: 1998 ident: b0345 article-title: The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods publication-title: Bioresour. Technol. – start-page: 7 year: 2016 end-page: 12 ident: b0055 article-title: Structure of Lignocellulosic Biomass publication-title: Pretreatment of Lignocellulosic Biomass for Biofuel Production, SpringerBriefs in Molecular Science – reference: Fleming, J.S., Habibi, S., MacLean, H.L., 2006. Investigating the sustainability of lignocellulose-derived fuels for light-duty vehicles. Transp. Res. Part Transp. Environ. https://doi.org/10.1016/j.trd.2006.01.001. – year: 2004 ident: b0075 article-title: Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment publication-title: Plant Biotechnol. J. – start-page: 101 year: 2011 end-page: 122 ident: b0420 article-title: Chapter 5 – Lignocellulosic bioethanol: Current status and future perspectives publication-title: Biofuels – reference: Cherubini, F., Ulgiati, S., 2010. Crop residues as raw materials for biorefinery systems – A LCA case study. Appl. Energy. https://doi.org/10.1016/j.apenergy.2009.08.024. – start-page: 875 year: 2018 end-page: 908 ident: b0150 publication-title: Comprehensive Energy Systems – year: 2017 ident: b0335 article-title: Yeasts in sustainable bioethanol production: a review publication-title: Biochem. Biophys. Rep. – ident: 10.1016/j.biortech.2020.123630_b0110 doi: 10.1007/978-94-007-6898-7_2 – ident: 10.1016/j.biortech.2020.123630_b0130 doi: 10.1039/c0ee00574f – year: 2009 ident: 10.1016/j.biortech.2020.123630_b0145 article-title: Life-cycle analysis and the ecology of biofuels publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.12.006 – year: 2009 ident: 10.1016/j.biortech.2020.123630_b0085 article-title: Corn stover removal for expanded uses reduces soil fertility and structural stability publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0141 – volume: 27 start-page: 656 year: 2009 ident: 10.1016/j.biortech.2020.123630_b0505 article-title: Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification publication-title: Biotechnol. Adv. Bioenergy Res. Develop. China – volume: 50 start-page: 855 year: 2009 ident: 10.1016/j.biortech.2020.123630_b0520 article-title: Fischer-Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2009.01.008 – volume: 23 start-page: 44 year: 2016 ident: 10.1016/j.biortech.2020.123630_b0010 article-title: Consolidated briefing of biochemical ethanol production from lignocellulosic biomass publication-title: Electron. J. Biotechnol. doi: 10.1016/j.ejbt.2016.07.006 – year: 2012 ident: 10.1016/j.biortech.2020.123630_b0190 article-title: Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar) publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.028 – year: 2012 ident: 10.1016/j.biortech.2020.123630_b0095 article-title: Environmental life cycle assessment of bioethanol production from wheat straw publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.10.017 – volume: 3 start-page: 17 year: 2010 ident: 10.1016/j.biortech.2020.123630_b0380 article-title: Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-3-17 – year: 2017 ident: 10.1016/j.biortech.2020.123630_b0335 article-title: Yeasts in sustainable bioethanol production: a review publication-title: Biochem. Biophys. Rep. – year: 2011 ident: 10.1016/j.biortech.2020.123630_b0290 article-title: Microbial cellulases and their industrial applications publication-title: Enzyme Res. doi: 10.4061/2011/280696 – ident: 10.1016/j.biortech.2020.123630_b0535 doi: 10.1002/9781118642047 – ident: 10.1016/j.biortech.2020.123630_b0325 doi: 10.5772/52164 – ident: 10.1016/j.biortech.2020.123630_b0050 doi: 10.1007/978-981-10-0687-6_2 – year: 2007 ident: 10.1016/j.biortech.2020.123630_b0225 article-title: Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2007.01.001 – volume: 57 start-page: 16611 issue: 35 year: 2016 ident: 10.1016/j.biortech.2020.123630_bib563 article-title: Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1079249 – year: 2012 ident: 10.1016/j.biortech.2020.123630_b0220 article-title: Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.05.004 – year: 2006 ident: 10.1016/j.biortech.2020.123630_b0215 article-title: Bio-ethanol – the fuel of tomorrow from the residues of today publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2006.10.004 – ident: 10.1016/j.biortech.2020.123630_b0020 – year: 2003 ident: 10.1016/j.biortech.2020.123630_b0065 article-title: Beginnings of microbiology and biochemistry: the contribution of yeast research publication-title: Microbiology doi: 10.1099/mic.0.26089-0 – ident: 10.1016/j.biortech.2020.123630_b0320 doi: 10.1385/ABAB:129:1:55 – year: 2011 ident: 10.1016/j.biortech.2020.123630_b0295 article-title: Microbial cellulases and their industrial applications [WWW Document] publication-title: Enzyme Res. doi: 10.4061/2011/280696 – volume: 32 start-page: 431 year: 2008 ident: 10.1016/j.biortech.2020.123630_b0180 article-title: Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.10.017 – year: 2005 ident: 10.1016/j.biortech.2020.123630_b0310 article-title: Soil carbon under switchgrass stands and cultivated cropland publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2004.11.004 – ident: 10.1016/j.biortech.2020.123630_b0155 doi: 10.1002/9780470750025.ch11 – volume: 94 start-page: 353 year: 2016 ident: 10.1016/j.biortech.2020.123630_b0185 article-title: Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept publication-title: Renew. Energy doi: 10.1016/j.renene.2016.03.045 – volume: 69 start-page: 933 year: 2017 ident: 10.1016/j.biortech.2020.123630_b0070 article-title: The challenge of measuring biofuel sustainability: a stakeholder-driven approach applied to the French case publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.022 – year: 2002 ident: 10.1016/j.biortech.2020.123630_b0360 article-title: Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States – rainfall and wind-induced soil erosion methodology publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(02)00006-5 – year: 2010 ident: 10.1016/j.biortech.2020.123630_bib561 article-title: Poplar as a feedstock for biofuels: A review of compositional characteristics publication-title: Biofuels, Bioprod. Biorefin. doi: 10.1002/bbb.206 – ident: 10.1016/j.biortech.2020.123630_b0265 doi: 10.1016/j.indcrop.2003.12.015 – year: 1998 ident: 10.1016/j.biortech.2020.123630_b0345 article-title: The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(97)00181-8 – year: 2003 ident: 10.1016/j.biortech.2020.123630_b0390 article-title: The chemistry involved in the steam treatment of lignocellulosic materials publication-title: Quim. Nova – ident: 10.1016/j.biortech.2020.123630_b0365 doi: 10.1016/j.pecs.2010.01.003 – volume: 7 start-page: 117 year: 2003 ident: 10.1016/j.biortech.2020.123630_b0460 article-title: Energy and environmental aspects of using corn stover for fuel ethanol publication-title: J. Ind. Ecol. doi: 10.1162/108819803323059433 – year: 2015 ident: 10.1016/j.biortech.2020.123630_b0470 article-title: Microalgae for economic applications: advantages and perspectives for bioethanol publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv130 – volume: 19 start-page: 1109 year: 2003 ident: 10.1016/j.biortech.2020.123630_b0545 article-title: Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks publication-title: Biotechnol. Prog. doi: 10.1021/bp0340180 – ident: 10.1016/j.biortech.2020.123630_b0560 doi: 10.1007/s002530100624 – ident: 10.1016/j.biortech.2020.123630_b0255 doi: 10.4236/aer.2016.42005 – ident: 10.1016/j.biortech.2020.123630_b0530 doi: 10.1007/s13205-016-0584-6 – volume: 98 start-page: 86 year: 2015 ident: 10.1016/j.biortech.2020.123630_b0355 article-title: Analysis of energy saving by combination of distillation and pervaporation for biofuel production publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2015.10.010 – ident: 10.1016/j.biortech.2020.123630_bib566 doi: 10.1016/B978-0-12-802392-1.00003-4 – ident: 10.1016/j.biortech.2020.123630_b0040 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.biortech.2020.123630_bib565 article-title: Effect of non-structural organics and inorganics constituents of switchgrass during pyrolysis publication-title: Front. Energy Res. doi: 10.3389/fenrg.2018.00096 – start-page: 875 year: 2018 ident: 10.1016/j.biortech.2020.123630_b0150 – ident: 10.1016/j.biortech.2020.123630_b0330 doi: 10.1016/B978-0-12-813766-6.00003-5 – volume: 13 start-page: 2003 year: 2009 ident: 10.1016/j.biortech.2020.123630_b0315 article-title: An energy analysis of ethanol from cellulosic feedstock–Corn stover publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.01.016 – year: 2014 ident: 10.1016/j.biortech.2020.123630_b0455 article-title: Life cycle assessment of rice straw-based power generation in Malaysia publication-title: Energy doi: 10.1016/j.energy.2014.04.014 – ident: 10.1016/j.biortech.2020.123630_b0260 doi: 10.1016/j.rser.2017.02.018 – ident: 10.1016/j.biortech.2020.123630_b0465 – ident: 10.1016/j.biortech.2020.123630_b0555 doi: 10.1016/j.rser.2016.12.076 – ident: 10.1016/j.biortech.2020.123630_b0550 doi: 10.1016/0960-8524(94)90214-3 – year: 2011 ident: 10.1016/j.biortech.2020.123630_b0060 article-title: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.08.013 – volume: 43 start-page: 96 issue: 1 year: 2018 ident: 10.1016/j.biortech.2020.123630_bib564 article-title: Nitrocellulose synthesis from miscanthus cellulose publication-title: Propellants Explos. Pyrotech. doi: 10.1002/prep.201700210 – ident: 10.1016/j.biortech.2020.123630_b0430 doi: 10.1007/978-3-319-56475-3_10 – volume: 56 start-page: 174 year: 2018 ident: 10.1016/j.biortech.2020.123630_b0425 article-title: Review of Second Generation Bioethanol Production from Residual Biomass publication-title: Food Technol. Biotechnol. doi: 10.17113/ftb.56.02.18.5428 – volume: 25 start-page: 67 year: 1983 ident: 10.1016/j.biortech.2020.123630_b0035 article-title: Selective solvent delignification for fermentation enhancement publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260250107 – ident: 10.1016/j.biortech.2020.123630_b0485 doi: 10.1021/es048293+ – ident: 10.1016/j.biortech.2020.123630_b0250 – year: 2007 ident: 10.1016/j.biortech.2020.123630_b0490 article-title: Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review publication-title: BioResources – volume: 29 start-page: 426 year: 2005 ident: 10.1016/j.biortech.2020.123630_b0285 article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2005.06.004 – year: 2014 ident: 10.1016/j.biortech.2020.123630_b0210 article-title: The environmental profile of bioethanol produced from current and potential future poplar feedstock in the EU publication-title: Green Chem. doi: 10.1039/C4GC01124D – year: 2005 ident: 10.1016/j.biortech.2020.123630_b0280 article-title: Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2005.06.004 – ident: 10.1016/j.biortech.2020.123630_b0080 doi: 10.1007/978-3-319-30205-8_22 – ident: 10.1016/j.biortech.2020.123630_b0240 doi: 10.2172/1013269 – ident: 10.1016/j.biortech.2020.123630_b0300 doi: 10.1021/ie801542g – start-page: 468 year: 2012 ident: 10.1016/j.biortech.2020.123630_bib568 article-title: Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens publication-title: EXCLI J. – ident: 10.1016/j.biortech.2020.123630_b0245 – start-page: 153 year: 2017 ident: 10.1016/j.biortech.2020.123630_b0370 article-title: Extractive and azeotropic distillation – volume: 12 start-page: 2054 year: 2006 ident: 10.1016/j.biortech.2020.123630_b0475 article-title: Energy crops: current status and future prospects publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2006.01163.x – year: 2014 ident: 10.1016/j.biortech.2020.123630_b0230 article-title: A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.01.040 – ident: 10.1016/j.biortech.2020.123630_b0195 doi: 10.1016/B978-0-08-101023-5.00010-8 – ident: 10.1016/j.biortech.2020.123630_b0165 – ident: 10.1016/j.biortech.2020.123630_b0510 doi: 10.1016/B978-0-12-385099-7.00007-3 – start-page: 7 year: 2016 ident: 10.1016/j.biortech.2020.123630_b0055 article-title: Structure of Lignocellulosic Biomass – volume: 2 year: 2016 ident: 10.1016/j.biortech.2020.123630_b0025 article-title: Steam explosion for wheat straw pretreatment for sugars production publication-title: Bioethanol doi: 10.1515/bioeth-2016-0003 – volume: 6 start-page: 21 year: 2014 ident: 10.1016/j.biortech.2020.123630_bib567 article-title: Grouping of advanced rice breeding lines based on grain yield and Na:K ratio under alkaline conditions publication-title: J. Soil Salinity and Water Qual. – volume: 36 start-page: 3360 year: 2008 ident: 10.1016/j.biortech.2020.123630_b0495 article-title: Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol publication-title: Energy Policy doi: 10.1016/j.enpol.2008.05.016 – volume: 4 start-page: 117 year: 2014 ident: 10.1016/j.biortech.2020.123630_b0015 article-title: Microbial Enzymes: Tools for Biotechnological Processes publication-title: Biomolecules doi: 10.3390/biom4010117 – ident: 10.1016/j.biortech.2020.123630_b0395 doi: 10.1002/cite.330670827 – year: 2012 ident: 10.1016/j.biortech.2020.123630_b0405 article-title: Modelling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.01.028 – volume: 33 start-page: 793 year: 2009 ident: 10.1016/j.biortech.2020.123630_b0515 article-title: Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2008.12.001 – ident: 10.1016/j.biortech.2020.123630_b0030 – year: 2004 ident: 10.1016/j.biortech.2020.123630_b0075 article-title: Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2004.00076.x – ident: 10.1016/j.biortech.2020.123630_b0115 doi: 10.1155/2018/1503126 – volume: 105 start-page: 464 year: 2008 ident: 10.1016/j.biortech.2020.123630_b0450 article-title: Net energy of cellulosic ethanol from switchgrass publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0704767105 – volume: 1 start-page: 181 year: 2007 ident: 10.1016/j.biortech.2020.123630_b0235 article-title: Cellulosic biomass feedstock and logistics for ethanol production publication-title: Biofuels Bioprod. Biorefining doi: 10.1002/bbb.26 – ident: 10.1016/j.biortech.2020.123630_b0340 doi: 10.5772/64979 – ident: 10.1016/j.biortech.2020.123630_b0160 – ident: 10.1016/j.biortech.2020.123630_b0120 doi: 10.1016/j.resconrec.2009.03.013 – ident: 10.1016/j.biortech.2020.123630_b0275 doi: 10.1186/s12934-018-0879-x – volume: 99 start-page: 137 year: 2008 ident: 10.1016/j.biortech.2020.123630_b0445 article-title: Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.11.039 – volume: 93 start-page: 147 year: 2015 ident: 10.1016/j.biortech.2020.123630_b0480 article-title: Dehydration of ethanol with different salts in a packed distillation column publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2014.02.012 – volume: 15 start-page: 607 year: 2007 ident: 10.1016/j.biortech.2020.123630_b0525 article-title: A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2006.03.002 – ident: 10.1016/j.biortech.2020.123630_b0125 doi: 10.1016/j.apenergy.2009.08.024 – ident: 10.1016/j.biortech.2020.123630_b0045 doi: 10.1007/s11367-010-0177-2 – ident: 10.1016/j.biortech.2020.123630_b0415 doi: 10.1016/j.resconrec.2007.08.007 – year: 2003 ident: 10.1016/j.biortech.2020.123630_b0435 article-title: Hemicellulose bioconversion publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-003-0049-x – ident: 10.1016/j.biortech.2020.123630_b0170 doi: 10.1016/j.trd.2006.01.001 – volume: 107 start-page: 37 year: 2019 ident: 10.1016/j.biortech.2020.123630_b0005 article-title: Fourth generation biofuel: a review on risks and mitigation strategies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.02.018 – ident: 10.1016/j.biortech.2020.123630_b0205 doi: 10.5772/30085 – volume: 99 start-page: 1 year: 2007 ident: 10.1016/j.biortech.2020.123630_b0200 article-title: Current and potential U.S. Corn Stover Supplies publication-title: Agron. J. doi: 10.2134/agronj2005.0222 – volume: 48 start-page: 413 year: 2002 ident: 10.1016/j.biortech.2020.123630_bib562 article-title: Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land publication-title: Rostlinna Vyroba – ident: 10.1016/j.biortech.2020.123630_b0140 doi: 10.1016/j.rser.2010.08.003 – ident: 10.1016/j.biortech.2020.123630_b0375 doi: 10.1016/j.cej.2011.06.083 – volume: 88 start-page: 67 year: 2010 ident: 10.1016/j.biortech.2020.123630_b0410 article-title: Anhydrous ethanol production by extractive distillation: as solvent case study publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2009.11.005 – ident: 10.1016/j.biortech.2020.123630_b0440 doi: 10.1007/s13205-014-0246-5 – ident: 10.1016/j.biortech.2020.123630_b0135 – volume: 46 start-page: 565 year: 2010 ident: 10.1016/j.biortech.2020.123630_b0350 article-title: Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion publication-title: Environ. Manage. doi: 10.1007/s00267-010-9494-2 – ident: 10.1016/j.biortech.2020.123630_b0305 doi: 10.1155/2014/631013 – year: 2009 ident: 10.1016/j.biortech.2020.123630_b0540 article-title: Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? publication-title: Environ. Sci. Technol. doi: 10.1021/es900250d – ident: 10.1016/j.biortech.2020.123630_b0385 doi: 10.1007/s11367-014-0708-3 – ident: 10.1016/j.biortech.2020.123630_b0105 doi: 10.1007/978-3-319-26015-0 – start-page: 101 year: 2011 ident: 10.1016/j.biortech.2020.123630_b0420 article-title: Chapter 5 – Lignocellulosic bioethanol: Current status and future perspectives – ident: 10.1016/j.biortech.2020.123630_b0270 doi: 10.1016/j.enpol.2010.05.008 – volume: 9 start-page: 222 year: 2016 ident: 10.1016/j.biortech.2020.123630_b0090 article-title: Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0635-6 – volume: 9 start-page: 152 year: 2016 ident: 10.1016/j.biortech.2020.123630_b0400 article-title: Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0567-1 – year: 2006 ident: 10.1016/j.biortech.2020.123630_b0500 article-title: ISO 14044 publication-title: Int. J. Life Cycle Assess. – year: 2007 ident: 10.1016/j.biortech.2020.123630_b0100 article-title: Fuel ethanol production: Process design trends and integration opportunities publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.01.002 – ident: 10.1016/j.biortech.2020.123630_b0175 doi: 10.1007/978-1-4757-6970-8 |
SSID | ssj0003172 |
Score | 2.6750283 |
SecondaryResourceType | review_article |
Snippet | •Production of 2G bioethanol remains technologically challenging.•2G bioethanol production is increasing but still less than 3% of total bioethanol.•The... The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123630 |
SubjectTerms | 2G (second generation) bioethanol bioethanol biomass computer simulation energy Environmental impact ethanol production feedstocks Fermentation hydrolysis life cycle assessment Life Sciences lignocellulose Lignocellulosic biomass pollution control Process simulation |
Title | Comprehensive assessment of 2G bioethanol production |
URI | https://dx.doi.org/10.1016/j.biortech.2020.123630 https://www.proquest.com/docview/2415293270 https://www.proquest.com/docview/2524290302 https://hal.science/hal-03492215 |
Volume | 313 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQcKqCtWFpQinoNG8eOEx9Xq8L2ARdA4mb5WRah3dWycOS3M5PHFqoKDhzj2Io1M54ZZb75DPCNy8oZHlWKoVKmguUSz5xSaRl94TJvKmGpG_n4RI7Oxc-L4mIFhl0vDMEqW9_f-PTaW7cj_Vaa_dl43D-l5LsqMMRQlQCzHupgFyVZ-cH9X5gHxse6koCTU5r9qEv46sCOCdFaFyVyIlrgktDQ_w9Qby4JKfmPw66j0OEGvG_Tx2TQ7HATVsJkC9YHf-YthUbYgrfD7g43fPOIbvADCDr883DZYNYTsyTlTKYxyY8S3GegP-nT62TWEMGi0j7C-eH3s-EobW9NSJ2Q2SINlUXZFy46JoJyzHNbceuZKnxVKWmL3Dhlo7DR5tzILGBGIpjJKhWZKDnjn2B1Mp2EbUhU6fMYM48-oRSSRxO9lYYZZb1y-JEeFJ2otGspxelmi2vdYceudCdiTSLWjYh70F-umzWkGi-uUJ0m9BPz0Oj5X1y7j6pbfoj4tEeD35rGiJwnx6TnjvXga6dZjTqiqomZhOntja5THMxyy-yZOWSGCu0w33nFRj_DO3pqoIJfYHUxvw27mPIs7F5t03uwNvjxa3TyAHve_zQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB616aFwQG0BEZ4L4rpkvfZ618coomzbNBdaqTfLT5qqSqKQ8vuZ2UdUEGoPXNce2ZoZz3zaGX8G-Mxl5QyPKsVUKVPBcolnTqm0jL5wmTeVsHQb-Xwm60txelVc7cCkvwtDbZVd7G9jehOtuy-jTpuj1Xw--k7guyowxVCVAFHPLuwRO1UxgL3xyVk92wZkTJFNMQHnpyRw76LwzRc7p6bWpi6RE9cCl9QQ_e8ctXtNzZJ_xewmER0fwLMOQSbjdpOHsBMWR_B0_GPdsWiEI9if9M-44cg9xsHnIOj8r8N127aemC0vZ7KMSf4twX0G-pm-vE1WLRcs2u0FXB5_vZjUafdwQuqEzDZpqCyqv3DRMRGUY57bilvPVOGrSklb5MYpG4WNNudGZgFBiWAmq1RkouSMv4TBYrkIryBRpc9jzDyGhVJIHk30VhpmlPXK4SJDKHpVadexitPjFre6bx-70b2KNalYtyoewmgrt2p5NR6VUL0l9B8eojH4Pyr7CU23XYgotevxVNM34ufJEff8YkP42FtWo42ocGIWYXn3UzcoB4FumT0whzxRoSvmr_9jox9gv744n-rpyezsDTyhkbZz8C0MNuu78A4R0Ma-7zz8NzhKAfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+assessment+of+2G+bioethanol+production&rft.jtitle=Bioresource+technology&rft.au=Sharma%2C+Bhawna&rft.au=Larroche%2C+Christian&rft.au=Dussap%2C+Claude-Gilles&rft.date=2020-10-01&rft.issn=0960-8524&rft.volume=313&rft.spage=123630&rft_id=info:doi/10.1016%2Fj.biortech.2020.123630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2020_123630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |