A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)

Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for small-sized and low-power electronic devices. The limited life-time and necessity for periodic recharging or replacement of batteries has be...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 28; no. 11; pp. 113001 - 113062
Main Authors Safaei, Mohsen, Sodano, Henry A, Anton, Steven R
Format Journal Article
LanguageEnglish
Published IOP Publishing 22.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for small-sized and low-power electronic devices. The limited life-time and necessity for periodic recharging or replacement of batteries has been a consistent issue in portable, remote, and implantable devices. Ambient energy can usually be found in the form of solar energy, thermal energy, and vibration energy. Amongst these energy sources, vibration energy presents a persistent presence in nature and manmade structures. Various materials and transduction mechanisms have the ability to convert vibratory energy to useful electrical energy, such as piezoelectric, electromagnetic, and electrostatic generators. Piezoelectric transducers, with their inherent electromechanical coupling and high power density compared to electromagnetic and electrostatic transducers, have been widely explored to generate power from vibration energy sources. A topical review of piezoelectric energy harvesting methods was carried out and published in this journal by the authors in 2007. Since 2007, countless researchers have introduced novel materials, transduction mechanisms, electrical circuits, and analytical models to improve various aspects of piezoelectric energy harvesting devices. Additionally, many researchers have also reported novel applications of piezoelectric energy harvesting technology in the past decade. While the body of literature in the field of piezoelectric energy harvesting has grown significantly since 2007, this paper presents an update to the authors' previous review paper by summarizing the notable developments in the field of piezoelectric energy harvesting through the past decade.
AbstractList Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for small-sized and low-power electronic devices. The limited life-time and necessity for periodic recharging or replacement of batteries has been a consistent issue in portable, remote, and implantable devices. Ambient energy can usually be found in the form of solar energy, thermal energy, and vibration energy. Amongst these energy sources, vibration energy presents a persistent presence in nature and manmade structures. Various materials and transduction mechanisms have the ability to convert vibratory energy to useful electrical energy, such as piezoelectric, electromagnetic, and electrostatic generators. Piezoelectric transducers, with their inherent electromechanical coupling and high power density compared to electromagnetic and electrostatic transducers, have been widely explored to generate power from vibration energy sources. A topical review of piezoelectric energy harvesting methods was carried out and published in this journal by the authors in 2007. Since 2007, countless researchers have introduced novel materials, transduction mechanisms, electrical circuits, and analytical models to improve various aspects of piezoelectric energy harvesting devices. Additionally, many researchers have also reported novel applications of piezoelectric energy harvesting technology in the past decade. While the body of literature in the field of piezoelectric energy harvesting has grown significantly since 2007, this paper presents an update to the authors' previous review paper by summarizing the notable developments in the field of piezoelectric energy harvesting through the past decade.
Author Sodano, Henry A
Safaei, Mohsen
Anton, Steven R
Author_xml – sequence: 1
  givenname: Mohsen
  orcidid: 0000-0002-8312-3000
  surname: Safaei
  fullname: Safaei, Mohsen
  organization: Tennessee Technological University Department of Mechanical Engineering, Cookeville, TN 38505, United States of America
– sequence: 2
  givenname: Henry A
  orcidid: 0000-0001-6269-1802
  surname: Sodano
  fullname: Sodano, Henry A
  organization: University of Michigan Department of Aerospace Engineering, Ann Arbor, MI 48109, United States of America
– sequence: 3
  givenname: Steven R
  orcidid: 0000-0003-2777-5458
  surname: Anton
  fullname: Anton, Steven R
  email: santon@tntech.edu
  organization: Tennessee Technological University Department of Mechanical Engineering, Cookeville, TN 38505, United States of America
BookMark eNp9kM9LwzAYhoNMcJvePeY4wbikabPU2xj-goEXBW8hTb5uGV1bkm4y_3pTJh5EhZCE8D4v-Z4RGtRNDQhdMnrDqJRTxgUjQmRvU11wAekJGn4_DdCQ5iIlbJaIMzQKYUMpY5KzIVrPsYe9g3fclBhq8KsDXmu_h9C5eoV3od9bBx8NVGA67wze6g6801W4xaGLd9KUpFsD0b7DGlsw2gKu-hCeJJRKklAmr87RaRkZuPg6x-j1_u5l8UiWzw9Pi_mSmFTQjoDMcm6FYUme2Uxm0uZlmgsjeAbaxDZb0FRqmwjO45w2LSzMoBDMlEbywvAxEsde45sQPJTKuPhL19Sd165SjKrel-rlqF6OOvqKIP0Btt5ttT_8h0yOiGtatWl2vo6TqbANKolpFhePolVryxi9_iX6Z_Mn1UuLNw
CODEN SMSTER
CitedBy_id crossref_primary_10_1016_j_enconman_2024_118374
crossref_primary_10_1016_j_sna_2020_112164
crossref_primary_10_1142_S2010135X23500054
crossref_primary_10_1126_science_ads9584
crossref_primary_10_1016_j_memori_2022_100002
crossref_primary_10_1080_15325008_2023_2262458
crossref_primary_10_3390_s21041505
crossref_primary_10_1002_smll_202411369
crossref_primary_10_1002_admt_202201495
crossref_primary_10_1002_aenm_202201454
crossref_primary_10_1080_15397734_2021_1890613
crossref_primary_10_1016_j_cossms_2023_101134
crossref_primary_10_1002_pc_26169
crossref_primary_10_1016_j_apenergy_2020_115161
crossref_primary_10_1007_s43939_025_00190_1
crossref_primary_10_1016_j_nanoen_2023_109004
crossref_primary_10_1016_j_jsv_2023_118155
crossref_primary_10_3390_mi13091422
crossref_primary_10_1007_s10483_024_3133_8
crossref_primary_10_1016_j_ifacol_2022_10_522
crossref_primary_10_1007_s42417_022_00549_1
crossref_primary_10_1016_j_energy_2024_130722
crossref_primary_10_1016_j_mser_2023_100763
crossref_primary_10_3390_mi13060936
crossref_primary_10_1016_j_cap_2022_01_013
crossref_primary_10_1007_s10999_022_09619_4
crossref_primary_10_1016_j_nanoen_2022_106927
crossref_primary_10_1016_j_ast_2021_106819
crossref_primary_10_1016_j_energy_2021_122376
crossref_primary_10_1007_s41204_022_00217_5
crossref_primary_10_1016_j_energy_2022_125948
crossref_primary_10_1088_1361_665X_aca941
crossref_primary_10_3390_app14114792
crossref_primary_10_1177_1045389X251326335
crossref_primary_10_1007_s40430_023_04028_w
crossref_primary_10_1080_01430750_2023_2235342
crossref_primary_10_1007_s42452_022_05003_1
crossref_primary_10_1039_D4TA00836G
crossref_primary_10_1007_s11664_024_11575_y
crossref_primary_10_1063_5_0135160
crossref_primary_10_1177_10775463241261845
crossref_primary_10_1016_j_jallcom_2024_174438
crossref_primary_10_1016_j_tsep_2023_102344
crossref_primary_10_1016_j_apenergy_2022_120092
crossref_primary_10_1002_pssa_202100382
crossref_primary_10_1088_1361_665X_aba5e2
crossref_primary_10_1021_acs_chemrev_9b00821
crossref_primary_10_1080_15397734_2024_2330652
crossref_primary_10_1088_1361_665X_ad0392
crossref_primary_10_1002_adem_202402139
crossref_primary_10_1063_5_0089382
crossref_primary_10_1088_1361_665X_ad72bf
crossref_primary_10_3390_en13153871
crossref_primary_10_1016_j_cnsns_2023_107808
crossref_primary_10_1016_j_ceramint_2023_01_016
crossref_primary_10_1016_j_jsv_2023_118054
crossref_primary_10_1021_jacs_3c02993
crossref_primary_10_1016_j_isci_2024_110786
crossref_primary_10_1007_s11029_024_10221_2
crossref_primary_10_20965_jrm_2022_p0131
crossref_primary_10_1109_TUFFC_2021_3136125
crossref_primary_10_1016_j_seta_2022_102845
crossref_primary_10_1039_D1TA07848H
crossref_primary_10_1016_j_ijmecsci_2020_106160
crossref_primary_10_3390_s22124457
crossref_primary_10_1016_j_compscitech_2022_109323
crossref_primary_10_1016_j_ceramint_2021_12_298
crossref_primary_10_3390_app13031300
crossref_primary_10_1007_s10832_023_00326_w
crossref_primary_10_1177_1077546320974477
crossref_primary_10_1088_1361_665X_abfb41
crossref_primary_10_1109_JSEN_2023_3326681
crossref_primary_10_1016_j_ymssp_2025_112428
crossref_primary_10_3390_s21041546
crossref_primary_10_1021_acsbiomaterials_1c00800
crossref_primary_10_1007_s11071_023_08764_5
crossref_primary_10_1016_j_ceramint_2024_11_249
crossref_primary_10_1016_j_cossms_2024_101213
crossref_primary_10_1016_j_eml_2020_101091
crossref_primary_10_1016_j_cossms_2024_101211
crossref_primary_10_1016_j_ijmecsci_2024_109561
crossref_primary_10_1016_j_jweia_2022_105235
crossref_primary_10_1016_j_compstruct_2020_113454
crossref_primary_10_1088_1361_665X_ac72da
crossref_primary_10_1115_1_4049231
crossref_primary_10_1016_j_giant_2024_100333
crossref_primary_10_35848_1347_4065_ac8bdc
crossref_primary_10_1016_j_jmrt_2023_04_051
crossref_primary_10_1016_j_ymssp_2024_112019
crossref_primary_10_1142_S1758825120500957
crossref_primary_10_1016_j_sna_2021_112632
crossref_primary_10_1016_j_nanoen_2023_108248
crossref_primary_10_1088_1361_665X_abe031
crossref_primary_10_1002_ente_202401660
crossref_primary_10_1007_s10854_020_03510_8
crossref_primary_10_1016_j_nanoen_2021_106862
crossref_primary_10_1088_1361_665X_ac112c
crossref_primary_10_1016_j_heliyon_2023_e17634
crossref_primary_10_1016_j_ymssp_2024_112013
crossref_primary_10_1016_j_apenergy_2019_113829
crossref_primary_10_1088_1361_665X_abc7fa
crossref_primary_10_1016_j_nanoen_2024_109420
crossref_primary_10_1088_1361_665X_ab8ea3
crossref_primary_10_1557_s43577_023_00492_w
crossref_primary_10_1021_acsaelm_0c01071
crossref_primary_10_1109_ACCESS_2020_3038111
crossref_primary_10_1016_j_oceaneng_2022_113467
crossref_primary_10_1002_admi_202300634
crossref_primary_10_1080_15376494_2022_2104975
crossref_primary_10_1016_j_jeurceramsoc_2021_06_022
crossref_primary_10_1073_pnas_2218976120
crossref_primary_10_1016_j_jmps_2023_105477
crossref_primary_10_1021_acsnano_2c07320
crossref_primary_10_3390_coatings13010082
crossref_primary_10_1088_1361_665X_acbcb1
crossref_primary_10_1038_s41467_023_36916_z
crossref_primary_10_1631_jzus_A2200598
crossref_primary_10_1039_D1NR00149C
crossref_primary_10_1177_1045389X241306534
crossref_primary_10_3390_s20185214
crossref_primary_10_3390_en13153830
crossref_primary_10_34133_cbsystems_0053
crossref_primary_10_1016_j_energy_2020_118752
crossref_primary_10_1016_j_polymer_2021_123480
crossref_primary_10_1063_5_0193134
crossref_primary_10_1016_j_jeurceramsoc_2020_04_024
crossref_primary_10_1016_j_ymssp_2022_109630
crossref_primary_10_3390_nanoenergyadv3020005
crossref_primary_10_51646_jsesd_v14iSI_MSMS2E_402
crossref_primary_10_1016_j_ymssp_2022_109500
crossref_primary_10_1016_j_ijmecsci_2021_106544
crossref_primary_10_1088_1361_665X_ad6724
crossref_primary_10_1093_nsr_nwae333
crossref_primary_10_1515_opag_2022_0275
crossref_primary_10_1016_j_xcrp_2021_100707
crossref_primary_10_1016_j_ymssp_2022_109506
crossref_primary_10_3390_polym16172397
crossref_primary_10_3390_app13010094
crossref_primary_10_1016_j_apenergy_2020_115073
crossref_primary_10_1016_j_ymssp_2024_112038
crossref_primary_10_3390_electronics10161887
crossref_primary_10_1109_JMEMS_2024_3418580
crossref_primary_10_1016_j_nanoen_2024_109364
crossref_primary_10_1016_j_sna_2022_113651
crossref_primary_10_1016_j_oceaneng_2023_114896
crossref_primary_10_3390_mi14061273
crossref_primary_10_1088_2515_7655_acb5e6
crossref_primary_10_1177_1045389X20922903
crossref_primary_10_1515_ehs_2023_0085
crossref_primary_10_1007_s11664_022_09784_4
crossref_primary_10_1039_D1CC02806E
crossref_primary_10_1016_j_aej_2023_09_028
crossref_primary_10_1016_j_jallcom_2023_169298
crossref_primary_10_1088_1361_665X_ad8b87
crossref_primary_10_1103_PhysRevFluids_10_013905
crossref_primary_10_1088_1361_6463_ac181b
crossref_primary_10_1007_s11071_024_09617_5
crossref_primary_10_1016_j_jmaa_2024_129072
crossref_primary_10_1016_j_jsv_2022_116886
crossref_primary_10_1002_adma_202405308
crossref_primary_10_1088_1361_665X_acef81
crossref_primary_10_1016_j_actamat_2021_117450
crossref_primary_10_1021_acsaenm_3c00056
crossref_primary_10_1016_j_seta_2024_104056
crossref_primary_10_1088_1361_665X_ab78b9
crossref_primary_10_1016_j_renene_2022_10_051
crossref_primary_10_1007_s10854_022_09339_7
crossref_primary_10_1016_j_matpr_2023_09_084
crossref_primary_10_1016_j_nanoen_2023_109092
crossref_primary_10_1039_D1TC06089A
crossref_primary_10_2174_2352096515666220928122027
crossref_primary_10_1088_1361_665X_ace9a0
crossref_primary_10_1088_1361_665X_adaefa
crossref_primary_10_1016_j_rser_2021_111188
crossref_primary_10_1111_cbdd_14136
crossref_primary_10_3390_en14040848
crossref_primary_10_1021_acsami_4c17818
crossref_primary_10_1177_1045389X211048222
crossref_primary_10_1063_5_0105103
crossref_primary_10_1039_D0TC00780C
crossref_primary_10_1039_D1CS00858G
crossref_primary_10_1038_s41598_022_12266_6
crossref_primary_10_1007_s10751_024_01956_4
crossref_primary_10_1016_j_apenergy_2021_117331
crossref_primary_10_1039_D3TA05448A
crossref_primary_10_1080_00150193_2023_2215508
crossref_primary_10_1016_j_polymertesting_2020_106695
crossref_primary_10_1016_j_measurement_2020_108285
crossref_primary_10_1002_adfm_202212110
crossref_primary_10_2139_ssrn_3955723
crossref_primary_10_1080_15376494_2021_2001122
crossref_primary_10_1103_PhysRevFluids_9_074101
crossref_primary_10_1115_1_4053358
crossref_primary_10_1088_1361_6439_acbfc0
crossref_primary_10_1021_acsami_1c05699
crossref_primary_10_1016_j_nanoen_2022_107887
crossref_primary_10_1016_j_tsf_2022_139414
crossref_primary_10_1016_j_compscitech_2022_109850
crossref_primary_10_1021_acsami_4c06902
crossref_primary_10_1080_00150193_2020_1868874
crossref_primary_10_3390_polym13010066
crossref_primary_10_1088_1361_6463_acbc86
crossref_primary_10_1088_1742_6596_1913_1_012042
crossref_primary_10_1002_adfm_202005141
crossref_primary_10_1088_1361_665X_ac9e2d
crossref_primary_10_1088_1361_665X_ac8d3e
crossref_primary_10_1007_s00542_022_05356_y
crossref_primary_10_1016_j_ijsolstr_2022_111766
crossref_primary_10_3390_s23052633
crossref_primary_10_3390_s23135841
crossref_primary_10_1007_s10853_022_06953_y
crossref_primary_10_1016_j_ceramint_2021_03_299
crossref_primary_10_1016_j_enconman_2022_115371
crossref_primary_10_3390_coatings13020464
crossref_primary_10_1016_j_nanoen_2022_107870
crossref_primary_10_3390_s22051710
crossref_primary_10_1080_15502287_2023_2291013
crossref_primary_10_3390_sym14040765
crossref_primary_10_1002_advs_202104426
crossref_primary_10_1002_ente_202300037
crossref_primary_10_1016_j_apsusc_2022_156198
crossref_primary_10_3389_fmats_2021_692273
crossref_primary_10_2174_2452271605666220428101732
crossref_primary_10_1016_j_mtsust_2024_100847
crossref_primary_10_1088_1361_6463_ac9f21
crossref_primary_10_1016_j_enconman_2022_115223
crossref_primary_10_1016_j_sna_2024_115110
crossref_primary_10_1002_ckon_202100024
crossref_primary_10_1016_j_cap_2023_02_015
crossref_primary_10_1016_j_apenergy_2022_119738
crossref_primary_10_1177_1045389X20947178
crossref_primary_10_3390_s25061657
crossref_primary_10_1016_j_ijnonlinmec_2024_104700
crossref_primary_10_1088_1361_665X_abd346
crossref_primary_10_1080_15376494_2024_2338910
crossref_primary_10_1088_1361_665X_ac4ab4
crossref_primary_10_1007_s10854_024_12557_w
crossref_primary_10_1007_s40430_024_04766_5
crossref_primary_10_1016_j_enconman_2023_117903
crossref_primary_10_1088_1361_665X_abee36
crossref_primary_10_1016_j_euromechsol_2023_104924
crossref_primary_10_1016_j_apenergy_2021_117010
crossref_primary_10_1016_j_solidstatesciences_2021_106729
crossref_primary_10_1177_1045389X20952534
crossref_primary_10_1016_j_colsurfa_2022_130403
crossref_primary_10_1038_s41378_021_00323_5
crossref_primary_10_1088_1361_6463_ac0842
crossref_primary_10_3390_polym12010161
crossref_primary_10_1007_s00542_022_05345_1
crossref_primary_10_1016_j_ceramint_2021_10_023
crossref_primary_10_1007_s00707_020_02867_5
crossref_primary_10_1002_ente_202000114
crossref_primary_10_3390_en15197424
crossref_primary_10_1088_1361_6463_ac855e
crossref_primary_10_1016_j_compstruct_2024_118801
crossref_primary_10_1109_JSEN_2024_3392588
crossref_primary_10_1016_j_compstruc_2021_106575
crossref_primary_10_1016_j_sna_2021_113318
crossref_primary_10_1007_s10854_021_07296_1
crossref_primary_10_1088_1361_6463_ac8687
crossref_primary_10_1088_1361_665X_abca08
crossref_primary_10_1080_15376494_2024_2443814
crossref_primary_10_1016_j_nanoen_2024_110489
crossref_primary_10_3390_su13084142
crossref_primary_10_1002_app_55530
crossref_primary_10_1088_1361_665X_acafba
crossref_primary_10_1016_j_nanoen_2024_110481
crossref_primary_10_1016_j_measen_2024_101671
crossref_primary_10_1021_acsami_0c16207
crossref_primary_10_1142_S1793984424400051
crossref_primary_10_1016_j_ymssp_2023_110637
crossref_primary_10_3390_s25061753
crossref_primary_10_1016_j_rineng_2022_100565
crossref_primary_10_1016_j_mee_2019_111199
crossref_primary_10_1109_JIOT_2020_3016993
crossref_primary_10_3390_ma15134423
crossref_primary_10_1016_j_ijnonlinmec_2020_103541
crossref_primary_10_1177_14644207211046585
crossref_primary_10_1016_j_seta_2023_103417
crossref_primary_10_1021_acsaelm_3c00434
crossref_primary_10_1016_j_ceramint_2023_12_137
crossref_primary_10_1039_D0EE03911J
crossref_primary_10_3390_en15176227
crossref_primary_10_1039_D1EE03113A
crossref_primary_10_1016_j_rineng_2021_100290
crossref_primary_10_3390_s24154943
crossref_primary_10_1016_j_csite_2024_105126
crossref_primary_10_1016_j_energy_2021_121734
crossref_primary_10_1016_j_ijsolstr_2021_111409
crossref_primary_10_1016_j_materresbull_2024_112924
crossref_primary_10_1007_s42417_022_00838_9
crossref_primary_10_1002_adhm_202100986
crossref_primary_10_1109_JIOT_2021_3086013
crossref_primary_10_1088_1361_665X_acdf31
crossref_primary_10_7868_25000640240103
crossref_primary_10_1088_2515_7655_adb0ee
crossref_primary_10_1177_1045389X211072517
crossref_primary_10_1063_5_0018872
crossref_primary_10_1016_j_apenergy_2025_125701
crossref_primary_10_1016_j_nanoen_2023_108728
crossref_primary_10_1039_D2TC04039E
crossref_primary_10_1016_j_nanoen_2023_108606
crossref_primary_10_1088_1361_665X_abb98a
crossref_primary_10_1016_j_jallcom_2021_162009
crossref_primary_10_1016_j_rser_2024_115093
crossref_primary_10_1021_acsomega_3c08789
crossref_primary_10_3390_nano12172960
crossref_primary_10_1063_5_0030302
crossref_primary_10_1063_5_0246789
crossref_primary_10_3390_s22197399
crossref_primary_10_1088_1361_665X_abe2bc
crossref_primary_10_32604_jrm_2023_025497
crossref_primary_10_1007_s12667_023_00615_x
crossref_primary_10_1007_s11432_020_3081_4
crossref_primary_10_3390_polym17060711
crossref_primary_10_1016_j_energy_2024_132218
crossref_primary_10_1021_acs_nanolett_4c00357
crossref_primary_10_1080_15397734_2024_2390074
crossref_primary_10_3390_s23063069
crossref_primary_10_1021_acsaenm_2c00032
crossref_primary_10_3390_aerospace7120167
crossref_primary_10_3390_s21227445
crossref_primary_10_1002_aelm_202201187
crossref_primary_10_1007_s11831_024_10192_6
crossref_primary_10_1016_j_jsv_2023_117759
crossref_primary_10_1007_s11071_020_05997_6
crossref_primary_10_1016_j_nanoen_2022_107488
crossref_primary_10_1088_2631_8695_acd5ac
crossref_primary_10_1080_15567036_2024_2414844
crossref_primary_10_1002_pssa_202200227
crossref_primary_10_1016_j_cma_2023_116164
crossref_primary_10_1016_j_jcis_2022_01_114
crossref_primary_10_1016_j_jallcom_2019_152613
crossref_primary_10_1016_j_cma_2024_116861
crossref_primary_10_3390_s22093395
crossref_primary_10_1002_adma_202303827
crossref_primary_10_1016_j_renene_2021_03_064
crossref_primary_10_1016_j_rser_2021_111920
crossref_primary_10_1080_01495739_2022_2049021
crossref_primary_10_1587_elex_20_20230343
crossref_primary_10_1016_j_ecmx_2024_100705
crossref_primary_10_1016_j_nanoen_2022_107598
crossref_primary_10_1016_j_ceramint_2021_01_180
crossref_primary_10_1007_s00542_021_05219_y
crossref_primary_10_1016_j_medntd_2024_100311
crossref_primary_10_1016_j_poly_2024_117159
crossref_primary_10_1002_aesr_202200063
crossref_primary_10_1088_1361_6463_aca774
crossref_primary_10_35848_1347_4065_ac10f8
crossref_primary_10_1016_j_energy_2024_131347
crossref_primary_10_1080_15376494_2025_2465911
crossref_primary_10_1039_D3CP01711G
crossref_primary_10_1016_j_cnsns_2022_107076
crossref_primary_10_1016_j_cnsns_2022_107077
crossref_primary_10_1002_est2_352
crossref_primary_10_1002_inf2_12376
crossref_primary_10_1007_s12596_025_02567_0
crossref_primary_10_1016_j_ijmecsci_2022_107365
crossref_primary_10_3390_math12132109
crossref_primary_10_1016_j_molstruc_2023_136136
crossref_primary_10_1016_j_ijmecsci_2023_108731
crossref_primary_10_1088_1361_665X_ace812
crossref_primary_10_1088_1361_665X_ab6484
crossref_primary_10_1016_j_ijnonlinmec_2023_104560
crossref_primary_10_1088_1361_665X_ad9e5a
crossref_primary_10_1016_j_seta_2022_102471
crossref_primary_10_1021_acs_cgd_1c01140
crossref_primary_10_1002_adem_202200294
crossref_primary_10_1088_1361_665X_abad4e
crossref_primary_10_1088_1361_665X_ac9658
crossref_primary_10_1177_09544062241272433
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_1088_1361_665X_ad508e
crossref_primary_10_3390_en17092134
crossref_primary_10_1002_smll_202406493
crossref_primary_10_1016_j_ijmecsci_2022_107235
crossref_primary_10_1063_5_0070167
crossref_primary_10_1016_j_mtener_2023_101457
crossref_primary_10_3390_biomedinformatics3040070
crossref_primary_10_1007_s00707_022_03248_w
crossref_primary_10_1016_j_prime_2024_100743
crossref_primary_10_3390_ma14061405
crossref_primary_10_1088_1361_665X_ac4ea6
crossref_primary_10_62184_in_jin0101202422
crossref_primary_10_1088_1361_665X_abc525
crossref_primary_10_1080_15376494_2024_2440933
crossref_primary_10_3390_en15197271
crossref_primary_10_1088_1361_665X_ab7e35
crossref_primary_10_1002_adfm_202106231
crossref_primary_10_1016_j_jsv_2022_117036
crossref_primary_10_1007_s00339_025_08305_4
crossref_primary_10_1007_s11664_021_09241_8
crossref_primary_10_1021_acs_nanolett_4c05972
crossref_primary_10_1016_j_ijbiomac_2024_133748
crossref_primary_10_1016_j_ymssp_2021_107827
crossref_primary_10_1080_01495739_2021_1927920
crossref_primary_10_1177_1045389X211063946
crossref_primary_10_1021_acsanm_3c06095
crossref_primary_10_1177_16878132231224577
crossref_primary_10_1016_j_materresbull_2023_112367
crossref_primary_10_1088_1402_4896_ad9cfc
crossref_primary_10_1088_1748_3190_ad43d1
crossref_primary_10_1007_s42417_023_01196_w
crossref_primary_10_1007_s00707_023_03619_x
crossref_primary_10_1016_j_compstruct_2023_116971
crossref_primary_10_1016_j_ceramint_2024_04_421
crossref_primary_10_1016_j_matpr_2023_01_027
crossref_primary_10_1016_j_ijmecsci_2020_105833
crossref_primary_10_3390_technologies12040051
crossref_primary_10_1016_j_egyr_2022_09_076
crossref_primary_10_1016_j_energy_2021_122514
crossref_primary_10_1177_1369433219886956
crossref_primary_10_1088_1757_899X_876_1_012006
crossref_primary_10_3390_en17040876
crossref_primary_10_1088_1361_665X_ab7543
crossref_primary_10_3390_electronics9122030
crossref_primary_10_1007_s10965_021_02538_6
crossref_primary_10_1007_s40799_021_00529_2
crossref_primary_10_1088_1361_665X_acc707
crossref_primary_10_1016_j_ijadhadh_2024_103638
crossref_primary_10_1098_rspa_2024_0033
crossref_primary_10_2478_msr_2022_0013
crossref_primary_10_3390_polym13142276
crossref_primary_10_1039_D0TC03461D
crossref_primary_10_3390_app10124387
crossref_primary_10_3390_axioms11120667
crossref_primary_10_1002_mabi_202200550
crossref_primary_10_1063_5_0021765
crossref_primary_10_1088_1361_665X_ac04c3
crossref_primary_10_1177_1045389X231157359
crossref_primary_10_1088_1361_665X_ac26a6
crossref_primary_10_3390_act10120327
crossref_primary_10_3390_mi14010127
crossref_primary_10_3390_mi14010001
crossref_primary_10_34133_cbsystems_0210
crossref_primary_10_1007_s00707_023_03575_6
crossref_primary_10_1016_j_ymssp_2023_110287
crossref_primary_10_3390_mi12080973
crossref_primary_10_1364_OE_438337
crossref_primary_10_1007_s10854_023_11798_5
crossref_primary_10_1016_j_nanoen_2022_107175
crossref_primary_10_1002_adsu_202200441
crossref_primary_10_1016_j_sna_2024_115609
crossref_primary_10_1088_1361_665X_abd5dc
crossref_primary_10_1103_PhysRevResearch_6_023045
crossref_primary_10_1016_j_ab_2021_114325
crossref_primary_10_3390_app112311504
crossref_primary_10_3390_ma16083107
crossref_primary_10_1177_10775463211041875
crossref_primary_10_1108_CW_08_2020_0188
crossref_primary_10_1016_j_jallcom_2024_175578
crossref_primary_10_3390_mi13081227
crossref_primary_10_1016_j_jssc_2021_122829
crossref_primary_10_3390_en15134537
crossref_primary_10_3390_en14185936
crossref_primary_10_1155_2021_7258449
crossref_primary_10_3390_mi16030254
crossref_primary_10_1155_2022_7155628
crossref_primary_10_3390_nano15030159
crossref_primary_10_1063_5_0250445
crossref_primary_10_1002_mame_202300101
crossref_primary_10_1021_acsphotonics_1c01857
crossref_primary_10_1007_s10409_020_00928_5
crossref_primary_10_1088_1361_6501_ad214e
crossref_primary_10_1016_j_matpr_2022_08_106
crossref_primary_10_1088_1361_665X_ada599
crossref_primary_10_1002_adfm_202009289
crossref_primary_10_3390_bios13010079
crossref_primary_10_1088_1361_665X_ab9a8d
crossref_primary_10_1631_jzus_A2200551
crossref_primary_10_1063_5_0146788
crossref_primary_10_1088_1361_6439_ac2a52
crossref_primary_10_1007_s12008_023_01522_2
crossref_primary_10_1177_1045389X20966058
crossref_primary_10_3389_fphy_2022_890845
crossref_primary_10_1541_ieejias_143_817
crossref_primary_10_1109_TPEL_2020_3038634
crossref_primary_10_1007_s11071_024_09491_1
crossref_primary_10_1016_j_cnsns_2023_107400
crossref_primary_10_1002_aesr_202300235
crossref_primary_10_1088_1361_665X_ac9dd2
crossref_primary_10_1039_D2CP04168E
crossref_primary_10_31593_ijeat_1033539
crossref_primary_10_1088_1361_6463_ace4d8
crossref_primary_10_3390_act10120312
crossref_primary_10_1177_0954406220939994
crossref_primary_10_1016_j_materresbull_2024_112739
crossref_primary_10_1016_j_apm_2020_03_010
crossref_primary_10_1016_j_enconman_2024_118852
crossref_primary_10_3390_en17164066
crossref_primary_10_1007_s10778_021_01050_0
crossref_primary_10_1007_s10853_023_08321_w
crossref_primary_10_1109_TMAG_2024_3413850
crossref_primary_10_3390_en14123480
crossref_primary_10_1016_j_compstruct_2021_114136
crossref_primary_10_1016_j_ymssp_2020_107476
crossref_primary_10_1016_j_seta_2021_101826
crossref_primary_10_1016_j_egyr_2021_09_085
crossref_primary_10_1016_j_sna_2024_115924
crossref_primary_10_1016_j_apm_2021_05_011
crossref_primary_10_1016_j_nanoen_2020_105629
crossref_primary_10_14483_22487638_22164
crossref_primary_10_1021_acsami_3c08016
crossref_primary_10_1016_j_materresbull_2024_112841
crossref_primary_10_3740_MRSK_2024_34_1_34
crossref_primary_10_1017_jfm_2023_909
crossref_primary_10_1016_j_ceramint_2024_10_279
crossref_primary_10_1016_j_enconman_2020_113567
crossref_primary_10_1016_j_jmps_2021_104643
crossref_primary_10_3390_jlpea13010008
crossref_primary_10_1002_app_50865
crossref_primary_10_1016_j_cnsns_2021_106092
crossref_primary_10_1063_5_0078609
crossref_primary_10_3390_en14030693
crossref_primary_10_3390_mi13060863
crossref_primary_10_1016_j_undsp_2023_10_007
crossref_primary_10_1177_1045389X211001456
crossref_primary_10_18311_jmmf_2023_41751
crossref_primary_10_1016_j_ceramint_2022_08_108
crossref_primary_10_2478_ama_2020_0028
crossref_primary_10_1002_cta_4045
crossref_primary_10_1088_1361_665X_ad9971
crossref_primary_10_1063_5_0147464
crossref_primary_10_3390_fluids8080222
crossref_primary_10_1088_1742_6596_1950_1_012058
crossref_primary_10_1007_s00419_020_01727_x
crossref_primary_10_3390_act12120456
crossref_primary_10_3390_act12120457
crossref_primary_10_1016_j_jeurceramsoc_2020_12_016
crossref_primary_10_1002_adts_202100156
crossref_primary_10_1016_j_apsusc_2022_153464
crossref_primary_10_1039_D0CC04224B
crossref_primary_10_1016_j_cnsns_2022_107018
crossref_primary_10_1016_j_ymssp_2022_108942
crossref_primary_10_1021_acsami_1c24611
crossref_primary_10_1016_j_chaos_2024_115411
crossref_primary_10_1016_j_nanoen_2020_104659
crossref_primary_10_3390_app112412146
crossref_primary_10_1007_s10999_022_09595_9
crossref_primary_10_3390_en17194935
crossref_primary_10_1080_15376494_2023_2280997
crossref_primary_10_1177_09544062231199564
crossref_primary_10_1002_admt_202300203
crossref_primary_10_1063_5_0188088
crossref_primary_10_1142_S2010135X23500261
crossref_primary_10_1016_j_ymssp_2020_107005
crossref_primary_10_1016_j_apenergy_2021_117838
crossref_primary_10_1016_j_mne_2024_100266
crossref_primary_10_1016_j_rser_2025_115521
crossref_primary_10_1007_s12221_023_00364_9
crossref_primary_10_1002_aenm_202100698
crossref_primary_10_3390_s21124145
crossref_primary_10_3390_bios13080791
Cites_doi 10.1177/1045389X16685448
10.1063/1.3142429
10.1021/acsnano.6b04213
10.1063/1.4891169
10.1109/TELSKS.2009.5339410
10.1063/1.4942882
10.1126/science.1124005
10.1016/j.ijmecsci.2014.12.015
10.1016/j.jallcom.2017.12.365
10.1016/j.jeurceramsoc.2014.12.013
10.1515/teme-2017-0076
10.1016/j.apenergy.2017.03.016
10.1016/j.apenergy.2011.01.005
10.1557/mrs2008.202
10.1177/1045389X08098096
10.1016/j.enconman.2014.05.096
10.1088/0964-1726/16/3/R01
10.1109/JMEMS.2011.2171321
10.1088/0964-1726/17/01/015039
10.1109/TUFFC.2012.2422
10.1088/0964-1726/25/8/085029
10.1088/0964-1726/21/10/105024
10.1039/C5NR09029F
10.1063/1.3040011
10.1109/ISWC.1998.729539
10.4218/etrij.09.1209.0015
10.1088/0964-1726/23/10/105020
10.1088/0964-1726/24/4/045008
10.1016/j.sna.2015.02.036
10.1177/0021998312448677
10.1016/j.pmatsci.2018.06.002
10.1109/ATSIP.2016.7523106
10.1088/0964-1726/25/4/045013
10.1016/j.sna.2013.06.009
10.1117/12.388175
10.1021/acsnano.7b08674
10.1088/0964-1726/21/2/025007
10.1088/0964-1726/20/12/125011
10.1103/PhysRevLett.102.080601
10.1117/12.880702
10.1088/0960-1317/18/10/104013
10.1088/0964-1726/22/9/095024
10.1088/0964-1726/19/11/115017
10.1063/1.4789433
10.1016/j.sna.2018.07.020
10.1016/j.jpcs.2017.10.041
10.1016/j.ceramint.2011.04.099
10.1016/j.sna.2014.11.016
10.1007/s11071-014-1355-8
10.1038/ncomms1098
10.12989/sss.2010.6.5_6.661
10.1016/j.sna.2010.09.022
10.1109/WIRELESSVITAE.2009.5172411
10.1177/1045389X09357971
10.1088/0964-1726/21/11/115018
10.1007/978-3-319-20355-3_10
10.1147/sj.353.0618
10.1109/TUFFC.2007.469
10.1088/0964-1726/22/2/025036
10.1016/j.ijengsci.2014.04.003
10.1016/j.enconman.2016.01.030
10.1063/1.4954987
10.1016/j.energy.2015.04.009
10.1109/40.928763
10.1021/nl903377u
10.1109/TIE.2013.2242656
10.1016/j.sna.2016.06.033
10.1002/adem.201700743
10.1177/1045389X08099965
10.1088/0964-1726/24/2/023001
10.1016/j.jcrysgro.2016.11.083
10.1557/mrs.2018.180
10.1088/0964-1726/18/2/025009
10.1063/1.5022599
10.1088/1742-6596/1052/1/012050
10.1115/1.4029611
10.1063/1.4719098
10.1109/TPEL.2011.2161675
10.1109/I2MTC.2018.8409628
10.1140/epjst/e2015-02594-4
10.1016/j.nanoen.2018.05.016
10.1063/1.4968811
10.1109/TIE.2014.2370933
10.1109/TMAG.2018.2831000
10.1007/s11012-018-0826-2
10.1088/0964-1726/23/6/065021
10.1016/j.enconman.2018.06.052
10.1115/1.4005824
10.2514/1.C031542
10.1142/S021812741850092X
10.1016/j.paerosci.2015.10.001
10.1515/ehs-2014-0007
10.1115/1.4023412
10.1063/1.4712630
10.1111/j.1475-1305.2004.00120.x
10.1088/0964-1726/16/2/024
10.1063/1.3327330
10.1177/1045389X11417650
10.1115/SMASIS2009-1276
10.1177/1045389X12455723
10.1016/j.sna.2007.10.073
10.1002/ente.201700785
10.1016/j.ymssp.2018.05.029
10.1088/0964-1726/22/6/065015
10.1177/1045389X18770871
10.1109/JMEMS.2016.2611677
10.4028/www.scientific.net/KEM.413-414.439
10.1016/j.compscitech.2007.12.017
10.1002/pat.3908
10.1088/0957-4484/24/22/225501
10.1088/0964-1726/17/01/015038
10.1073/pnas.1317233111
10.1177/1045389X13502854
10.1088/2053-1591/aad491
10.1115/SMASIS2008-662
10.1177/1045389X10366317
10.1016/j.phpro.2015.08.202
doi.org/10.1088/0964-1726/16/5/054
10.1063/1.3357403
10.1088/0964-1726/13/1/007
10.1088/0964-1726/22/9/095019
10.1016/j.nanoen.2018.11.036
10.1016/j.jeurceramsoc.2017.06.053
10.1088/0964-1726/21/8/085004
10.1038/srep12447
10.1016/j.apenergy.2017.04.020
10.1109/TPEL.2018.2815922
10.1109/MIC.2015.115
10.1016/j.ymssp.2014.07.014
10.1103/PhysRevB.77.085415
10.1002/adma.201103727
10.1016/j.sna.2011.03.003
10.1088/0964-1726/23/1/015004
10.1177/1045389X12463459
10.1115/SMASIS2008-426
10.1007/s12541-014-0422-x
10.2514/1.J053108
10.3390/app8040645
10.1016/j.sna.2007.07.004
10.3390/mi2020274
10.1016/j.nanoen.2014.12.038
10.1063/1.4991684
10.1063/1.3487780
10.1088/0964-1726/22/6/065004
10.1002/aenm.201301660
10.1007/s10853-009-3643-0
10.1002/adfm.200800859
10.1108/00022661011104538
10.1109/TIE.2009.2028360
10.1088/0964-1726/22/3/035013
10.1177/1045389X18778370
10.1088/0964-1726/21/7/075023
10.2172/1000659
10.1002/adma.201204488
10.1016/j.sna.2013.11.007
10.1016/j.enconman.2013.09.054
10.1051/epjap/2017170051
10.1016/j.ymssp.2018.02.035
10.1021/acsami.6b15011
10.1088/0964-1726/17/4/045009
10.1016/j.apenergy.2018.06.011
10.1109/IECON.2007.4460120
10.1109/TED.2013.2259240
10.3390/s140203323
10.1088/0964-1726/22/10/105020
10.1117/12.815852
10.1063/1.4887481
10.1039/C4FD00159A
10.1016/j.cap.2015.02.009
10.1016/j.ijengsci.2013.07.004
10.5188/ijsmer.10.34
10.1002/adma.201400562
10.1088/0964-1726/19/11/115021
10.1002/adfm.201401998
10.1115/1.4002782
10.1007/s00542-012-1480-6
10.1039/C3EE42540A
10.1177/1045389X14541501
10.4028/www.scientific.net/AST.101.20
10.1016/j.ijsolstr.2017.03.003
10.1016/j.apor.2015.01.004
10.1177/1045389X16642301
10.1117/12.815189
10.1063/1.4976803
10.1016/j.apenergy.2014.07.077
10.1016/j.enconman.2010.07.024
10.1016/j.sna.2011.01.015
10.1088/0964-1726/13/5/018
10.1088/1361-665X/aa5a5d
10.1115/1.2890402
10.1038/nnano.2010.46
10.1016/j.physd.2010.01.019
10.1016/j.jeurceramsoc.2017.10.023
10.1021/nl900115y
10.1016/j.jascer.2016.12.005
10.1063/1.4886798
10.1007/978-1-4419-9834-7_21
10.1002/aenm.201702649
10.1115/1.4034770
10.1016/j.sna.2012.03.026
10.1109/TIE.2009.2037648
10.1007/s11664-014-3443-4
10.1117/12.2296250
10.1007/s00542-012-1424-1
10.1109/JMEMS.2013.2282623
10.1002/aenm.201500051
10.1016/j.sna.2004.12.032
10.1557/mrs2009.177
10.1002/aelm.201700562
10.1109/TUFFC.2005.1428041
10.1039/C3NR05128E
10.1021/acsami.7b08541
10.1016/j.nanoen.2015.02.034
10.1016/j.sna.2009.06.007
10.1016/j.sna.2013.10.003
10.1007/s10832-012-9713-8
10.1109/IEDM.2010.5703459
10.1002/adma.201870072
10.1016/j.renene.2012.07.037
10.1155/2016/2673292
10.1115/1.4034253
10.1016/j.ymssp.2011.09.002
10.1088/0964-1726/19/11/115011
10.1016/j.jmps.2008.11.002
10.1088/0964-1726/24/6/065039
10.1039/C5EE03181H
10.1039/C7TC00914C
10.1021/acsnano.5b00534
10.1016/j.ymssp.2018.05.016
10.1063/1.3679102
10.1016/j.jsv.2015.11.017
10.1080/00150193.2016.1169154
10.1016/j.sna.2005.10.043
10.3390/su10051347
10.1016/j.energy.2017.10.005
10.1002/adma.201500121
10.1080/10408430490490905
10.1016/j.rser.2015.11.010
10.1016/j.sna.2017.05.027
10.2514/1.25047
10.1109/ICMENS.2004.1508997
10.1016/j.ymssp.2007.09.015
10.1016/j.apenergy.2017.06.018
10.1115/1.4002783
10.1039/c3nr03402j
10.1039/C8TA05887C
10.1109/JSEN.2011.2167965
10.1002/adfm.201802846
10.1016/j.jsv.2005.10.003
10.1109/ISIE.2013.6563689
10.1109/JMEMS.2012.2205901
10.1016/j.jsv.2013.09.035
10.1140/epjb/e2016-70619-y
10.1177/1045389X05053150
10.1016/j.sna.2013.12.033
10.1111/jace.15396
10.1109/ISCAS.2018.8350907
10.1063/1.4973596
10.1039/C2EE23404A
10.1080/10584580590964574
10.1002/adma.201104810
10.1088/0960-1317/21/9/095016
10.1109/SENSOR.2007.4300269
10.1063/1.4991368
10.1039/C3EE43987A
10.1063/1.3253710
10.1109/JETCAS.2014.2337195
10.1038/srep16065
10.1088/1361-665X/aa814e
10.1063/1.3525045
10.1051/epjap/2014140190
10.1145/3144457.3144510
10.1021/acsnano.6b01569
10.1088/0964-1726/18/3/035001
10.1088/0964-1726/20/9/094007
10.1002/adv.21686
10.1007/s11664-014-3534-2
10.1002/adma.201403286
10.1109/TMECH.2018.2794182
10.1063/1.3427405
10.1016/j.nantod.2016.12.005
10.1007/s11012-015-0140-1
10.1080/01411594.2016.1202408
10.1109/TPEL.2007.904230
10.1039/C4EE02435D
10.1115/1.4026278
10.1016/j.sna.2009.12.018
10.1016/j.nanoen.2016.11.015
10.1088/0964-1726/23/2/025026
10.1063/1.3237170
10.1177/1045389X10369716
10.1039/C2CS35223K
10.1016/j.apacoust.2013.04.015
10.1117/12.2084237
10.1016/j.energy.2016.12.035
10.1016/j.rser.2018.03.030
10.1016/j.apenergy.2017.12.125
10.1109/ICICDT.2017.7993506
10.1039/C5TA00147A
10.31438/trf.hh2008.100
10.1016/j.ymssp.2016.07.048
10.1557/mrs.2018.8
10.1109/MPRV.2005.14
10.1088/0964-1726/24/5/055021
10.1063/1.5008724
10.1109/TUFFC.2011.5733266
10.1021/nn5046568
10.1177/1045389X17730926
10.1177/1045389X12457254
10.1016/j.colsurfa.2010.01.005
10.1143/JJAP.44.L104
10.1088/0964-1726/24/5/055008
10.1117/12.920978
10.1515/ehs-2016-0028
10.1088/0964-1726/16/5/036
10.1115/SMASIS2014-7630
10.1121/1.2839000
10.1063/1.2939271
10.1115/1.4002788
10.1177/1045389X07085639
10.1109/PESC.2004.1355442
10.1109/ISAF.1986.201143
10.1002/ente.201700873
10.1016/j.mechatronics.2006.03.003
10.1088/0964-1726/21/1/015011
10.1088/0964-1726/20/4/045004
10.1557/jmr.2018.172
10.1016/j.applthermaleng.2019.01.025
10.1088/0964-1726/20/5/055019
10.1063/1.3503609
10.3390/s140712497
10.1088/1361-665X/aa6cfd
10.1016/j.ijengsci.2014.01.001
10.1016/j.sna.2017.08.005
10.1080/00150193.2014.875315
10.1088/0964-1726/23/4/045039
10.1088/1361-6463/aab97e
10.1002/aenm.201200205
10.1016/j.ceramint.2012.10.155
10.1088/0964-1726/17/01/015035
10.1016/j.ymssp.2017.12.025
10.1016/j.jeurceramsoc.2017.02.049
10.1063/1.3159815
10.1016/j.jnoncrysol.2018.03.038
10.1088/1361-665X/aaca58
10.1016/j.ymssp.2018.03.023
10.1109/MEMSYS.2015.7051166
10.1088/0964-1726/15/5/030
10.1016/j.sna.2018.03.015
10.1088/0960-1317/20/2/025019
10.1109/TUFFC.2012.2269
10.1002/adfm.201706895
10.1088/0960-1317/20/10/104001
10.1080/00222338908051994
10.1007/s10853-016-0325-6
10.1088/0964-1726/20/12/125017
10.1109/TMECH.2011.2159512
10.1115/SMASIS2008-661
10.1016/j.jeurceramsoc.2014.12.036
10.1039/c4ta01714e
10.1007/s00542-013-2030-6
10.1088/1361-665X/aaefc5
10.1109/TIE.2012.2187413
10.1021/nl0728470
10.1109/TMECH.2012.2205266
10.1016/j.mejo.2010.10.007
10.1016/j.enconman.2018.06.081
10.1080/00150198908007920
10.1109/TIE.2009.2014673
10.1177/1045389X11420593
10.1016/j.jsv.2009.11.034
10.1007/s10999-014-9247-0
10.1088/0964-1726/19/2/025018
10.1063/1.4897624
10.1016/j.jsv.2016.12.019
10.24200/sci.2017.4240
10.1016/j.physb.2013.12.040
10.1007/s11071-017-3982-3
10.1063/1.3176019
10.1016/j.nanoen.2012.02.003
10.1063/1.2435346
10.1109/TUFFC.912
10.1016/j.ijengsci.2015.05.004
10.1109/TMC.2018.2828816
10.1088/0964-1726/22/5/055013
10.1063/1.3360219
10.1088/0964-1726/25/10/105016
10.1016/j.ymssp.2014.08.020
10.1016/j.actamat.2011.12.036
10.1063/1.4932947
10.1016/j.nanoen.2018.10.068
10.1177/1045389X08089957
10.1038/ncomms3682
10.1016/j.compstruc.2012.05.010
10.1016/j.jsv.2010.11.018
10.1088/0957-0233/23/1/015101
10.1088/1361-6463/aab9e3
10.1016/j.mejo.2006.07.023
10.1016/j.jpcs.2018.02.024
10.1016/j.jeurceramsoc.2016.07.023
10.1177/1045389X05056859
10.1088/0964-1726/22/2/023001
10.1016/j.nanoen.2014.11.059
10.1016/j.physb.2012.10.029
10.1016/j.jeurceramsoc.2014.02.041
10.1016/j.jsv.2019.01.038
10.1016/j.apenergy.2017.04.019
10.1063/1.4874305
10.1088/1468-6996/11/4/044302
10.1016/j.apenergy.2017.12.053
10.1109/TIE.2011.2167116
10.1016/j.mejo.2007.12.017
10.1016/j.jsv.2014.06.046
10.1109/TRANSDUCERS.2011.5969874
10.1109/JPROC.2008.927494
10.1557/JMR.2004.0328
10.1088/0964-1726/21/6/065017
10.1088/0960-1317/19/6/065014
10.1016/j.actamat.2017.02.029
10.1063/1.3267482
10.1088/0034-4885/61/9/002
10.1115/IMECE2008-68082
10.1007/s13369-018-3187-1
10.1016/j.energy.2017.02.071
10.1111/j.1551-2916.2011.04629.x
10.1016/j.enconman.2015.03.014
10.1016/j.jsv.2013.11.008
10.3390/s140100144
10.1109/ICCEP.2013.6586952
10.1088/0964-1726/18/9/095029
10.1016/j.rser.2018.06.031
10.1109/JSEN.2009.2021192
10.1007/978-1-4419-9598-8
10.1016/j.rser.2018.03.052
10.1088/0964-1726/24/2/025031
10.1016/j.mechatronics.2012.06.006
10.1117/12.2010637
10.1017/jfm.2013.555
10.1016/j.ceramint.2016.12.006
10.1016/j.enconman.2016.05.085
10.1016/j.energy.2018.04.109
10.1016/j.energy.2015.07.114
10.1117/12.815799
10.1088/0964-1726/25/4/045008
10.1088/1361-665X/aad755
10.1088/0964-1726/17/6/065016
10.1109/48.972090
10.1016/j.jfluidstructs.2017.09.007
10.1016/j.nanoen.2015.01.051
10.1117/12.915370
10.1007/s12206-014-0407-9
10.1177/1045389X11416025
10.1063/1.4803445
10.1063/1.2119410
10.1117/12.775851
10.1016/j.energy.2015.09.131
10.1088/0960-1317/20/5/055008
10.1016/j.enconman.2018.02.054
10.1021/nl101060h
10.1016/j.jsv.2015.01.010
10.4028/www.scientific.net/AST.58.159
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1361-665X/ab36e4
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_ab36e4
smsab36e4
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c460t-e8593d6c1295d5858d9f496c635eac008db048ad2633b36d4bde7eb61cfc83bc3
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Thu Apr 24 23:03:08 EDT 2025
Tue Jul 01 03:38:42 EDT 2025
Thu Jan 07 13:52:09 EST 2021
Wed Aug 21 03:40:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-e8593d6c1295d5858d9f496c635eac008db048ad2633b36d4bde7eb61cfc83bc3
Notes SMS-107814.R2
ORCID 0000-0001-6269-1802
0000-0003-2777-5458
0000-0002-8312-3000
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-665X/ab36e4
PageCount 62
ParticipantIDs iop_journals_10_1088_1361_665X_ab36e4
crossref_citationtrail_10_1088_1361_665X_ab36e4
crossref_primary_10_1088_1361_665X_ab36e4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-22
PublicationDateYYYYMMDD 2019-10-22
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-22
  day: 22
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Blackburn (smsab36e4bib17) 2018; 30
Karami (smsab36e4bib321) 2013; 50
Lee (smsab36e4bib115) 2013; 5
Wu (smsab36e4bib156) 2013; 24
Hu (smsab36e4bib193) 2007; 16
Khalifa (smsab36e4bib394) 2015; 19
Palneedi (smsab36e4bib70) 2017; 5
Deterre (smsab36e4bib178) 2012; 21
Leadenham (smsab36e4bib231) 2015; 24
Holmberg (smsab36e4bib403) 2013; 7
Isarakorn (smsab36e4bib62) 2010; 20
Shukla (smsab36e4bib390) 2015; 222
Huguet (smsab36e4bib221) 2018; 226
Wahbah (smsab36e4bib395) 2014; 4
Jang (smsab36e4bib414) 2015; 5
Priya (smsab36e4bib263) 2017; 4
Jung (smsab36e4bib434) 2017; 197
Saadon (smsab36e4bib21) 2011; 52
Zhang (smsab36e4bib36) 2018; 212
Renaud (smsab36e4bib169) 2009; 18
Lallart (smsab36e4bib299) 2011; 165
Zhang (smsab36e4bib323) 2017; 262
Chen (smsab36e4bib232) 2016; 138
Ray (smsab36e4bib140) 2015; 9431
Dasgupta (smsab36e4bib213) 2018; 44
Le (smsab36e4bib33) 2015; 79
Hunter (smsab36e4bib16) 2012; 8377
Martínez-Ayuso (smsab36e4bib65) 2017; 113
Zhu (smsab36e4bib470) 2011; 169
Paulo (smsab36e4bib3) 2010
Karami (smsab36e4bib173) 2012; 21
Leland (smsab36e4bib192) 2006; 15
Tang (smsab36e4bib348) 2018; 76
Abrol (smsab36e4bib313) 2017; 5
Fan (smsab36e4bib208) 2018; 112
Gu (smsab36e4bib171) 2011; 42
Wang (smsab36e4bib179) 2012; 59
Zhang (smsab36e4bib410) 2015; 12
Moon (smsab36e4bib76) 2009; 31
Hu (smsab36e4bib113) 2012; 24
Liang (smsab36e4bib300) 2012; 59
Liu (smsab36e4bib464) 2008; 123
Frischmann (smsab36e4bib9) 2013; 42
Leontsev (smsab36e4bib87) 2010; 11
Wang (smsab36e4bib107) 2006; 312
Kuo (smsab36e4bib261) 2016; 25
Lefeuvre (smsab36e4bib295) 2006; 126
Chen (smsab36e4bib266) 2014; 438
Ma (smsab36e4bib383) 2017
Cao (smsab36e4bib203) 2015; 224
Wang (smsab36e4bib354) 2010; 20
Mo (smsab36e4bib181) 2013; 24
Anton (smsab36e4bib289) 2009; 7288
Hwang (smsab36e4bib407) 2014; 26
Jackson (smsab36e4bib302) 1959
Cottone (smsab36e4bib217) 2009; 102
Anton (smsab36e4bib456) 2013; 8690
Lu (smsab36e4bib285) 2004; 13
Ravi (smsab36e4bib338) 2019; 114
Gao (smsab36e4bib325) 2013; 60
Challa (smsab36e4bib194) 2008; 17
Maurya (smsab36e4bib90) 2018; 33
Khameneifar (smsab36e4bib438) 2008
Xie (smsab36e4bib441) 2015; 94
Feenstra (smsab36e4bib385) 2008; 22
Lefeuvre (smsab36e4bib291) 2007; 22
Chen (smsab36e4bib53) 2018; 8
Chen (smsab36e4bib153) 2013; 410
Kishore (smsab36e4bib315) 2014; 460
Zhou (smsab36e4bib219) 2013; 102
Pozzi (smsab36e4bib391) 2012; 21
Wang (smsab36e4bib472) 2018; 171
İlik (smsab36e4bib415) 2018; 280
Jung (smsab36e4bib381) 2015; 13
Elfrink (smsab36e4bib469) 2010; 20
Jackson (smsab36e4bib262) 2017; 264
Pan (smsab36e4bib67) 2015; 3
Priya (smsab36e4bib316) 2005; 87
Chang (smsab36e4bib132) 2012; 1
Guyomar (smsab36e4bib294) 2005; 52
Lin (smsab36e4bib448) 2009; 106
Gambier (smsab36e4bib455) 2012; 23
Sessler (smsab36e4bib139) 2016; 89
Guigon (smsab36e4bib365) 2008; 17
Yan (smsab36e4bib78) 2011; 94
Stanton (smsab36e4bib197) 2009; 95
Tian (smsab36e4bib254) 2018; 117
Myers (smsab36e4bib318) 2007; 90
Lee (smsab36e4bib445) 2014; 78
Pillatsch (smsab36e4bib388) 2012; 21
Jalali (smsab36e4bib112) 2014; 2
Bibo (smsab36e4bib343) 2015; 137
Chen (smsab36e4bib14) 2018
Yousry (smsab36e4bib474) 2018; 4
Safaei (smsab36e4bib191) 2018; 32
Lin (smsab36e4bib451) 2009; 19
Erturk (smsab36e4bib69) 2008; 93
Goldschmidtboeing (smsab36e4bib148) 2008; 18
Fan (smsab36e4bib163) 2015; 96
Pobering (smsab36e4bib353) 2009; 7288
Zi (smsab36e4bib51) 2016; 10
Makki (smsab36e4bib440) 2012; 18
Ren (smsab36e4bib74) 2010; 96
Li (smsab36e4bib276) 2016; 25
Liang (smsab36e4bib309) 2019; 34
Aktakka (smsab36e4bib257) 2013; 60
Brenes (smsab36e4bib308) 2018; 28
Anton (smsab36e4bib446) 2010; 19
Tian (smsab36e4bib264) 2018; 8
Jeong (smsab36e4bib471) 2014; 7
Sharpes (smsab36e4bib174) 2014; 1
Xie (smsab36e4bib435) 2013; 72
Banerji (smsab36e4bib39) 2016
Lin (smsab36e4bib127) 2009; 95
Pillai (smsab36e4bib468) 2014; 15
Koka (smsab36e4bib131) 2014; 4
Asai (smsab36e4bib42) 2017; 84
Erturk (smsab36e4bib228) 2011; 330
Silva (smsab36e4bib347) 2017; 28
Lu (smsab36e4bib242) 2018; 29
Safaei (smsab36e4bib190) 2017; 26
Wei (smsab36e4bib396) 2013; 22
Miljkovic (smsab36e4bib38) 2014; 105
Rocha (smsab36e4bib379) 2010; 57
Chen (smsab36e4bib467) 2019; 150
Tang (smsab36e4bib259) 2014; 205
Wong (smsab36e4bib371) 2015; 44
Anton (smsab36e4bib29) 2012; 49
Yan (smsab36e4bib214) 2018; 28
Zhang (smsab36e4bib433) 2018; 163
Wang (smsab36e4bib447) 2013; 47
Briscoe (smsab36e4bib110) 2012; 2
Galchev (smsab36e4bib168) 2012; 21
Carrara (smsab36e4bib271) 2012; 100
Qaiser (smsab36e4bib98) 2018; 740
Almouahed (smsab36e4bib401) 2011; 16
Nafari (smsab36e4bib128) 2017; 31
Stamatellou (smsab36e4bib331) 2018; 171
Priya (smsab36e4bib56) 2011
Leadenham (smsab36e4bib230) 2014; 333
Muthalif (smsab36e4bib149) 2015; 54
Fok (smsab36e4bib268) 2008; 33
Wang (smsab36e4bib210) 2018; 108
Van den Ende (smsab36e4bib444) 2011; 21
Cuadras (smsab36e4bib15) 2010; 158
Davis (smsab36e4bib102) 2018; 501
Yang (smsab36e4bib314) 2014; 105
Narita (smsab36e4bib25) 2018; 20
Kong (smsab36e4bib303) 2010; 21
Elvin (smsab36e4bib287) 2009; 20
Xu (smsab36e4bib126) 2010; 1
Chen (smsab36e4bib177) 2012; 38
Gonzalez (smsab36e4bib375) 2002; 10
Brenes (smsab36e4bib307) 2018; 27
Reissman (smsab36e4bib416) 2008
Li (smsab36e4bib459) 2015; 21
Erturk (smsab36e4bib145) 2008; 130
Lin (smsab36e4bib450) 2008; 68
Muralt (smsab36e4bib63) 2009; 34
De Paula (smsab36e4bib162) 2015; 54
Shibata (smsab36e4bib84) 2018; 43
Dai (smsab36e4bib341) 2014; 77
Hwang (smsab36e4bib83) 2015; 5
Moss (smsab36e4bib40) 2015; 24
Espinosa (smsab36e4bib133) 2012; 24
Jasim (smsab36e4bib431) 2017; 141
Díez (smsab36e4bib24) 2018
duToit (smsab36e4bib279) 2005; 71
Schlichting (smsab36e4bib461) 2013; 23
Quinn (smsab36e4bib206) 2011; 133
Vasic (smsab36e4bib473) 2014; 28
Qi (smsab36e4bib275) 2016; 108
Harne (smsab36e4bib20) 2013; 22
Schlichting (smsab36e4bib462) 2012; 23
Kim (smsab36e4bib304) 2007; 54
Shinekumar (smsab36e4bib97) 2015; 44
Palosaari (smsab36e4bib180) 2012; 28
Lee (smsab36e4bib248) 2009; 19
Dhakar (smsab36e4bib172) 2013; 199
Yan (smsab36e4bib92) 2017; 37
Soin (smsab36e4bib187) 2014; 7
Zhou (smsab36e4bib215) 2018; 85
Piñeirua (smsab36e4bib355) 2015; 346
Halim (smsab36e4bib167) 2014; 208
Lefeuvre (smsab36e4bib292) 2005; 16
Tehrani (smsab36e4bib226) 2014; 333
Koka (smsab36e4bib129) 2013; 4
Shafer (smsab36e4bib424) 2015; 24
Zhang (smsab36e4bib386) 2015; 13
Roundy (smsab36e4bib280) 2004; 13
Deterre (smsab36e4bib413) 2014; 23
Zhou (smsab36e4bib373) 2018; 53
Erturk (smsab36e4bib286) 2008; 17
Jiang (smsab36e4bib96) 2013; 14
Pondrom (smsab36e4bib138) 2014; 104
Qi (smsab36e4bib35) 2010; 10
Yang (smsab36e4bib237) 2019; 446
Taylor (smsab36e4bib351) 2001; 26
Garbuio (smsab36e4bib298) 2009; 56
Kottapalli (smsab36e4bib265) 2019
Damjanovic (smsab36e4bib60) 1998; 61
Chen (smsab36e4bib312) 2019
Uchino (smsab36e4bib26) 2018; 6
Wu (smsab36e4bib91) 2018; 6
Ng (smsab36e4bib13) 2018; 90
Erturk (smsab36e4bib344) 2010; 96
Sullivan (smsab36e4bib2) 2010
Badel (smsab36e4bib305) 2016
Smoker (smsab36e4bib466) 2012; 111
Wang (smsab36e4bib224) 2017; 118
Stephen (smsab36e4bib22) 2006; 293
Yan (smsab36e4bib8) 2010; 10
Akaydin (smsab36e4bib336) 2012; 21
Xie (smsab36e4bib443) 2015; 86
Zhang (smsab36e4bib240) 2017; 28
Mitcheson (smsab36e4bib4) 2008; 96
Kanoun (smsab36e4bib5) 2018
Xu (smsab36e4bib108) 2010; 5
Tadesse (smsab36e4bib458) 2009; 20
Pillatsch (smsab36e4bib164) 2017; 26
Zhao (smsab36e4bib212) 2018; 5
Liu (smsab36e4bib246) 2008; 39
Wang (smsab36e4bib253) 2017; 9
Xie (smsab36e4bib429) 2015; 93
Moro (smsab36e4bib428) 2010; 19
Cao (smsab36e4bib44) 2018; 54
Dias (smsab36e4bib346) 2013; 102
Guyomar (smsab36e4bib310) 2011; 2
Roundy (smsab36e4bib150) 2005; 4
Erturk (smsab36e4bib288) 2012; 106-107
Park (smsab36e4bib152) 2013; 39
Xie (smsab36e4bib361) 2014; 333
Harstad (smsab36e4bib68) 2017; 7
Zheng (smsab36e4bib94) 2017; 5
Xu (smsab36e4bib155) 2012; 21
Hanner (smsab36e4bib106) 1989; 100
Dagdeviren (smsab36e4bib409) 2014; 111
Singh (smsab36e4bib439) 2012; 22
Shindo (smsab36e4bib175) 2014; 10
Shen (smsab36e4bib247) 2009; 154
Ansari (smsab36e4bib411) 2017; 26
Amini (smsab36e4bib340) 2017; 24
Klein (smsab36e4bib105) 1986
Bryant (smsab36e4bib330) 2011; 20
Zhou (smsab36e4bib199) 2014; 133
Zhao (smsab36e4bib382) 2014; 14
Yang (smsab36e4bib82) 2016; 122
Feenstra (smsab36e4bib121) 2008; 103
Sohn (smsab36e4bib114) 2013; 6
Syta (smsab36e4bib185) 2015; 50
Sun (smsab36e4bib238) 2018; 114
Ajitsaria (smsab36e4bib283) 2007; 16
Junior (smsab36e4bib18) 2018; 91
Wu (smsab36e4bib236) 2018; 29
Tang (smsab36e4bib229) 2011; 20
Challa (smsab36e4bib457) 2009; 18
Chen (smsab36e4bib284) 2006; 16
Aktakka (smsab36e4bib183) 2015
Yang (smsab36e4bib186) 2012; 188
Savolainen (smsab36e4bib136) 1989; 26
Priya (smsab36e4bib317) 2005; 44
Li (smsab36e4bib99) 2017; 52
Bilgen (smsab36e4bib188) 2012; 27
Tabesh (smsab36e4bib290) 2010; 57
Zhang (smsab36e4bib357) 2011; 30
Kwon (smsab36e4bib333) 2010; 97
Zhang (smsab36e4bib337) 2016; 2016
Zhang (smsab36e4bib37) 2016; 87
Erturk (smsab36e4bib218) 2009; 94
Pobering (smsab36e4bib352) 2004
Yue (smsab36e4bib80) 2017; 37
Erturk (smsab36e4bib28) 2011; 22
Arrieta (smsab36e4bib200) 2010; 97
Liu (smsab36e4bib233) 2018; 29
Lee (smsab36e4bib77) 2004; 19
Yu (smsab36e4bib256) 2014; 14
Shaikh (smsab36e4bib7) 2016; 55
Sohn (smsab36e4bib118) 2014; 6
Hwang (smsab36e4bib427) 2015; 15
Ahn (smsab36e4bib239) 2018; 277
Murray (smsab36e4bib359) 2009; 7288
Safaei (smsab36e4bib405) 2018; 10595
Li (smsab36e4bib327) 2009
Kang (smsab36e4bib88) 2015; 35
Xu (smsab36e4bib189) 2013; 22
Karami (smsab36e4bib34) 2012; 100
Chen (smsab36e4bib48) 2015; 9
Mathers (smsab36e4bib75) 2009; 9
Reissman (smsab36e4bib417) 2008
Fang (smsab36e4bib245) 2006; 37
Naseer (smsab36e4bib207) 2017; 203
Aktakka (smsab36e4bib258) 2010
Hobeck (smsab36e4bib335) 2012; 21
Grinspan (smsab36e4bib369) 2010; 356
Kuang (smsab36e4bib397) 2016; 25
Shafer (smsab36e4bib422) 2012; 8341
Delnavaz (smsab36e4bib398) 2014; 61
Bowland (smsab36e4bib452) 2017; 9
Cao (smsab36e4bib222) 2015; 107
Won (smsab36e4bib255) 2019; 55
Jung (smsab36e4bib166) 2010; 96
Gu (smsab36e4bib170) 2011; 20
Wang (smsab36e4bib23) 2018; 212
Sousa (smsab36e4bib345) 2011; 20
Almouahed (smsab36e4bib402) 2016
Ansari (smsab36e4bib406) 2016; 119
Wu (smsab36e4bib362) 2015; 50
Khameneifar (smsab36e4bib158) 2013; 18
Hashimoto (smsab36e4bib154) 2013
Harne (smsab36e4bib235) 2016; 363
Zheng (smsab36e4bib85) 2018; 98
Bryant (smsab36e4bib329) 2011; 133
Xie
References_xml – volume: 28
  start-page: 2023
  year: 2017
  ident: smsab36e4bib347
  article-title: Self-powered active control of elastic and aeroelastic oscillations using piezoelectric material
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X16685448
– volume: 105
  year: 2009
  ident: smsab36e4bib95
  article-title: Characterization of high temperature piezoelectric crystals with an ordered langasite structure
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3142429
– volume: 10
  start-page: 6429
  year: 2016
  ident: smsab36e4bib49
  article-title: Triboelectric nanogenerators for blue energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04213
– volume: 6
  start-page: 043110
  year: 2014
  ident: smsab36e4bib430
  article-title: Piezoelectric energy harvesting from traffic-induced pavement vibrations
  publication-title: J. Renew. Sustain. Ener.
  doi: 10.1063/1.4891169
– year: 2009
  ident: smsab36e4bib54
  article-title: Power management and energy harvesting techniques for wireless sensor nodes
  doi: 10.1109/TELSKS.2009.5339410
– volume: 119
  year: 2016
  ident: smsab36e4bib406
  article-title: Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4942882
– volume: 312
  start-page: 242
  year: 2006
  ident: smsab36e4bib107
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 92
  start-page: 206
  year: 2015
  ident: smsab36e4bib220
  article-title: Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2014.12.015
– volume: 740
  start-page: 1
  year: 2018
  ident: smsab36e4bib98
  article-title: 0–3 type Bi3TaTiO9: 40 wt% BiFeO3 composite with improved high-temperature piezoelectric properties
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.12.365
– volume: 35
  start-page: 1659
  year: 2015
  ident: smsab36e4bib89
  article-title: Transferring lead-free piezoelectric ceramics into application
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.12.013
– volume: 85
  start-page: 521
  year: 2018
  ident: smsab36e4bib215
  article-title: Numerical analysis and experimental verification of broadband tristable energy harvesters
  publication-title: tm -Technisches Messen
  doi: 10.1515/teme-2017-0076
– volume: 194
  start-page: 212
  year: 2017
  ident: smsab36e4bib349
  article-title: Harvesting ambient wind energy with an inverted piezoelectric flag
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.016
– volume: 88
  start-page: 2287
  year: 2011
  ident: smsab36e4bib10
  article-title: Photovoltaic modules and their applications: A review on thermal modelling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.005
– volume: 33
  start-page: 931
  year: 2008
  ident: smsab36e4bib268
  article-title: Acoustic metamaterials
  publication-title: MRS Bull.
  doi: 10.1557/mrs2008.202
– volume: 20
  start-page: 529
  year: 2009
  ident: smsab36e4bib30
  article-title: Modeling of piezoelectric energy harvesting from an l-shaped beam-mass structure with an application to UAVs
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08098096
– volume: 85
  start-page: 435
  year: 2014
  ident: smsab36e4bib426
  article-title: Modelling piezoelectric energy harvesting potential in an educational building
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2014.05.096
– volume: 16
  start-page: R1
  year: 2007
  ident: smsab36e4bib1
  article-title: A review of power harvesting using piezoelectric materials (2003–2006)
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/3/R01
– volume: 21
  start-page: 145
  year: 2012
  ident: smsab36e4bib173
  article-title: Parametric study of zigzag microstructure for vibrational energy harvesting
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2011.2171321
– volume: 17
  year: 2008
  ident: smsab36e4bib366
  article-title: Harvesting raindrop energy: experimental study
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/01/015039
– volume: 59
  start-page: 2022
  year: 2012
  ident: smsab36e4bib179
  article-title: Vibration energy harvesting using a piezoelectric circular diaphragm array
  publication-title: IEEE T. Ultrason. Ferr.
  doi: 10.1109/TUFFC.2012.2422
– volume: 25
  year: 2016
  ident: smsab36e4bib397
  article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/8/085029
– volume: 21
  start-page: 105024
  year: 2012
  ident: smsab36e4bib335
  article-title: Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/10/105024
– volume: 8
  start-page: 5098
  year: 2016
  ident: smsab36e4bib125
  article-title: Lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting
  publication-title: Nanoscale
  doi: 10.1039/C5NR09029F
– volume: 93
  year: 2008
  ident: smsab36e4bib69
  article-title: Power generation and shunt damping performance of a single crystal lead magnesium niobate-lead zirconate titanate unimorph: Analysis and experiment
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3040011
– year: 1998
  ident: smsab36e4bib377
  article-title: Parasitic power harvesting in shoes
  doi: 10.1109/ISWC.1998.729539
– volume: 31
  start-page: 688
  year: 2009
  ident: smsab36e4bib76
  article-title: Sustainable vibration energy harvesting based on Zr-doped PMN-PT piezoelectric single crystal cantilevers
  publication-title: ETRI J.
  doi: 10.4218/etrij.09.1209.0015
– volume: 23
  year: 2014
  ident: smsab36e4bib399
  article-title: Flexible piezoelectric energy harvesting from jaw movements
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/10/105020
– volume: 24
  year: 2015
  ident: smsab36e4bib387
  article-title: Design and characterization of scalable woven piezoelectric energy harvester for wearable applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/4/045008
– volume: 228
  start-page: 104
  year: 2015
  ident: smsab36e4bib252
  article-title: Low frequency piezoelectric energy harvesting at multi vibration mode shapes
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2015.02.036
– volume: 47
  start-page: 125
  year: 2013
  ident: smsab36e4bib447
  article-title: Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998312448677
– volume: 98
  start-page: 552
  year: 2018
  ident: smsab36e4bib85
  article-title: Recent development in lead-free perovskite piezoelectric bulk materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.06.002
– year: 2016
  ident: smsab36e4bib402
  article-title: Self-powered device for tibiofemoral force measurement in knee implant
  doi: 10.1109/ATSIP.2016.7523106
– volume: 25
  year: 2016
  ident: smsab36e4bib276
  article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/4/045013
– volume: 199
  start-page: 344
  year: 2013
  ident: smsab36e4bib172
  article-title: A new energy harvester design for high power output at low frequencies
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2013.06.009
– volume: 3991
  year: 2000
  ident: smsab36e4bib104
  article-title: Low-cost piezocomposite actuator for structural control applications
  doi: 10.1117/12.388175
– volume: 12
  start-page: 1849
  year: 2018
  ident: smsab36e4bib52
  article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 21
  year: 2012
  ident: smsab36e4bib336
  article-title: The performance of a self-excited fluidic energy harvester
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/2/025007
– volume: 20
  year: 2011
  ident: smsab36e4bib229
  article-title: Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/12/125011
– year: 2010
  ident: smsab36e4bib3
  article-title: Review and future trend of energy harvesting methods for portable medical devices
– volume: 102
  year: 2009
  ident: smsab36e4bib217
  article-title: Nonlinear energy harvesting
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.080601
– volume: 7977
  start-page: 797702
  year: 2011
  ident: smsab36e4bib420
  article-title: Electrical power generation from insect flight
  doi: 10.1117/12.880702
– volume: 18
  year: 2008
  ident: smsab36e4bib148
  article-title: Characterization of different beam shapes for piezoelectric energy harvesting
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/18/10/104013
– volume: 22
  year: 2013
  ident: smsab36e4bib436
  article-title: Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/9/095024
– volume: 19
  start-page: 115017
  year: 2010
  ident: smsab36e4bib297
  article-title: Enhanced synchronized switch harvesting: A new energy harvesting scheme for efficient energy extraction
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/11/115017
– volume: 102
  year: 2013
  ident: smsab36e4bib346
  article-title: Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4789433
– volume: 280
  start-page: 38
  year: 2018
  ident: smsab36e4bib415
  article-title: Thin film piezoelectric acoustic transducer for fully implantable cochlear implants
  publication-title: Sensor. Actuat., A Phys.
  doi: 10.1016/j.sna.2018.07.020
– volume: 114
  start-page: 207
  year: 2017
  ident: smsab36e4bib86
  article-title: A brief review of Ba (Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2017.10.041
– volume: 38
  start-page: S271
  year: 2012
  ident: smsab36e4bib177
  article-title: Vibration energy harvesting with a clamped piezoelectric circular diaphragm
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2011.04.099
– volume: 222
  start-page: 39
  year: 2015
  ident: smsab36e4bib390
  article-title: PENDEXE: A novel energy harvesting concept for low frequency human waistline
  publication-title: Sensor. Actuat., A Phys.
  doi: 10.1016/j.sna.2014.11.016
– volume: 77
  start-page: 967
  year: 2014
  ident: smsab36e4bib341
  article-title: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1355-8
– volume: 1
  start-page: 93
  year: 2010
  ident: smsab36e4bib126
  article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1098
– volume: 6
  start-page: 661
  year: 2010
  ident: smsab36e4bib463
  article-title: Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems
  publication-title: Smart Struct. Syst.
  doi: 10.12989/sss.2010.6.5_6.661
– volume: 165
  start-page: 294
  year: 2011
  ident: smsab36e4bib299
  article-title: High efficiency, wide load bandwidth piezoelectric energy scavenging by a hybrid nonlinear approach
  publication-title: Sens. Actuat., A-Phys.
  doi: 10.1016/j.sna.2010.09.022
– year: 2009
  ident: smsab36e4bib6
  article-title: Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges
  doi: 10.1109/WIRELESSVITAE.2009.5172411
– volume: 21
  start-page: 1293
  year: 2010
  ident: smsab36e4bib303
  article-title: Resistive impedance matching circuit for piezoelectric energy harvesting
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X09357971
– volume: 21
  year: 2012
  ident: smsab36e4bib388
  article-title: A scalable piezoelectric impulse-excited energy harvester for human body excitation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/11/115018
– start-page: 321
  year: 2016
  ident: smsab36e4bib305
  article-title: Nonlinear conditioning circuits for piezoelectric energy harvesters
  doi: 10.1007/978-3-319-20355-3_10
– start-page: 3
  year: 2019
  ident: smsab36e4bib312
  article-title: Introduction to energy harvesting transducers and their power conditioning circuits
– volume: 35
  start-page: 618
  year: 1996
  ident: smsab36e4bib374
  article-title: Human-powered wearable computing
  publication-title: IBM Syst. J.
  doi: 10.1147/sj.353.0618
– volume: 54
  start-page: 1851
  year: 2007
  ident: smsab36e4bib304
  article-title: Consideration of impedance matching techniques for efficient piezoelectric energy harvesting
  publication-title: IEEE T. Ultrason. Ferr.
  doi: 10.1109/TUFFC.2007.469
– volume: 22
  year: 2013
  ident: smsab36e4bib372
  article-title: Energy harvesting from hydraulic pressure fluctuations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/2/025036
– volume: 81
  start-page: 41
  year: 2014
  ident: smsab36e4bib360
  article-title: Energy harvesting from transverse ocean waves by a piezoelectric plate
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2014.04.003
– volume: 112
  start-page: 246
  year: 2016
  ident: smsab36e4bib437
  article-title: Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2016.01.030
– volume: 108
  year: 2016
  ident: smsab36e4bib275
  article-title: Acoustic energy harvesting based on a planar acoustic metamaterial
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4954987
– volume: 86
  start-page: 385
  year: 2015
  ident: smsab36e4bib443
  article-title: Energy harvesting from a vehicle suspension system
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.009
– volume: 21
  start-page: 30
  year: 2001
  ident: smsab36e4bib378
  article-title: Energy scavenging with shoe-mounted piezoelectrics
  publication-title: IEEE Micro
  doi: 10.1109/40.928763
– volume: 10
  start-page: 524
  year: 2010
  ident: smsab36e4bib35
  article-title: Piezoelectric ribbons printed onto rubber for flexible energy conversion
  publication-title: Nano Lett.
  doi: 10.1021/nl903377u
– volume: 61
  start-page: 583
  year: 2014
  ident: smsab36e4bib398
  article-title: Energy harvesting for in-ear devices using ear canal dynamic motion
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2013.2242656
– volume: 247
  start-page: 547
  year: 2016
  ident: smsab36e4bib195
  article-title: Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2016.06.033
– volume: 20
  year: 2018
  ident: smsab36e4bib25
  article-title: A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201700743
– volume: 20
  start-page: 625
  year: 2009
  ident: smsab36e4bib458
  article-title: Multimodal energy harvesting system: piezoelectric and electromagnetic
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08099965
– volume: 24
  year: 2015
  ident: smsab36e4bib40
  article-title: Scaling and power density metrics of electromagnetic vibration energy harvesting devices
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/2/023001
– volume: 468
  start-page: 411
  year: 2017
  ident: smsab36e4bib72
  article-title: Enhanced optical, thermal and piezoelectric behavior in dye doped potassium acid phthalate (KAP) single crystal
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.11.083
– volume: 43
  start-page: 612
  year: 2018
  ident: smsab36e4bib84
  article-title: Applications of lead-free piezoelectric materials
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2018.180
– volume: 18
  year: 2009
  ident: smsab36e4bib147
  article-title: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/2/025009
– year: 2016
  ident: smsab36e4bib39
  article-title: STR-991: Energy harvesting methods for structural health monitoring using wireless sensors: A review
– volume: 112
  year: 2018
  ident: smsab36e4bib208
  article-title: A monostable piezoelectric energy harvester for broadband low-level excitations
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5022599
– volume: 1052
  start-page: 012050
  year: 2018
  ident: smsab36e4bib306
  article-title: Experimental validation of wideband piezoelectric energy harvesting based on frequency-tuning synchronized charge extraction
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/1052/1/012050
– volume: 137
  year: 2015
  ident: smsab36e4bib343
  article-title: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4029611
– volume: 100
  year: 2012
  ident: smsab36e4bib271
  article-title: Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4719098
– volume: 27
  start-page: 803
  year: 2012
  ident: smsab36e4bib311
  article-title: Review of power conditioning for kinetic energy harvesting systems
  publication-title: IEEE T. Power Electr.
  doi: 10.1109/TPEL.2011.2161675
– year: 2018
  ident: smsab36e4bib14
  article-title: Photovoltaic energy harvesting in indoor environments
  doi: 10.1109/I2MTC.2018.8409628
– volume: 224
  start-page: 2867
  year: 2015
  ident: smsab36e4bib203
  article-title: Internal resonance for nonlinear vibration energy harvesting
  publication-title: Eur. Phys. J.-Spec. Top.
  doi: 10.1140/epjst/e2015-02594-4
– volume: 50
  start-page: 52
  year: 2018
  ident: smsab36e4bib143
  article-title: Ferroelectret nanogenerator with large transverse piezoelectric activity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.016
– volume: 87
  year: 2016
  ident: smsab36e4bib37
  article-title: Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4968811
– volume: 62
  start-page: 3576
  year: 2015
  ident: smsab36e4bib322
  article-title: An efficient piezoelectric windmill topology for energy harvesting from low-speed air flows
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2014.2370933
– volume: 54
  start-page: 1-5
  year: 2018
  ident: smsab36e4bib44
  article-title: Modeling and design of an efficient magnetostrictive energy harvesting system with low voltage and low power
  publication-title: IEEE T. Magn.
  doi: 10.1109/TMAG.2018.2831000
– volume: 53
  start-page: 2379
  year: 2018
  ident: smsab36e4bib373
  article-title: Modeling and preliminary analysis of piezoelectric energy harvester based on cylindrical tube conveying fluctuating fluid
  publication-title: Meccanica
  doi: 10.1007/s11012-018-0826-2
– volume: 23
  year: 2014
  ident: smsab36e4bib205
  article-title: Broadband energy harvesting using acoustic black hole structural tailoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/6/065021
– volume: 171
  start-page: 1134
  year: 2018
  ident: smsab36e4bib472
  article-title: Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2018.06.052
– volume: 134
  year: 2012
  ident: smsab36e4bib151
  article-title: Cantilevered piezoelectric energy harvester with a dynamic magnifier
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4005824
– volume: 49
  start-page: 292
  year: 2012
  ident: smsab36e4bib29
  article-title: Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage
  publication-title: J. Aircr.
  doi: 10.2514/1.C031542
– volume: 28
  year: 2018
  ident: smsab36e4bib214
  article-title: Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement
  publication-title: Int. J. Bifurcat. Chaos
  doi: 10.1142/S021812741850092X
– volume: 79
  start-page: 147
  year: 2015
  ident: smsab36e4bib33
  article-title: Review on energy harvesting for structural health monitoring in aeronautical applications
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2015.10.001
– volume: 1
  start-page: 209
  year: 2014
  ident: smsab36e4bib174
  article-title: Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters
  publication-title: Energy Harvesting and Systems
  doi: 10.1515/ehs-2014-0007
– volume: 7
  year: 2013
  ident: smsab36e4bib403
  article-title: Battery-less wireless instrumented knee implant
  publication-title: J. Med. Devices
  doi: 10.1115/1.4023412
– volume: 111
  year: 2012
  ident: smsab36e4bib466
  article-title: Energy harvesting from a standing wave thermoacoustic-piezoelectric resonator
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4712630
– volume: 40
  start-page: 49
  year: 2004
  ident: smsab36e4bib282
  article-title: Estimation of electric charge output for piezoelectric energy harvesting
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2004.00120.x
– volume: 16
  start-page: 447
  year: 2007
  ident: smsab36e4bib283
  article-title: Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/2/024
– volume: 96
  year: 2010
  ident: smsab36e4bib74
  article-title: Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal cantilever
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3327330
– volume: 22
  start-page: 1929
  year: 2011
  ident: smsab36e4bib27
  article-title: Analysis of energy harvesters for highway bridges
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11417650
– start-page: 611-619
  year: 2009
  ident: smsab36e4bib327
  article-title: Vertical-stalk flapping-leaf generator for wind energy harvesting
  doi: 10.1115/SMASIS2009-1276
– volume: 23
  start-page: 1921
  year: 2012
  ident: smsab36e4bib462
  article-title: Passive multi-source energy harvesting schemes
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12455723
– volume: 145–146
  start-page: 363
  year: 2008
  ident: smsab36e4bib251
  article-title: Integrated power harvesting system including a MEMS generator and a power management circuit
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2007.10.073
– volume: 6
  start-page: 829
  year: 2018
  ident: smsab36e4bib26
  article-title: Piezoelectric energy harvesting systems—Essentials to successful developments
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700785
– volume: 114
  start-page: 467
  year: 2018
  ident: smsab36e4bib238
  article-title: Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH)
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.05.029
– volume: 22
  start-page: 065015
  year: 2013
  ident: smsab36e4bib189
  article-title: Energy harvesting using a PZT ceramic multilayer stack
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/6/065015
– volume: 29
  start-page: 2477
  year: 2018
  ident: smsab36e4bib242
  article-title: An E-shape broadband piezoelectric energy harvester induced by magnets
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X18770871
– volume: 26
  start-page: 1
  year: 2017
  ident: smsab36e4bib41
  article-title: Review of MEMS electromagnetic vibration energy harvester
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2611677
– volume: 413–414
  start-page: 439
  year: 2009
  ident: smsab36e4bib31
  article-title: Harvesting vibration energy for structural health monitoring in aircraft
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.413-414.439
– volume: 68
  start-page: 1911
  year: 2008
  ident: smsab36e4bib450
  article-title: Concept and model of a piezoelectric structural fiber for multifunctional composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2007.12.017
– volume: 28
  start-page: 476
  year: 2017
  ident: smsab36e4bib142
  article-title: Polymer ferroelectret based on polypropylene foam: piezoelectric properties prediction using dynamic mechanical analysis
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3908
– volume: 24
  year: 2013
  ident: smsab36e4bib119
  article-title: Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/22/225501
– volume: 17
  year: 2008
  ident: smsab36e4bib365
  article-title: Harvesting raindrop energy: theory
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/01/015038
– volume: 111
  start-page: 1927
  year: 2014
  ident: smsab36e4bib409
  article-title: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1317233111
– volume: 25
  start-page: 923
  year: 2014
  ident: smsab36e4bib400
  article-title: Human passive motions and a user-friendly energy harvesting system
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X13502854
– year: 1997
  ident: smsab36e4bib103
  article-title: Active fiber composites for structural actuation
– volume: 5
  year: 2018
  ident: smsab36e4bib212
  article-title: Analysis of broadband characteristics of two degree of freedom bistable piezoelectric energy harvester
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aad491
– start-page: 711-718
  year: 2008
  ident: smsab36e4bib416
  article-title: An ultra-lightweight multi-source power harvesting system for insect cyborg sentinels
  doi: 10.1115/SMASIS2008-662
– volume: 21
  start-page: 1263
  year: 2010
  ident: smsab36e4bib332
  article-title: Energy harvesting from highly unsteady fluid flows using piezoelectric materials
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X10366317
– volume: 30
  start-page: 145
  year: 2011
  ident: smsab36e4bib357
  article-title: Advances in ocean wave energy converters using piezoelectric materials
  publication-title: Journal of Hydroelectric Engineering
– volume: 70
  start-page: 970
  year: 2015
  ident: smsab36e4bib442
  article-title: Analysis and optimization of a piezoelectric harvester on a car damper
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2015.08.202
– volume: 16
  start-page: 1961
  year: 2007
  ident: smsab36e4bib193
  article-title: A piezoelectric power harvester with adjustable frequency through axial preloads
  publication-title: Smart Mater. Struct.
  doi: doi.org/10.1088/0964-1726/16/5/054
– volume: 107
  year: 2010
  ident: smsab36e4bib46
  article-title: Experimental tests of a magnetostrictive energy harvesting device toward its modeling
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3357403
– volume: 13
  start-page: 57
  year: 2004
  ident: smsab36e4bib285
  article-title: Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/13/1/007
– volume: 22
  year: 2013
  ident: smsab36e4bib432
  article-title: Piezoelectric energy harvesting from traffic-induced bridge vibrations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/9/095019
– volume: 56
  start-page: 169
  year: 2019
  ident: smsab36e4bib465
  article-title: A brief review of sound energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.036
– volume: 37
  start-page: 4625
  year: 2017
  ident: smsab36e4bib80
  article-title: High power density in a piezoelectric energy harvesting ceramic by optimizing the sintering temperature of nanocrystalline powders
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.06.053
– volume: 21
  year: 2012
  ident: smsab36e4bib178
  article-title: An active piezoelectric energy extraction method for pressure energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/8/085004
– volume: 5
  start-page: 12447
  year: 2015
  ident: smsab36e4bib414
  article-title: A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model
  publication-title: Sci. Rep.
  doi: 10.1038/srep12447
– volume: 197
  start-page: 222
  year: 2017
  ident: smsab36e4bib434
  article-title: Flexible piezoelectric polymer-based energy harvesting system for roadway applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.020
– volume: 34
  start-page: 275
  year: 2019
  ident: smsab36e4bib309
  article-title: Synchronized triple bias-flip interface circuit for piezoelectric energy harvesting enhancement
  publication-title: IEEE T. Power Electr.
  doi: 10.1109/TPEL.2018.2815922
– volume: 19
  start-page: 8
  year: 2015
  ident: smsab36e4bib394
  article-title: Energy-harvesting wearables for activity-aware services
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2015.115
– volume: 54
  start-page: 417
  year: 2015
  ident: smsab36e4bib149
  article-title: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2014.07.014
– volume: 77
  year: 2008
  ident: smsab36e4bib267
  article-title: Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.085415
– volume: 24
  start-page: 110
  year: 2012
  ident: smsab36e4bib113
  article-title: Replacing a battery by a nanogenerator with 20 V output
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103727
– volume: 167
  start-page: 449
  year: 2011
  ident: smsab36e4bib356
  article-title: A shear mode piezoelectric energy harvester based on a pressurized water flow
  publication-title: Sensor. Actuat., A Phys.
  doi: 10.1016/j.sna.2011.03.003
– volume: 23
  year: 2013
  ident: smsab36e4bib461
  article-title: A self-reliant avian bio-logger: energy storage considerations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/1/015004
– volume: 24
  start-page: 828
  year: 2013
  ident: smsab36e4bib181
  article-title: Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12463459
– start-page: 331-337
  year: 2008
  ident: smsab36e4bib438
  article-title: Energy harvesting from pneumatic tires using piezoelectric transducers
  doi: 10.1115/SMASIS2008-426
– volume: 15
  start-page: 949
  year: 2014
  ident: smsab36e4bib468
  article-title: A review of acoustic energy harvesting
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-014-0422-x
– volume: 53
  start-page: 394
  year: 2014
  ident: smsab36e4bib334
  article-title: Three-degree-of-freedom hybrid piezoelectric-inductive aeroelastic energy harvester exploiting a control surface
  publication-title: AIAA J.
  doi: 10.2514/1.J053108
– volume: 8
  start-page: 645
  year: 2018
  ident: smsab36e4bib264
  article-title: A review of MEMS scale piezoelectric energy harvester
  publication-title: Appl. Sci.
  doi: 10.3390/app8040645
– volume: 142
  start-page: 329
  year: 2008
  ident: smsab36e4bib157
  article-title: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2007.07.004
– volume: 2
  start-page: 274
  year: 2011
  ident: smsab36e4bib310
  article-title: Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation
  publication-title: Micromachines
  doi: 10.3390/mi2020274
– volume: 12
  start-page: 296
  year: 2015
  ident: smsab36e4bib410
  article-title: A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.038
– volume: 111
  year: 2017
  ident: smsab36e4bib274
  article-title: Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4991684
– volume: 97
  year: 2010
  ident: smsab36e4bib200
  article-title: A piezoelectric bistable plate for nonlinear broadband energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3487780
– volume: 22
  year: 2013
  ident: smsab36e4bib272
  article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/6/065004
– volume: 4
  year: 2014
  ident: smsab36e4bib131
  article-title: A low‐frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301660
– volume: 44
  start-page: 5049
  year: 2009
  ident: smsab36e4bib55
  article-title: Review: environmental friendly lead-free piezoelectric materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3643-0
– year: 1959
  ident: smsab36e4bib302
– volume: 19
  start-page: 592
  year: 2009
  ident: smsab36e4bib451
  article-title: Fabrication and electromechanical characterization of a piezoelectric structural fiber for multifunctional composites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200800859
– volume: 82
  start-page: 376
  year: 2010
  ident: smsab36e4bib319
  article-title: Use of a piezo-composite generating element for harvesting wind energy in an urban region
  publication-title: Aircr. Eng. Aerosp. Technol.
  doi: 10.1108/00022661011104538
– volume: 57
  start-page: 813
  year: 2010
  ident: smsab36e4bib379
  article-title: Energy harvesting from piezoelectric materials fully integrated in footwear
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2009.2028360
– volume: 22
  year: 2013
  ident: smsab36e4bib202
  article-title: Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/3/035013
– volume: 29
  start-page: 2766
  year: 2018
  ident: smsab36e4bib236
  article-title: An internal resonance based frequency up-converting energy harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X18778370
– volume: 21
  year: 2012
  ident: smsab36e4bib391
  article-title: The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/7/075023
– year: 2010
  ident: smsab36e4bib2
  doi: 10.2172/1000659
– volume: 25
  start-page: 867
  year: 2013
  ident: smsab36e4bib111
  article-title: A Self‐Powered ZnO‐Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204488
– volume: 205
  start-page: 150
  year: 2014
  ident: smsab36e4bib259
  article-title: Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2013.11.007
– volume: 78
  start-page: 32
  year: 2014
  ident: smsab36e4bib445
  article-title: Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2013.09.054
– volume: 79
  start-page: 20902
  year: 2017
  ident: smsab36e4bib209
  article-title: Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap/2017170051
– volume: 108
  start-page: 252
  year: 2018
  ident: smsab36e4bib210
  article-title: Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.02.035
– volume: 9
  start-page: 4057
  year: 2017
  ident: smsab36e4bib452
  article-title: Barium titanate film interfaces for hybrid composite energy harvesters
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15011
– volume: 17
  year: 2008
  ident: smsab36e4bib47
  article-title: Vibration energy harvesting by magnetostrictive material
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/4/045009
– volume: 226
  start-page: 607
  year: 2018
  ident: smsab36e4bib221
  article-title: Drastic bandwidth enhancement of bistable energy harvesters: study of subharmonic behaviors and their stability robustness
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.011
– year: 2007
  ident: smsab36e4bib326
  article-title: A novel piezoelectric based wind energy harvester for low-power autonomous wind speed sensor
  doi: 10.1109/IECON.2007.4460120
– volume: 60
  start-page: 2022
  year: 2013
  ident: smsab36e4bib257
  article-title: Wafer-level integration of high-quality bulk piezoelectric ceramics on silicon
  publication-title: IEEE T. Electron Dev.
  doi: 10.1109/TED.2013.2259240
– volume: 14
  start-page: 3323
  year: 2014
  ident: smsab36e4bib256
  article-title: A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit
  publication-title: Sensors
  doi: 10.3390/s140203323
– volume: 22
  year: 2013
  ident: smsab36e4bib396
  article-title: Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/10/105020
– volume: 7288
  start-page: 72880E
  year: 2009
  ident: smsab36e4bib359
  article-title: Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys
  doi: 10.1117/12.815852
– volume: 5
  start-page: 24
  year: 2017
  ident: smsab36e4bib313
  article-title: Harvesting piezoelectricity using different structures by utilizing fluid flow interactions
  publication-title: Int. J. R&D Eng. Sci. Manag.
– volume: 105
  year: 2014
  ident: smsab36e4bib314
  article-title: Rotational piezoelectric wind energy harvesting using impact-induced resonance
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4887481
– volume: 176
  start-page: 447
  year: 2015
  ident: smsab36e4bib50
  article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives
  publication-title: Faraday Discuss.
  doi: 10.1039/C4FD00159A
– volume: 15
  start-page: 669
  year: 2015
  ident: smsab36e4bib427
  article-title: Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2015.02.009
– volume: 72
  start-page: 98
  year: 2013
  ident: smsab36e4bib435
  article-title: Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2013.07.004
– volume: 10
  start-page: 34
  year: 2002
  ident: smsab36e4bib375
  article-title: Human powered piezoelectric batteries to supply power to wearable electronic devices
  publication-title: Int. J. Soc. of Mat. Eng. Resour.
  doi: 10.5188/ijsmer.10.34
– volume: 26
  start-page: 4880
  year: 2014
  ident: smsab36e4bib407
  article-title: Self‐powered cardiac pacemaker enabled by flexible single crystalline PMN‐PT piezoelectric energy harvester
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400562
– volume: 19
  start-page: 115021
  year: 2010
  ident: smsab36e4bib446
  article-title: Multifunctional self-charging structures using piezoceramics and thin-film batteries
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/11/115021
– volume: 24
  start-page: 6949
  year: 2014
  ident: smsab36e4bib116
  article-title: Self‐compensated insulating ZnO‐based piezoelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401998
– volume: 133
  start-page: 011001
  year: 2011
  ident: smsab36e4bib206
  article-title: Comparing linear and essentially nonlinear vibration-based energy harvesting
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4002782
– volume: 18
  start-page: 1201
  year: 2012
  ident: smsab36e4bib440
  article-title: Battery-and wire-less tire pressure measurement systems (TPMS) sensor
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-012-1480-6
– volume: 7
  start-page: 288
  year: 2014
  ident: smsab36e4bib130
  article-title: Vertically aligned BaTiO3 nanowire arrays for energy harvesting
  publication-title: Energy. Environ. Sci.
  doi: 10.1039/C3EE42540A
– volume: 25
  start-page: 1681
  year: 2014
  ident: smsab36e4bib137
  article-title: Piezoelectret foam–based vibration energy harvesting
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X14541501
– volume: 101
  start-page: 20-25
  year: 2017
  ident: smsab36e4bib45
  article-title: A magnetostrictive energy harvesting system for bridge structural health monitoring
  doi: 10.4028/www.scientific.net/AST.101.20
– volume: 113
  start-page: 218
  year: 2017
  ident: smsab36e4bib65
  article-title: Homogenization of porous piezoelectric materials
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.03.003
– volume: 50
  start-page: 110
  year: 2015
  ident: smsab36e4bib362
  article-title: Ocean wave energy harvesting with a piezoelectric coupled buoy structure
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2015.01.004
– volume: 28
  start-page: 307
  year: 2017
  ident: smsab36e4bib240
  article-title: Piezoelectric energy harvesting with a nonlinear energy sink
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X16642301
– volume: 7288
  start-page: 728807
  year: 2009
  ident: smsab36e4bib353
  article-title: Generation of electrical energy using short piezoelectric cantilevers in flowing media
  doi: 10.1117/12.815189
– volume: 5
  year: 2017
  ident: smsab36e4bib412
  article-title: Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film
  publication-title: APL Mater.
  doi: 10.1063/1.4976803
– volume: 133
  start-page: 33
  year: 2014
  ident: smsab36e4bib199
  article-title: Broadband tristable energy harvester: modeling and experiment verification
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.077
– volume: 52
  start-page: 500
  year: 2011
  ident: smsab36e4bib21
  article-title: A review of vibration-based MEMS piezoelectric energy harvesters
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2010.07.024
– volume: 169
  start-page: 317
  year: 2011
  ident: smsab36e4bib470
  article-title: A credit card sized self powered smart sensor node
  publication-title: Sensor. Actuat., A Phys.
  doi: 10.1016/j.sna.2011.01.015
– volume: 13
  start-page: 1131
  year: 2004
  ident: smsab36e4bib280
  article-title: A piezoelectric vibration based generator for wireless electronics
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/13/5/018
– volume: 26
  year: 2017
  ident: smsab36e4bib164
  article-title: Degradation of bimorph piezoelectric bending beams in energy harvesting applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa5a5d
– volume: 130
  year: 2008
  ident: smsab36e4bib145
  article-title: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.2890402
– volume: 5
  start-page: 366
  year: 2010
  ident: smsab36e4bib108
  article-title: Self-powered nanowire devices
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.46
– volume: 239
  start-page: 640
  year: 2010
  ident: smsab36e4bib198
  article-title: Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.01.019
– volume: 38
  start-page: 1356
  year: 2018
  ident: smsab36e4bib100
  article-title: Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.10.023
– volume: 9
  start-page: 1223
  year: 2009
  ident: smsab36e4bib120
  article-title: Piezoelectric nanogenerator using p-type ZnO nanowire arrays
  publication-title: Nano Lett.
  doi: 10.1021/nl900115y
– volume: 5
  start-page: 36
  year: 2017
  ident: smsab36e4bib70
  article-title: Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals
  publication-title: J. Asian Ceram. Soc.
  doi: 10.1016/j.jascer.2016.12.005
– volume: 105
  year: 2014
  ident: smsab36e4bib38
  article-title: Jumping-droplet electrostatic energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4886798
– start-page: 233
  year: 2011
  ident: smsab36e4bib320
  article-title: Contact-less wind turbine utilizing piezoelectric bimorphs with magnetic actuation
  doi: 10.1007/978-1-4419-9834-7_21
– volume: 8
  year: 2018
  ident: smsab36e4bib53
  article-title: Scavenging wind energy by triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702649
– volume: 139
  year: 2017
  ident: smsab36e4bib278
  article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4034770
– volume: 188
  start-page: 427
  year: 2012
  ident: smsab36e4bib186
  article-title: Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2012.03.026
– volume: 57
  start-page: 840
  year: 2010
  ident: smsab36e4bib290
  article-title: A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2009.2037648
– volume: 44
  start-page: 13
  year: 2015
  ident: smsab36e4bib371
  article-title: Harvesting raindrop energy with piezoelectrics: a review
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3443-4
– volume: 10595
  start-page: 105951Q
  year: 2018
  ident: smsab36e4bib405
  article-title: Detection of compartmental forces and location of contact areas with piezoelectric transducers in total knee arthroplasty
  doi: 10.1117/12.2296250
– volume: 18
  start-page: 497
  year: 2012
  ident: smsab36e4bib182
  article-title: A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-012-1424-1
– volume: 23
  start-page: 651
  year: 2014
  ident: smsab36e4bib413
  article-title: Micro blood pressure energy harvester for intracardiac pacemaker
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2013.2282623
– volume: 5
  year: 2015
  ident: smsab36e4bib83
  article-title: A reconfigurable rectified flexible energy harvester via solid‐state single crystal grown PMN–PZT
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500051
– volume: 122
  start-page: 16
  year: 2005
  ident: smsab36e4bib244
  article-title: MEMS power generator with transverse mode thin film PZT
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2004.12.032
– volume: 34
  start-page: 658
  year: 2009
  ident: smsab36e4bib63
  article-title: Piezoelectric thin films for sensors, actuators, and energy harvesting
  publication-title: MRS Bull.
  doi: 10.1557/mrs2009.177
– volume: 4
  year: 2018
  ident: smsab36e4bib474
  article-title: Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700562
– volume: 52
  start-page: 584
  year: 2005
  ident: smsab36e4bib294
  article-title: Toward energy harvesting using active materials and conversion improvement by nonlinear processing
  publication-title: IEEE T .Ultrason. Ferr.
  doi: 10.1109/TUFFC.2005.1428041
– volume: 6
  start-page: 2046
  year: 2014
  ident: smsab36e4bib118
  article-title: A low temperature process for phosphorous doped ZnO nanorods via a combination of hydrothermal and spin-on dopant methods
  publication-title: Nanoscale
  doi: 10.1039/C3NR05128E
– volume: 9
  start-page: 28586
  year: 2017
  ident: smsab36e4bib253
  article-title: Self-powered viscosity and pressure sensing in microfluidic systems based on the piezoelectric energy harvesting of flowing droplets
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b08541
– volume: 13
  start-page: 298
  year: 2015
  ident: smsab36e4bib386
  article-title: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.034
– volume: 154
  start-page: 103
  year: 2009
  ident: smsab36e4bib247
  article-title: Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2009.06.007
– volume: 206
  start-page: 178
  year: 2014
  ident: smsab36e4bib389
  article-title: A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications
  publication-title: Sensor. Actuat., A Phys.
  doi: 10.1016/j.sna.2013.10.003
– volume: 28
  start-page: 214
  year: 2012
  ident: smsab36e4bib180
  article-title: Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-012-9713-8
– year: 2010
  ident: smsab36e4bib258
  article-title: A CMOS-compatible piezoelectric vibration energy scavenger based on the integration of bulk PZT films on silicon
  doi: 10.1109/IEDM.2010.5703459
– volume: 30
  year: 2018
  ident: smsab36e4bib17
  article-title: Thermoelectric materials: carbon‐nanotube‐based thermoelectric materials and devices (Adv. Mater. 11/2018)
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201870072
– volume: 50
  start-page: 977
  year: 2013
  ident: smsab36e4bib321
  article-title: Parametrically excited nonlinear piezoelectric compact wind turbine
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2012.07.037
– volume: 2016
  year: 2016
  ident: smsab36e4bib337
  article-title: Experimental study on piezoelectric energy harvesting from vortex-induced vibrations and wake-induced vibrations
  publication-title: J. Sensors
  doi: 10.1155/2016/2673292
– volume: 138
  year: 2016
  ident: smsab36e4bib232
  article-title: A broadband internally resonant vibratory energy harvester
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4034253
– volume: 27
  start-page: 763
  year: 2012
  ident: smsab36e4bib188
  article-title: Electromechanical comparison of cantilevered beams with multifunctional piezoceramic devices
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2011.09.002
– volume: 19
  year: 2010
  ident: smsab36e4bib428
  article-title: Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/11/115011
– volume: 57
  start-page: 621
  year: 2009
  ident: smsab36e4bib269
  article-title: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2008.11.002
– volume: 24
  year: 2015
  ident: smsab36e4bib196
  article-title: An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/6/065039
– volume: 9
  start-page: 634
  year: 2016
  ident: smsab36e4bib449
  article-title: ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C5EE03181H
– volume: 5
  start-page: 7862
  year: 2017
  ident: smsab36e4bib94
  article-title: A highly dense structure boosts energy harvesting and cycling reliabilities of a high-performance lead-free energy harvester
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00914C
– volume: 9
  start-page: 3324
  year: 2015
  ident: smsab36e4bib48
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 114
  start-page: 259
  year: 2019
  ident: smsab36e4bib338
  article-title: Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.05.016
– volume: 100
  start-page: 042901
  year: 2012
  ident: smsab36e4bib34
  article-title: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3679102
– volume: 363
  start-page: 517
  year: 2016
  ident: smsab36e4bib235
  article-title: Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.11.017
– volume: 498
  start-page: 40
  year: 2016
  ident: smsab36e4bib64
  article-title: Manufacture and characterization of porous ferroelectrics for piezoelectric energy harvesting applications
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2016.1169154
– volume: 126
  start-page: 405
  year: 2006
  ident: smsab36e4bib295
  article-title: A comparison between several vibration-powered piezoelectric generators for standalone systems
  publication-title: Sensor. Actuat, A-Phys.
  doi: 10.1016/j.sna.2005.10.043
– volume: 10
  start-page: 1347
  year: 2018
  ident: smsab36e4bib11
  article-title: Maximum power point tracking for photovoltaic systems under partial shading conditions using bat algorithm
  publication-title: Sustainability
  doi: 10.3390/su10051347
– volume: 141
  start-page: 1133
  year: 2017
  ident: smsab36e4bib431
  article-title: Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.005
– volume: 27
  start-page: 2340
  year: 2015
  ident: smsab36e4bib460
  article-title: Triboelectric–pyroelectric–piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500121
– volume: 29
  start-page: 45
  year: 2004
  ident: smsab36e4bib61
  article-title: Templated grain growth of textured piezoelectric ceramics
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408430490490905
– volume: 55
  start-page: 1041
  year: 2016
  ident: smsab36e4bib7
  article-title: Energy harvesting in wireless sensor networks: A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.010
– volume: 262
  start-page: 123
  year: 2017
  ident: smsab36e4bib323
  article-title: A rotational piezoelectric energy harvester for efficient wind energy harvesting
  publication-title: Sens. Actuat., A-Phys.
  doi: 10.1016/j.sna.2017.05.027
– volume: 45
  start-page: 1126
  year: 2007
  ident: smsab36e4bib281
  article-title: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters
  publication-title: AIAA J.
  doi: 10.2514/1.25047
– year: 2004
  ident: smsab36e4bib352
  article-title: A novel hydropower harvesting device
  doi: 10.1109/ICMENS.2004.1508997
– volume: 22
  start-page: 721
  year: 2008
  ident: smsab36e4bib385
  article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2007.09.015
– volume: 203
  start-page: 142
  year: 2017
  ident: smsab36e4bib207
  article-title: Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.06.018
– volume: 133
  start-page: 011002
  year: 2011
  ident: smsab36e4bib249
  article-title: Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4002783
– volume: 5
  start-page: 9609
  year: 2013
  ident: smsab36e4bib115
  article-title: Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications
  publication-title: Nanoscale
  doi: 10.1039/c3nr03402j
– volume: 6
  start-page: 16439
  year: 2018
  ident: smsab36e4bib91
  article-title: High performance piezoelectric energy harvester and self-powered mechanosensing using lead free potassium− sodium niobate flexible piezoelectric composites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05887C
– volume: 11
  start-page: 3106
  year: 2011
  ident: smsab36e4bib301
  article-title: Energy harvesting electronics for vibratory devices in self-powered sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2167965
– volume: 28
  year: 2018
  ident: smsab36e4bib453
  article-title: In situ damage detection for fiber‐reinforced composites using integrated zinc oxide nanowires
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802846
– volume: 293
  start-page: 409
  year: 2006
  ident: smsab36e4bib22
  article-title: On energy harvesting from ambient vibration
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.10.003
– year: 2013
  ident: smsab36e4bib154
  article-title: Multi-mode and multi-axis vibration power generation effective for vehicles
  doi: 10.1109/ISIE.2013.6563689
– volume: 21
  start-page: 1311
  year: 2012
  ident: smsab36e4bib168
  article-title: A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2012.2205901
– volume: 333
  start-page: 623
  year: 2014
  ident: smsab36e4bib226
  article-title: Extending the dynamic range of an energy harvester using nonlinear damping
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.09.035
– volume: 90
  start-page: 20
  year: 2017
  ident: smsab36e4bib223
  article-title: Output response identification in a multistable system for piezoelectric energy harvesting
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2016-70619-y
– volume: 16
  start-page: 889
  year: 2005
  ident: smsab36e4bib293
  article-title: Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X05053150
– volume: 208
  start-page: 56
  year: 2014
  ident: smsab36e4bib167
  article-title: Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2013.12.033
– volume: 101
  start-page: 2330
  year: 2018
  ident: smsab36e4bib93
  article-title: High energy conversion efficiency in Mn‐modified Ba0.9Ca0.1Ti0.93Zr0.07O3 lead‐free energy harvester
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15396
– year: 2018
  ident: smsab36e4bib24
  article-title: A comprehensive method to taxonomize mechanical energy harvesting technologies
  doi: 10.1109/ISCAS.2018.8350907
– volume: 7
  year: 2017
  ident: smsab36e4bib68
  article-title: Enhancement of β-phase in PVDF films embedded with ferromagnetic Gd5Si4 nanoparticles for piezoelectric energy harvesting
  publication-title: AIP Adv.
  doi: 10.1063/1.4973596
– volume: 6
  start-page: 97
  year: 2013
  ident: smsab36e4bib114
  article-title: Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C2EE23404A
– volume: 71
  start-page: 121
  year: 2005
  ident: smsab36e4bib279
  article-title: Design considerations For MEMS-scale piezoelectric mechanical vibration energy harvesters
  publication-title: Integr. Ferroelectr.
  doi: 10.1080/10584580590964574
– volume: 24
  start-page: 4656
  year: 2012
  ident: smsab36e4bib133
  article-title: A review of mechanical and electromechanical properties of piezoelectric nanowires
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104810
– volume: 21
  year: 2011
  ident: smsab36e4bib421
  article-title: Energy scavenging from insect flight
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/21/9/095016
– year: 2007
  ident: smsab36e4bib165
  article-title: Novel micro vibration energy harvesting device using frequency up conversion
  doi: 10.1109/SENSOR.2007.4300269
– volume: 111
  year: 2017
  ident: smsab36e4bib260
  article-title: High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4991368
– volume: 7
  start-page: 1670
  year: 2014
  ident: smsab36e4bib187
  article-title: Novel ‘3D spacer’ all fibre piezoelectric textiles for energy harvesting applications
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C3EE43987A
– volume: 95
  year: 2009
  ident: smsab36e4bib197
  article-title: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3253710
– year: 2018
  ident: smsab36e4bib141
– volume: 4
  start-page: 354
  year: 2014
  ident: smsab36e4bib395
  article-title: Characterization of human body-based thermal and vibration energy harvesting for wearable devices
  publication-title: IEEE J. Em. Sel. Top. C
  doi: 10.1109/JETCAS.2014.2337195
– volume: 5
  start-page: 16065
  year: 2015
  ident: smsab36e4bib408
  article-title: Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy
  publication-title: Sci. Rep.
  doi: 10.1038/srep16065
– volume: 26
  year: 2017
  ident: smsab36e4bib190
  article-title: Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa814e
– volume: 109
  start-page: 026104
  year: 2011
  ident: smsab36e4bib328
  article-title: Ambient wind energy harvesting using cross-flow fluttering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3525045
– volume: 67
  start-page: 30902
  year: 2014
  ident: smsab36e4bib225
  article-title: Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting
  publication-title: Eur. Phys. J.-Appl. Phys.
  doi: 10.1051/epjap/2014140190
– start-page: 541-542
  year: 2017
  ident: smsab36e4bib383
  article-title: Unobtrusive user verification using piezoelectric energy harvesting
  doi: 10.1145/3144457.3144510
– volume: 10
  start-page: 4797
  year: 2016
  ident: smsab36e4bib51
  article-title: Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
– volume: 18
  year: 2009
  ident: smsab36e4bib169
  article-title: Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/3/035001
– volume: 20
  start-page: 094007
  year: 2011
  ident: smsab36e4bib345
  article-title: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/9/094007
– volume: 37
  start-page: 468
  year: 2018
  ident: smsab36e4bib144
  article-title: Cellular polymer ferroelectret: a review on their development and their piezoelectric properties
  publication-title: Adv. Polym. Tech.
  doi: 10.1002/adv.21686
– volume: 44
  start-page: 613
  year: 2015
  ident: smsab36e4bib97
  article-title: High-temperature piezoelectrics with large piezoelectric coefficients
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3534-2
– volume: 26
  start-page: 7547
  year: 2014
  ident: smsab36e4bib124
  article-title: Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403286
– volume: 32
  start-page: 864
  year: 2018
  ident: smsab36e4bib191
  article-title: Energy harvesting and sensing with embedded piezoelectric ceramics in knee implants
  publication-title: IEEE-ASME T. Mech.
  doi: 10.1109/TMECH.2018.2794182
– volume: 96
  year: 2010
  ident: smsab36e4bib344
  article-title: On the energy harvesting potential of piezoaeroelastic systems
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3427405
– year: 2007
  ident: smsab36e4bib358
  article-title: Wave energy converter through piezoelectric polymers
– volume: 14
  start-page: 9
  year: 2017
  ident: smsab36e4bib58
  article-title: Piezoelectric nanotransducers: The future of neural stimulation
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.12.005
– volume: 50
  start-page: 1961
  year: 2015
  ident: smsab36e4bib185
  article-title: Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates
  publication-title: Meccanica
  doi: 10.1007/s11012-015-0140-1
– volume: 89
  start-page: 667
  year: 2016
  ident: smsab36e4bib139
  article-title: Stacked and folded piezoelectrets for vibration-based energy harvesting
  publication-title: Phase Transit.
  doi: 10.1080/01411594.2016.1202408
– volume: 22
  start-page: 2018
  year: 2007
  ident: smsab36e4bib291
  article-title: Buck-boost converter for sensorless power optimization of piezoelectric energy harvester
  publication-title: IEEE T. Power Electron.
  doi: 10.1109/TPEL.2007.904230
– volume: 7
  start-page: 4035
  year: 2014
  ident: smsab36e4bib471
  article-title: Self-powered fully-flexible light-emitting system enabled by flexible energy harvester
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C4EE02435D
– volume: 66
  start-page: 040801
  year: 2014
  ident: smsab36e4bib243
  article-title: On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4026278
– volume: 158
  start-page: 132
  year: 2010
  ident: smsab36e4bib15
  article-title: Thermal energy harvesting through pyroelectricity
  publication-title: Sensor Actuat. A-Phys.
  doi: 10.1016/j.sna.2009.12.018
– volume: 31
  start-page: 168
  year: 2017
  ident: smsab36e4bib128
  article-title: Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.015
– volume: 23
  year: 2014
  ident: smsab36e4bib342
  article-title: Piezoelectric energy harvesting from hybrid vibrations
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/2/025026
– volume: 95
  year: 2009
  ident: smsab36e4bib127
  article-title: Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3237170
– volume: 21
  start-page: 897
  year: 2010
  ident: smsab36e4bib204
  article-title: Frequency self-tuning scheme for broadband vibration energy harvesting
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X10369716
– volume: 42
  start-page: 1847
  year: 2013
  ident: smsab36e4bib9
  article-title: Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35223K
– volume: 74
  start-page: 1271
  year: 2013
  ident: smsab36e4bib161
  article-title: Harvesting low-frequency acoustic energy using quarter-wavelength straight-tube acoustic resonator
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2013.04.015
– volume: 9431
  start-page: 943111
  year: 2015
  ident: smsab36e4bib140
  article-title: Evaluation of piezoelectret foam in a multilayer stack configuration for low-level vibration energy harvesting applications
  doi: 10.1117/12.2084237
– volume: 118
  start-page: 221
  year: 2017
  ident: smsab36e4bib224
  article-title: Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.035
– volume: 90
  start-page: 248
  year: 2018
  ident: smsab36e4bib13
  article-title: Photovoltaic performances of mono-and mixed-halide structures for perovskite solar cell: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.030
– volume: 212
  start-page: 1083
  year: 2018
  ident: smsab36e4bib23
  article-title: Energy harvesting technologies in roadway and bridge for different applications–A comprehensive review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.125
– year: 2017
  ident: smsab36e4bib324
  article-title: Fluids energy harvesting system with low cut-in velocity piezoelectric MEMS
  doi: 10.1109/ICICDT.2017.7993506
– volume: 3
  start-page: 6835
  year: 2015
  ident: smsab36e4bib67
  article-title: Significant piezoelectric and energy harvesting enhancement of poly (vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00147A
– year: 2008
  ident: smsab36e4bib423
  article-title: Mechanical energy scavenging from flying insects
  doi: 10.31438/trf.hh2008.100
– volume: 84
  start-page: 659
  year: 2017
  ident: smsab36e4bib42
  article-title: Energy harvesting potential of tuned inertial mass electromagnetic transducers
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2016.07.048
– volume: 43
  start-page: 193
  year: 2018
  ident: smsab36e4bib19
  article-title: Wearable and flexible thermoelectrics for energy harvesting
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2018.8
– volume: 4
  start-page: 28
  year: 2005
  ident: smsab36e4bib150
  article-title: Improving power output for vibration-based energy scavengers
  publication-title: IEEE Pervas. Comput.
  doi: 10.1109/MPRV.2005.14
– volume: 24
  year: 2015
  ident: smsab36e4bib231
  article-title: Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/5/055021
– volume: 122
  year: 2017
  ident: smsab36e4bib273
  article-title: Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5008724
– volume: 58
  start-page: 629
  year: 2011
  ident: smsab36e4bib32
  article-title: A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin
  publication-title: IEEE T .Ultrason. Ferr.
  doi: 10.1109/TUFFC.2011.5733266
– volume: 8
  start-page: 10844
  year: 2014
  ident: smsab36e4bib117
  article-title: Lithium-doped zinc oxide nanowires–polymer composite for high performance flexible piezoelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn5046568
– volume: 29
  start-page: 1206
  year: 2018
  ident: smsab36e4bib233
  article-title: Piezoelectric energy harvesting using L-shaped structures
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X17730926
– volume: 24
  start-page: 357
  year: 2013
  ident: smsab36e4bib156
  article-title: A novel two-degrees-of-freedom piezoelectric energy harvester
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12457254
– year: 2018
  ident: smsab36e4bib5
– volume: 356
  start-page: 162
  year: 2010
  ident: smsab36e4bib369
  article-title: Impact force of low velocity liquid droplets measured using piezoelectric PVDF film
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2010.01.005
– volume: 44
  start-page: L104
  year: 2005
  ident: smsab36e4bib317
  article-title: Piezoelectric windmill: A novel solution to remote sensing
  publication-title: Japan. J. Appl. Phys.
  doi: 10.1143/JJAP.44.L104
– volume: 24
  year: 2015
  ident: smsab36e4bib201
  article-title: Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/5/055008
– volume: 8377
  year: 2012
  ident: smsab36e4bib16
  article-title: Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques
  doi: 10.1117/12.920978
– volume: 4
  start-page: 3
  year: 2017
  ident: smsab36e4bib263
  article-title: A review on piezoelectric energy harvesting: Materials, methods, and circuits
  publication-title: Energy Harvesting and Systems
  doi: 10.1515/ehs-2016-0028
– volume: 16
  start-page: 1810
  year: 2007
  ident: smsab36e4bib392
  article-title: Energy harvesting from a backpack instrumented with piezoelectric shoulder straps
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/5/036
– start-page: V002T07A017
  year: 2014
  ident: smsab36e4bib425
  article-title: Energy harvesting for marine-wildlife monitoring
  doi: 10.1115/SMASIS2014-7630
– volume: 123
  start-page: 1983
  year: 2008
  ident: smsab36e4bib464
  article-title: Acoustic energy harvesting using an electromechanical Helmholtz resonator
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2839000
– volume: 103
  year: 2008
  ident: smsab36e4bib121
  article-title: Enhanced active piezoelectric 0–3 nanocomposites fabricated through electrospun nanowires
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2939271
– volume: 133
  start-page: 011010
  year: 2011
  ident: smsab36e4bib329
  article-title: Modeling and testing of a novel aeroelastic flutter energy harvester
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4002788
– volume: 19
  start-page: 1311
  year: 2008
  ident: smsab36e4bib146
  article-title: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X07085639
– year: 2004
  ident: smsab36e4bib376
  article-title: Evaluation of motions and actuation methods for biomechanical energy harvesting
  doi: 10.1109/PESC.2004.1355442
– year: 1986
  ident: smsab36e4bib105
  article-title: Composite piezoelectric paints
  doi: 10.1109/ISAF.1986.201143
– volume: 6
  start-page: 935
  year: 2018
  ident: smsab36e4bib81
  article-title: Soft and hard piezoelectric ceramics and single crystals for random vibration energy harvesting
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700873
– volume: 16
  start-page: 379
  year: 2006
  ident: smsab36e4bib284
  article-title: Analytical modeling of piezoelectric vibration-induced micro power generator
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2006.03.003
– volume: 21
  year: 2011
  ident: smsab36e4bib444
  article-title: Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/1/015011
– volume: 20
  year: 2011
  ident: smsab36e4bib170
  article-title: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/4/045004
– volume: 33
  start-page: 1
  year: 2018
  ident: smsab36e4bib90
  article-title: Lead-free piezoelectric materials and composites for high power density energy harvesting
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.172
– volume: 150
  start-page: 532
  year: 2019
  ident: smsab36e4bib467
  article-title: Modelling and analysis of a thermoacoustic-piezoelectric energy harvester
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.01.025
– volume: 20
  year: 2011
  ident: smsab36e4bib367
  article-title: An investigation of energy harvesting from renewable sources with PVDF and PZT
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/5/055019
– volume: 97
  start-page: 164102
  year: 2010
  ident: smsab36e4bib333
  article-title: A T-shaped piezoelectric cantilever for fluid energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3503609
– volume: 14
  start-page: 12497
  year: 2014
  ident: smsab36e4bib382
  article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors
  publication-title: Sensors
  doi: 10.3390/s140712497
– volume: 26
  year: 2017
  ident: smsab36e4bib411
  article-title: Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa6cfd
– volume: 77
  start-page: 71
  year: 2014
  ident: smsab36e4bib184
  article-title: A ring piezoelectric energy harvester excited by magnetic forces
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2014.01.001
– volume: 264
  start-page: 212
  year: 2017
  ident: smsab36e4bib262
  article-title: Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2017.08.005
– volume: 460
  start-page: 98
  year: 2014
  ident: smsab36e4bib315
  article-title: Ultra-low wind speed piezoelectric windmill
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2014.875315
– volume: 23
  year: 2014
  ident: smsab36e4bib176
  article-title: Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/4/045039
– volume: 51
  year: 2018
  ident: smsab36e4bib277
  article-title: Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aab97e
– volume: 2
  start-page: 1261
  year: 2012
  ident: smsab36e4bib110
  article-title: Nanostructured p‐n junctions for kinetic‐to‐electrical energy conversion
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200205
– volume: 39
  start-page: S653
  year: 2013
  ident: smsab36e4bib152
  article-title: Asymmetric PZT bimorph cantilever for multi-dimensional ambient vibration harvesting
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.10.155
– volume: 17
  year: 2008
  ident: smsab36e4bib194
  article-title: A vibration energy harvesting device with bidirectional resonance frequency tunability
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/01/015035
– volume: 105
  start-page: 427
  year: 2018
  ident: smsab36e4bib211
  article-title: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.12.025
– volume: 37
  start-page: 2583
  year: 2017
  ident: smsab36e4bib92
  article-title: Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.02.049
– volume: 94
  year: 2009
  ident: smsab36e4bib218
  article-title: A piezomagnetoelastic structure for broadband vibration energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3159815
– volume: 501
  start-page: 159
  year: 2018
  ident: smsab36e4bib102
  article-title: Piezoelectric glass-ceramic for high-temperature applications
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.03.038
– volume: 27
  year: 2018
  ident: smsab36e4bib307
  article-title: Unipolar synchronized electric charge extraction for piezoelectric energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaca58
– volume: 110
  start-page: 260
  year: 2018
  ident: smsab36e4bib216
  article-title: Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.03.023
– year: 2015
  ident: smsab36e4bib183
  article-title: Three-axis piezoelectric vibration energy harvester
  doi: 10.1109/MEMSYS.2015.7051166
– volume: 15
  start-page: 1413
  year: 2006
  ident: smsab36e4bib192
  article-title: Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/5/030
– volume: 277
  start-page: 124
  year: 2018
  ident: smsab36e4bib239
  article-title: Nonlinear piezoelectric energy harvester with ball tip mass
  publication-title: Sensor. Actuat., A-Phys.
  doi: 10.1016/j.sna.2018.03.015
– volume: 20
  start-page: 025019
  year: 2010
  ident: smsab36e4bib354
  article-title: Piezoelectric energy harvesting from flow-induced vibration
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/20/2/025019
– volume: 59
  start-page: 846
  year: 2012
  ident: smsab36e4bib250
  article-title: Low-frequency meandering piezoelectric vibration energy harvester
  publication-title: IEEE T. Ultrason. Ferr.
  doi: 10.1109/TUFFC.2012.2269
– volume: 28
  start-page: 1706895
  year: 2018
  ident: smsab36e4bib59
  article-title: Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN‐PZT for vibration energy harvesting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706895
– volume: 20
  start-page: 104001
  year: 2010
  ident: smsab36e4bib469
  article-title: Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/20/10/104001
– volume: 26
  start-page: 583
  year: 1989
  ident: smsab36e4bib136
  article-title: Electrothermomechanical film. Part I. Design and characteristics
  publication-title: J. Macromol. Sci. A
  doi: 10.1080/00222338908051994
– volume: 52
  start-page: 229
  year: 2017
  ident: smsab36e4bib99
  article-title: High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0325-6
– volume: 20
  year: 2011
  ident: smsab36e4bib330
  article-title: Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/12/125017
– volume: 16
  start-page: 799
  year: 2011
  ident: smsab36e4bib401
  article-title: The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking
  publication-title: IEEE-ASME T. Mech.
  doi: 10.1109/TMECH.2011.2159512
– start-page: 699-709
  year: 2008
  ident: smsab36e4bib417
  article-title: Experimental study of the mechanics of motion of flapping insect flight under weight loading
  doi: 10.1115/SMASIS2008-661
– volume: 35
  start-page: 2057
  year: 2015
  ident: smsab36e4bib88
  article-title: (1−x) Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.12.036
– volume: 2
  start-page: 10945
  year: 2014
  ident: smsab36e4bib112
  article-title: Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta01714e
– volume: 21
  start-page: 401
  year: 2015
  ident: smsab36e4bib459
  article-title: Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-013-2030-6
– volume: 28
  year: 2018
  ident: smsab36e4bib308
  article-title: Shunt-diode rectifier: a new scheme for efficient piezoelectric energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaefc5
– volume: 60
  start-page: 1116
  year: 2013
  ident: smsab36e4bib325
  article-title: Flow energy harvesting using piezoelectric cantilevers with cylindrical extension
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2012.2187413
– volume: 8
  start-page: 328
  year: 2008
  ident: smsab36e4bib109
  article-title: Carrier density and Schottky barrier on the performance of DC nanogenerator
  publication-title: Nano Lett.
  doi: 10.1021/nl0728470
– volume: 18
  start-page: 1527
  year: 2013
  ident: smsab36e4bib158
  article-title: A piezoelectric energy harvester for rotary motion applications: design and experiments
  publication-title: IEEE-ASME T. Mech.
  doi: 10.1109/TMECH.2012.2205266
– volume: 42
  start-page: 277
  year: 2011
  ident: smsab36e4bib171
  article-title: Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2010.10.007
– volume: 171
  start-page: 1405
  year: 2018
  ident: smsab36e4bib331
  article-title: Experimental investigation of energy harvesting from swirling flows using a piezoelectric film transducer
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2018.06.081
– volume: 100
  start-page: 255
  year: 1989
  ident: smsab36e4bib106
  article-title: Thin film 0–3 polymer/piezoelectric ceramic composites: Piezoelectric paints
  publication-title: Ferroelectrics
  doi: 10.1080/00150198908007920
– volume: 56
  start-page: 1048
  year: 2009
  ident: smsab36e4bib298
  article-title: Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2009.2014673
– volume: 22
  start-page: 1959
  year: 2011
  ident: smsab36e4bib28
  article-title: Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11420593
– volume: 329
  start-page: 1215
  year: 2010
  ident: smsab36e4bib227
  article-title: Investigations of a nonlinear energy harvester with a bistable potential well
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.11.034
– volume: 10
  start-page: 305
  year: 2014
  ident: smsab36e4bib175
  article-title: Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-014-9247-0
– volume: 19
  year: 2010
  ident: smsab36e4bib122
  article-title: The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/2/025018
– volume: 105
  year: 2014
  ident: smsab36e4bib380
  article-title: Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4897624
– volume: 391
  start-page: 35
  year: 2017
  ident: smsab36e4bib43
  article-title: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.12.019
– volume: 24
  start-page: 2396
  year: 2017
  ident: smsab36e4bib340
  article-title: Piezoelectric energy harvesting from vertical piezoelectric beams in the horizontal fluid flows
  publication-title: Scientia Iranica
  doi: 10.24200/sci.2017.4240
– volume: 438
  start-page: 1
  year: 2014
  ident: smsab36e4bib266
  article-title: Metamaterials-based enhanced energy harvesting: A review
  publication-title: Physica B
  doi: 10.1016/j.physb.2013.12.040
– volume: 91
  start-page: 1817
  year: 2018
  ident: smsab36e4bib234
  article-title: A comprehensive study of 2: 1 internal-resonance-based piezoelectric vibration energy harvesting
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3982-3
– volume: 95
  year: 2009
  ident: smsab36e4bib270
  article-title: Acoustic energy harvesting using resonant cavity of a sonic crystal
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3176019
– volume: 1
  start-page: 356
  year: 2012
  ident: smsab36e4bib132
  article-title: Piezoelectric nanofibers for energy scavenging applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.02.003
– volume: 90
  start-page: 054106
  year: 2007
  ident: smsab36e4bib318
  article-title: Small scale windmill
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2435346
– volume: 55
  start-page: 2119
  year: 2008
  ident: smsab36e4bib296
  article-title: Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction
  publication-title: IEEE T .Ultrason. Ferr.
  doi: 10.1109/TUFFC.912
– volume: 94
  start-page: 113
  year: 2015
  ident: smsab36e4bib441
  article-title: A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2015.05.004
– volume: 18
  start-page: 139
  year: 2019
  ident: smsab36e4bib384
  article-title: KEH-Gait: Using kinetic energy harvesting for gait-based user authentication systems
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2018.2828816
– volume: 22
  year: 2013
  ident: smsab36e4bib160
  article-title: Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/5/055013
– volume: 96
  year: 2010
  ident: smsab36e4bib166
  article-title: Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3360219
– year: 2019
  ident: smsab36e4bib265
– volume: 25
  year: 2016
  ident: smsab36e4bib261
  article-title: Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/10/105016
– volume: 54
  start-page: 405
  year: 2015
  ident: smsab36e4bib162
  article-title: Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2014.08.020
– volume: 60
  start-page: 2111
  year: 2012
  ident: smsab36e4bib135
  article-title: Electromechanical response of piezoelectric foams
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.036
– volume: 107
  year: 2015
  ident: smsab36e4bib222
  article-title: Nonlinear time-varying potential bistable energy harvesting from human motion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932947
– volume: 55
  start-page: 182
  year: 2019
  ident: smsab36e4bib255
  article-title: Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.068
– volume: 20
  start-page: 3
  year: 2009
  ident: smsab36e4bib287
  article-title: A general equivalent circuit model for piezoelectric generators
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08089957
– volume: 4
  start-page: 2682
  year: 2013
  ident: smsab36e4bib129
  article-title: High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3682
– volume: 106-107
  start-page: 214-27
  year: 2012
  ident: smsab36e4bib288
  article-title: Assumed-modes formulation of piezoelectric energy harvesters: euler-bernoulli, rayleigh and timoshenko models with axial deformations
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.05.010
– volume: 330
  start-page: 2339
  year: 2011
  ident: smsab36e4bib228
  article-title: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2010.11.018
– volume: 23
  start-page: 015101
  year: 2012
  ident: smsab36e4bib455
  article-title: Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/1/015101
– volume: 51
  year: 2018
  ident: smsab36e4bib241
  article-title: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aab9e3
– volume: 37
  start-page: 1280
  year: 2006
  ident: smsab36e4bib245
  article-title: Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2006.07.023
– volume: 117
  start-page: 21
  year: 2018
  ident: smsab36e4bib254
  article-title: A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2018.02.024
– volume: 37
  start-page: 407
  year: 2017
  ident: smsab36e4bib71
  article-title: Improved solid-state conversion and piezoelectric properties of 90Na1/2Bi1/2TiO3-5BaTiO3-5K1/2Na1/2NbO3 single crystals
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.07.023
– volume: 16
  start-page: 865
  year: 2005
  ident: smsab36e4bib292
  article-title: Piezoelectric energy harvesting device optimization by synchronous electric charge extraction
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X05056859
– volume: 22
  year: 2013
  ident: smsab36e4bib20
  article-title: A review of the recent research on vibration energy harvesting via bistable systems
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/2/023001
– volume: 14
  start-page: 15
  year: 2015
  ident: smsab36e4bib134
  article-title: Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.059
– volume: 410
  start-page: 5
  year: 2013
  ident: smsab36e4bib153
  article-title: Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams
  publication-title: Physica B
  doi: 10.1016/j.physb.2012.10.029
– volume: 34
  start-page: 2275
  year: 2014
  ident: smsab36e4bib79
  article-title: Shift of morphotropic phase boundary in high-performance fine-grained PZN–PZT ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.02.041
– volume: 446
  start-page: 129
  year: 2019
  ident: smsab36e4bib237
  article-title: A parametric resonator with low threshold excitation for vibration energy harvesting
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.01.038
– volume: 197
  start-page: 292
  year: 2017
  ident: smsab36e4bib364
  article-title: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.019
– volume: 104
  start-page: 172901
  year: 2014
  ident: smsab36e4bib138
  article-title: Vibration-based energy harvesting with stacked piezoelectrets
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4874305
– year: 1971
  ident: smsab36e4bib73
– volume: 11
  year: 2010
  ident: smsab36e4bib87
  article-title: Progress in engineering high strain lead-free piezoelectric ceramics
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/11/4/044302
– volume: 212
  start-page: 362
  year: 2018
  ident: smsab36e4bib36
  article-title: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.053
– volume: 59
  start-page: 1950
  year: 2012
  ident: smsab36e4bib300
  article-title: Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2011.2167116
– volume: 39
  start-page: 802
  year: 2008
  ident: smsab36e4bib246
  article-title: A MEMS-based piezoelectric power generator array for vibration energy harvesting
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2007.12.017
– volume: 333
  start-page: 6209
  year: 2014
  ident: smsab36e4bib230
  article-title: M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.06.046
– year: 2011
  ident: smsab36e4bib393
  article-title: Efficient energy harvesting from human motion using wearable piezoelectric shell structures
  doi: 10.1109/TRANSDUCERS.2011.5969874
– volume: 96
  start-page: 1457
  year: 2008
  ident: smsab36e4bib4
  article-title: Energy harvesting from human and machine motion for wireless electronic devices
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2008.927494
– volume: 19
  start-page: 2553
  year: 2004
  ident: smsab36e4bib77
  article-title: Effect of lead zinc niobate addition on sintering behavior and piezoelectric properties of lead zirconate titanate ceramic
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2004.0328
– volume: 21
  year: 2012
  ident: smsab36e4bib155
  article-title: Optimization of a right-angle piezoelectric cantilever using auxiliary beams with different stiffness levels for vibration energy harvesting
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/6/065017
– volume: 19
  start-page: 065014
  year: 2009
  ident: smsab36e4bib248
  article-title: Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/6/065014
– volume: 128
  start-page: 207
  year: 2017
  ident: smsab36e4bib66
  article-title: Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.029
– volume: 106
  year: 2009
  ident: smsab36e4bib448
  article-title: Characterization of multifunctional structural capacitors for embedded energy storage
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3267482
– volume: 61
  start-page: 1267
  year: 1998
  ident: smsab36e4bib60
  article-title: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/61/9/002
– start-page: 121-130
  year: 2008
  ident: smsab36e4bib419
  article-title: A methodology for applying energy harvesting to extend wildlife tag lifetime
  doi: 10.1115/IMECE2008-68082
– volume: 44
  start-page: 721
  year: 2018
  ident: smsab36e4bib213
  article-title: Dynamic characterization of a bistable energy harvester under gaussian white noise for larger time constant
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-3187-1
– volume: 125
  start-page: 716
  year: 2017
  ident: smsab36e4bib370
  article-title: Towards a prototype module for piezoelectric energy harvesting from raindrop impacts
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.071
– volume: 94
  start-page: 3953
  year: 2011
  ident: smsab36e4bib78
  article-title: Identification and effect of secondary phase in MnO2‐doped 0.8 Pb (Zr0.52Ti0.48) O3–0.2 Pb (Zn1/3Nb2/3)O3 piezoelectric ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04629.x
– volume: 96
  start-page: 430
  year: 2015
  ident: smsab36e4bib163
  article-title: Design and development of a multipurpose piezoelectric energy harvester
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2015.03.014
– volume: 333
  start-page: 1421
  year: 2014
  ident: smsab36e4bib361
  article-title: Potential of a piezoelectric energy harvester from sea waves
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.11.008
– volume: 14
  start-page: 144
  year: 2013
  ident: smsab36e4bib96
  article-title: High-temperature piezoelectric sensing
  publication-title: Sensors
  doi: 10.3390/s140100144
– year: 2013
  ident: smsab36e4bib368
  article-title: Harvesting rainfall energy by means of piezoelectric transducer
  doi: 10.1109/ICCEP.2013.6586952
– volume: 18
  year: 2009
  ident: smsab36e4bib457
  article-title: A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/9/095029
– volume: 94
  start-page: 779
  year: 2018
  ident: smsab36e4bib12
  article-title: A review of transparent solar photovoltaic technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.06.031
– volume: 9
  start-page: 731
  year: 2009
  ident: smsab36e4bib75
  article-title: A vibration-based PMN-PT energy harvester
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2009.2021192
– year: 2011
  ident: smsab36e4bib56
  doi: 10.1007/978-1-4419-9598-8
– volume: 91
  start-page: 376
  year: 2018
  ident: smsab36e4bib18
  article-title: A review of the development and applications of thermoelectric microgenerators for energy harvesting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.052
– volume: 24
  year: 2015
  ident: smsab36e4bib424
  article-title: The case for energy harvesting on wildlife in flight
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/2/025031
– volume: 22
  start-page: 970
  year: 2012
  ident: smsab36e4bib439
  article-title: Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2012.06.006
– volume: 8690
  start-page: 869007
  year: 2013
  ident: smsab36e4bib456
  article-title: Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques
  doi: 10.1117/12.2010637
– volume: 736
  start-page: R1
  year: 2013
  ident: smsab36e4bib350
  article-title: Flapping dynamics of an inverted flag
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.555
– volume: 43
  start-page: 3734
  year: 2017
  ident: smsab36e4bib101
  article-title: Enhanced piezoelectricity and high-temperature sensitivity of Zn-modified BF-BT ceramics by in situ and ex situ measuring
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.12.006
– volume: 122
  start-page: 321
  year: 2016
  ident: smsab36e4bib82
  article-title: Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2016.05.085
– volume: 153
  start-page: 882
  year: 2018
  ident: smsab36e4bib339
  article-title: Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectrum
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.109
– volume: 90
  start-page: 796
  year: 2015
  ident: smsab36e4bib363
  article-title: Piezoelectric energy harvesting from raindrop impacts
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.114
– volume: 7288
  start-page: 72880D
  year: 2009
  ident: smsab36e4bib289
  article-title: Piezoelectric energy harvesting from multifunctional wing spars for UAVs—Part 2: Experiments and storage applications
  doi: 10.1117/12.815799
– volume: 25
  year: 2016
  ident: smsab36e4bib159
  article-title: Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/4/045008
– volume: 27
  year: 2018
  ident: smsab36e4bib404
  article-title: Force detection, center of pressure tracking, and energy harvesting from a piezoelectric knee implant
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aad755
– volume: 17
  start-page: 065016
  year: 2008
  ident: smsab36e4bib286
  article-title: Issues in mathematical modeling of piezoelectric energy harvesters
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/6/065016
– volume: 26
  start-page: 539
  year: 2001
  ident: smsab36e4bib351
  article-title: The energy harvesting eel: a small subsurface ocean/river power generator
  publication-title: IEEE J. Oceanic Eng.
  doi: 10.1109/48.972090
– volume: 76
  start-page: 14
  year: 2018
  ident: smsab36e4bib348
  article-title: Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.09.007
– volume: 13
  start-page: 174
  year: 2015
  ident: smsab36e4bib381
  article-title: Powerful curved piezoelectric generator for wearable applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.051
– volume: 8341
  start-page: 834103
  year: 2012
  ident: smsab36e4bib422
  article-title: Harvestable vibrational energy from an avian source: theoretical predictions versus measured values
  doi: 10.1117/12.915370
– volume: 28
  start-page: 2501
  year: 2014
  ident: smsab36e4bib473
  article-title: Self-powered piezoelectric energy harvester for bicycle
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-014-0407-9
– volume: 22
  start-page: 1879
  year: 2011
  ident: smsab36e4bib123
  article-title: Influence of aspect ratio on effective electromechanical coupling of nanocomposites with lead zirconate titanate nanowire inclusion
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11416025
– volume: 102
  year: 2013
  ident: smsab36e4bib219
  article-title: Enhanced broadband piezoelectric energy harvesting using rotatable magnets
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803445
– volume: 87
  start-page: 184101
  year: 2005
  ident: smsab36e4bib316
  article-title: Modeling of electric energy harvesting using piezoelectric windmill
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2119410
– volume: 6928
  start-page: 692823
  year: 2008
  ident: smsab36e4bib454
  article-title: Investigation of energy harvesting small unmanned air vehicle
  doi: 10.1117/12.775851
– volume: 93
  start-page: 1345
  year: 2015
  ident: smsab36e4bib429
  article-title: Energy harvesting from high-rise buildings by a piezoelectric harvester device
  publication-title: Energy
  doi: 10.1016/j.energy.2015.09.131
– volume: 20
  year: 2010
  ident: smsab36e4bib62
  article-title: Epitaxial piezoelectric MEMS on silicon
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/20/5/055008
– volume: 163
  start-page: 169
  year: 2018
  ident: smsab36e4bib433
  article-title: Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.054
– volume: 10
  start-page: 1869
  year: 2010
  ident: smsab36e4bib8
  article-title: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics
  publication-title: Nano Lett.
  doi: 10.1021/nl101060h
– volume: 346
  start-page: 200
  year: 2015
  ident: smsab36e4bib355
  article-title: Influence and optimization of the electrodes position in a piezoelectric energy harvesting flag
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.01.010
– volume: 58
  start-page: 159
  year: 2008
  ident: smsab36e4bib418
  article-title: Cyborg MAVs using power harvesting and behavioral control schemes
  publication-title: Adv. Sci. Tech.
  doi: 10.4028/www.scientific.net/AST.58.159
– start-page: 1
  year: 2017
  ident: smsab36e4bib57
  article-title: The development of piezoelectric materials and the new perspective
SSID ssj0011831
Score 2.7022955
Snippet Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 113001
SubjectTerms energy harvesting
piezoelectric materials
piezoelectricity
Title A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)
URI https://iopscience.iop.org/article/10.1088/1361-665X/ab36e4
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOjBt_gmgoIesmubNLZ6ElFE8HFQ3INQ8lRRt4u7Xvz1TpLuoiIiQik9TNJ0Ms1MMt_MAGwWCZNKK0X3mDSUJ85Qxa2hEnVBVjhpWTgaOL8Qpzf8rJW1huBgEAtTdeqlv4GPMVFwZGENiMubCRMJFSJrNaViwvJhGGU5Kk4fvXd5NXAhoKyGcnmF4BS1dN9H-VMPX3TSML73k4o5mYK7_uAisuSp8dZTDf3-LW_jP0c_DZO16UkOI-kMDNn2LEx8Skg4C2MBEKq7c_BwSGJUC6kcsSFAkDzI15CUo31PPFz-nnQe7XsVC-k8aoK2bxTnfRLClGjlKJqXHntHJDHWI_HJsyci2wEPgVZBvjMPNyfH10entK7KQDUXuz1qfYY0IzQaCpnBzUZuCscLodFywUUcWxuFq4I0qWAMv9BwZawvvJJop3OmNFuAkXbVtotAhMQNZ2ZT7k-fHMrGXqZ4ar0zctfppFiCZn9eSl2nLPeVM57L4DrP89Jzs_TcLCM3l2Bn0KIT03X8QruFk1TW_2z3F7qNL3Tdl26ZIlmCF0NBKzvGLf-xrxUYR94WXvml6SqM9F7f7BpaNT21HqQX75fs9gMVsO6I
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aUfQgPrE-IyjoIba7yaa73opa6tuDxd5CnrWg3dLWi7_eSXYVBRFhD3uYZDeTSb5J5oXQQRZRqbRSpEGlISxyhihmDZGABUnmpKXhauD2jrc77KqbdMs6pyEWJh-WW_8JvBaJggsWlg5xaS2iPCKcJ92aVJRbVhsaN41mEgrdg0Df06cvMwLIayiZl3FGAKk_7ZS_9fIDl6bh299gprWEFkv9EDeLv1lGU3awgha-ZQ1cQbPBa1OPV9FzExehJzh32IYoPvwsRyFzxqCHvU97Dw_79j0vqt30NQYFtZC5UxxiiUjuCOiA3kEOS2ysd5fHL54IHwWnBYDu9HgNdVoXj2dtUpZOIJrx-oRYn8bMcA1onhg4EaQmcyzjGtQL2GmhtVGwdKWJOaUwfMOUsb46SqSdTqnSdB1VBvnAbiDMJZwKExszf0XkYAIbiWKx9RbDutNRVkW1T8YJXeYV9-UtXkSwb6ep8KwWntWiYHUVHX-1GBY5Nf6gPYS5EOXCGv9Bt_-Dbvw6FjGQRfBQkAQBQrL5z7720NzDeUvcXN5db6F5YHPmwSqOt1FlMnqzO6CFTNRukLQPcljSKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+energy+harvesting+using+piezoelectric+materials%3A+state-of-the-art+a+decade+later+%282008%E2%80%932018%29&rft.jtitle=Smart+materials+and+structures&rft.au=Safaei%2C+Mohsen&rft.au=Sodano%2C+Henry+A&rft.au=Anton%2C+Steven+R&rft.date=2019-10-22&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=28&rft.issue=11&rft.spage=113001&rft_id=info:doi/10.1088%2F1361-665X%2Fab36e4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ab36e4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon