A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)
Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for small-sized and low-power electronic devices. The limited life-time and necessity for periodic recharging or replacement of batteries has be...
Saved in:
Published in | Smart materials and structures Vol. 28; no. 11; pp. 113001 - 113062 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
22.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for small-sized and low-power electronic devices. The limited life-time and necessity for periodic recharging or replacement of batteries has been a consistent issue in portable, remote, and implantable devices. Ambient energy can usually be found in the form of solar energy, thermal energy, and vibration energy. Amongst these energy sources, vibration energy presents a persistent presence in nature and manmade structures. Various materials and transduction mechanisms have the ability to convert vibratory energy to useful electrical energy, such as piezoelectric, electromagnetic, and electrostatic generators. Piezoelectric transducers, with their inherent electromechanical coupling and high power density compared to electromagnetic and electrostatic transducers, have been widely explored to generate power from vibration energy sources. A topical review of piezoelectric energy harvesting methods was carried out and published in this journal by the authors in 2007. Since 2007, countless researchers have introduced novel materials, transduction mechanisms, electrical circuits, and analytical models to improve various aspects of piezoelectric energy harvesting devices. Additionally, many researchers have also reported novel applications of piezoelectric energy harvesting technology in the past decade. While the body of literature in the field of piezoelectric energy harvesting has grown significantly since 2007, this paper presents an update to the authors' previous review paper by summarizing the notable developments in the field of piezoelectric energy harvesting through the past decade. |
---|---|
AbstractList | Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for small-sized and low-power electronic devices. The limited life-time and necessity for periodic recharging or replacement of batteries has been a consistent issue in portable, remote, and implantable devices. Ambient energy can usually be found in the form of solar energy, thermal energy, and vibration energy. Amongst these energy sources, vibration energy presents a persistent presence in nature and manmade structures. Various materials and transduction mechanisms have the ability to convert vibratory energy to useful electrical energy, such as piezoelectric, electromagnetic, and electrostatic generators. Piezoelectric transducers, with their inherent electromechanical coupling and high power density compared to electromagnetic and electrostatic transducers, have been widely explored to generate power from vibration energy sources. A topical review of piezoelectric energy harvesting methods was carried out and published in this journal by the authors in 2007. Since 2007, countless researchers have introduced novel materials, transduction mechanisms, electrical circuits, and analytical models to improve various aspects of piezoelectric energy harvesting devices. Additionally, many researchers have also reported novel applications of piezoelectric energy harvesting technology in the past decade. While the body of literature in the field of piezoelectric energy harvesting has grown significantly since 2007, this paper presents an update to the authors' previous review paper by summarizing the notable developments in the field of piezoelectric energy harvesting through the past decade. |
Author | Sodano, Henry A Safaei, Mohsen Anton, Steven R |
Author_xml | – sequence: 1 givenname: Mohsen orcidid: 0000-0002-8312-3000 surname: Safaei fullname: Safaei, Mohsen organization: Tennessee Technological University Department of Mechanical Engineering, Cookeville, TN 38505, United States of America – sequence: 2 givenname: Henry A orcidid: 0000-0001-6269-1802 surname: Sodano fullname: Sodano, Henry A organization: University of Michigan Department of Aerospace Engineering, Ann Arbor, MI 48109, United States of America – sequence: 3 givenname: Steven R orcidid: 0000-0003-2777-5458 surname: Anton fullname: Anton, Steven R email: santon@tntech.edu organization: Tennessee Technological University Department of Mechanical Engineering, Cookeville, TN 38505, United States of America |
BookMark | eNp9kM9LwzAYhoNMcJvePeY4wbikabPU2xj-goEXBW8hTb5uGV1bkm4y_3pTJh5EhZCE8D4v-Z4RGtRNDQhdMnrDqJRTxgUjQmRvU11wAekJGn4_DdCQ5iIlbJaIMzQKYUMpY5KzIVrPsYe9g3fclBhq8KsDXmu_h9C5eoV3od9bBx8NVGA67wze6g6801W4xaGLd9KUpFsD0b7DGlsw2gKu-hCeJJRKklAmr87RaRkZuPg6x-j1_u5l8UiWzw9Pi_mSmFTQjoDMcm6FYUme2Uxm0uZlmgsjeAbaxDZb0FRqmwjO45w2LSzMoBDMlEbywvAxEsde45sQPJTKuPhL19Sd165SjKrel-rlqF6OOvqKIP0Btt5ttT_8h0yOiGtatWl2vo6TqbANKolpFhePolVryxi9_iX6Z_Mn1UuLNw |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_118374 crossref_primary_10_1016_j_sna_2020_112164 crossref_primary_10_1142_S2010135X23500054 crossref_primary_10_1126_science_ads9584 crossref_primary_10_1016_j_memori_2022_100002 crossref_primary_10_1080_15325008_2023_2262458 crossref_primary_10_3390_s21041505 crossref_primary_10_1002_smll_202411369 crossref_primary_10_1002_admt_202201495 crossref_primary_10_1002_aenm_202201454 crossref_primary_10_1080_15397734_2021_1890613 crossref_primary_10_1016_j_cossms_2023_101134 crossref_primary_10_1002_pc_26169 crossref_primary_10_1016_j_apenergy_2020_115161 crossref_primary_10_1007_s43939_025_00190_1 crossref_primary_10_1016_j_nanoen_2023_109004 crossref_primary_10_1016_j_jsv_2023_118155 crossref_primary_10_3390_mi13091422 crossref_primary_10_1007_s10483_024_3133_8 crossref_primary_10_1016_j_ifacol_2022_10_522 crossref_primary_10_1007_s42417_022_00549_1 crossref_primary_10_1016_j_energy_2024_130722 crossref_primary_10_1016_j_mser_2023_100763 crossref_primary_10_3390_mi13060936 crossref_primary_10_1016_j_cap_2022_01_013 crossref_primary_10_1007_s10999_022_09619_4 crossref_primary_10_1016_j_nanoen_2022_106927 crossref_primary_10_1016_j_ast_2021_106819 crossref_primary_10_1016_j_energy_2021_122376 crossref_primary_10_1007_s41204_022_00217_5 crossref_primary_10_1016_j_energy_2022_125948 crossref_primary_10_1088_1361_665X_aca941 crossref_primary_10_3390_app14114792 crossref_primary_10_1177_1045389X251326335 crossref_primary_10_1007_s40430_023_04028_w crossref_primary_10_1080_01430750_2023_2235342 crossref_primary_10_1007_s42452_022_05003_1 crossref_primary_10_1039_D4TA00836G crossref_primary_10_1007_s11664_024_11575_y crossref_primary_10_1063_5_0135160 crossref_primary_10_1177_10775463241261845 crossref_primary_10_1016_j_jallcom_2024_174438 crossref_primary_10_1016_j_tsep_2023_102344 crossref_primary_10_1016_j_apenergy_2022_120092 crossref_primary_10_1002_pssa_202100382 crossref_primary_10_1088_1361_665X_aba5e2 crossref_primary_10_1021_acs_chemrev_9b00821 crossref_primary_10_1080_15397734_2024_2330652 crossref_primary_10_1088_1361_665X_ad0392 crossref_primary_10_1002_adem_202402139 crossref_primary_10_1063_5_0089382 crossref_primary_10_1088_1361_665X_ad72bf crossref_primary_10_3390_en13153871 crossref_primary_10_1016_j_cnsns_2023_107808 crossref_primary_10_1016_j_ceramint_2023_01_016 crossref_primary_10_1016_j_jsv_2023_118054 crossref_primary_10_1021_jacs_3c02993 crossref_primary_10_1016_j_isci_2024_110786 crossref_primary_10_1007_s11029_024_10221_2 crossref_primary_10_20965_jrm_2022_p0131 crossref_primary_10_1109_TUFFC_2021_3136125 crossref_primary_10_1016_j_seta_2022_102845 crossref_primary_10_1039_D1TA07848H crossref_primary_10_1016_j_ijmecsci_2020_106160 crossref_primary_10_3390_s22124457 crossref_primary_10_1016_j_compscitech_2022_109323 crossref_primary_10_1016_j_ceramint_2021_12_298 crossref_primary_10_3390_app13031300 crossref_primary_10_1007_s10832_023_00326_w crossref_primary_10_1177_1077546320974477 crossref_primary_10_1088_1361_665X_abfb41 crossref_primary_10_1109_JSEN_2023_3326681 crossref_primary_10_1016_j_ymssp_2025_112428 crossref_primary_10_3390_s21041546 crossref_primary_10_1021_acsbiomaterials_1c00800 crossref_primary_10_1007_s11071_023_08764_5 crossref_primary_10_1016_j_ceramint_2024_11_249 crossref_primary_10_1016_j_cossms_2024_101213 crossref_primary_10_1016_j_eml_2020_101091 crossref_primary_10_1016_j_cossms_2024_101211 crossref_primary_10_1016_j_ijmecsci_2024_109561 crossref_primary_10_1016_j_jweia_2022_105235 crossref_primary_10_1016_j_compstruct_2020_113454 crossref_primary_10_1088_1361_665X_ac72da crossref_primary_10_1115_1_4049231 crossref_primary_10_1016_j_giant_2024_100333 crossref_primary_10_35848_1347_4065_ac8bdc crossref_primary_10_1016_j_jmrt_2023_04_051 crossref_primary_10_1016_j_ymssp_2024_112019 crossref_primary_10_1142_S1758825120500957 crossref_primary_10_1016_j_sna_2021_112632 crossref_primary_10_1016_j_nanoen_2023_108248 crossref_primary_10_1088_1361_665X_abe031 crossref_primary_10_1002_ente_202401660 crossref_primary_10_1007_s10854_020_03510_8 crossref_primary_10_1016_j_nanoen_2021_106862 crossref_primary_10_1088_1361_665X_ac112c crossref_primary_10_1016_j_heliyon_2023_e17634 crossref_primary_10_1016_j_ymssp_2024_112013 crossref_primary_10_1016_j_apenergy_2019_113829 crossref_primary_10_1088_1361_665X_abc7fa crossref_primary_10_1016_j_nanoen_2024_109420 crossref_primary_10_1088_1361_665X_ab8ea3 crossref_primary_10_1557_s43577_023_00492_w crossref_primary_10_1021_acsaelm_0c01071 crossref_primary_10_1109_ACCESS_2020_3038111 crossref_primary_10_1016_j_oceaneng_2022_113467 crossref_primary_10_1002_admi_202300634 crossref_primary_10_1080_15376494_2022_2104975 crossref_primary_10_1016_j_jeurceramsoc_2021_06_022 crossref_primary_10_1073_pnas_2218976120 crossref_primary_10_1016_j_jmps_2023_105477 crossref_primary_10_1021_acsnano_2c07320 crossref_primary_10_3390_coatings13010082 crossref_primary_10_1088_1361_665X_acbcb1 crossref_primary_10_1038_s41467_023_36916_z crossref_primary_10_1631_jzus_A2200598 crossref_primary_10_1039_D1NR00149C crossref_primary_10_1177_1045389X241306534 crossref_primary_10_3390_s20185214 crossref_primary_10_3390_en13153830 crossref_primary_10_34133_cbsystems_0053 crossref_primary_10_1016_j_energy_2020_118752 crossref_primary_10_1016_j_polymer_2021_123480 crossref_primary_10_1063_5_0193134 crossref_primary_10_1016_j_jeurceramsoc_2020_04_024 crossref_primary_10_1016_j_ymssp_2022_109630 crossref_primary_10_3390_nanoenergyadv3020005 crossref_primary_10_51646_jsesd_v14iSI_MSMS2E_402 crossref_primary_10_1016_j_ymssp_2022_109500 crossref_primary_10_1016_j_ijmecsci_2021_106544 crossref_primary_10_1088_1361_665X_ad6724 crossref_primary_10_1093_nsr_nwae333 crossref_primary_10_1515_opag_2022_0275 crossref_primary_10_1016_j_xcrp_2021_100707 crossref_primary_10_1016_j_ymssp_2022_109506 crossref_primary_10_3390_polym16172397 crossref_primary_10_3390_app13010094 crossref_primary_10_1016_j_apenergy_2020_115073 crossref_primary_10_1016_j_ymssp_2024_112038 crossref_primary_10_3390_electronics10161887 crossref_primary_10_1109_JMEMS_2024_3418580 crossref_primary_10_1016_j_nanoen_2024_109364 crossref_primary_10_1016_j_sna_2022_113651 crossref_primary_10_1016_j_oceaneng_2023_114896 crossref_primary_10_3390_mi14061273 crossref_primary_10_1088_2515_7655_acb5e6 crossref_primary_10_1177_1045389X20922903 crossref_primary_10_1515_ehs_2023_0085 crossref_primary_10_1007_s11664_022_09784_4 crossref_primary_10_1039_D1CC02806E crossref_primary_10_1016_j_aej_2023_09_028 crossref_primary_10_1016_j_jallcom_2023_169298 crossref_primary_10_1088_1361_665X_ad8b87 crossref_primary_10_1103_PhysRevFluids_10_013905 crossref_primary_10_1088_1361_6463_ac181b crossref_primary_10_1007_s11071_024_09617_5 crossref_primary_10_1016_j_jmaa_2024_129072 crossref_primary_10_1016_j_jsv_2022_116886 crossref_primary_10_1002_adma_202405308 crossref_primary_10_1088_1361_665X_acef81 crossref_primary_10_1016_j_actamat_2021_117450 crossref_primary_10_1021_acsaenm_3c00056 crossref_primary_10_1016_j_seta_2024_104056 crossref_primary_10_1088_1361_665X_ab78b9 crossref_primary_10_1016_j_renene_2022_10_051 crossref_primary_10_1007_s10854_022_09339_7 crossref_primary_10_1016_j_matpr_2023_09_084 crossref_primary_10_1016_j_nanoen_2023_109092 crossref_primary_10_1039_D1TC06089A crossref_primary_10_2174_2352096515666220928122027 crossref_primary_10_1088_1361_665X_ace9a0 crossref_primary_10_1088_1361_665X_adaefa crossref_primary_10_1016_j_rser_2021_111188 crossref_primary_10_1111_cbdd_14136 crossref_primary_10_3390_en14040848 crossref_primary_10_1021_acsami_4c17818 crossref_primary_10_1177_1045389X211048222 crossref_primary_10_1063_5_0105103 crossref_primary_10_1039_D0TC00780C crossref_primary_10_1039_D1CS00858G crossref_primary_10_1038_s41598_022_12266_6 crossref_primary_10_1007_s10751_024_01956_4 crossref_primary_10_1016_j_apenergy_2021_117331 crossref_primary_10_1039_D3TA05448A crossref_primary_10_1080_00150193_2023_2215508 crossref_primary_10_1016_j_polymertesting_2020_106695 crossref_primary_10_1016_j_measurement_2020_108285 crossref_primary_10_1002_adfm_202212110 crossref_primary_10_2139_ssrn_3955723 crossref_primary_10_1080_15376494_2021_2001122 crossref_primary_10_1103_PhysRevFluids_9_074101 crossref_primary_10_1115_1_4053358 crossref_primary_10_1088_1361_6439_acbfc0 crossref_primary_10_1021_acsami_1c05699 crossref_primary_10_1016_j_nanoen_2022_107887 crossref_primary_10_1016_j_tsf_2022_139414 crossref_primary_10_1016_j_compscitech_2022_109850 crossref_primary_10_1021_acsami_4c06902 crossref_primary_10_1080_00150193_2020_1868874 crossref_primary_10_3390_polym13010066 crossref_primary_10_1088_1361_6463_acbc86 crossref_primary_10_1088_1742_6596_1913_1_012042 crossref_primary_10_1002_adfm_202005141 crossref_primary_10_1088_1361_665X_ac9e2d crossref_primary_10_1088_1361_665X_ac8d3e crossref_primary_10_1007_s00542_022_05356_y crossref_primary_10_1016_j_ijsolstr_2022_111766 crossref_primary_10_3390_s23052633 crossref_primary_10_3390_s23135841 crossref_primary_10_1007_s10853_022_06953_y crossref_primary_10_1016_j_ceramint_2021_03_299 crossref_primary_10_1016_j_enconman_2022_115371 crossref_primary_10_3390_coatings13020464 crossref_primary_10_1016_j_nanoen_2022_107870 crossref_primary_10_3390_s22051710 crossref_primary_10_1080_15502287_2023_2291013 crossref_primary_10_3390_sym14040765 crossref_primary_10_1002_advs_202104426 crossref_primary_10_1002_ente_202300037 crossref_primary_10_1016_j_apsusc_2022_156198 crossref_primary_10_3389_fmats_2021_692273 crossref_primary_10_2174_2452271605666220428101732 crossref_primary_10_1016_j_mtsust_2024_100847 crossref_primary_10_1088_1361_6463_ac9f21 crossref_primary_10_1016_j_enconman_2022_115223 crossref_primary_10_1016_j_sna_2024_115110 crossref_primary_10_1002_ckon_202100024 crossref_primary_10_1016_j_cap_2023_02_015 crossref_primary_10_1016_j_apenergy_2022_119738 crossref_primary_10_1177_1045389X20947178 crossref_primary_10_3390_s25061657 crossref_primary_10_1016_j_ijnonlinmec_2024_104700 crossref_primary_10_1088_1361_665X_abd346 crossref_primary_10_1080_15376494_2024_2338910 crossref_primary_10_1088_1361_665X_ac4ab4 crossref_primary_10_1007_s10854_024_12557_w crossref_primary_10_1007_s40430_024_04766_5 crossref_primary_10_1016_j_enconman_2023_117903 crossref_primary_10_1088_1361_665X_abee36 crossref_primary_10_1016_j_euromechsol_2023_104924 crossref_primary_10_1016_j_apenergy_2021_117010 crossref_primary_10_1016_j_solidstatesciences_2021_106729 crossref_primary_10_1177_1045389X20952534 crossref_primary_10_1016_j_colsurfa_2022_130403 crossref_primary_10_1038_s41378_021_00323_5 crossref_primary_10_1088_1361_6463_ac0842 crossref_primary_10_3390_polym12010161 crossref_primary_10_1007_s00542_022_05345_1 crossref_primary_10_1016_j_ceramint_2021_10_023 crossref_primary_10_1007_s00707_020_02867_5 crossref_primary_10_1002_ente_202000114 crossref_primary_10_3390_en15197424 crossref_primary_10_1088_1361_6463_ac855e crossref_primary_10_1016_j_compstruct_2024_118801 crossref_primary_10_1109_JSEN_2024_3392588 crossref_primary_10_1016_j_compstruc_2021_106575 crossref_primary_10_1016_j_sna_2021_113318 crossref_primary_10_1007_s10854_021_07296_1 crossref_primary_10_1088_1361_6463_ac8687 crossref_primary_10_1088_1361_665X_abca08 crossref_primary_10_1080_15376494_2024_2443814 crossref_primary_10_1016_j_nanoen_2024_110489 crossref_primary_10_3390_su13084142 crossref_primary_10_1002_app_55530 crossref_primary_10_1088_1361_665X_acafba crossref_primary_10_1016_j_nanoen_2024_110481 crossref_primary_10_1016_j_measen_2024_101671 crossref_primary_10_1021_acsami_0c16207 crossref_primary_10_1142_S1793984424400051 crossref_primary_10_1016_j_ymssp_2023_110637 crossref_primary_10_3390_s25061753 crossref_primary_10_1016_j_rineng_2022_100565 crossref_primary_10_1016_j_mee_2019_111199 crossref_primary_10_1109_JIOT_2020_3016993 crossref_primary_10_3390_ma15134423 crossref_primary_10_1016_j_ijnonlinmec_2020_103541 crossref_primary_10_1177_14644207211046585 crossref_primary_10_1016_j_seta_2023_103417 crossref_primary_10_1021_acsaelm_3c00434 crossref_primary_10_1016_j_ceramint_2023_12_137 crossref_primary_10_1039_D0EE03911J crossref_primary_10_3390_en15176227 crossref_primary_10_1039_D1EE03113A crossref_primary_10_1016_j_rineng_2021_100290 crossref_primary_10_3390_s24154943 crossref_primary_10_1016_j_csite_2024_105126 crossref_primary_10_1016_j_energy_2021_121734 crossref_primary_10_1016_j_ijsolstr_2021_111409 crossref_primary_10_1016_j_materresbull_2024_112924 crossref_primary_10_1007_s42417_022_00838_9 crossref_primary_10_1002_adhm_202100986 crossref_primary_10_1109_JIOT_2021_3086013 crossref_primary_10_1088_1361_665X_acdf31 crossref_primary_10_7868_25000640240103 crossref_primary_10_1088_2515_7655_adb0ee crossref_primary_10_1177_1045389X211072517 crossref_primary_10_1063_5_0018872 crossref_primary_10_1016_j_apenergy_2025_125701 crossref_primary_10_1016_j_nanoen_2023_108728 crossref_primary_10_1039_D2TC04039E crossref_primary_10_1016_j_nanoen_2023_108606 crossref_primary_10_1088_1361_665X_abb98a crossref_primary_10_1016_j_jallcom_2021_162009 crossref_primary_10_1016_j_rser_2024_115093 crossref_primary_10_1021_acsomega_3c08789 crossref_primary_10_3390_nano12172960 crossref_primary_10_1063_5_0030302 crossref_primary_10_1063_5_0246789 crossref_primary_10_3390_s22197399 crossref_primary_10_1088_1361_665X_abe2bc crossref_primary_10_32604_jrm_2023_025497 crossref_primary_10_1007_s12667_023_00615_x crossref_primary_10_1007_s11432_020_3081_4 crossref_primary_10_3390_polym17060711 crossref_primary_10_1016_j_energy_2024_132218 crossref_primary_10_1021_acs_nanolett_4c00357 crossref_primary_10_1080_15397734_2024_2390074 crossref_primary_10_3390_s23063069 crossref_primary_10_1021_acsaenm_2c00032 crossref_primary_10_3390_aerospace7120167 crossref_primary_10_3390_s21227445 crossref_primary_10_1002_aelm_202201187 crossref_primary_10_1007_s11831_024_10192_6 crossref_primary_10_1016_j_jsv_2023_117759 crossref_primary_10_1007_s11071_020_05997_6 crossref_primary_10_1016_j_nanoen_2022_107488 crossref_primary_10_1088_2631_8695_acd5ac crossref_primary_10_1080_15567036_2024_2414844 crossref_primary_10_1002_pssa_202200227 crossref_primary_10_1016_j_cma_2023_116164 crossref_primary_10_1016_j_jcis_2022_01_114 crossref_primary_10_1016_j_jallcom_2019_152613 crossref_primary_10_1016_j_cma_2024_116861 crossref_primary_10_3390_s22093395 crossref_primary_10_1002_adma_202303827 crossref_primary_10_1016_j_renene_2021_03_064 crossref_primary_10_1016_j_rser_2021_111920 crossref_primary_10_1080_01495739_2022_2049021 crossref_primary_10_1587_elex_20_20230343 crossref_primary_10_1016_j_ecmx_2024_100705 crossref_primary_10_1016_j_nanoen_2022_107598 crossref_primary_10_1016_j_ceramint_2021_01_180 crossref_primary_10_1007_s00542_021_05219_y crossref_primary_10_1016_j_medntd_2024_100311 crossref_primary_10_1016_j_poly_2024_117159 crossref_primary_10_1002_aesr_202200063 crossref_primary_10_1088_1361_6463_aca774 crossref_primary_10_35848_1347_4065_ac10f8 crossref_primary_10_1016_j_energy_2024_131347 crossref_primary_10_1080_15376494_2025_2465911 crossref_primary_10_1039_D3CP01711G crossref_primary_10_1016_j_cnsns_2022_107076 crossref_primary_10_1016_j_cnsns_2022_107077 crossref_primary_10_1002_est2_352 crossref_primary_10_1002_inf2_12376 crossref_primary_10_1007_s12596_025_02567_0 crossref_primary_10_1016_j_ijmecsci_2022_107365 crossref_primary_10_3390_math12132109 crossref_primary_10_1016_j_molstruc_2023_136136 crossref_primary_10_1016_j_ijmecsci_2023_108731 crossref_primary_10_1088_1361_665X_ace812 crossref_primary_10_1088_1361_665X_ab6484 crossref_primary_10_1016_j_ijnonlinmec_2023_104560 crossref_primary_10_1088_1361_665X_ad9e5a crossref_primary_10_1016_j_seta_2022_102471 crossref_primary_10_1021_acs_cgd_1c01140 crossref_primary_10_1002_adem_202200294 crossref_primary_10_1088_1361_665X_abad4e crossref_primary_10_1088_1361_665X_ac9658 crossref_primary_10_1177_09544062241272433 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_1088_1361_665X_ad508e crossref_primary_10_3390_en17092134 crossref_primary_10_1002_smll_202406493 crossref_primary_10_1016_j_ijmecsci_2022_107235 crossref_primary_10_1063_5_0070167 crossref_primary_10_1016_j_mtener_2023_101457 crossref_primary_10_3390_biomedinformatics3040070 crossref_primary_10_1007_s00707_022_03248_w crossref_primary_10_1016_j_prime_2024_100743 crossref_primary_10_3390_ma14061405 crossref_primary_10_1088_1361_665X_ac4ea6 crossref_primary_10_62184_in_jin0101202422 crossref_primary_10_1088_1361_665X_abc525 crossref_primary_10_1080_15376494_2024_2440933 crossref_primary_10_3390_en15197271 crossref_primary_10_1088_1361_665X_ab7e35 crossref_primary_10_1002_adfm_202106231 crossref_primary_10_1016_j_jsv_2022_117036 crossref_primary_10_1007_s00339_025_08305_4 crossref_primary_10_1007_s11664_021_09241_8 crossref_primary_10_1021_acs_nanolett_4c05972 crossref_primary_10_1016_j_ijbiomac_2024_133748 crossref_primary_10_1016_j_ymssp_2021_107827 crossref_primary_10_1080_01495739_2021_1927920 crossref_primary_10_1177_1045389X211063946 crossref_primary_10_1021_acsanm_3c06095 crossref_primary_10_1177_16878132231224577 crossref_primary_10_1016_j_materresbull_2023_112367 crossref_primary_10_1088_1402_4896_ad9cfc crossref_primary_10_1088_1748_3190_ad43d1 crossref_primary_10_1007_s42417_023_01196_w crossref_primary_10_1007_s00707_023_03619_x crossref_primary_10_1016_j_compstruct_2023_116971 crossref_primary_10_1016_j_ceramint_2024_04_421 crossref_primary_10_1016_j_matpr_2023_01_027 crossref_primary_10_1016_j_ijmecsci_2020_105833 crossref_primary_10_3390_technologies12040051 crossref_primary_10_1016_j_egyr_2022_09_076 crossref_primary_10_1016_j_energy_2021_122514 crossref_primary_10_1177_1369433219886956 crossref_primary_10_1088_1757_899X_876_1_012006 crossref_primary_10_3390_en17040876 crossref_primary_10_1088_1361_665X_ab7543 crossref_primary_10_3390_electronics9122030 crossref_primary_10_1007_s10965_021_02538_6 crossref_primary_10_1007_s40799_021_00529_2 crossref_primary_10_1088_1361_665X_acc707 crossref_primary_10_1016_j_ijadhadh_2024_103638 crossref_primary_10_1098_rspa_2024_0033 crossref_primary_10_2478_msr_2022_0013 crossref_primary_10_3390_polym13142276 crossref_primary_10_1039_D0TC03461D crossref_primary_10_3390_app10124387 crossref_primary_10_3390_axioms11120667 crossref_primary_10_1002_mabi_202200550 crossref_primary_10_1063_5_0021765 crossref_primary_10_1088_1361_665X_ac04c3 crossref_primary_10_1177_1045389X231157359 crossref_primary_10_1088_1361_665X_ac26a6 crossref_primary_10_3390_act10120327 crossref_primary_10_3390_mi14010127 crossref_primary_10_3390_mi14010001 crossref_primary_10_34133_cbsystems_0210 crossref_primary_10_1007_s00707_023_03575_6 crossref_primary_10_1016_j_ymssp_2023_110287 crossref_primary_10_3390_mi12080973 crossref_primary_10_1364_OE_438337 crossref_primary_10_1007_s10854_023_11798_5 crossref_primary_10_1016_j_nanoen_2022_107175 crossref_primary_10_1002_adsu_202200441 crossref_primary_10_1016_j_sna_2024_115609 crossref_primary_10_1088_1361_665X_abd5dc crossref_primary_10_1103_PhysRevResearch_6_023045 crossref_primary_10_1016_j_ab_2021_114325 crossref_primary_10_3390_app112311504 crossref_primary_10_3390_ma16083107 crossref_primary_10_1177_10775463211041875 crossref_primary_10_1108_CW_08_2020_0188 crossref_primary_10_1016_j_jallcom_2024_175578 crossref_primary_10_3390_mi13081227 crossref_primary_10_1016_j_jssc_2021_122829 crossref_primary_10_3390_en15134537 crossref_primary_10_3390_en14185936 crossref_primary_10_1155_2021_7258449 crossref_primary_10_3390_mi16030254 crossref_primary_10_1155_2022_7155628 crossref_primary_10_3390_nano15030159 crossref_primary_10_1063_5_0250445 crossref_primary_10_1002_mame_202300101 crossref_primary_10_1021_acsphotonics_1c01857 crossref_primary_10_1007_s10409_020_00928_5 crossref_primary_10_1088_1361_6501_ad214e crossref_primary_10_1016_j_matpr_2022_08_106 crossref_primary_10_1088_1361_665X_ada599 crossref_primary_10_1002_adfm_202009289 crossref_primary_10_3390_bios13010079 crossref_primary_10_1088_1361_665X_ab9a8d crossref_primary_10_1631_jzus_A2200551 crossref_primary_10_1063_5_0146788 crossref_primary_10_1088_1361_6439_ac2a52 crossref_primary_10_1007_s12008_023_01522_2 crossref_primary_10_1177_1045389X20966058 crossref_primary_10_3389_fphy_2022_890845 crossref_primary_10_1541_ieejias_143_817 crossref_primary_10_1109_TPEL_2020_3038634 crossref_primary_10_1007_s11071_024_09491_1 crossref_primary_10_1016_j_cnsns_2023_107400 crossref_primary_10_1002_aesr_202300235 crossref_primary_10_1088_1361_665X_ac9dd2 crossref_primary_10_1039_D2CP04168E crossref_primary_10_31593_ijeat_1033539 crossref_primary_10_1088_1361_6463_ace4d8 crossref_primary_10_3390_act10120312 crossref_primary_10_1177_0954406220939994 crossref_primary_10_1016_j_materresbull_2024_112739 crossref_primary_10_1016_j_apm_2020_03_010 crossref_primary_10_1016_j_enconman_2024_118852 crossref_primary_10_3390_en17164066 crossref_primary_10_1007_s10778_021_01050_0 crossref_primary_10_1007_s10853_023_08321_w crossref_primary_10_1109_TMAG_2024_3413850 crossref_primary_10_3390_en14123480 crossref_primary_10_1016_j_compstruct_2021_114136 crossref_primary_10_1016_j_ymssp_2020_107476 crossref_primary_10_1016_j_seta_2021_101826 crossref_primary_10_1016_j_egyr_2021_09_085 crossref_primary_10_1016_j_sna_2024_115924 crossref_primary_10_1016_j_apm_2021_05_011 crossref_primary_10_1016_j_nanoen_2020_105629 crossref_primary_10_14483_22487638_22164 crossref_primary_10_1021_acsami_3c08016 crossref_primary_10_1016_j_materresbull_2024_112841 crossref_primary_10_3740_MRSK_2024_34_1_34 crossref_primary_10_1017_jfm_2023_909 crossref_primary_10_1016_j_ceramint_2024_10_279 crossref_primary_10_1016_j_enconman_2020_113567 crossref_primary_10_1016_j_jmps_2021_104643 crossref_primary_10_3390_jlpea13010008 crossref_primary_10_1002_app_50865 crossref_primary_10_1016_j_cnsns_2021_106092 crossref_primary_10_1063_5_0078609 crossref_primary_10_3390_en14030693 crossref_primary_10_3390_mi13060863 crossref_primary_10_1016_j_undsp_2023_10_007 crossref_primary_10_1177_1045389X211001456 crossref_primary_10_18311_jmmf_2023_41751 crossref_primary_10_1016_j_ceramint_2022_08_108 crossref_primary_10_2478_ama_2020_0028 crossref_primary_10_1002_cta_4045 crossref_primary_10_1088_1361_665X_ad9971 crossref_primary_10_1063_5_0147464 crossref_primary_10_3390_fluids8080222 crossref_primary_10_1088_1742_6596_1950_1_012058 crossref_primary_10_1007_s00419_020_01727_x crossref_primary_10_3390_act12120456 crossref_primary_10_3390_act12120457 crossref_primary_10_1016_j_jeurceramsoc_2020_12_016 crossref_primary_10_1002_adts_202100156 crossref_primary_10_1016_j_apsusc_2022_153464 crossref_primary_10_1039_D0CC04224B crossref_primary_10_1016_j_cnsns_2022_107018 crossref_primary_10_1016_j_ymssp_2022_108942 crossref_primary_10_1021_acsami_1c24611 crossref_primary_10_1016_j_chaos_2024_115411 crossref_primary_10_1016_j_nanoen_2020_104659 crossref_primary_10_3390_app112412146 crossref_primary_10_1007_s10999_022_09595_9 crossref_primary_10_3390_en17194935 crossref_primary_10_1080_15376494_2023_2280997 crossref_primary_10_1177_09544062231199564 crossref_primary_10_1002_admt_202300203 crossref_primary_10_1063_5_0188088 crossref_primary_10_1142_S2010135X23500261 crossref_primary_10_1016_j_ymssp_2020_107005 crossref_primary_10_1016_j_apenergy_2021_117838 crossref_primary_10_1016_j_mne_2024_100266 crossref_primary_10_1016_j_rser_2025_115521 crossref_primary_10_1007_s12221_023_00364_9 crossref_primary_10_1002_aenm_202100698 crossref_primary_10_3390_s21124145 crossref_primary_10_3390_bios13080791 |
Cites_doi | 10.1177/1045389X16685448 10.1063/1.3142429 10.1021/acsnano.6b04213 10.1063/1.4891169 10.1109/TELSKS.2009.5339410 10.1063/1.4942882 10.1126/science.1124005 10.1016/j.ijmecsci.2014.12.015 10.1016/j.jallcom.2017.12.365 10.1016/j.jeurceramsoc.2014.12.013 10.1515/teme-2017-0076 10.1016/j.apenergy.2017.03.016 10.1016/j.apenergy.2011.01.005 10.1557/mrs2008.202 10.1177/1045389X08098096 10.1016/j.enconman.2014.05.096 10.1088/0964-1726/16/3/R01 10.1109/JMEMS.2011.2171321 10.1088/0964-1726/17/01/015039 10.1109/TUFFC.2012.2422 10.1088/0964-1726/25/8/085029 10.1088/0964-1726/21/10/105024 10.1039/C5NR09029F 10.1063/1.3040011 10.1109/ISWC.1998.729539 10.4218/etrij.09.1209.0015 10.1088/0964-1726/23/10/105020 10.1088/0964-1726/24/4/045008 10.1016/j.sna.2015.02.036 10.1177/0021998312448677 10.1016/j.pmatsci.2018.06.002 10.1109/ATSIP.2016.7523106 10.1088/0964-1726/25/4/045013 10.1016/j.sna.2013.06.009 10.1117/12.388175 10.1021/acsnano.7b08674 10.1088/0964-1726/21/2/025007 10.1088/0964-1726/20/12/125011 10.1103/PhysRevLett.102.080601 10.1117/12.880702 10.1088/0960-1317/18/10/104013 10.1088/0964-1726/22/9/095024 10.1088/0964-1726/19/11/115017 10.1063/1.4789433 10.1016/j.sna.2018.07.020 10.1016/j.jpcs.2017.10.041 10.1016/j.ceramint.2011.04.099 10.1016/j.sna.2014.11.016 10.1007/s11071-014-1355-8 10.1038/ncomms1098 10.12989/sss.2010.6.5_6.661 10.1016/j.sna.2010.09.022 10.1109/WIRELESSVITAE.2009.5172411 10.1177/1045389X09357971 10.1088/0964-1726/21/11/115018 10.1007/978-3-319-20355-3_10 10.1147/sj.353.0618 10.1109/TUFFC.2007.469 10.1088/0964-1726/22/2/025036 10.1016/j.ijengsci.2014.04.003 10.1016/j.enconman.2016.01.030 10.1063/1.4954987 10.1016/j.energy.2015.04.009 10.1109/40.928763 10.1021/nl903377u 10.1109/TIE.2013.2242656 10.1016/j.sna.2016.06.033 10.1002/adem.201700743 10.1177/1045389X08099965 10.1088/0964-1726/24/2/023001 10.1016/j.jcrysgro.2016.11.083 10.1557/mrs.2018.180 10.1088/0964-1726/18/2/025009 10.1063/1.5022599 10.1088/1742-6596/1052/1/012050 10.1115/1.4029611 10.1063/1.4719098 10.1109/TPEL.2011.2161675 10.1109/I2MTC.2018.8409628 10.1140/epjst/e2015-02594-4 10.1016/j.nanoen.2018.05.016 10.1063/1.4968811 10.1109/TIE.2014.2370933 10.1109/TMAG.2018.2831000 10.1007/s11012-018-0826-2 10.1088/0964-1726/23/6/065021 10.1016/j.enconman.2018.06.052 10.1115/1.4005824 10.2514/1.C031542 10.1142/S021812741850092X 10.1016/j.paerosci.2015.10.001 10.1515/ehs-2014-0007 10.1115/1.4023412 10.1063/1.4712630 10.1111/j.1475-1305.2004.00120.x 10.1088/0964-1726/16/2/024 10.1063/1.3327330 10.1177/1045389X11417650 10.1115/SMASIS2009-1276 10.1177/1045389X12455723 10.1016/j.sna.2007.10.073 10.1002/ente.201700785 10.1016/j.ymssp.2018.05.029 10.1088/0964-1726/22/6/065015 10.1177/1045389X18770871 10.1109/JMEMS.2016.2611677 10.4028/www.scientific.net/KEM.413-414.439 10.1016/j.compscitech.2007.12.017 10.1002/pat.3908 10.1088/0957-4484/24/22/225501 10.1088/0964-1726/17/01/015038 10.1073/pnas.1317233111 10.1177/1045389X13502854 10.1088/2053-1591/aad491 10.1115/SMASIS2008-662 10.1177/1045389X10366317 10.1016/j.phpro.2015.08.202 doi.org/10.1088/0964-1726/16/5/054 10.1063/1.3357403 10.1088/0964-1726/13/1/007 10.1088/0964-1726/22/9/095019 10.1016/j.nanoen.2018.11.036 10.1016/j.jeurceramsoc.2017.06.053 10.1088/0964-1726/21/8/085004 10.1038/srep12447 10.1016/j.apenergy.2017.04.020 10.1109/TPEL.2018.2815922 10.1109/MIC.2015.115 10.1016/j.ymssp.2014.07.014 10.1103/PhysRevB.77.085415 10.1002/adma.201103727 10.1016/j.sna.2011.03.003 10.1088/0964-1726/23/1/015004 10.1177/1045389X12463459 10.1115/SMASIS2008-426 10.1007/s12541-014-0422-x 10.2514/1.J053108 10.3390/app8040645 10.1016/j.sna.2007.07.004 10.3390/mi2020274 10.1016/j.nanoen.2014.12.038 10.1063/1.4991684 10.1063/1.3487780 10.1088/0964-1726/22/6/065004 10.1002/aenm.201301660 10.1007/s10853-009-3643-0 10.1002/adfm.200800859 10.1108/00022661011104538 10.1109/TIE.2009.2028360 10.1088/0964-1726/22/3/035013 10.1177/1045389X18778370 10.1088/0964-1726/21/7/075023 10.2172/1000659 10.1002/adma.201204488 10.1016/j.sna.2013.11.007 10.1016/j.enconman.2013.09.054 10.1051/epjap/2017170051 10.1016/j.ymssp.2018.02.035 10.1021/acsami.6b15011 10.1088/0964-1726/17/4/045009 10.1016/j.apenergy.2018.06.011 10.1109/IECON.2007.4460120 10.1109/TED.2013.2259240 10.3390/s140203323 10.1088/0964-1726/22/10/105020 10.1117/12.815852 10.1063/1.4887481 10.1039/C4FD00159A 10.1016/j.cap.2015.02.009 10.1016/j.ijengsci.2013.07.004 10.5188/ijsmer.10.34 10.1002/adma.201400562 10.1088/0964-1726/19/11/115021 10.1002/adfm.201401998 10.1115/1.4002782 10.1007/s00542-012-1480-6 10.1039/C3EE42540A 10.1177/1045389X14541501 10.4028/www.scientific.net/AST.101.20 10.1016/j.ijsolstr.2017.03.003 10.1016/j.apor.2015.01.004 10.1177/1045389X16642301 10.1117/12.815189 10.1063/1.4976803 10.1016/j.apenergy.2014.07.077 10.1016/j.enconman.2010.07.024 10.1016/j.sna.2011.01.015 10.1088/0964-1726/13/5/018 10.1088/1361-665X/aa5a5d 10.1115/1.2890402 10.1038/nnano.2010.46 10.1016/j.physd.2010.01.019 10.1016/j.jeurceramsoc.2017.10.023 10.1021/nl900115y 10.1016/j.jascer.2016.12.005 10.1063/1.4886798 10.1007/978-1-4419-9834-7_21 10.1002/aenm.201702649 10.1115/1.4034770 10.1016/j.sna.2012.03.026 10.1109/TIE.2009.2037648 10.1007/s11664-014-3443-4 10.1117/12.2296250 10.1007/s00542-012-1424-1 10.1109/JMEMS.2013.2282623 10.1002/aenm.201500051 10.1016/j.sna.2004.12.032 10.1557/mrs2009.177 10.1002/aelm.201700562 10.1109/TUFFC.2005.1428041 10.1039/C3NR05128E 10.1021/acsami.7b08541 10.1016/j.nanoen.2015.02.034 10.1016/j.sna.2009.06.007 10.1016/j.sna.2013.10.003 10.1007/s10832-012-9713-8 10.1109/IEDM.2010.5703459 10.1002/adma.201870072 10.1016/j.renene.2012.07.037 10.1155/2016/2673292 10.1115/1.4034253 10.1016/j.ymssp.2011.09.002 10.1088/0964-1726/19/11/115011 10.1016/j.jmps.2008.11.002 10.1088/0964-1726/24/6/065039 10.1039/C5EE03181H 10.1039/C7TC00914C 10.1021/acsnano.5b00534 10.1016/j.ymssp.2018.05.016 10.1063/1.3679102 10.1016/j.jsv.2015.11.017 10.1080/00150193.2016.1169154 10.1016/j.sna.2005.10.043 10.3390/su10051347 10.1016/j.energy.2017.10.005 10.1002/adma.201500121 10.1080/10408430490490905 10.1016/j.rser.2015.11.010 10.1016/j.sna.2017.05.027 10.2514/1.25047 10.1109/ICMENS.2004.1508997 10.1016/j.ymssp.2007.09.015 10.1016/j.apenergy.2017.06.018 10.1115/1.4002783 10.1039/c3nr03402j 10.1039/C8TA05887C 10.1109/JSEN.2011.2167965 10.1002/adfm.201802846 10.1016/j.jsv.2005.10.003 10.1109/ISIE.2013.6563689 10.1109/JMEMS.2012.2205901 10.1016/j.jsv.2013.09.035 10.1140/epjb/e2016-70619-y 10.1177/1045389X05053150 10.1016/j.sna.2013.12.033 10.1111/jace.15396 10.1109/ISCAS.2018.8350907 10.1063/1.4973596 10.1039/C2EE23404A 10.1080/10584580590964574 10.1002/adma.201104810 10.1088/0960-1317/21/9/095016 10.1109/SENSOR.2007.4300269 10.1063/1.4991368 10.1039/C3EE43987A 10.1063/1.3253710 10.1109/JETCAS.2014.2337195 10.1038/srep16065 10.1088/1361-665X/aa814e 10.1063/1.3525045 10.1051/epjap/2014140190 10.1145/3144457.3144510 10.1021/acsnano.6b01569 10.1088/0964-1726/18/3/035001 10.1088/0964-1726/20/9/094007 10.1002/adv.21686 10.1007/s11664-014-3534-2 10.1002/adma.201403286 10.1109/TMECH.2018.2794182 10.1063/1.3427405 10.1016/j.nantod.2016.12.005 10.1007/s11012-015-0140-1 10.1080/01411594.2016.1202408 10.1109/TPEL.2007.904230 10.1039/C4EE02435D 10.1115/1.4026278 10.1016/j.sna.2009.12.018 10.1016/j.nanoen.2016.11.015 10.1088/0964-1726/23/2/025026 10.1063/1.3237170 10.1177/1045389X10369716 10.1039/C2CS35223K 10.1016/j.apacoust.2013.04.015 10.1117/12.2084237 10.1016/j.energy.2016.12.035 10.1016/j.rser.2018.03.030 10.1016/j.apenergy.2017.12.125 10.1109/ICICDT.2017.7993506 10.1039/C5TA00147A 10.31438/trf.hh2008.100 10.1016/j.ymssp.2016.07.048 10.1557/mrs.2018.8 10.1109/MPRV.2005.14 10.1088/0964-1726/24/5/055021 10.1063/1.5008724 10.1109/TUFFC.2011.5733266 10.1021/nn5046568 10.1177/1045389X17730926 10.1177/1045389X12457254 10.1016/j.colsurfa.2010.01.005 10.1143/JJAP.44.L104 10.1088/0964-1726/24/5/055008 10.1117/12.920978 10.1515/ehs-2016-0028 10.1088/0964-1726/16/5/036 10.1115/SMASIS2014-7630 10.1121/1.2839000 10.1063/1.2939271 10.1115/1.4002788 10.1177/1045389X07085639 10.1109/PESC.2004.1355442 10.1109/ISAF.1986.201143 10.1002/ente.201700873 10.1016/j.mechatronics.2006.03.003 10.1088/0964-1726/21/1/015011 10.1088/0964-1726/20/4/045004 10.1557/jmr.2018.172 10.1016/j.applthermaleng.2019.01.025 10.1088/0964-1726/20/5/055019 10.1063/1.3503609 10.3390/s140712497 10.1088/1361-665X/aa6cfd 10.1016/j.ijengsci.2014.01.001 10.1016/j.sna.2017.08.005 10.1080/00150193.2014.875315 10.1088/0964-1726/23/4/045039 10.1088/1361-6463/aab97e 10.1002/aenm.201200205 10.1016/j.ceramint.2012.10.155 10.1088/0964-1726/17/01/015035 10.1016/j.ymssp.2017.12.025 10.1016/j.jeurceramsoc.2017.02.049 10.1063/1.3159815 10.1016/j.jnoncrysol.2018.03.038 10.1088/1361-665X/aaca58 10.1016/j.ymssp.2018.03.023 10.1109/MEMSYS.2015.7051166 10.1088/0964-1726/15/5/030 10.1016/j.sna.2018.03.015 10.1088/0960-1317/20/2/025019 10.1109/TUFFC.2012.2269 10.1002/adfm.201706895 10.1088/0960-1317/20/10/104001 10.1080/00222338908051994 10.1007/s10853-016-0325-6 10.1088/0964-1726/20/12/125017 10.1109/TMECH.2011.2159512 10.1115/SMASIS2008-661 10.1016/j.jeurceramsoc.2014.12.036 10.1039/c4ta01714e 10.1007/s00542-013-2030-6 10.1088/1361-665X/aaefc5 10.1109/TIE.2012.2187413 10.1021/nl0728470 10.1109/TMECH.2012.2205266 10.1016/j.mejo.2010.10.007 10.1016/j.enconman.2018.06.081 10.1080/00150198908007920 10.1109/TIE.2009.2014673 10.1177/1045389X11420593 10.1016/j.jsv.2009.11.034 10.1007/s10999-014-9247-0 10.1088/0964-1726/19/2/025018 10.1063/1.4897624 10.1016/j.jsv.2016.12.019 10.24200/sci.2017.4240 10.1016/j.physb.2013.12.040 10.1007/s11071-017-3982-3 10.1063/1.3176019 10.1016/j.nanoen.2012.02.003 10.1063/1.2435346 10.1109/TUFFC.912 10.1016/j.ijengsci.2015.05.004 10.1109/TMC.2018.2828816 10.1088/0964-1726/22/5/055013 10.1063/1.3360219 10.1088/0964-1726/25/10/105016 10.1016/j.ymssp.2014.08.020 10.1016/j.actamat.2011.12.036 10.1063/1.4932947 10.1016/j.nanoen.2018.10.068 10.1177/1045389X08089957 10.1038/ncomms3682 10.1016/j.compstruc.2012.05.010 10.1016/j.jsv.2010.11.018 10.1088/0957-0233/23/1/015101 10.1088/1361-6463/aab9e3 10.1016/j.mejo.2006.07.023 10.1016/j.jpcs.2018.02.024 10.1016/j.jeurceramsoc.2016.07.023 10.1177/1045389X05056859 10.1088/0964-1726/22/2/023001 10.1016/j.nanoen.2014.11.059 10.1016/j.physb.2012.10.029 10.1016/j.jeurceramsoc.2014.02.041 10.1016/j.jsv.2019.01.038 10.1016/j.apenergy.2017.04.019 10.1063/1.4874305 10.1088/1468-6996/11/4/044302 10.1016/j.apenergy.2017.12.053 10.1109/TIE.2011.2167116 10.1016/j.mejo.2007.12.017 10.1016/j.jsv.2014.06.046 10.1109/TRANSDUCERS.2011.5969874 10.1109/JPROC.2008.927494 10.1557/JMR.2004.0328 10.1088/0964-1726/21/6/065017 10.1088/0960-1317/19/6/065014 10.1016/j.actamat.2017.02.029 10.1063/1.3267482 10.1088/0034-4885/61/9/002 10.1115/IMECE2008-68082 10.1007/s13369-018-3187-1 10.1016/j.energy.2017.02.071 10.1111/j.1551-2916.2011.04629.x 10.1016/j.enconman.2015.03.014 10.1016/j.jsv.2013.11.008 10.3390/s140100144 10.1109/ICCEP.2013.6586952 10.1088/0964-1726/18/9/095029 10.1016/j.rser.2018.06.031 10.1109/JSEN.2009.2021192 10.1007/978-1-4419-9598-8 10.1016/j.rser.2018.03.052 10.1088/0964-1726/24/2/025031 10.1016/j.mechatronics.2012.06.006 10.1117/12.2010637 10.1017/jfm.2013.555 10.1016/j.ceramint.2016.12.006 10.1016/j.enconman.2016.05.085 10.1016/j.energy.2018.04.109 10.1016/j.energy.2015.07.114 10.1117/12.815799 10.1088/0964-1726/25/4/045008 10.1088/1361-665X/aad755 10.1088/0964-1726/17/6/065016 10.1109/48.972090 10.1016/j.jfluidstructs.2017.09.007 10.1016/j.nanoen.2015.01.051 10.1117/12.915370 10.1007/s12206-014-0407-9 10.1177/1045389X11416025 10.1063/1.4803445 10.1063/1.2119410 10.1117/12.775851 10.1016/j.energy.2015.09.131 10.1088/0960-1317/20/5/055008 10.1016/j.enconman.2018.02.054 10.1021/nl101060h 10.1016/j.jsv.2015.01.010 10.4028/www.scientific.net/AST.58.159 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd |
Copyright_xml | – notice: 2019 IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/1361-665X/ab36e4 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018) |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_ab36e4 smsab36e4 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 TSCCA W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c460t-e8593d6c1295d5858d9f496c635eac008db048ad2633b36d4bde7eb61cfc83bc3 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 03:38:42 EDT 2025 Thu Jan 07 13:52:09 EST 2021 Wed Aug 21 03:40:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c460t-e8593d6c1295d5858d9f496c635eac008db048ad2633b36d4bde7eb61cfc83bc3 |
Notes | SMS-107814.R2 |
ORCID | 0000-0001-6269-1802 0000-0003-2777-5458 0000-0002-8312-3000 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-665X/ab36e4 |
PageCount | 62 |
ParticipantIDs | iop_journals_10_1088_1361_665X_ab36e4 crossref_citationtrail_10_1088_1361_665X_ab36e4 crossref_primary_10_1088_1361_665X_ab36e4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-22 |
PublicationDateYYYYMMDD | 2019-10-22 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-22 day: 22 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Blackburn (smsab36e4bib17) 2018; 30 Karami (smsab36e4bib321) 2013; 50 Lee (smsab36e4bib115) 2013; 5 Wu (smsab36e4bib156) 2013; 24 Hu (smsab36e4bib193) 2007; 16 Khalifa (smsab36e4bib394) 2015; 19 Palneedi (smsab36e4bib70) 2017; 5 Deterre (smsab36e4bib178) 2012; 21 Leadenham (smsab36e4bib231) 2015; 24 Holmberg (smsab36e4bib403) 2013; 7 Isarakorn (smsab36e4bib62) 2010; 20 Shukla (smsab36e4bib390) 2015; 222 Huguet (smsab36e4bib221) 2018; 226 Wahbah (smsab36e4bib395) 2014; 4 Jang (smsab36e4bib414) 2015; 5 Priya (smsab36e4bib263) 2017; 4 Jung (smsab36e4bib434) 2017; 197 Saadon (smsab36e4bib21) 2011; 52 Zhang (smsab36e4bib36) 2018; 212 Renaud (smsab36e4bib169) 2009; 18 Lallart (smsab36e4bib299) 2011; 165 Zhang (smsab36e4bib323) 2017; 262 Chen (smsab36e4bib232) 2016; 138 Ray (smsab36e4bib140) 2015; 9431 Dasgupta (smsab36e4bib213) 2018; 44 Le (smsab36e4bib33) 2015; 79 Hunter (smsab36e4bib16) 2012; 8377 Martínez-Ayuso (smsab36e4bib65) 2017; 113 Zhu (smsab36e4bib470) 2011; 169 Paulo (smsab36e4bib3) 2010 Karami (smsab36e4bib173) 2012; 21 Leland (smsab36e4bib192) 2006; 15 Tang (smsab36e4bib348) 2018; 76 Abrol (smsab36e4bib313) 2017; 5 Fan (smsab36e4bib208) 2018; 112 Gu (smsab36e4bib171) 2011; 42 Wang (smsab36e4bib179) 2012; 59 Zhang (smsab36e4bib410) 2015; 12 Moon (smsab36e4bib76) 2009; 31 Hu (smsab36e4bib113) 2012; 24 Liang (smsab36e4bib300) 2012; 59 Liu (smsab36e4bib464) 2008; 123 Frischmann (smsab36e4bib9) 2013; 42 Leontsev (smsab36e4bib87) 2010; 11 Wang (smsab36e4bib107) 2006; 312 Kuo (smsab36e4bib261) 2016; 25 Lefeuvre (smsab36e4bib295) 2006; 126 Chen (smsab36e4bib266) 2014; 438 Ma (smsab36e4bib383) 2017 Cao (smsab36e4bib203) 2015; 224 Wang (smsab36e4bib354) 2010; 20 Mo (smsab36e4bib181) 2013; 24 Anton (smsab36e4bib289) 2009; 7288 Hwang (smsab36e4bib407) 2014; 26 Jackson (smsab36e4bib302) 1959 Cottone (smsab36e4bib217) 2009; 102 Anton (smsab36e4bib456) 2013; 8690 Lu (smsab36e4bib285) 2004; 13 Ravi (smsab36e4bib338) 2019; 114 Gao (smsab36e4bib325) 2013; 60 Challa (smsab36e4bib194) 2008; 17 Maurya (smsab36e4bib90) 2018; 33 Khameneifar (smsab36e4bib438) 2008 Xie (smsab36e4bib441) 2015; 94 Feenstra (smsab36e4bib385) 2008; 22 Lefeuvre (smsab36e4bib291) 2007; 22 Chen (smsab36e4bib53) 2018; 8 Chen (smsab36e4bib153) 2013; 410 Kishore (smsab36e4bib315) 2014; 460 Zhou (smsab36e4bib219) 2013; 102 Pozzi (smsab36e4bib391) 2012; 21 Wang (smsab36e4bib472) 2018; 171 İlik (smsab36e4bib415) 2018; 280 Jung (smsab36e4bib381) 2015; 13 Elfrink (smsab36e4bib469) 2010; 20 Jackson (smsab36e4bib262) 2017; 264 Pan (smsab36e4bib67) 2015; 3 Priya (smsab36e4bib316) 2005; 87 Chang (smsab36e4bib132) 2012; 1 Guyomar (smsab36e4bib294) 2005; 52 Lin (smsab36e4bib448) 2009; 106 Gambier (smsab36e4bib455) 2012; 23 Sessler (smsab36e4bib139) 2016; 89 Guigon (smsab36e4bib365) 2008; 17 Yan (smsab36e4bib78) 2011; 94 Stanton (smsab36e4bib197) 2009; 95 Tian (smsab36e4bib254) 2018; 117 Myers (smsab36e4bib318) 2007; 90 Lee (smsab36e4bib445) 2014; 78 Pillatsch (smsab36e4bib388) 2012; 21 Jalali (smsab36e4bib112) 2014; 2 Bibo (smsab36e4bib343) 2015; 137 Chen (smsab36e4bib14) 2018 Yousry (smsab36e4bib474) 2018; 4 Safaei (smsab36e4bib191) 2018; 32 Lin (smsab36e4bib451) 2009; 19 Erturk (smsab36e4bib69) 2008; 93 Goldschmidtboeing (smsab36e4bib148) 2008; 18 Fan (smsab36e4bib163) 2015; 96 Pobering (smsab36e4bib353) 2009; 7288 Zi (smsab36e4bib51) 2016; 10 Makki (smsab36e4bib440) 2012; 18 Ren (smsab36e4bib74) 2010; 96 Li (smsab36e4bib276) 2016; 25 Liang (smsab36e4bib309) 2019; 34 Aktakka (smsab36e4bib257) 2013; 60 Brenes (smsab36e4bib308) 2018; 28 Anton (smsab36e4bib446) 2010; 19 Tian (smsab36e4bib264) 2018; 8 Jeong (smsab36e4bib471) 2014; 7 Sharpes (smsab36e4bib174) 2014; 1 Xie (smsab36e4bib435) 2013; 72 Banerji (smsab36e4bib39) 2016 Lin (smsab36e4bib127) 2009; 95 Pillai (smsab36e4bib468) 2014; 15 Koka (smsab36e4bib131) 2014; 4 Asai (smsab36e4bib42) 2017; 84 Erturk (smsab36e4bib228) 2011; 330 Silva (smsab36e4bib347) 2017; 28 Lu (smsab36e4bib242) 2018; 29 Safaei (smsab36e4bib190) 2017; 26 Wei (smsab36e4bib396) 2013; 22 Miljkovic (smsab36e4bib38) 2014; 105 Rocha (smsab36e4bib379) 2010; 57 Chen (smsab36e4bib467) 2019; 150 Tang (smsab36e4bib259) 2014; 205 Wong (smsab36e4bib371) 2015; 44 Anton (smsab36e4bib29) 2012; 49 Yan (smsab36e4bib214) 2018; 28 Zhang (smsab36e4bib433) 2018; 163 Wang (smsab36e4bib447) 2013; 47 Briscoe (smsab36e4bib110) 2012; 2 Galchev (smsab36e4bib168) 2012; 21 Carrara (smsab36e4bib271) 2012; 100 Qaiser (smsab36e4bib98) 2018; 740 Almouahed (smsab36e4bib401) 2011; 16 Nafari (smsab36e4bib128) 2017; 31 Stamatellou (smsab36e4bib331) 2018; 171 Priya (smsab36e4bib56) 2011 Leadenham (smsab36e4bib230) 2014; 333 Muthalif (smsab36e4bib149) 2015; 54 Fok (smsab36e4bib268) 2008; 33 Wang (smsab36e4bib210) 2018; 108 Van den Ende (smsab36e4bib444) 2011; 21 Cuadras (smsab36e4bib15) 2010; 158 Davis (smsab36e4bib102) 2018; 501 Yang (smsab36e4bib314) 2014; 105 Narita (smsab36e4bib25) 2018; 20 Kong (smsab36e4bib303) 2010; 21 Elvin (smsab36e4bib287) 2009; 20 Xu (smsab36e4bib126) 2010; 1 Chen (smsab36e4bib177) 2012; 38 Gonzalez (smsab36e4bib375) 2002; 10 Brenes (smsab36e4bib307) 2018; 27 Reissman (smsab36e4bib416) 2008 Li (smsab36e4bib459) 2015; 21 Erturk (smsab36e4bib145) 2008; 130 Lin (smsab36e4bib450) 2008; 68 Muralt (smsab36e4bib63) 2009; 34 De Paula (smsab36e4bib162) 2015; 54 Shibata (smsab36e4bib84) 2018; 43 Dai (smsab36e4bib341) 2014; 77 Hwang (smsab36e4bib83) 2015; 5 Moss (smsab36e4bib40) 2015; 24 Espinosa (smsab36e4bib133) 2012; 24 Jasim (smsab36e4bib431) 2017; 141 Díez (smsab36e4bib24) 2018 duToit (smsab36e4bib279) 2005; 71 Schlichting (smsab36e4bib461) 2013; 23 Quinn (smsab36e4bib206) 2011; 133 Vasic (smsab36e4bib473) 2014; 28 Qi (smsab36e4bib275) 2016; 108 Harne (smsab36e4bib20) 2013; 22 Schlichting (smsab36e4bib462) 2012; 23 Kim (smsab36e4bib304) 2007; 54 Shinekumar (smsab36e4bib97) 2015; 44 Palosaari (smsab36e4bib180) 2012; 28 Lee (smsab36e4bib248) 2009; 19 Dhakar (smsab36e4bib172) 2013; 199 Yan (smsab36e4bib92) 2017; 37 Soin (smsab36e4bib187) 2014; 7 Zhou (smsab36e4bib215) 2018; 85 Piñeirua (smsab36e4bib355) 2015; 346 Halim (smsab36e4bib167) 2014; 208 Lefeuvre (smsab36e4bib292) 2005; 16 Tehrani (smsab36e4bib226) 2014; 333 Koka (smsab36e4bib129) 2013; 4 Shafer (smsab36e4bib424) 2015; 24 Zhang (smsab36e4bib386) 2015; 13 Roundy (smsab36e4bib280) 2004; 13 Deterre (smsab36e4bib413) 2014; 23 Zhou (smsab36e4bib373) 2018; 53 Erturk (smsab36e4bib286) 2008; 17 Jiang (smsab36e4bib96) 2013; 14 Pondrom (smsab36e4bib138) 2014; 104 Qi (smsab36e4bib35) 2010; 10 Yang (smsab36e4bib237) 2019; 446 Taylor (smsab36e4bib351) 2001; 26 Garbuio (smsab36e4bib298) 2009; 56 Kottapalli (smsab36e4bib265) 2019 Damjanovic (smsab36e4bib60) 1998; 61 Chen (smsab36e4bib312) 2019 Uchino (smsab36e4bib26) 2018; 6 Wu (smsab36e4bib91) 2018; 6 Ng (smsab36e4bib13) 2018; 90 Erturk (smsab36e4bib344) 2010; 96 Sullivan (smsab36e4bib2) 2010 Badel (smsab36e4bib305) 2016 Smoker (smsab36e4bib466) 2012; 111 Wang (smsab36e4bib224) 2017; 118 Stephen (smsab36e4bib22) 2006; 293 Yan (smsab36e4bib8) 2010; 10 Akaydin (smsab36e4bib336) 2012; 21 Xie (smsab36e4bib443) 2015; 86 Zhang (smsab36e4bib240) 2017; 28 Mitcheson (smsab36e4bib4) 2008; 96 Kanoun (smsab36e4bib5) 2018 Xu (smsab36e4bib108) 2010; 5 Tadesse (smsab36e4bib458) 2009; 20 Pillatsch (smsab36e4bib164) 2017; 26 Zhao (smsab36e4bib212) 2018; 5 Liu (smsab36e4bib246) 2008; 39 Wang (smsab36e4bib253) 2017; 9 Xie (smsab36e4bib429) 2015; 93 Moro (smsab36e4bib428) 2010; 19 Cao (smsab36e4bib44) 2018; 54 Dias (smsab36e4bib346) 2013; 102 Guyomar (smsab36e4bib310) 2011; 2 Roundy (smsab36e4bib150) 2005; 4 Erturk (smsab36e4bib288) 2012; 106-107 Park (smsab36e4bib152) 2013; 39 Xie (smsab36e4bib361) 2014; 333 Harstad (smsab36e4bib68) 2017; 7 Zheng (smsab36e4bib94) 2017; 5 Xu (smsab36e4bib155) 2012; 21 Hanner (smsab36e4bib106) 1989; 100 Dagdeviren (smsab36e4bib409) 2014; 111 Singh (smsab36e4bib439) 2012; 22 Shindo (smsab36e4bib175) 2014; 10 Shen (smsab36e4bib247) 2009; 154 Ansari (smsab36e4bib411) 2017; 26 Amini (smsab36e4bib340) 2017; 24 Klein (smsab36e4bib105) 1986 Bryant (smsab36e4bib330) 2011; 20 Zhou (smsab36e4bib199) 2014; 133 Zhao (smsab36e4bib382) 2014; 14 Yang (smsab36e4bib82) 2016; 122 Feenstra (smsab36e4bib121) 2008; 103 Sohn (smsab36e4bib114) 2013; 6 Syta (smsab36e4bib185) 2015; 50 Sun (smsab36e4bib238) 2018; 114 Ajitsaria (smsab36e4bib283) 2007; 16 Junior (smsab36e4bib18) 2018; 91 Wu (smsab36e4bib236) 2018; 29 Tang (smsab36e4bib229) 2011; 20 Challa (smsab36e4bib457) 2009; 18 Chen (smsab36e4bib284) 2006; 16 Aktakka (smsab36e4bib183) 2015 Yang (smsab36e4bib186) 2012; 188 Savolainen (smsab36e4bib136) 1989; 26 Priya (smsab36e4bib317) 2005; 44 Li (smsab36e4bib99) 2017; 52 Bilgen (smsab36e4bib188) 2012; 27 Tabesh (smsab36e4bib290) 2010; 57 Zhang (smsab36e4bib357) 2011; 30 Kwon (smsab36e4bib333) 2010; 97 Zhang (smsab36e4bib337) 2016; 2016 Zhang (smsab36e4bib37) 2016; 87 Erturk (smsab36e4bib218) 2009; 94 Pobering (smsab36e4bib352) 2004 Yue (smsab36e4bib80) 2017; 37 Erturk (smsab36e4bib28) 2011; 22 Arrieta (smsab36e4bib200) 2010; 97 Liu (smsab36e4bib233) 2018; 29 Lee (smsab36e4bib77) 2004; 19 Yu (smsab36e4bib256) 2014; 14 Shaikh (smsab36e4bib7) 2016; 55 Sohn (smsab36e4bib118) 2014; 6 Hwang (smsab36e4bib427) 2015; 15 Ahn (smsab36e4bib239) 2018; 277 Murray (smsab36e4bib359) 2009; 7288 Safaei (smsab36e4bib405) 2018; 10595 Li (smsab36e4bib327) 2009 Kang (smsab36e4bib88) 2015; 35 Xu (smsab36e4bib189) 2013; 22 Karami (smsab36e4bib34) 2012; 100 Chen (smsab36e4bib48) 2015; 9 Mathers (smsab36e4bib75) 2009; 9 Reissman (smsab36e4bib417) 2008 Fang (smsab36e4bib245) 2006; 37 Naseer (smsab36e4bib207) 2017; 203 Aktakka (smsab36e4bib258) 2010 Hobeck (smsab36e4bib335) 2012; 21 Grinspan (smsab36e4bib369) 2010; 356 Kuang (smsab36e4bib397) 2016; 25 Shafer (smsab36e4bib422) 2012; 8341 Delnavaz (smsab36e4bib398) 2014; 61 Bowland (smsab36e4bib452) 2017; 9 Cao (smsab36e4bib222) 2015; 107 Won (smsab36e4bib255) 2019; 55 Jung (smsab36e4bib166) 2010; 96 Gu (smsab36e4bib170) 2011; 20 Wang (smsab36e4bib23) 2018; 212 Sousa (smsab36e4bib345) 2011; 20 Almouahed (smsab36e4bib402) 2016 Ansari (smsab36e4bib406) 2016; 119 Wu (smsab36e4bib362) 2015; 50 Khameneifar (smsab36e4bib158) 2013; 18 Hashimoto (smsab36e4bib154) 2013 Harne (smsab36e4bib235) 2016; 363 Zheng (smsab36e4bib85) 2018; 98 Bryant (smsab36e4bib329) 2011; 133 Xie |
References_xml | – volume: 28 start-page: 2023 year: 2017 ident: smsab36e4bib347 article-title: Self-powered active control of elastic and aeroelastic oscillations using piezoelectric material publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X16685448 – volume: 105 year: 2009 ident: smsab36e4bib95 article-title: Characterization of high temperature piezoelectric crystals with an ordered langasite structure publication-title: J. Appl. Phys. doi: 10.1063/1.3142429 – volume: 10 start-page: 6429 year: 2016 ident: smsab36e4bib49 article-title: Triboelectric nanogenerators for blue energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.6b04213 – volume: 6 start-page: 043110 year: 2014 ident: smsab36e4bib430 article-title: Piezoelectric energy harvesting from traffic-induced pavement vibrations publication-title: J. Renew. Sustain. Ener. doi: 10.1063/1.4891169 – year: 2009 ident: smsab36e4bib54 article-title: Power management and energy harvesting techniques for wireless sensor nodes doi: 10.1109/TELSKS.2009.5339410 – volume: 119 year: 2016 ident: smsab36e4bib406 article-title: Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers publication-title: J. Appl. Phys. doi: 10.1063/1.4942882 – volume: 312 start-page: 242 year: 2006 ident: smsab36e4bib107 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science doi: 10.1126/science.1124005 – volume: 92 start-page: 206 year: 2015 ident: smsab36e4bib220 article-title: Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2014.12.015 – volume: 740 start-page: 1 year: 2018 ident: smsab36e4bib98 article-title: 0–3 type Bi3TaTiO9: 40 wt% BiFeO3 composite with improved high-temperature piezoelectric properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.12.365 – volume: 35 start-page: 1659 year: 2015 ident: smsab36e4bib89 article-title: Transferring lead-free piezoelectric ceramics into application publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.12.013 – volume: 85 start-page: 521 year: 2018 ident: smsab36e4bib215 article-title: Numerical analysis and experimental verification of broadband tristable energy harvesters publication-title: tm -Technisches Messen doi: 10.1515/teme-2017-0076 – volume: 194 start-page: 212 year: 2017 ident: smsab36e4bib349 article-title: Harvesting ambient wind energy with an inverted piezoelectric flag publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.016 – volume: 88 start-page: 2287 year: 2011 ident: smsab36e4bib10 article-title: Photovoltaic modules and their applications: A review on thermal modelling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.005 – volume: 33 start-page: 931 year: 2008 ident: smsab36e4bib268 article-title: Acoustic metamaterials publication-title: MRS Bull. doi: 10.1557/mrs2008.202 – volume: 20 start-page: 529 year: 2009 ident: smsab36e4bib30 article-title: Modeling of piezoelectric energy harvesting from an l-shaped beam-mass structure with an application to UAVs publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X08098096 – volume: 85 start-page: 435 year: 2014 ident: smsab36e4bib426 article-title: Modelling piezoelectric energy harvesting potential in an educational building publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2014.05.096 – volume: 16 start-page: R1 year: 2007 ident: smsab36e4bib1 article-title: A review of power harvesting using piezoelectric materials (2003–2006) publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/3/R01 – volume: 21 start-page: 145 year: 2012 ident: smsab36e4bib173 article-title: Parametric study of zigzag microstructure for vibrational energy harvesting publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2011.2171321 – volume: 17 year: 2008 ident: smsab36e4bib366 article-title: Harvesting raindrop energy: experimental study publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/01/015039 – volume: 59 start-page: 2022 year: 2012 ident: smsab36e4bib179 article-title: Vibration energy harvesting using a piezoelectric circular diaphragm array publication-title: IEEE T. Ultrason. Ferr. doi: 10.1109/TUFFC.2012.2422 – volume: 25 year: 2016 ident: smsab36e4bib397 article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/8/085029 – volume: 21 start-page: 105024 year: 2012 ident: smsab36e4bib335 article-title: Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/10/105024 – volume: 8 start-page: 5098 year: 2016 ident: smsab36e4bib125 article-title: Lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting publication-title: Nanoscale doi: 10.1039/C5NR09029F – volume: 93 year: 2008 ident: smsab36e4bib69 article-title: Power generation and shunt damping performance of a single crystal lead magnesium niobate-lead zirconate titanate unimorph: Analysis and experiment publication-title: Appl. Phys. Lett. doi: 10.1063/1.3040011 – year: 1998 ident: smsab36e4bib377 article-title: Parasitic power harvesting in shoes doi: 10.1109/ISWC.1998.729539 – volume: 31 start-page: 688 year: 2009 ident: smsab36e4bib76 article-title: Sustainable vibration energy harvesting based on Zr-doped PMN-PT piezoelectric single crystal cantilevers publication-title: ETRI J. doi: 10.4218/etrij.09.1209.0015 – volume: 23 year: 2014 ident: smsab36e4bib399 article-title: Flexible piezoelectric energy harvesting from jaw movements publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/10/105020 – volume: 24 year: 2015 ident: smsab36e4bib387 article-title: Design and characterization of scalable woven piezoelectric energy harvester for wearable applications publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/4/045008 – volume: 228 start-page: 104 year: 2015 ident: smsab36e4bib252 article-title: Low frequency piezoelectric energy harvesting at multi vibration mode shapes publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2015.02.036 – volume: 47 start-page: 125 year: 2013 ident: smsab36e4bib447 article-title: Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics publication-title: J. Compos. Mater. doi: 10.1177/0021998312448677 – volume: 98 start-page: 552 year: 2018 ident: smsab36e4bib85 article-title: Recent development in lead-free perovskite piezoelectric bulk materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.06.002 – year: 2016 ident: smsab36e4bib402 article-title: Self-powered device for tibiofemoral force measurement in knee implant doi: 10.1109/ATSIP.2016.7523106 – volume: 25 year: 2016 ident: smsab36e4bib276 article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/4/045013 – volume: 199 start-page: 344 year: 2013 ident: smsab36e4bib172 article-title: A new energy harvester design for high power output at low frequencies publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2013.06.009 – volume: 3991 year: 2000 ident: smsab36e4bib104 article-title: Low-cost piezocomposite actuator for structural control applications doi: 10.1117/12.388175 – volume: 12 start-page: 1849 year: 2018 ident: smsab36e4bib52 article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 21 year: 2012 ident: smsab36e4bib336 article-title: The performance of a self-excited fluidic energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/2/025007 – volume: 20 year: 2011 ident: smsab36e4bib229 article-title: Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/12/125011 – year: 2010 ident: smsab36e4bib3 article-title: Review and future trend of energy harvesting methods for portable medical devices – volume: 102 year: 2009 ident: smsab36e4bib217 article-title: Nonlinear energy harvesting publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.080601 – volume: 7977 start-page: 797702 year: 2011 ident: smsab36e4bib420 article-title: Electrical power generation from insect flight doi: 10.1117/12.880702 – volume: 18 year: 2008 ident: smsab36e4bib148 article-title: Characterization of different beam shapes for piezoelectric energy harvesting publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/10/104013 – volume: 22 year: 2013 ident: smsab36e4bib436 article-title: Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/9/095024 – volume: 19 start-page: 115017 year: 2010 ident: smsab36e4bib297 article-title: Enhanced synchronized switch harvesting: A new energy harvesting scheme for efficient energy extraction publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/11/115017 – volume: 102 year: 2013 ident: smsab36e4bib346 article-title: Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling publication-title: Appl. Phys. Lett. doi: 10.1063/1.4789433 – volume: 280 start-page: 38 year: 2018 ident: smsab36e4bib415 article-title: Thin film piezoelectric acoustic transducer for fully implantable cochlear implants publication-title: Sensor. Actuat., A Phys. doi: 10.1016/j.sna.2018.07.020 – volume: 114 start-page: 207 year: 2017 ident: smsab36e4bib86 article-title: A brief review of Ba (Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2017.10.041 – volume: 38 start-page: S271 year: 2012 ident: smsab36e4bib177 article-title: Vibration energy harvesting with a clamped piezoelectric circular diaphragm publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.04.099 – volume: 222 start-page: 39 year: 2015 ident: smsab36e4bib390 article-title: PENDEXE: A novel energy harvesting concept for low frequency human waistline publication-title: Sensor. Actuat., A Phys. doi: 10.1016/j.sna.2014.11.016 – volume: 77 start-page: 967 year: 2014 ident: smsab36e4bib341 article-title: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1355-8 – volume: 1 start-page: 93 year: 2010 ident: smsab36e4bib126 article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics publication-title: Nat. Commun. doi: 10.1038/ncomms1098 – volume: 6 start-page: 661 year: 2010 ident: smsab36e4bib463 article-title: Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems publication-title: Smart Struct. Syst. doi: 10.12989/sss.2010.6.5_6.661 – volume: 165 start-page: 294 year: 2011 ident: smsab36e4bib299 article-title: High efficiency, wide load bandwidth piezoelectric energy scavenging by a hybrid nonlinear approach publication-title: Sens. Actuat., A-Phys. doi: 10.1016/j.sna.2010.09.022 – year: 2009 ident: smsab36e4bib6 article-title: Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)-Survey and challenges doi: 10.1109/WIRELESSVITAE.2009.5172411 – volume: 21 start-page: 1293 year: 2010 ident: smsab36e4bib303 article-title: Resistive impedance matching circuit for piezoelectric energy harvesting publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X09357971 – volume: 21 year: 2012 ident: smsab36e4bib388 article-title: A scalable piezoelectric impulse-excited energy harvester for human body excitation publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/11/115018 – start-page: 321 year: 2016 ident: smsab36e4bib305 article-title: Nonlinear conditioning circuits for piezoelectric energy harvesters doi: 10.1007/978-3-319-20355-3_10 – start-page: 3 year: 2019 ident: smsab36e4bib312 article-title: Introduction to energy harvesting transducers and their power conditioning circuits – volume: 35 start-page: 618 year: 1996 ident: smsab36e4bib374 article-title: Human-powered wearable computing publication-title: IBM Syst. J. doi: 10.1147/sj.353.0618 – volume: 54 start-page: 1851 year: 2007 ident: smsab36e4bib304 article-title: Consideration of impedance matching techniques for efficient piezoelectric energy harvesting publication-title: IEEE T. Ultrason. Ferr. doi: 10.1109/TUFFC.2007.469 – volume: 22 year: 2013 ident: smsab36e4bib372 article-title: Energy harvesting from hydraulic pressure fluctuations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/2/025036 – volume: 81 start-page: 41 year: 2014 ident: smsab36e4bib360 article-title: Energy harvesting from transverse ocean waves by a piezoelectric plate publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2014.04.003 – volume: 112 start-page: 246 year: 2016 ident: smsab36e4bib437 article-title: Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2016.01.030 – volume: 108 year: 2016 ident: smsab36e4bib275 article-title: Acoustic energy harvesting based on a planar acoustic metamaterial publication-title: Appl. Phys. Lett. doi: 10.1063/1.4954987 – volume: 86 start-page: 385 year: 2015 ident: smsab36e4bib443 article-title: Energy harvesting from a vehicle suspension system publication-title: Energy doi: 10.1016/j.energy.2015.04.009 – volume: 21 start-page: 30 year: 2001 ident: smsab36e4bib378 article-title: Energy scavenging with shoe-mounted piezoelectrics publication-title: IEEE Micro doi: 10.1109/40.928763 – volume: 10 start-page: 524 year: 2010 ident: smsab36e4bib35 article-title: Piezoelectric ribbons printed onto rubber for flexible energy conversion publication-title: Nano Lett. doi: 10.1021/nl903377u – volume: 61 start-page: 583 year: 2014 ident: smsab36e4bib398 article-title: Energy harvesting for in-ear devices using ear canal dynamic motion publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2013.2242656 – volume: 247 start-page: 547 year: 2016 ident: smsab36e4bib195 article-title: Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2016.06.033 – volume: 20 year: 2018 ident: smsab36e4bib25 article-title: A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700743 – volume: 20 start-page: 625 year: 2009 ident: smsab36e4bib458 article-title: Multimodal energy harvesting system: piezoelectric and electromagnetic publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X08099965 – volume: 24 year: 2015 ident: smsab36e4bib40 article-title: Scaling and power density metrics of electromagnetic vibration energy harvesting devices publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/2/023001 – volume: 468 start-page: 411 year: 2017 ident: smsab36e4bib72 article-title: Enhanced optical, thermal and piezoelectric behavior in dye doped potassium acid phthalate (KAP) single crystal publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2016.11.083 – volume: 43 start-page: 612 year: 2018 ident: smsab36e4bib84 article-title: Applications of lead-free piezoelectric materials publication-title: MRS Bull. doi: 10.1557/mrs.2018.180 – volume: 18 year: 2009 ident: smsab36e4bib147 article-title: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/2/025009 – year: 2016 ident: smsab36e4bib39 article-title: STR-991: Energy harvesting methods for structural health monitoring using wireless sensors: A review – volume: 112 year: 2018 ident: smsab36e4bib208 article-title: A monostable piezoelectric energy harvester for broadband low-level excitations publication-title: Appl. Phys. Lett. doi: 10.1063/1.5022599 – volume: 1052 start-page: 012050 year: 2018 ident: smsab36e4bib306 article-title: Experimental validation of wideband piezoelectric energy harvesting based on frequency-tuning synchronized charge extraction publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/1052/1/012050 – volume: 137 year: 2015 ident: smsab36e4bib343 article-title: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations publication-title: J. Vib. Acoust. doi: 10.1115/1.4029611 – volume: 100 year: 2012 ident: smsab36e4bib271 article-title: Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror publication-title: Appl. Phys. Lett. doi: 10.1063/1.4719098 – volume: 27 start-page: 803 year: 2012 ident: smsab36e4bib311 article-title: Review of power conditioning for kinetic energy harvesting systems publication-title: IEEE T. Power Electr. doi: 10.1109/TPEL.2011.2161675 – year: 2018 ident: smsab36e4bib14 article-title: Photovoltaic energy harvesting in indoor environments doi: 10.1109/I2MTC.2018.8409628 – volume: 224 start-page: 2867 year: 2015 ident: smsab36e4bib203 article-title: Internal resonance for nonlinear vibration energy harvesting publication-title: Eur. Phys. J.-Spec. Top. doi: 10.1140/epjst/e2015-02594-4 – volume: 50 start-page: 52 year: 2018 ident: smsab36e4bib143 article-title: Ferroelectret nanogenerator with large transverse piezoelectric activity publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.016 – volume: 87 year: 2016 ident: smsab36e4bib37 article-title: Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4968811 – volume: 62 start-page: 3576 year: 2015 ident: smsab36e4bib322 article-title: An efficient piezoelectric windmill topology for energy harvesting from low-speed air flows publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2014.2370933 – volume: 54 start-page: 1-5 year: 2018 ident: smsab36e4bib44 article-title: Modeling and design of an efficient magnetostrictive energy harvesting system with low voltage and low power publication-title: IEEE T. Magn. doi: 10.1109/TMAG.2018.2831000 – volume: 53 start-page: 2379 year: 2018 ident: smsab36e4bib373 article-title: Modeling and preliminary analysis of piezoelectric energy harvester based on cylindrical tube conveying fluctuating fluid publication-title: Meccanica doi: 10.1007/s11012-018-0826-2 – volume: 23 year: 2014 ident: smsab36e4bib205 article-title: Broadband energy harvesting using acoustic black hole structural tailoring publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/6/065021 – volume: 171 start-page: 1134 year: 2018 ident: smsab36e4bib472 article-title: Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2018.06.052 – volume: 134 year: 2012 ident: smsab36e4bib151 article-title: Cantilevered piezoelectric energy harvester with a dynamic magnifier publication-title: J. Vib. Acoust. doi: 10.1115/1.4005824 – volume: 49 start-page: 292 year: 2012 ident: smsab36e4bib29 article-title: Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage publication-title: J. Aircr. doi: 10.2514/1.C031542 – volume: 28 year: 2018 ident: smsab36e4bib214 article-title: Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement publication-title: Int. J. Bifurcat. Chaos doi: 10.1142/S021812741850092X – volume: 79 start-page: 147 year: 2015 ident: smsab36e4bib33 article-title: Review on energy harvesting for structural health monitoring in aeronautical applications publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2015.10.001 – volume: 1 start-page: 209 year: 2014 ident: smsab36e4bib174 article-title: Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters publication-title: Energy Harvesting and Systems doi: 10.1515/ehs-2014-0007 – volume: 7 year: 2013 ident: smsab36e4bib403 article-title: Battery-less wireless instrumented knee implant publication-title: J. Med. Devices doi: 10.1115/1.4023412 – volume: 111 year: 2012 ident: smsab36e4bib466 article-title: Energy harvesting from a standing wave thermoacoustic-piezoelectric resonator publication-title: J. Appl. Phys. doi: 10.1063/1.4712630 – volume: 40 start-page: 49 year: 2004 ident: smsab36e4bib282 article-title: Estimation of electric charge output for piezoelectric energy harvesting publication-title: Strain doi: 10.1111/j.1475-1305.2004.00120.x – volume: 16 start-page: 447 year: 2007 ident: smsab36e4bib283 article-title: Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/2/024 – volume: 96 year: 2010 ident: smsab36e4bib74 article-title: Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal cantilever publication-title: Appl. Phys. Lett. doi: 10.1063/1.3327330 – volume: 22 start-page: 1929 year: 2011 ident: smsab36e4bib27 article-title: Analysis of energy harvesters for highway bridges publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11417650 – start-page: 611-619 year: 2009 ident: smsab36e4bib327 article-title: Vertical-stalk flapping-leaf generator for wind energy harvesting doi: 10.1115/SMASIS2009-1276 – volume: 23 start-page: 1921 year: 2012 ident: smsab36e4bib462 article-title: Passive multi-source energy harvesting schemes publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12455723 – volume: 145–146 start-page: 363 year: 2008 ident: smsab36e4bib251 article-title: Integrated power harvesting system including a MEMS generator and a power management circuit publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2007.10.073 – volume: 6 start-page: 829 year: 2018 ident: smsab36e4bib26 article-title: Piezoelectric energy harvesting systems—Essentials to successful developments publication-title: Energy Technol. doi: 10.1002/ente.201700785 – volume: 114 start-page: 467 year: 2018 ident: smsab36e4bib238 article-title: Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH) publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.05.029 – volume: 22 start-page: 065015 year: 2013 ident: smsab36e4bib189 article-title: Energy harvesting using a PZT ceramic multilayer stack publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/6/065015 – volume: 29 start-page: 2477 year: 2018 ident: smsab36e4bib242 article-title: An E-shape broadband piezoelectric energy harvester induced by magnets publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X18770871 – volume: 26 start-page: 1 year: 2017 ident: smsab36e4bib41 article-title: Review of MEMS electromagnetic vibration energy harvester publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2016.2611677 – volume: 413–414 start-page: 439 year: 2009 ident: smsab36e4bib31 article-title: Harvesting vibration energy for structural health monitoring in aircraft publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.413-414.439 – volume: 68 start-page: 1911 year: 2008 ident: smsab36e4bib450 article-title: Concept and model of a piezoelectric structural fiber for multifunctional composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2007.12.017 – volume: 28 start-page: 476 year: 2017 ident: smsab36e4bib142 article-title: Polymer ferroelectret based on polypropylene foam: piezoelectric properties prediction using dynamic mechanical analysis publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3908 – volume: 24 year: 2013 ident: smsab36e4bib119 article-title: Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor publication-title: Nanotechnology doi: 10.1088/0957-4484/24/22/225501 – volume: 17 year: 2008 ident: smsab36e4bib365 article-title: Harvesting raindrop energy: theory publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/01/015038 – volume: 111 start-page: 1927 year: 2014 ident: smsab36e4bib409 article-title: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1317233111 – volume: 25 start-page: 923 year: 2014 ident: smsab36e4bib400 article-title: Human passive motions and a user-friendly energy harvesting system publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X13502854 – year: 1997 ident: smsab36e4bib103 article-title: Active fiber composites for structural actuation – volume: 5 year: 2018 ident: smsab36e4bib212 article-title: Analysis of broadband characteristics of two degree of freedom bistable piezoelectric energy harvester publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aad491 – start-page: 711-718 year: 2008 ident: smsab36e4bib416 article-title: An ultra-lightweight multi-source power harvesting system for insect cyborg sentinels doi: 10.1115/SMASIS2008-662 – volume: 21 start-page: 1263 year: 2010 ident: smsab36e4bib332 article-title: Energy harvesting from highly unsteady fluid flows using piezoelectric materials publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X10366317 – volume: 30 start-page: 145 year: 2011 ident: smsab36e4bib357 article-title: Advances in ocean wave energy converters using piezoelectric materials publication-title: Journal of Hydroelectric Engineering – volume: 70 start-page: 970 year: 2015 ident: smsab36e4bib442 article-title: Analysis and optimization of a piezoelectric harvester on a car damper publication-title: Phys. Proc. doi: 10.1016/j.phpro.2015.08.202 – volume: 16 start-page: 1961 year: 2007 ident: smsab36e4bib193 article-title: A piezoelectric power harvester with adjustable frequency through axial preloads publication-title: Smart Mater. Struct. doi: doi.org/10.1088/0964-1726/16/5/054 – volume: 107 year: 2010 ident: smsab36e4bib46 article-title: Experimental tests of a magnetostrictive energy harvesting device toward its modeling publication-title: J. Appl. Phys. doi: 10.1063/1.3357403 – volume: 13 start-page: 57 year: 2004 ident: smsab36e4bib285 article-title: Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/13/1/007 – volume: 22 year: 2013 ident: smsab36e4bib432 article-title: Piezoelectric energy harvesting from traffic-induced bridge vibrations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/9/095019 – volume: 56 start-page: 169 year: 2019 ident: smsab36e4bib465 article-title: A brief review of sound energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.036 – volume: 37 start-page: 4625 year: 2017 ident: smsab36e4bib80 article-title: High power density in a piezoelectric energy harvesting ceramic by optimizing the sintering temperature of nanocrystalline powders publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.06.053 – volume: 21 year: 2012 ident: smsab36e4bib178 article-title: An active piezoelectric energy extraction method for pressure energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/8/085004 – volume: 5 start-page: 12447 year: 2015 ident: smsab36e4bib414 article-title: A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model publication-title: Sci. Rep. doi: 10.1038/srep12447 – volume: 197 start-page: 222 year: 2017 ident: smsab36e4bib434 article-title: Flexible piezoelectric polymer-based energy harvesting system for roadway applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.020 – volume: 34 start-page: 275 year: 2019 ident: smsab36e4bib309 article-title: Synchronized triple bias-flip interface circuit for piezoelectric energy harvesting enhancement publication-title: IEEE T. Power Electr. doi: 10.1109/TPEL.2018.2815922 – volume: 19 start-page: 8 year: 2015 ident: smsab36e4bib394 article-title: Energy-harvesting wearables for activity-aware services publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2015.115 – volume: 54 start-page: 417 year: 2015 ident: smsab36e4bib149 article-title: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2014.07.014 – volume: 77 year: 2008 ident: smsab36e4bib267 article-title: Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.085415 – volume: 24 start-page: 110 year: 2012 ident: smsab36e4bib113 article-title: Replacing a battery by a nanogenerator with 20 V output publication-title: Adv. Mater. doi: 10.1002/adma.201103727 – volume: 167 start-page: 449 year: 2011 ident: smsab36e4bib356 article-title: A shear mode piezoelectric energy harvester based on a pressurized water flow publication-title: Sensor. Actuat., A Phys. doi: 10.1016/j.sna.2011.03.003 – volume: 23 year: 2013 ident: smsab36e4bib461 article-title: A self-reliant avian bio-logger: energy storage considerations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/1/015004 – volume: 24 start-page: 828 year: 2013 ident: smsab36e4bib181 article-title: Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12463459 – start-page: 331-337 year: 2008 ident: smsab36e4bib438 article-title: Energy harvesting from pneumatic tires using piezoelectric transducers doi: 10.1115/SMASIS2008-426 – volume: 15 start-page: 949 year: 2014 ident: smsab36e4bib468 article-title: A review of acoustic energy harvesting publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-014-0422-x – volume: 53 start-page: 394 year: 2014 ident: smsab36e4bib334 article-title: Three-degree-of-freedom hybrid piezoelectric-inductive aeroelastic energy harvester exploiting a control surface publication-title: AIAA J. doi: 10.2514/1.J053108 – volume: 8 start-page: 645 year: 2018 ident: smsab36e4bib264 article-title: A review of MEMS scale piezoelectric energy harvester publication-title: Appl. Sci. doi: 10.3390/app8040645 – volume: 142 start-page: 329 year: 2008 ident: smsab36e4bib157 article-title: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2007.07.004 – volume: 2 start-page: 274 year: 2011 ident: smsab36e4bib310 article-title: Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation publication-title: Micromachines doi: 10.3390/mi2020274 – volume: 12 start-page: 296 year: 2015 ident: smsab36e4bib410 article-title: A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.038 – volume: 111 year: 2017 ident: smsab36e4bib274 article-title: Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.4991684 – volume: 97 year: 2010 ident: smsab36e4bib200 article-title: A piezoelectric bistable plate for nonlinear broadband energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.3487780 – volume: 22 year: 2013 ident: smsab36e4bib272 article-title: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/6/065004 – volume: 4 year: 2014 ident: smsab36e4bib131 article-title: A low‐frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301660 – volume: 44 start-page: 5049 year: 2009 ident: smsab36e4bib55 article-title: Review: environmental friendly lead-free piezoelectric materials publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3643-0 – year: 1959 ident: smsab36e4bib302 – volume: 19 start-page: 592 year: 2009 ident: smsab36e4bib451 article-title: Fabrication and electromechanical characterization of a piezoelectric structural fiber for multifunctional composites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800859 – volume: 82 start-page: 376 year: 2010 ident: smsab36e4bib319 article-title: Use of a piezo-composite generating element for harvesting wind energy in an urban region publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/00022661011104538 – volume: 57 start-page: 813 year: 2010 ident: smsab36e4bib379 article-title: Energy harvesting from piezoelectric materials fully integrated in footwear publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2009.2028360 – volume: 22 year: 2013 ident: smsab36e4bib202 article-title: Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/3/035013 – volume: 29 start-page: 2766 year: 2018 ident: smsab36e4bib236 article-title: An internal resonance based frequency up-converting energy harvester publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X18778370 – volume: 21 year: 2012 ident: smsab36e4bib391 article-title: The pizzicato knee-joint energy harvester: characterization with biomechanical data and the effect of backpack load publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/7/075023 – year: 2010 ident: smsab36e4bib2 doi: 10.2172/1000659 – volume: 25 start-page: 867 year: 2013 ident: smsab36e4bib111 article-title: A Self‐Powered ZnO‐Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response publication-title: Adv. Mater. doi: 10.1002/adma.201204488 – volume: 205 start-page: 150 year: 2014 ident: smsab36e4bib259 article-title: Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2013.11.007 – volume: 78 start-page: 32 year: 2014 ident: smsab36e4bib445 article-title: Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2013.09.054 – volume: 79 start-page: 20902 year: 2017 ident: smsab36e4bib209 article-title: Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2017170051 – volume: 108 start-page: 252 year: 2018 ident: smsab36e4bib210 article-title: Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.02.035 – volume: 9 start-page: 4057 year: 2017 ident: smsab36e4bib452 article-title: Barium titanate film interfaces for hybrid composite energy harvesters publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15011 – volume: 17 year: 2008 ident: smsab36e4bib47 article-title: Vibration energy harvesting by magnetostrictive material publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/4/045009 – volume: 226 start-page: 607 year: 2018 ident: smsab36e4bib221 article-title: Drastic bandwidth enhancement of bistable energy harvesters: study of subharmonic behaviors and their stability robustness publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.011 – year: 2007 ident: smsab36e4bib326 article-title: A novel piezoelectric based wind energy harvester for low-power autonomous wind speed sensor doi: 10.1109/IECON.2007.4460120 – volume: 60 start-page: 2022 year: 2013 ident: smsab36e4bib257 article-title: Wafer-level integration of high-quality bulk piezoelectric ceramics on silicon publication-title: IEEE T. Electron Dev. doi: 10.1109/TED.2013.2259240 – volume: 14 start-page: 3323 year: 2014 ident: smsab36e4bib256 article-title: A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit publication-title: Sensors doi: 10.3390/s140203323 – volume: 22 year: 2013 ident: smsab36e4bib396 article-title: Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/10/105020 – volume: 7288 start-page: 72880E year: 2009 ident: smsab36e4bib359 article-title: Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys doi: 10.1117/12.815852 – volume: 5 start-page: 24 year: 2017 ident: smsab36e4bib313 article-title: Harvesting piezoelectricity using different structures by utilizing fluid flow interactions publication-title: Int. J. R&D Eng. Sci. Manag. – volume: 105 year: 2014 ident: smsab36e4bib314 article-title: Rotational piezoelectric wind energy harvesting using impact-induced resonance publication-title: Appl. Phys. Lett. doi: 10.1063/1.4887481 – volume: 176 start-page: 447 year: 2015 ident: smsab36e4bib50 article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives publication-title: Faraday Discuss. doi: 10.1039/C4FD00159A – volume: 15 start-page: 669 year: 2015 ident: smsab36e4bib427 article-title: Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2015.02.009 – volume: 72 start-page: 98 year: 2013 ident: smsab36e4bib435 article-title: Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2013.07.004 – volume: 10 start-page: 34 year: 2002 ident: smsab36e4bib375 article-title: Human powered piezoelectric batteries to supply power to wearable electronic devices publication-title: Int. J. Soc. of Mat. Eng. Resour. doi: 10.5188/ijsmer.10.34 – volume: 26 start-page: 4880 year: 2014 ident: smsab36e4bib407 article-title: Self‐powered cardiac pacemaker enabled by flexible single crystalline PMN‐PT piezoelectric energy harvester publication-title: Adv. Mater. doi: 10.1002/adma.201400562 – volume: 19 start-page: 115021 year: 2010 ident: smsab36e4bib446 article-title: Multifunctional self-charging structures using piezoceramics and thin-film batteries publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/11/115021 – volume: 24 start-page: 6949 year: 2014 ident: smsab36e4bib116 article-title: Self‐compensated insulating ZnO‐based piezoelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401998 – volume: 133 start-page: 011001 year: 2011 ident: smsab36e4bib206 article-title: Comparing linear and essentially nonlinear vibration-based energy harvesting publication-title: J. Vib. Acoust. doi: 10.1115/1.4002782 – volume: 18 start-page: 1201 year: 2012 ident: smsab36e4bib440 article-title: Battery-and wire-less tire pressure measurement systems (TPMS) sensor publication-title: Microsyst. Technol. doi: 10.1007/s00542-012-1480-6 – volume: 7 start-page: 288 year: 2014 ident: smsab36e4bib130 article-title: Vertically aligned BaTiO3 nanowire arrays for energy harvesting publication-title: Energy. Environ. Sci. doi: 10.1039/C3EE42540A – volume: 25 start-page: 1681 year: 2014 ident: smsab36e4bib137 article-title: Piezoelectret foam–based vibration energy harvesting publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14541501 – volume: 101 start-page: 20-25 year: 2017 ident: smsab36e4bib45 article-title: A magnetostrictive energy harvesting system for bridge structural health monitoring doi: 10.4028/www.scientific.net/AST.101.20 – volume: 113 start-page: 218 year: 2017 ident: smsab36e4bib65 article-title: Homogenization of porous piezoelectric materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.03.003 – volume: 50 start-page: 110 year: 2015 ident: smsab36e4bib362 article-title: Ocean wave energy harvesting with a piezoelectric coupled buoy structure publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.01.004 – volume: 28 start-page: 307 year: 2017 ident: smsab36e4bib240 article-title: Piezoelectric energy harvesting with a nonlinear energy sink publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X16642301 – volume: 7288 start-page: 728807 year: 2009 ident: smsab36e4bib353 article-title: Generation of electrical energy using short piezoelectric cantilevers in flowing media doi: 10.1117/12.815189 – volume: 5 year: 2017 ident: smsab36e4bib412 article-title: Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film publication-title: APL Mater. doi: 10.1063/1.4976803 – volume: 133 start-page: 33 year: 2014 ident: smsab36e4bib199 article-title: Broadband tristable energy harvester: modeling and experiment verification publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.077 – volume: 52 start-page: 500 year: 2011 ident: smsab36e4bib21 article-title: A review of vibration-based MEMS piezoelectric energy harvesters publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2010.07.024 – volume: 169 start-page: 317 year: 2011 ident: smsab36e4bib470 article-title: A credit card sized self powered smart sensor node publication-title: Sensor. Actuat., A Phys. doi: 10.1016/j.sna.2011.01.015 – volume: 13 start-page: 1131 year: 2004 ident: smsab36e4bib280 article-title: A piezoelectric vibration based generator for wireless electronics publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/13/5/018 – volume: 26 year: 2017 ident: smsab36e4bib164 article-title: Degradation of bimorph piezoelectric bending beams in energy harvesting applications publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa5a5d – volume: 130 year: 2008 ident: smsab36e4bib145 article-title: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters publication-title: J. Vib. Acoust. doi: 10.1115/1.2890402 – volume: 5 start-page: 366 year: 2010 ident: smsab36e4bib108 article-title: Self-powered nanowire devices publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.46 – volume: 239 start-page: 640 year: 2010 ident: smsab36e4bib198 article-title: Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator publication-title: Physica D doi: 10.1016/j.physd.2010.01.019 – volume: 38 start-page: 1356 year: 2018 ident: smsab36e4bib100 article-title: Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.10.023 – volume: 9 start-page: 1223 year: 2009 ident: smsab36e4bib120 article-title: Piezoelectric nanogenerator using p-type ZnO nanowire arrays publication-title: Nano Lett. doi: 10.1021/nl900115y – volume: 5 start-page: 36 year: 2017 ident: smsab36e4bib70 article-title: Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals publication-title: J. Asian Ceram. Soc. doi: 10.1016/j.jascer.2016.12.005 – volume: 105 year: 2014 ident: smsab36e4bib38 article-title: Jumping-droplet electrostatic energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.4886798 – start-page: 233 year: 2011 ident: smsab36e4bib320 article-title: Contact-less wind turbine utilizing piezoelectric bimorphs with magnetic actuation doi: 10.1007/978-1-4419-9834-7_21 – volume: 8 year: 2018 ident: smsab36e4bib53 article-title: Scavenging wind energy by triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702649 – volume: 139 year: 2017 ident: smsab36e4bib278 article-title: Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting publication-title: J. Vib. Acoust. doi: 10.1115/1.4034770 – volume: 188 start-page: 427 year: 2012 ident: smsab36e4bib186 article-title: Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2012.03.026 – volume: 57 start-page: 840 year: 2010 ident: smsab36e4bib290 article-title: A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2009.2037648 – volume: 44 start-page: 13 year: 2015 ident: smsab36e4bib371 article-title: Harvesting raindrop energy with piezoelectrics: a review publication-title: J. Electron. Mater. doi: 10.1007/s11664-014-3443-4 – volume: 10595 start-page: 105951Q year: 2018 ident: smsab36e4bib405 article-title: Detection of compartmental forces and location of contact areas with piezoelectric transducers in total knee arthroplasty doi: 10.1117/12.2296250 – volume: 18 start-page: 497 year: 2012 ident: smsab36e4bib182 article-title: A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz publication-title: Microsyst. Technol. doi: 10.1007/s00542-012-1424-1 – volume: 23 start-page: 651 year: 2014 ident: smsab36e4bib413 article-title: Micro blood pressure energy harvester for intracardiac pacemaker publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2013.2282623 – volume: 5 year: 2015 ident: smsab36e4bib83 article-title: A reconfigurable rectified flexible energy harvester via solid‐state single crystal grown PMN–PZT publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500051 – volume: 122 start-page: 16 year: 2005 ident: smsab36e4bib244 article-title: MEMS power generator with transverse mode thin film PZT publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2004.12.032 – volume: 34 start-page: 658 year: 2009 ident: smsab36e4bib63 article-title: Piezoelectric thin films for sensors, actuators, and energy harvesting publication-title: MRS Bull. doi: 10.1557/mrs2009.177 – volume: 4 year: 2018 ident: smsab36e4bib474 article-title: Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700562 – volume: 52 start-page: 584 year: 2005 ident: smsab36e4bib294 article-title: Toward energy harvesting using active materials and conversion improvement by nonlinear processing publication-title: IEEE T .Ultrason. Ferr. doi: 10.1109/TUFFC.2005.1428041 – volume: 6 start-page: 2046 year: 2014 ident: smsab36e4bib118 article-title: A low temperature process for phosphorous doped ZnO nanorods via a combination of hydrothermal and spin-on dopant methods publication-title: Nanoscale doi: 10.1039/C3NR05128E – volume: 9 start-page: 28586 year: 2017 ident: smsab36e4bib253 article-title: Self-powered viscosity and pressure sensing in microfluidic systems based on the piezoelectric energy harvesting of flowing droplets publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b08541 – volume: 13 start-page: 298 year: 2015 ident: smsab36e4bib386 article-title: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.034 – volume: 154 start-page: 103 year: 2009 ident: smsab36e4bib247 article-title: Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2009.06.007 – volume: 206 start-page: 178 year: 2014 ident: smsab36e4bib389 article-title: A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications publication-title: Sensor. Actuat., A Phys. doi: 10.1016/j.sna.2013.10.003 – volume: 28 start-page: 214 year: 2012 ident: smsab36e4bib180 article-title: Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression publication-title: J. Electroceram. doi: 10.1007/s10832-012-9713-8 – year: 2010 ident: smsab36e4bib258 article-title: A CMOS-compatible piezoelectric vibration energy scavenger based on the integration of bulk PZT films on silicon doi: 10.1109/IEDM.2010.5703459 – volume: 30 year: 2018 ident: smsab36e4bib17 article-title: Thermoelectric materials: carbon‐nanotube‐based thermoelectric materials and devices (Adv. Mater. 11/2018) publication-title: Adv. Mater. doi: 10.1002/adma.201870072 – volume: 50 start-page: 977 year: 2013 ident: smsab36e4bib321 article-title: Parametrically excited nonlinear piezoelectric compact wind turbine publication-title: Renew. Energ. doi: 10.1016/j.renene.2012.07.037 – volume: 2016 year: 2016 ident: smsab36e4bib337 article-title: Experimental study on piezoelectric energy harvesting from vortex-induced vibrations and wake-induced vibrations publication-title: J. Sensors doi: 10.1155/2016/2673292 – volume: 138 year: 2016 ident: smsab36e4bib232 article-title: A broadband internally resonant vibratory energy harvester publication-title: J. Vib. Acoust. doi: 10.1115/1.4034253 – volume: 27 start-page: 763 year: 2012 ident: smsab36e4bib188 article-title: Electromechanical comparison of cantilevered beams with multifunctional piezoceramic devices publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2011.09.002 – volume: 19 year: 2010 ident: smsab36e4bib428 article-title: Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/11/115011 – volume: 57 start-page: 621 year: 2009 ident: smsab36e4bib269 article-title: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2008.11.002 – volume: 24 year: 2015 ident: smsab36e4bib196 article-title: An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/6/065039 – volume: 9 start-page: 634 year: 2016 ident: smsab36e4bib449 article-title: ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting publication-title: Energ. Environ. Sci. doi: 10.1039/C5EE03181H – volume: 5 start-page: 7862 year: 2017 ident: smsab36e4bib94 article-title: A highly dense structure boosts energy harvesting and cycling reliabilities of a high-performance lead-free energy harvester publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00914C – volume: 9 start-page: 3324 year: 2015 ident: smsab36e4bib48 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 114 start-page: 259 year: 2019 ident: smsab36e4bib338 article-title: Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.05.016 – volume: 100 start-page: 042901 year: 2012 ident: smsab36e4bib34 article-title: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters publication-title: Appl. Phys. Lett. doi: 10.1063/1.3679102 – volume: 363 start-page: 517 year: 2016 ident: smsab36e4bib235 article-title: Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.11.017 – volume: 498 start-page: 40 year: 2016 ident: smsab36e4bib64 article-title: Manufacture and characterization of porous ferroelectrics for piezoelectric energy harvesting applications publication-title: Ferroelectrics doi: 10.1080/00150193.2016.1169154 – volume: 126 start-page: 405 year: 2006 ident: smsab36e4bib295 article-title: A comparison between several vibration-powered piezoelectric generators for standalone systems publication-title: Sensor. Actuat, A-Phys. doi: 10.1016/j.sna.2005.10.043 – volume: 10 start-page: 1347 year: 2018 ident: smsab36e4bib11 article-title: Maximum power point tracking for photovoltaic systems under partial shading conditions using bat algorithm publication-title: Sustainability doi: 10.3390/su10051347 – volume: 141 start-page: 1133 year: 2017 ident: smsab36e4bib431 article-title: Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway publication-title: Energy doi: 10.1016/j.energy.2017.10.005 – volume: 27 start-page: 2340 year: 2015 ident: smsab36e4bib460 article-title: Triboelectric–pyroelectric–piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing publication-title: Adv. Mater. doi: 10.1002/adma.201500121 – volume: 29 start-page: 45 year: 2004 ident: smsab36e4bib61 article-title: Templated grain growth of textured piezoelectric ceramics publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430490490905 – volume: 55 start-page: 1041 year: 2016 ident: smsab36e4bib7 article-title: Energy harvesting in wireless sensor networks: A comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.010 – volume: 262 start-page: 123 year: 2017 ident: smsab36e4bib323 article-title: A rotational piezoelectric energy harvester for efficient wind energy harvesting publication-title: Sens. Actuat., A-Phys. doi: 10.1016/j.sna.2017.05.027 – volume: 45 start-page: 1126 year: 2007 ident: smsab36e4bib281 article-title: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters publication-title: AIAA J. doi: 10.2514/1.25047 – year: 2004 ident: smsab36e4bib352 article-title: A novel hydropower harvesting device doi: 10.1109/ICMENS.2004.1508997 – volume: 22 start-page: 721 year: 2008 ident: smsab36e4bib385 article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2007.09.015 – volume: 203 start-page: 142 year: 2017 ident: smsab36e4bib207 article-title: Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.06.018 – volume: 133 start-page: 011002 year: 2011 ident: smsab36e4bib249 article-title: Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting publication-title: J. Vib. Acoust. doi: 10.1115/1.4002783 – volume: 5 start-page: 9609 year: 2013 ident: smsab36e4bib115 article-title: Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications publication-title: Nanoscale doi: 10.1039/c3nr03402j – volume: 6 start-page: 16439 year: 2018 ident: smsab36e4bib91 article-title: High performance piezoelectric energy harvester and self-powered mechanosensing using lead free potassium− sodium niobate flexible piezoelectric composites publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05887C – volume: 11 start-page: 3106 year: 2011 ident: smsab36e4bib301 article-title: Energy harvesting electronics for vibratory devices in self-powered sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2167965 – volume: 28 year: 2018 ident: smsab36e4bib453 article-title: In situ damage detection for fiber‐reinforced composites using integrated zinc oxide nanowires publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802846 – volume: 293 start-page: 409 year: 2006 ident: smsab36e4bib22 article-title: On energy harvesting from ambient vibration publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.10.003 – year: 2013 ident: smsab36e4bib154 article-title: Multi-mode and multi-axis vibration power generation effective for vehicles doi: 10.1109/ISIE.2013.6563689 – volume: 21 start-page: 1311 year: 2012 ident: smsab36e4bib168 article-title: A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2012.2205901 – volume: 333 start-page: 623 year: 2014 ident: smsab36e4bib226 article-title: Extending the dynamic range of an energy harvester using nonlinear damping publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.09.035 – volume: 90 start-page: 20 year: 2017 ident: smsab36e4bib223 article-title: Output response identification in a multistable system for piezoelectric energy harvesting publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2016-70619-y – volume: 16 start-page: 889 year: 2005 ident: smsab36e4bib293 article-title: Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X05053150 – volume: 208 start-page: 56 year: 2014 ident: smsab36e4bib167 article-title: Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2013.12.033 – volume: 101 start-page: 2330 year: 2018 ident: smsab36e4bib93 article-title: High energy conversion efficiency in Mn‐modified Ba0.9Ca0.1Ti0.93Zr0.07O3 lead‐free energy harvester publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15396 – year: 2018 ident: smsab36e4bib24 article-title: A comprehensive method to taxonomize mechanical energy harvesting technologies doi: 10.1109/ISCAS.2018.8350907 – volume: 7 year: 2017 ident: smsab36e4bib68 article-title: Enhancement of β-phase in PVDF films embedded with ferromagnetic Gd5Si4 nanoparticles for piezoelectric energy harvesting publication-title: AIP Adv. doi: 10.1063/1.4973596 – volume: 6 start-page: 97 year: 2013 ident: smsab36e4bib114 article-title: Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation publication-title: Energ. Environ. Sci. doi: 10.1039/C2EE23404A – volume: 71 start-page: 121 year: 2005 ident: smsab36e4bib279 article-title: Design considerations For MEMS-scale piezoelectric mechanical vibration energy harvesters publication-title: Integr. Ferroelectr. doi: 10.1080/10584580590964574 – volume: 24 start-page: 4656 year: 2012 ident: smsab36e4bib133 article-title: A review of mechanical and electromechanical properties of piezoelectric nanowires publication-title: Adv. Mater. doi: 10.1002/adma.201104810 – volume: 21 year: 2011 ident: smsab36e4bib421 article-title: Energy scavenging from insect flight publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/21/9/095016 – year: 2007 ident: smsab36e4bib165 article-title: Novel micro vibration energy harvesting device using frequency up conversion doi: 10.1109/SENSOR.2007.4300269 – volume: 111 year: 2017 ident: smsab36e4bib260 article-title: High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate publication-title: Appl. Phys. Lett. doi: 10.1063/1.4991368 – volume: 7 start-page: 1670 year: 2014 ident: smsab36e4bib187 article-title: Novel ‘3D spacer’ all fibre piezoelectric textiles for energy harvesting applications publication-title: Energ. Environ. Sci. doi: 10.1039/C3EE43987A – volume: 95 year: 2009 ident: smsab36e4bib197 article-title: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.3253710 – year: 2018 ident: smsab36e4bib141 – volume: 4 start-page: 354 year: 2014 ident: smsab36e4bib395 article-title: Characterization of human body-based thermal and vibration energy harvesting for wearable devices publication-title: IEEE J. Em. Sel. Top. C doi: 10.1109/JETCAS.2014.2337195 – volume: 5 start-page: 16065 year: 2015 ident: smsab36e4bib408 article-title: Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy publication-title: Sci. Rep. doi: 10.1038/srep16065 – volume: 26 year: 2017 ident: smsab36e4bib190 article-title: Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa814e – volume: 109 start-page: 026104 year: 2011 ident: smsab36e4bib328 article-title: Ambient wind energy harvesting using cross-flow fluttering publication-title: J. Appl. Phys. doi: 10.1063/1.3525045 – volume: 67 start-page: 30902 year: 2014 ident: smsab36e4bib225 article-title: Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting publication-title: Eur. Phys. J.-Appl. Phys. doi: 10.1051/epjap/2014140190 – start-page: 541-542 year: 2017 ident: smsab36e4bib383 article-title: Unobtrusive user verification using piezoelectric energy harvesting doi: 10.1145/3144457.3144510 – volume: 10 start-page: 4797 year: 2016 ident: smsab36e4bib51 article-title: Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 – volume: 18 year: 2009 ident: smsab36e4bib169 article-title: Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/3/035001 – volume: 20 start-page: 094007 year: 2011 ident: smsab36e4bib345 article-title: Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/9/094007 – volume: 37 start-page: 468 year: 2018 ident: smsab36e4bib144 article-title: Cellular polymer ferroelectret: a review on their development and their piezoelectric properties publication-title: Adv. Polym. Tech. doi: 10.1002/adv.21686 – volume: 44 start-page: 613 year: 2015 ident: smsab36e4bib97 article-title: High-temperature piezoelectrics with large piezoelectric coefficients publication-title: J. Electron. Mater. doi: 10.1007/s11664-014-3534-2 – volume: 26 start-page: 7547 year: 2014 ident: smsab36e4bib124 article-title: Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting publication-title: Adv. Mater. doi: 10.1002/adma.201403286 – volume: 32 start-page: 864 year: 2018 ident: smsab36e4bib191 article-title: Energy harvesting and sensing with embedded piezoelectric ceramics in knee implants publication-title: IEEE-ASME T. Mech. doi: 10.1109/TMECH.2018.2794182 – volume: 96 year: 2010 ident: smsab36e4bib344 article-title: On the energy harvesting potential of piezoaeroelastic systems publication-title: Appl. Phys. Lett. doi: 10.1063/1.3427405 – year: 2007 ident: smsab36e4bib358 article-title: Wave energy converter through piezoelectric polymers – volume: 14 start-page: 9 year: 2017 ident: smsab36e4bib58 article-title: Piezoelectric nanotransducers: The future of neural stimulation publication-title: Nano Today doi: 10.1016/j.nantod.2016.12.005 – volume: 50 start-page: 1961 year: 2015 ident: smsab36e4bib185 article-title: Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates publication-title: Meccanica doi: 10.1007/s11012-015-0140-1 – volume: 89 start-page: 667 year: 2016 ident: smsab36e4bib139 article-title: Stacked and folded piezoelectrets for vibration-based energy harvesting publication-title: Phase Transit. doi: 10.1080/01411594.2016.1202408 – volume: 22 start-page: 2018 year: 2007 ident: smsab36e4bib291 article-title: Buck-boost converter for sensorless power optimization of piezoelectric energy harvester publication-title: IEEE T. Power Electron. doi: 10.1109/TPEL.2007.904230 – volume: 7 start-page: 4035 year: 2014 ident: smsab36e4bib471 article-title: Self-powered fully-flexible light-emitting system enabled by flexible energy harvester publication-title: Energ. Environ. Sci. doi: 10.1039/C4EE02435D – volume: 66 start-page: 040801 year: 2014 ident: smsab36e4bib243 article-title: On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion publication-title: Appl. Mech. Rev. doi: 10.1115/1.4026278 – volume: 158 start-page: 132 year: 2010 ident: smsab36e4bib15 article-title: Thermal energy harvesting through pyroelectricity publication-title: Sensor Actuat. A-Phys. doi: 10.1016/j.sna.2009.12.018 – volume: 31 start-page: 168 year: 2017 ident: smsab36e4bib128 article-title: Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.015 – volume: 23 year: 2014 ident: smsab36e4bib342 article-title: Piezoelectric energy harvesting from hybrid vibrations publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/2/025026 – volume: 95 year: 2009 ident: smsab36e4bib127 article-title: Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.3237170 – volume: 21 start-page: 897 year: 2010 ident: smsab36e4bib204 article-title: Frequency self-tuning scheme for broadband vibration energy harvesting publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X10369716 – volume: 42 start-page: 1847 year: 2013 ident: smsab36e4bib9 article-title: Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35223K – volume: 74 start-page: 1271 year: 2013 ident: smsab36e4bib161 article-title: Harvesting low-frequency acoustic energy using quarter-wavelength straight-tube acoustic resonator publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2013.04.015 – volume: 9431 start-page: 943111 year: 2015 ident: smsab36e4bib140 article-title: Evaluation of piezoelectret foam in a multilayer stack configuration for low-level vibration energy harvesting applications doi: 10.1117/12.2084237 – volume: 118 start-page: 221 year: 2017 ident: smsab36e4bib224 article-title: Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions publication-title: Energy doi: 10.1016/j.energy.2016.12.035 – volume: 90 start-page: 248 year: 2018 ident: smsab36e4bib13 article-title: Photovoltaic performances of mono-and mixed-halide structures for perovskite solar cell: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.030 – volume: 212 start-page: 1083 year: 2018 ident: smsab36e4bib23 article-title: Energy harvesting technologies in roadway and bridge for different applications–A comprehensive review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.125 – year: 2017 ident: smsab36e4bib324 article-title: Fluids energy harvesting system with low cut-in velocity piezoelectric MEMS doi: 10.1109/ICICDT.2017.7993506 – volume: 3 start-page: 6835 year: 2015 ident: smsab36e4bib67 article-title: Significant piezoelectric and energy harvesting enhancement of poly (vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00147A – year: 2008 ident: smsab36e4bib423 article-title: Mechanical energy scavenging from flying insects doi: 10.31438/trf.hh2008.100 – volume: 84 start-page: 659 year: 2017 ident: smsab36e4bib42 article-title: Energy harvesting potential of tuned inertial mass electromagnetic transducers publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2016.07.048 – volume: 43 start-page: 193 year: 2018 ident: smsab36e4bib19 article-title: Wearable and flexible thermoelectrics for energy harvesting publication-title: MRS Bull. doi: 10.1557/mrs.2018.8 – volume: 4 start-page: 28 year: 2005 ident: smsab36e4bib150 article-title: Improving power output for vibration-based energy scavengers publication-title: IEEE Pervas. Comput. doi: 10.1109/MPRV.2005.14 – volume: 24 year: 2015 ident: smsab36e4bib231 article-title: Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/5/055021 – volume: 122 year: 2017 ident: smsab36e4bib273 article-title: Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting publication-title: J. Appl. Phys. doi: 10.1063/1.5008724 – volume: 58 start-page: 629 year: 2011 ident: smsab36e4bib32 article-title: A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin publication-title: IEEE T .Ultrason. Ferr. doi: 10.1109/TUFFC.2011.5733266 – volume: 8 start-page: 10844 year: 2014 ident: smsab36e4bib117 article-title: Lithium-doped zinc oxide nanowires–polymer composite for high performance flexible piezoelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn5046568 – volume: 29 start-page: 1206 year: 2018 ident: smsab36e4bib233 article-title: Piezoelectric energy harvesting using L-shaped structures publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X17730926 – volume: 24 start-page: 357 year: 2013 ident: smsab36e4bib156 article-title: A novel two-degrees-of-freedom piezoelectric energy harvester publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X12457254 – year: 2018 ident: smsab36e4bib5 – volume: 356 start-page: 162 year: 2010 ident: smsab36e4bib369 article-title: Impact force of low velocity liquid droplets measured using piezoelectric PVDF film publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2010.01.005 – volume: 44 start-page: L104 year: 2005 ident: smsab36e4bib317 article-title: Piezoelectric windmill: A novel solution to remote sensing publication-title: Japan. J. Appl. Phys. doi: 10.1143/JJAP.44.L104 – volume: 24 year: 2015 ident: smsab36e4bib201 article-title: Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/5/055008 – volume: 8377 year: 2012 ident: smsab36e4bib16 article-title: Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques doi: 10.1117/12.920978 – volume: 4 start-page: 3 year: 2017 ident: smsab36e4bib263 article-title: A review on piezoelectric energy harvesting: Materials, methods, and circuits publication-title: Energy Harvesting and Systems doi: 10.1515/ehs-2016-0028 – volume: 16 start-page: 1810 year: 2007 ident: smsab36e4bib392 article-title: Energy harvesting from a backpack instrumented with piezoelectric shoulder straps publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/5/036 – start-page: V002T07A017 year: 2014 ident: smsab36e4bib425 article-title: Energy harvesting for marine-wildlife monitoring doi: 10.1115/SMASIS2014-7630 – volume: 123 start-page: 1983 year: 2008 ident: smsab36e4bib464 article-title: Acoustic energy harvesting using an electromechanical Helmholtz resonator publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2839000 – volume: 103 year: 2008 ident: smsab36e4bib121 article-title: Enhanced active piezoelectric 0–3 nanocomposites fabricated through electrospun nanowires publication-title: J. Appl. Phys. doi: 10.1063/1.2939271 – volume: 133 start-page: 011010 year: 2011 ident: smsab36e4bib329 article-title: Modeling and testing of a novel aeroelastic flutter energy harvester publication-title: J. Vib. Acoust. doi: 10.1115/1.4002788 – volume: 19 start-page: 1311 year: 2008 ident: smsab36e4bib146 article-title: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X07085639 – year: 2004 ident: smsab36e4bib376 article-title: Evaluation of motions and actuation methods for biomechanical energy harvesting doi: 10.1109/PESC.2004.1355442 – year: 1986 ident: smsab36e4bib105 article-title: Composite piezoelectric paints doi: 10.1109/ISAF.1986.201143 – volume: 6 start-page: 935 year: 2018 ident: smsab36e4bib81 article-title: Soft and hard piezoelectric ceramics and single crystals for random vibration energy harvesting publication-title: Energy Technol. doi: 10.1002/ente.201700873 – volume: 16 start-page: 379 year: 2006 ident: smsab36e4bib284 article-title: Analytical modeling of piezoelectric vibration-induced micro power generator publication-title: Mechatronics doi: 10.1016/j.mechatronics.2006.03.003 – volume: 21 year: 2011 ident: smsab36e4bib444 article-title: Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/1/015011 – volume: 20 year: 2011 ident: smsab36e4bib170 article-title: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/4/045004 – volume: 33 start-page: 1 year: 2018 ident: smsab36e4bib90 article-title: Lead-free piezoelectric materials and composites for high power density energy harvesting publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.172 – volume: 150 start-page: 532 year: 2019 ident: smsab36e4bib467 article-title: Modelling and analysis of a thermoacoustic-piezoelectric energy harvester publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.01.025 – volume: 20 year: 2011 ident: smsab36e4bib367 article-title: An investigation of energy harvesting from renewable sources with PVDF and PZT publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/5/055019 – volume: 97 start-page: 164102 year: 2010 ident: smsab36e4bib333 article-title: A T-shaped piezoelectric cantilever for fluid energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.3503609 – volume: 14 start-page: 12497 year: 2014 ident: smsab36e4bib382 article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors publication-title: Sensors doi: 10.3390/s140712497 – volume: 26 year: 2017 ident: smsab36e4bib411 article-title: Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa6cfd – volume: 77 start-page: 71 year: 2014 ident: smsab36e4bib184 article-title: A ring piezoelectric energy harvester excited by magnetic forces publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2014.01.001 – volume: 264 start-page: 212 year: 2017 ident: smsab36e4bib262 article-title: Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2017.08.005 – volume: 460 start-page: 98 year: 2014 ident: smsab36e4bib315 article-title: Ultra-low wind speed piezoelectric windmill publication-title: Ferroelectrics doi: 10.1080/00150193.2014.875315 – volume: 23 year: 2014 ident: smsab36e4bib176 article-title: Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/4/045039 – volume: 51 year: 2018 ident: smsab36e4bib277 article-title: Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aab97e – volume: 2 start-page: 1261 year: 2012 ident: smsab36e4bib110 article-title: Nanostructured p‐n junctions for kinetic‐to‐electrical energy conversion publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200205 – volume: 39 start-page: S653 year: 2013 ident: smsab36e4bib152 article-title: Asymmetric PZT bimorph cantilever for multi-dimensional ambient vibration harvesting publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.10.155 – volume: 17 year: 2008 ident: smsab36e4bib194 article-title: A vibration energy harvesting device with bidirectional resonance frequency tunability publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/01/015035 – volume: 105 start-page: 427 year: 2018 ident: smsab36e4bib211 article-title: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.12.025 – volume: 37 start-page: 2583 year: 2017 ident: smsab36e4bib92 article-title: Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.02.049 – volume: 94 year: 2009 ident: smsab36e4bib218 article-title: A piezomagnetoelastic structure for broadband vibration energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.3159815 – volume: 501 start-page: 159 year: 2018 ident: smsab36e4bib102 article-title: Piezoelectric glass-ceramic for high-temperature applications publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.03.038 – volume: 27 year: 2018 ident: smsab36e4bib307 article-title: Unipolar synchronized electric charge extraction for piezoelectric energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaca58 – volume: 110 start-page: 260 year: 2018 ident: smsab36e4bib216 article-title: Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.03.023 – year: 2015 ident: smsab36e4bib183 article-title: Three-axis piezoelectric vibration energy harvester doi: 10.1109/MEMSYS.2015.7051166 – volume: 15 start-page: 1413 year: 2006 ident: smsab36e4bib192 article-title: Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/15/5/030 – volume: 277 start-page: 124 year: 2018 ident: smsab36e4bib239 article-title: Nonlinear piezoelectric energy harvester with ball tip mass publication-title: Sensor. Actuat., A-Phys. doi: 10.1016/j.sna.2018.03.015 – volume: 20 start-page: 025019 year: 2010 ident: smsab36e4bib354 article-title: Piezoelectric energy harvesting from flow-induced vibration publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/2/025019 – volume: 59 start-page: 846 year: 2012 ident: smsab36e4bib250 article-title: Low-frequency meandering piezoelectric vibration energy harvester publication-title: IEEE T. Ultrason. Ferr. doi: 10.1109/TUFFC.2012.2269 – volume: 28 start-page: 1706895 year: 2018 ident: smsab36e4bib59 article-title: Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN‐PZT for vibration energy harvesting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706895 – volume: 20 start-page: 104001 year: 2010 ident: smsab36e4bib469 article-title: Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/10/104001 – volume: 26 start-page: 583 year: 1989 ident: smsab36e4bib136 article-title: Electrothermomechanical film. Part I. Design and characteristics publication-title: J. Macromol. Sci. A doi: 10.1080/00222338908051994 – volume: 52 start-page: 229 year: 2017 ident: smsab36e4bib99 article-title: High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0325-6 – volume: 20 year: 2011 ident: smsab36e4bib330 article-title: Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/12/125017 – volume: 16 start-page: 799 year: 2011 ident: smsab36e4bib401 article-title: The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking publication-title: IEEE-ASME T. Mech. doi: 10.1109/TMECH.2011.2159512 – start-page: 699-709 year: 2008 ident: smsab36e4bib417 article-title: Experimental study of the mechanics of motion of flapping insect flight under weight loading doi: 10.1115/SMASIS2008-661 – volume: 35 start-page: 2057 year: 2015 ident: smsab36e4bib88 article-title: (1−x) Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.12.036 – volume: 2 start-page: 10945 year: 2014 ident: smsab36e4bib112 article-title: Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01714e – volume: 21 start-page: 401 year: 2015 ident: smsab36e4bib459 article-title: Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-2030-6 – volume: 28 year: 2018 ident: smsab36e4bib308 article-title: Shunt-diode rectifier: a new scheme for efficient piezoelectric energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaefc5 – volume: 60 start-page: 1116 year: 2013 ident: smsab36e4bib325 article-title: Flow energy harvesting using piezoelectric cantilevers with cylindrical extension publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2012.2187413 – volume: 8 start-page: 328 year: 2008 ident: smsab36e4bib109 article-title: Carrier density and Schottky barrier on the performance of DC nanogenerator publication-title: Nano Lett. doi: 10.1021/nl0728470 – volume: 18 start-page: 1527 year: 2013 ident: smsab36e4bib158 article-title: A piezoelectric energy harvester for rotary motion applications: design and experiments publication-title: IEEE-ASME T. Mech. doi: 10.1109/TMECH.2012.2205266 – volume: 42 start-page: 277 year: 2011 ident: smsab36e4bib171 article-title: Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation publication-title: Microelectron. J. doi: 10.1016/j.mejo.2010.10.007 – volume: 171 start-page: 1405 year: 2018 ident: smsab36e4bib331 article-title: Experimental investigation of energy harvesting from swirling flows using a piezoelectric film transducer publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2018.06.081 – volume: 100 start-page: 255 year: 1989 ident: smsab36e4bib106 article-title: Thin film 0–3 polymer/piezoelectric ceramic composites: Piezoelectric paints publication-title: Ferroelectrics doi: 10.1080/00150198908007920 – volume: 56 start-page: 1048 year: 2009 ident: smsab36e4bib298 article-title: Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2009.2014673 – volume: 22 start-page: 1959 year: 2011 ident: smsab36e4bib28 article-title: Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11420593 – volume: 329 start-page: 1215 year: 2010 ident: smsab36e4bib227 article-title: Investigations of a nonlinear energy harvester with a bistable potential well publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.11.034 – volume: 10 start-page: 305 year: 2014 ident: smsab36e4bib175 article-title: Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters publication-title: Int. J. Mech. Mater. Des. doi: 10.1007/s10999-014-9247-0 – volume: 19 year: 2010 ident: smsab36e4bib122 article-title: The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/2/025018 – volume: 105 year: 2014 ident: smsab36e4bib380 article-title: Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism publication-title: Appl. Phys. Lett. doi: 10.1063/1.4897624 – volume: 391 start-page: 35 year: 2017 ident: smsab36e4bib43 article-title: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.12.019 – volume: 24 start-page: 2396 year: 2017 ident: smsab36e4bib340 article-title: Piezoelectric energy harvesting from vertical piezoelectric beams in the horizontal fluid flows publication-title: Scientia Iranica doi: 10.24200/sci.2017.4240 – volume: 438 start-page: 1 year: 2014 ident: smsab36e4bib266 article-title: Metamaterials-based enhanced energy harvesting: A review publication-title: Physica B doi: 10.1016/j.physb.2013.12.040 – volume: 91 start-page: 1817 year: 2018 ident: smsab36e4bib234 article-title: A comprehensive study of 2: 1 internal-resonance-based piezoelectric vibration energy harvesting publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3982-3 – volume: 95 year: 2009 ident: smsab36e4bib270 article-title: Acoustic energy harvesting using resonant cavity of a sonic crystal publication-title: Appl. Phys. Lett. doi: 10.1063/1.3176019 – volume: 1 start-page: 356 year: 2012 ident: smsab36e4bib132 article-title: Piezoelectric nanofibers for energy scavenging applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.02.003 – volume: 90 start-page: 054106 year: 2007 ident: smsab36e4bib318 article-title: Small scale windmill publication-title: Appl. Phys. Lett. doi: 10.1063/1.2435346 – volume: 55 start-page: 2119 year: 2008 ident: smsab36e4bib296 article-title: Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction publication-title: IEEE T .Ultrason. Ferr. doi: 10.1109/TUFFC.912 – volume: 94 start-page: 113 year: 2015 ident: smsab36e4bib441 article-title: A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2015.05.004 – volume: 18 start-page: 139 year: 2019 ident: smsab36e4bib384 article-title: KEH-Gait: Using kinetic energy harvesting for gait-based user authentication systems publication-title: IEEE Transactions on Mobile Computing doi: 10.1109/TMC.2018.2828816 – volume: 22 year: 2013 ident: smsab36e4bib160 article-title: Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/5/055013 – volume: 96 year: 2010 ident: smsab36e4bib166 article-title: Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation publication-title: Appl. Phys. Lett. doi: 10.1063/1.3360219 – year: 2019 ident: smsab36e4bib265 – volume: 25 year: 2016 ident: smsab36e4bib261 article-title: Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/10/105016 – volume: 54 start-page: 405 year: 2015 ident: smsab36e4bib162 article-title: Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2014.08.020 – volume: 60 start-page: 2111 year: 2012 ident: smsab36e4bib135 article-title: Electromechanical response of piezoelectric foams publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.036 – volume: 107 year: 2015 ident: smsab36e4bib222 article-title: Nonlinear time-varying potential bistable energy harvesting from human motion publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932947 – volume: 55 start-page: 182 year: 2019 ident: smsab36e4bib255 article-title: Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.068 – volume: 20 start-page: 3 year: 2009 ident: smsab36e4bib287 article-title: A general equivalent circuit model for piezoelectric generators publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X08089957 – volume: 4 start-page: 2682 year: 2013 ident: smsab36e4bib129 article-title: High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays publication-title: Nat. Commun. doi: 10.1038/ncomms3682 – volume: 106-107 start-page: 214-27 year: 2012 ident: smsab36e4bib288 article-title: Assumed-modes formulation of piezoelectric energy harvesters: euler-bernoulli, rayleigh and timoshenko models with axial deformations publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.05.010 – volume: 330 start-page: 2339 year: 2011 ident: smsab36e4bib228 article-title: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2010.11.018 – volume: 23 start-page: 015101 year: 2012 ident: smsab36e4bib455 article-title: Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/1/015101 – volume: 51 year: 2018 ident: smsab36e4bib241 article-title: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aab9e3 – volume: 37 start-page: 1280 year: 2006 ident: smsab36e4bib245 article-title: Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting publication-title: Microelectron. J. doi: 10.1016/j.mejo.2006.07.023 – volume: 117 start-page: 21 year: 2018 ident: smsab36e4bib254 article-title: A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2018.02.024 – volume: 37 start-page: 407 year: 2017 ident: smsab36e4bib71 article-title: Improved solid-state conversion and piezoelectric properties of 90Na1/2Bi1/2TiO3-5BaTiO3-5K1/2Na1/2NbO3 single crystals publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.07.023 – volume: 16 start-page: 865 year: 2005 ident: smsab36e4bib292 article-title: Piezoelectric energy harvesting device optimization by synchronous electric charge extraction publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X05056859 – volume: 22 year: 2013 ident: smsab36e4bib20 article-title: A review of the recent research on vibration energy harvesting via bistable systems publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/2/023001 – volume: 14 start-page: 15 year: 2015 ident: smsab36e4bib134 article-title: Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.059 – volume: 410 start-page: 5 year: 2013 ident: smsab36e4bib153 article-title: Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams publication-title: Physica B doi: 10.1016/j.physb.2012.10.029 – volume: 34 start-page: 2275 year: 2014 ident: smsab36e4bib79 article-title: Shift of morphotropic phase boundary in high-performance fine-grained PZN–PZT ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.02.041 – volume: 446 start-page: 129 year: 2019 ident: smsab36e4bib237 article-title: A parametric resonator with low threshold excitation for vibration energy harvesting publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.01.038 – volume: 197 start-page: 292 year: 2017 ident: smsab36e4bib364 article-title: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.019 – volume: 104 start-page: 172901 year: 2014 ident: smsab36e4bib138 article-title: Vibration-based energy harvesting with stacked piezoelectrets publication-title: Appl. Phys. Lett. doi: 10.1063/1.4874305 – year: 1971 ident: smsab36e4bib73 – volume: 11 year: 2010 ident: smsab36e4bib87 article-title: Progress in engineering high strain lead-free piezoelectric ceramics publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/4/044302 – volume: 212 start-page: 362 year: 2018 ident: smsab36e4bib36 article-title: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.053 – volume: 59 start-page: 1950 year: 2012 ident: smsab36e4bib300 article-title: Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2011.2167116 – volume: 39 start-page: 802 year: 2008 ident: smsab36e4bib246 article-title: A MEMS-based piezoelectric power generator array for vibration energy harvesting publication-title: Microelectron. J. doi: 10.1016/j.mejo.2007.12.017 – volume: 333 start-page: 6209 year: 2014 ident: smsab36e4bib230 article-title: M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.06.046 – year: 2011 ident: smsab36e4bib393 article-title: Efficient energy harvesting from human motion using wearable piezoelectric shell structures doi: 10.1109/TRANSDUCERS.2011.5969874 – volume: 96 start-page: 1457 year: 2008 ident: smsab36e4bib4 article-title: Energy harvesting from human and machine motion for wireless electronic devices publication-title: Proc. IEEE doi: 10.1109/JPROC.2008.927494 – volume: 19 start-page: 2553 year: 2004 ident: smsab36e4bib77 article-title: Effect of lead zinc niobate addition on sintering behavior and piezoelectric properties of lead zirconate titanate ceramic publication-title: J. Mater. Res. doi: 10.1557/JMR.2004.0328 – volume: 21 year: 2012 ident: smsab36e4bib155 article-title: Optimization of a right-angle piezoelectric cantilever using auxiliary beams with different stiffness levels for vibration energy harvesting publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/6/065017 – volume: 19 start-page: 065014 year: 2009 ident: smsab36e4bib248 article-title: Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/6/065014 – volume: 128 start-page: 207 year: 2017 ident: smsab36e4bib66 article-title: Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.029 – volume: 106 year: 2009 ident: smsab36e4bib448 article-title: Characterization of multifunctional structural capacitors for embedded energy storage publication-title: J. Appl. Phys. doi: 10.1063/1.3267482 – volume: 61 start-page: 1267 year: 1998 ident: smsab36e4bib60 article-title: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/61/9/002 – start-page: 121-130 year: 2008 ident: smsab36e4bib419 article-title: A methodology for applying energy harvesting to extend wildlife tag lifetime doi: 10.1115/IMECE2008-68082 – volume: 44 start-page: 721 year: 2018 ident: smsab36e4bib213 article-title: Dynamic characterization of a bistable energy harvester under gaussian white noise for larger time constant publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-018-3187-1 – volume: 125 start-page: 716 year: 2017 ident: smsab36e4bib370 article-title: Towards a prototype module for piezoelectric energy harvesting from raindrop impacts publication-title: Energy doi: 10.1016/j.energy.2017.02.071 – volume: 94 start-page: 3953 year: 2011 ident: smsab36e4bib78 article-title: Identification and effect of secondary phase in MnO2‐doped 0.8 Pb (Zr0.52Ti0.48) O3–0.2 Pb (Zn1/3Nb2/3)O3 piezoelectric ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04629.x – volume: 96 start-page: 430 year: 2015 ident: smsab36e4bib163 article-title: Design and development of a multipurpose piezoelectric energy harvester publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2015.03.014 – volume: 333 start-page: 1421 year: 2014 ident: smsab36e4bib361 article-title: Potential of a piezoelectric energy harvester from sea waves publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.11.008 – volume: 14 start-page: 144 year: 2013 ident: smsab36e4bib96 article-title: High-temperature piezoelectric sensing publication-title: Sensors doi: 10.3390/s140100144 – year: 2013 ident: smsab36e4bib368 article-title: Harvesting rainfall energy by means of piezoelectric transducer doi: 10.1109/ICCEP.2013.6586952 – volume: 18 year: 2009 ident: smsab36e4bib457 article-title: A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/9/095029 – volume: 94 start-page: 779 year: 2018 ident: smsab36e4bib12 article-title: A review of transparent solar photovoltaic technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.06.031 – volume: 9 start-page: 731 year: 2009 ident: smsab36e4bib75 article-title: A vibration-based PMN-PT energy harvester publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2009.2021192 – year: 2011 ident: smsab36e4bib56 doi: 10.1007/978-1-4419-9598-8 – volume: 91 start-page: 376 year: 2018 ident: smsab36e4bib18 article-title: A review of the development and applications of thermoelectric microgenerators for energy harvesting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.052 – volume: 24 year: 2015 ident: smsab36e4bib424 article-title: The case for energy harvesting on wildlife in flight publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/2/025031 – volume: 22 start-page: 970 year: 2012 ident: smsab36e4bib439 article-title: Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires publication-title: Mechatronics doi: 10.1016/j.mechatronics.2012.06.006 – volume: 8690 start-page: 869007 year: 2013 ident: smsab36e4bib456 article-title: Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques doi: 10.1117/12.2010637 – volume: 736 start-page: R1 year: 2013 ident: smsab36e4bib350 article-title: Flapping dynamics of an inverted flag publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.555 – volume: 43 start-page: 3734 year: 2017 ident: smsab36e4bib101 article-title: Enhanced piezoelectricity and high-temperature sensitivity of Zn-modified BF-BT ceramics by in situ and ex situ measuring publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.12.006 – volume: 122 start-page: 321 year: 2016 ident: smsab36e4bib82 article-title: Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2016.05.085 – volume: 153 start-page: 882 year: 2018 ident: smsab36e4bib339 article-title: Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectrum publication-title: Energy doi: 10.1016/j.energy.2018.04.109 – volume: 90 start-page: 796 year: 2015 ident: smsab36e4bib363 article-title: Piezoelectric energy harvesting from raindrop impacts publication-title: Energy doi: 10.1016/j.energy.2015.07.114 – volume: 7288 start-page: 72880D year: 2009 ident: smsab36e4bib289 article-title: Piezoelectric energy harvesting from multifunctional wing spars for UAVs—Part 2: Experiments and storage applications doi: 10.1117/12.815799 – volume: 25 year: 2016 ident: smsab36e4bib159 article-title: Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/4/045008 – volume: 27 year: 2018 ident: smsab36e4bib404 article-title: Force detection, center of pressure tracking, and energy harvesting from a piezoelectric knee implant publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aad755 – volume: 17 start-page: 065016 year: 2008 ident: smsab36e4bib286 article-title: Issues in mathematical modeling of piezoelectric energy harvesters publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/6/065016 – volume: 26 start-page: 539 year: 2001 ident: smsab36e4bib351 article-title: The energy harvesting eel: a small subsurface ocean/river power generator publication-title: IEEE J. Oceanic Eng. doi: 10.1109/48.972090 – volume: 76 start-page: 14 year: 2018 ident: smsab36e4bib348 article-title: Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.09.007 – volume: 13 start-page: 174 year: 2015 ident: smsab36e4bib381 article-title: Powerful curved piezoelectric generator for wearable applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.051 – volume: 8341 start-page: 834103 year: 2012 ident: smsab36e4bib422 article-title: Harvestable vibrational energy from an avian source: theoretical predictions versus measured values doi: 10.1117/12.915370 – volume: 28 start-page: 2501 year: 2014 ident: smsab36e4bib473 article-title: Self-powered piezoelectric energy harvester for bicycle publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-014-0407-9 – volume: 22 start-page: 1879 year: 2011 ident: smsab36e4bib123 article-title: Influence of aspect ratio on effective electromechanical coupling of nanocomposites with lead zirconate titanate nanowire inclusion publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X11416025 – volume: 102 year: 2013 ident: smsab36e4bib219 article-title: Enhanced broadband piezoelectric energy harvesting using rotatable magnets publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803445 – volume: 87 start-page: 184101 year: 2005 ident: smsab36e4bib316 article-title: Modeling of electric energy harvesting using piezoelectric windmill publication-title: Appl. Phys. Lett. doi: 10.1063/1.2119410 – volume: 6928 start-page: 692823 year: 2008 ident: smsab36e4bib454 article-title: Investigation of energy harvesting small unmanned air vehicle doi: 10.1117/12.775851 – volume: 93 start-page: 1345 year: 2015 ident: smsab36e4bib429 article-title: Energy harvesting from high-rise buildings by a piezoelectric harvester device publication-title: Energy doi: 10.1016/j.energy.2015.09.131 – volume: 20 year: 2010 ident: smsab36e4bib62 article-title: Epitaxial piezoelectric MEMS on silicon publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/5/055008 – volume: 163 start-page: 169 year: 2018 ident: smsab36e4bib433 article-title: Experimental investigation on piezoelectric energy harvesting from vehicle-bridge coupling vibration publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2018.02.054 – volume: 10 start-page: 1869 year: 2010 ident: smsab36e4bib8 article-title: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics publication-title: Nano Lett. doi: 10.1021/nl101060h – volume: 346 start-page: 200 year: 2015 ident: smsab36e4bib355 article-title: Influence and optimization of the electrodes position in a piezoelectric energy harvesting flag publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.01.010 – volume: 58 start-page: 159 year: 2008 ident: smsab36e4bib418 article-title: Cyborg MAVs using power harvesting and behavioral control schemes publication-title: Adv. Sci. Tech. doi: 10.4028/www.scientific.net/AST.58.159 – start-page: 1 year: 2017 ident: smsab36e4bib57 article-title: The development of piezoelectric materials and the new perspective |
SSID | ssj0011831 |
Score | 2.7022955 |
Snippet | Energy harvesting technologies have been explored by researchers for more than two decades as an alternative to conventional power sources (e.g. batteries) for... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113001 |
SubjectTerms | energy harvesting piezoelectric materials piezoelectricity |
Title | A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018) |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/ab36e4 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IOjBt_gmgoIesmubNLZ6ElFE8HFQ3INQ8lRRt4u7Xvz1TpLuoiIiQik9TNJ0Ms1MMt_MAGwWCZNKK0X3mDSUJ85Qxa2hEnVBVjhpWTgaOL8Qpzf8rJW1huBgEAtTdeqlv4GPMVFwZGENiMubCRMJFSJrNaViwvJhGGU5Kk4fvXd5NXAhoKyGcnmF4BS1dN9H-VMPX3TSML73k4o5mYK7_uAisuSp8dZTDf3-LW_jP0c_DZO16UkOI-kMDNn2LEx8Skg4C2MBEKq7c_BwSGJUC6kcsSFAkDzI15CUo31PPFz-nnQe7XsVC-k8aoK2bxTnfRLClGjlKJqXHntHJDHWI_HJsyci2wEPgVZBvjMPNyfH10entK7KQDUXuz1qfYY0IzQaCpnBzUZuCscLodFywUUcWxuFq4I0qWAMv9BwZawvvJJop3OmNFuAkXbVtotAhMQNZ2ZT7k-fHMrGXqZ4ar0zctfppFiCZn9eSl2nLPeVM57L4DrP89Jzs_TcLCM3l2Bn0KIT03X8QruFk1TW_2z3F7qNL3Tdl26ZIlmCF0NBKzvGLf-xrxUYR94WXvml6SqM9F7f7BpaNT21HqQX75fs9gMVsO6I |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aUfQgPrE-IyjoIba7yaa73opa6tuDxd5CnrWg3dLWi7_eSXYVBRFhD3uYZDeTSb5J5oXQQRZRqbRSpEGlISxyhihmDZGABUnmpKXhauD2jrc77KqbdMs6pyEWJh-WW_8JvBaJggsWlg5xaS2iPCKcJ92aVJRbVhsaN41mEgrdg0Df06cvMwLIayiZl3FGAKk_7ZS_9fIDl6bh299gprWEFkv9EDeLv1lGU3awgha-ZQ1cQbPBa1OPV9FzExehJzh32IYoPvwsRyFzxqCHvU97Dw_79j0vqt30NQYFtZC5UxxiiUjuCOiA3kEOS2ysd5fHL54IHwWnBYDu9HgNdVoXj2dtUpZOIJrx-oRYn8bMcA1onhg4EaQmcyzjGtQL2GmhtVGwdKWJOaUwfMOUsb46SqSdTqnSdB1VBvnAbiDMJZwKExszf0XkYAIbiWKx9RbDutNRVkW1T8YJXeYV9-UtXkSwb6ep8KwWntWiYHUVHX-1GBY5Nf6gPYS5EOXCGv9Bt_-Dbvw6FjGQRfBQkAQBQrL5z7720NzDeUvcXN5db6F5YHPmwSqOt1FlMnqzO6CFTNRukLQPcljSKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+energy+harvesting+using+piezoelectric+materials%3A+state-of-the-art+a+decade+later+%282008%E2%80%932018%29&rft.jtitle=Smart+materials+and+structures&rft.au=Safaei%2C+Mohsen&rft.au=Sodano%2C+Henry+A&rft.au=Anton%2C+Steven+R&rft.date=2019-10-22&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=28&rft.issue=11&rft.spage=113001&rft_id=info:doi/10.1088%2F1361-665X%2Fab36e4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ab36e4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |